Basic Theory of Linear Differential Equations

• Picard-Lindelöf Existence-Uniqueness
 – Vector \(n \)th Order Theorem
 – Second Order Linear Theorem
 – Higher Order Linear Theorem

• Homogeneous Structure

• Recipe for Constant-Coefficient Linear Homogeneous Differential Equations
 – First Order
 – Second Order
 – \(n \)th Order

• Superposition

• Non-Homogeneous Structure
Theorem 1 (Picard-Lindelöf Existence-Uniqueness)
Let the \(n \)-vector function \(\vec{f}(x, \vec{y}) \) be continuous for real \(x \) satisfying \(|x - x_0| \leq a\) and for all vectors \(\vec{y} \) in \(\mathbb{R}^n \) satisfying \(|\vec{y} - \vec{y}_0| \leq b\). Additionally, assume that \(\partial \vec{f}/\partial \vec{y} \) is continuous on this domain. Then the initial value problem

\[
\begin{align*}
\vec{y}' &= \vec{f}(x, \vec{y}), \\
\vec{y}(x_0) &= \vec{y}_0
\end{align*}
\]

has a unique solution \(\vec{y}(x) \) defined on \(|x - x_0| \leq h\), satisfying \(|\vec{y} - \vec{y}_0| \leq b\), for some constant \(h, 0 < h < a \).

The unique solution can be written in terms of the Picard Iterates

\[
\vec{y}_{n+1}(x) = \vec{y}_0 + \int_{x_0}^{x} \vec{f}(t, \vec{y}_n(t))dt, \quad \vec{y}_0(x) \equiv \vec{y}_0,
\]

as the formula

\[
\vec{y}(x) = \vec{y}_n(x) + R_n(x), \quad \lim_{n \to \infty} R_n(x) = 0.
\]

The formula means \(\vec{y}(x) \) can be computed as the iterate \(\vec{y}_n(x) \) for large \(n \).
Theorem 2 (Second Order Linear Picard-Lindelöf Existence-Uniqueness)

Let the coefficients $a(x)$, $b(x)$, $c(x)$, $f(x)$ be continuous on an interval J containing $x = x_0$. Assume $a(x) \neq 0$ on J. Let g_1 and g_2 be real constants. The initial value problem

$$
\begin{align*}
\begin{cases}
 a(x)y'' + b(x)y' + c(x)y &= f(x), \\
 y(x_0) &= g_1, \\
 y'(x_0) &= g_2
\end{cases}
\end{align*}
$$

has a unique solution $y(x)$ defined on J.

Theorem 3 (Higher Order Linear Picard-Lindelöf Existence-Uniqueness)
Let the coefficients $a_0(x), \ldots, a_n(x), f(x)$ be continuous on an interval J containing $x = x_0$. Assume $a_n(x) \neq 0$ on J. Let g_1, \ldots, g_n be constants. Then the initial value problem

$$\begin{aligned}
& a_n(x)y^{(n)}(x) + \cdots + a_0(x)y = f(x), \\
& y(x_0) = g_1, \\
& y'(x_0) = g_2, \\
& \vdots \\
& y^{(n-1)}(x_0) = g_n
\end{aligned}$$

has a unique solution $y(x)$ defined on J.
Theorem 4 (Homogeneous Structure 2nd Order)
The homogeneous equation $a(x)y'' + b(x)y' + c(x)y = 0$ has a general solution of the form

$$y_h(x) = c_1 y_1(x) + c_2 y_2(x),$$

where c_1, c_2 are arbitrary constants and $y_1(x), y_2(x)$ are independent solutions.

Theorem 5 (Homogeneous Structure n-th Order)
The homogeneous equation $a_n(x)y^{(n)} + \cdots + a_0(x)y = 0$ has a general solution of the form

$$y_h(x) = c_1 y_1(x) + \cdots + c_n y_n(x),$$

where c_1, \ldots, c_n are arbitrary constants and $y_1(x), \ldots, y_n(x)$ are independent solutions.
Theorem 6 (First Order Recipe)

Let \(a \) and \(b \) be constants, \(a \neq 0 \). Let \(r_1 \) denote the root of \(ar + b = 0 \) and construct its corresponding atom \(e^{r_1x} \). Multiply the atom by arbitrary constant \(c_1 \). Then \(y = c_1 e^{r_1x} \) is the general solution of the first order equation

\[
ay' + by = 0.
\]

The equation \(ar + b = 0 \), called the characteristic equation, is found by the formal replacements \(y' \to r, y \to 1 \) in the differential equation \(ay' + by = 0 \).
Theorem 7 (Second Order Recipe)
Let \(a \neq 0 \), \(b \) and \(c \) be real constant. Then the general solution of

\[
ay'' + by' + cy = 0
\]

is given by the expression \(y = c_1y_1 + c_2y_2 \), where \(c_1, c_2 \) are arbitrary constants and \(y_1, y_2 \) are two atoms constructed as outlined below from the roots of the characteristic equation

\[
ar^2 + br + c = 0.
\]

The characteristic equation \(ar^2 + br + c = 0 \) is found by the formal replacements \(y'' \rightarrow r^2, y' \rightarrow r, y \rightarrow 1 \) in the differential equation \(ay'' + by' + cy = 0 \).
Construction of Atoms for Second Order

The atom construction from the roots \(r_1, r_2 \) of \(ar^2 + br + c = 0 \) is based on Euler’s theorem below, organized by the sign of the discriminant \(D = b^2 - 4ac \).

\[
\begin{align*}
D > 0 & \quad (\text{Real distinct roots } r_1 \neq r_2) \\
D = 0 & \quad (\text{Real equal roots } r_1 = r_2) \\
D < 0 & \quad (\text{Conjugate roots } r_1 = \bar{r}_2 = A + iB)
\end{align*}
\]

\[
\begin{align*}
y_1 &= e^{r_1x}, \quad y_2 = e^{r_2x}. \\
y_1 &= e^{r_1x}, \quad y_2 = xe^{r_1x}. \\
y_1 &= e^{Ax} \cos(Bx), \quad y_2 = e^{Ax} \sin(Bx).
\end{align*}
\]

Theorem 8 (Euler’s Theorem)

The atom \(y = x^k e^{Ax} \cos(Bx) \) is a solution of \(ay'' + by' + cy = 0 \) if and only if \(r_1 = A + iB \) is a root of the characteristic equation \(ar^2 + br + c = 0 \) and \((r - r_1)^k \) divides \(ar^2 + br + c \).

Valid also for \(\sin(Bx) \) when \(B > 0 \). Always, \(B \geq 0 \). For second order, only \(k = 1, 2 \) are possible.

Euler’s theorem is valid for any order differential equation: replace the equation by \(a_n y^{(n)} + \cdots + a_0 y = 0 \) and the characteristic equation by \(a_n r^n + \cdots + a_0 = 0 \).
Theorem 9 (Recipe for nth Order)
Let $a_n \neq 0, \ldots, a_0$ be real constants. Let y_1, \ldots, y_n be the list of n distinct atoms constructed by Euler’s Theorem from the n roots of the characteristic equation

$$a_n r^n + \cdots + a_0 = 0.$$

Then y_1, \ldots, y_n are independent solutions of

$$a_n y^{(n)} + \cdots + a_0 y = 0$$

and all solutions are given by the general solution formula

$$y = c_1 y_1 + \cdots + c_n y_n,$$

where c_1, \ldots, c_n are arbitrary constants.

The characteristic equation is found by the formal replacements $y^{(n)} \to r^n, \ldots, y' \to r, y \to 1$ in the differential equation.
Theorem 10 (Superposition)
The homogeneous equation \(a(x)y'' + b(x)y' + c(x)y = 0 \) has the superposition property:

If \(y_1, y_2 \) are solutions and \(c_1, c_2 \) are constants, then the combination \(y(x) = c_1 y_1(x) + c_2 y_2(x) \) is a solution.

The result implies that linear combinations of solutions are also solutions.

The theorem applies as well to an \(n \)th order linear homogeneous differential equation with continuous coefficients \(a_0(x), \ldots, a_n(x) \).

The result can be extended to more than two solutions. If \(y_1, \ldots, y_k \) are solutions of the differential equation, then all linear combinations of these solutions are also solutions.

The solution space of a linear homogeneous \(n \)th order linear differential equation is a subspace \(S \) of the vector space \(V \) of all functions on the common domain \(J \) of continuity of the coefficients.
Theorem 11 (Non-Homogeneous Structure 2nd Order)

The non-homogeneous equation \(a(x)y'' + b(x)y' + c(x)y = f(x) \) has general solution

\[
y(x) = y_h(x) + y_p(x),
\]

where

- \(y_h(x) \) is the general solution of the homogeneous equation
 \[
a(x)y'' + b(x)y' + c(x)y = 0,
 \]
- \(y_p(x) \) is a particular solution of the nonhomogeneous equation
 \[
a(x)y'' + b(x)y' + c(x)y = f(x).
 \]

The theorem is valid for higher order equations: the general solution of the non-homogeneous equation is \(y = y_h + y_p \), where \(y_h \) is the general solution of the homogeneous equation and \(y_p \) is any particular solution of the non-homogeneous equation.

An Example

For equation \(y'' - y = 10 \), the homogeneous equation \(y'' - y = 0 \) has general solution \(y_h = c_1 e^x + c_2 e^{-x} \). Select \(y_p = -10 \), an equilibrium solution. Then \(y = y_h + y_p = c_1 e^x + c_2 e^{-x} - 10 \).
Theorem 12 (Non-Homogeneous Structure \(n\)th Order)
The non-homogeneous equation \(a_n(x)y^{(n)} + \cdots + a_0(x)y = f(x)\) has general solution
\[
y(x) = y_h(x) + y_p(x),
\]
where

- \(y_h(x)\) is the general solution of the homogeneous equation \(a_n(x)y^{(n)} + \cdots + a_0(x)y = 0\), and
- \(y_p(x)\) is a particular solution of the nonhomogeneous equation \(a_n(x)y^{(n)} + \cdots + a_0(x)y = f(x)\).