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Chapter 1

Fundamentals

Contents

1.1 Exponential Modeling . . . . . . . . . . . . 1

1.2 Exponential Application Library . . . . . 9

1.3 Differential Equations of First Order . . . 18

1.4 Direction Fields . . . . . . . . . . . . . . . 24

1.5 Phase Line Diagrams . . . . . . . . . . . . 32

1.6 Computing and Existence . . . . . . . . . 38

1.1 Exponential Modeling

Growth-Decay Model
Solve the given initial value problem using the growth-decay formula; see page
3 � and Example 1.1 page 7 �.

1. y′ = −3y, y(0) = 20

Solution: y(x) = 20 e−3x by the growth-decay formula page 3 �.

2. y′ = 3y, y(0) = 1

Solution: y(x) = e3x

3. 3A′ = A, A(0) = 1

Solution: A(t) = et/3
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1.1 Exponential Modeling

4. 4A′ +A = 0, A(0) = 3

5. 3P ′ − P = 0, P (0) = 10

Solution: P (t) = 10 et/3

6. 4P ′ + 3P = 0, P (0) = 11

7. I ′ = 0.005I, I(t0) = I0

Solution: I(t) = I0 e
(t−t0)/200

8. I ′ = −0.015I, I(t0) = I0

9. y′ = αy, y(t0) = 1

Solution: y(t) = eα(t−t0)

10. y′ = −αy, y(t0) = y0

Growth-decay Theory

11. Graph without a computer y = 10(2x) on −3 ≤ x ≤ 3.

Solution: The graph is made by graphics methods in Appendix A.2. The
curve increases and passes through the points (−3, 10/8), (0, 10), (3, 80).

12. Graph without a computer y = 10(2−x) on −3 ≤ x ≤ 3.

13. Find the doubling time for the growth model P = 100e0.015t.

Solution: Solve P (t) = 2P (0) for t: this is the time t required to double the
population size. The equation is 100e0.015t = 200. Solve it by applying ln
across the equation: ln

(
e0.015t

)
= ln 2. Simplify using ln(eu) = u. Then

0.015t = ln 2 gives t = 46.20981204.

14. Find the doubling time for the growth model P = 1000e0.0195t.

15. Find the elapsed time for the decay model A = 1000e−0.11237t until |A(t)| <
0.00001.

Solution: Solve A(t) = 0.00001 for t = 163.9288132. A sane answer is 164,
but no unique answer exists.

16. Find the elapsed time for the decay model A = 5000e−0.01247t until |A(t)| <
0.00005.

Newton Cooling Recipe
Solve the given cooling model. Follow Example 1.2 on page 8 �.

2
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1.1 Exponential Modeling

17. u′ = −10(u− 4), u(0) = 5

Solution: u = 4 + ce−10t, c = 1

18. y′ = −5(y − 2), y(0) = 10

19. u′ = 1 + u, u(0) = 100

Solution: u = −1 + cet, c = 101

20. y′ = −1− 2y, y(0) = 4

21. u′ = −10 + 4u, u(0) = 10

Solution: Let v = u − 10/4. Then v′ = u′ = −10 + 4u = 4v and v = ce4t.
Back-substitute: u = 10/4 + v = 5/2 + ce4t and c = 15/2.

22. y′ = 10 + 3y, y(0) = 1

23. 2u′ + 3 = 6u, u(0) = 8

Solution: u =
1

2
+

15

2
e3t

24. 4y′ + y = 10, y(0) = 5

25. u′ + 3(u+ 1) = 0, u(0) = −2

Solution: u = −1− e−3t

26. u′ + 5(u+ 2) = 0, u(0) = −1

27. α′ = −2(α− 3), α(0) = 10

Solution: α(t) = 3 + 7e−2t

28. α′ = −3(α− 4), α(0) = 12

Newton Cooling Model
The cooling model u(t) = u0 + A0e

−ht is applied; see page 4 �. Methods
parallel those in the flask cooling example, page 9 �, and the baking example,
page 10 �.

29. (Ingot Cooling) A metal ingot cools in the air at temperature 20C from
130C to 75C in one hour. Predict the cooling time to 23C.

Solution: Given: u(t) = u1+(u0−u1)e
−kt, u(0) = 130, u(1) = 75, u1 = 20,

time t in hours. Then u1 = 20, u0 = u(0) = 130 and u(t) = 20 + (130 −
20)e−kt with k as yet unknown. Let t = 1 in the equation for u(t) and use
u(1) = 75 to obtain an equation for k: 75 = 20+110e−k. Solve for k = ln 2.
The time t when u(t) = 23 is called the cooling time. Find The value of t
by solving the equation 23 = 20 + 110e− ln(2)t. The cooling time is 5 hours
and 12 minutes, approximately.

3
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1.1 Exponential Modeling

30. (Rod Cooling) A plastic rod cools in a large vat of 12-degree Celsius water
from 75C to 20C in 4 minutes. Predict the cooling time to 15C.

Solution: Given: u(t) = u1 + (u0 − u1)e
−kt, u(0) = 75, u(4) = 20,

u1 = 12, time t in minutes. Proceed as in the ingot problem above to
find k = −(1/4) ln(8/63) and the cooling time 5 minutes and 54 seconds,
approximately.

31. (Murder Mystery) A body discovered at 1:00 in the afternoon, March 1,
1929, had temperature 80F. Assume outdoor temperature 50F from 9am.
Over the next hour the body’s temperature dropped to 76F. Estimate the
date and time of the murder.

Solution: Given: u(t) = u1 + (u0 − u1)e
−kt, u(0) = 80, u(1) = 76, u1 = 50,

time t in hours. Then u1 = 50, u0 = u(0) = 80 and u(t) = 50+(80−50)e−kt

with k as yet unknown. Let t = 1 in the equation for u(t) and use u(1) = 76
to obtain an equation for k: 76 = 50 + 30e−k. Proceed as in the ingot
problem above to find k = −(1/4) ln(8/63) and the cooling time 5 minutes
and 54 seconds, approximately.

32. (Time of Death) A dead body found in a 40F river had body temperature
70F. The coroner requested that the body be left in the river for 45 minutes,
whereupon the body’s temperature was 63F. Estimate the time of death,
relative to the discovery of the body.

Verhulst Model
Solve the given Verhulst logistic equation using formula (8). Follow Example
1.3 on page 8 �.

33. P ′ = P (2− P ), P (0) = 1

Solution: The formula is P (t) = aP (0)
bP (0)+(a−bP (0))e−at with a = 1, b = 2. Then

P (t) = 1
2−e−t .

34. P ′ = P (4− P ), P (0) = 5

35. y′ = y(y − 1), y(0) = 2

Solution: The formula is y(t) = ay(0)
by(0)+(a−by(0))e−at with a = −1, b = 1.

Then y(t) = 2
2−3et .

36. y′ = y(y − 2), y(0) = 1

Solution: y(t) = 1/(2− et)

4
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1.1 Exponential Modeling

37. A′ = A− 2A2, A(0) = 3

Solution: A(t) = 3/(6− et)

38. A′ = 2A− 5A2, A(0) = 1

39. F ′ = 2F (3− F ), F (0) = 2

Solution: F (t) = 2/(6− 4e−2t)

40. F ′ = 3F (2− F ), F (0) = 1

Inverse Modeling
Given the model, find the differential equation and initial condition.

41. A = A0e
4t

Solution: A′ = 4A, A(0) = A0

42. A = A0e
−3t

43. P = 1000e−0.115t

Solution: P ′(t) = −0.115P (t), P (0) = 1000

44. P = 2000e−7t/5

45. u = 1 + e−3t

Solution: First, u(0) = 2. Second, u′(t) = −3e−3t = −3(u(t)− 1). Answer:
u′ = 3(1− u), u(0) = 2

46. u = 10− 2e−2t

47. P =
10

10− 8e−2t

Solution: First, P (0) = 10.Define a, b by the equations bP (0) = 10, a −
bP (0) = −8. Solve: a = 2, b = 1. Answer: P ′ = 2P (1− P ), P (0) = 10.

48. P =
5

15− 14e−t

49. P =
1

5− 4e−t

Solution: First, P (0) = 1.Define a, b by the equations bP (0) = 5, a−bP (0) =
−4. Solve: a = 1, b = 5. Answer: P ′ = P (5− P , P (0) = 1.

5



1.1 Exponential Modeling

50. P =
2

4− 3e−t

Populations
Use Malthusian population theory page 6 � and Malthusian model P (t) =
P0e

kt. Methods appear in Examples 1.4 and 1.5 page 8 �.

51. (World Population) The world population of 5, 500, 000, 000 people was
increasing at a rate of 250, 000 people per day in June of 1993. Predict the
date when the population reaches 10 billion.

Solution: Population 10 billion is reached in June or July in 2029, approx-
imately 36 years later. Model: P (t) = kP (t), P (0) = 5.5 billion with
t in days. Then P (1) = P (0)ekt = 5500250000/1000000000 determines
k = 0.00004545396695 and P (t) = 10 after t = 13152.71293 days.

52. (World Population) Suppose the world population at time t = 0 is 5.5
billion and increases at rate 250, 000 people per day. How many years before
that was the population one billion?

Solution: About 103 years earlier, according to the Malthusian model in the
previous exercise.

53. (Population Doubling) A population of rabbits increases by 10% per year.
In how many years does the population double?

Solution: About 7.3 years, because of the model: P (t) = P (0)ekt. Use
P (1) = 1.1P (0) to find k = 0.09531017980, then solve P (t) = 2P (0) for
t = 7.272540898.

54. (Population Tripling) A population of bacteria increases by 15% per day.
In how many days does the population triple?

55. (Population Growth) Trout in a river are increasing by 15% in 5 years.
To what population size does 500 trout grow in 15 years?

Solution: About 1006 after 15 years, because of the model: P (t) = P (0)ekt,
P (0) = 500 with t in years. Use P (5) = 1.15P (0) to find k = 0.02795238848,
then evaluate P (15) = P (0)e15k = 1005.678594.

56. (Population Growth) A region of 400 acres contains 1000 forest mush-
rooms per acre. The population is decreasing by 150 mushrooms per acre
every 2 years. Find the population size for the 400-acre region in 15 years.

Verhulst Equation
Write out the solution to the given differential equation and report the carrying
capacity M = lim

t→∞
P (t).

6
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1.1 Exponential Modeling

57. P ′ = (1− P )P

Solution: P (t) =
P (0)

P (0) + (1− P (0))e−t , M = a/b = 1.

58. P ′ = (2− P )P

59. P ′ = 0.1(3− 2P )P

Solution: P ′ = 0.2(1.5− P )P ,

P (t) =
0.2P (0)

1.5P (0) + (0.2− 1.5P (0))e−0.2t , M = a/b = 2/15.

Check answers in maple:
y:=unapply(a*y0/(b*y0+(a-b*y0)*exp(-a*t)),(t,a,b,y0));

evalf(simplify(y(t,0.2,1.5,y0))); evalf(0.2/1.5);

limit(y(t,0.2,1.5,y0),t=infinity);

60. P ′ = 0.1(4− 3P )P

61. P ′ = 0.1(3 + 2P )P

Solution: P ′ = −0.2(−1.5− P )P ,

P (t) =
−0.2P (0)

−1.5P (0) + (−0.2 + 1.5P (0))e0.2t
, M = 0.

62. P ′ = 0.1(4 + 3P )P

63. P ′ = 0.2(5− 4P )P

64. P ′ = 0.2(6− 5P )P

65. P ′ = 11P − 17P 2

66. P ′ = 51P − 13P 2

Logistic Equation
The following exercises use the Verhulst logistic equation P ′ = (a− bP )P , page
6 �. Some methods appear on page 11 �.

67. (Protozoa) Experiments on the protozoa Paramecium determined growth
rate a = 2.309 and carrying capacity a/b = 375 using initial population

P (0) = 5. Establish the formula P (t) =
375

1 + 74e−2.309t
.

68. (World Population) Demographers projected the world population in the
year 2000 as 6.5 billion, which was corrected by census to 6.1 billion. Use
P (1965) = 3.358× 109, a = 0.029 and carrying capacity a/b = 1.0760668×
1010 to compute the logistic equation projection for year 2000.

7
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1.1 Exponential Modeling

69. (Harvesting) A fish population satisfying P ′ = (a − bP )P is subjected to
harvesting, the new model being P ′ = (a − bP )P − H. Assume a = 0.04,
a/b = 5000 and H = 10. Using algebra, rewrite it as P ′ = a(α− P )(P − β)
in terms of the roots α, β of ay−by2−H = 0. Apply the change of variables
u = P − β to solve it.

Solution: The equation for u is u′ = bu(α− β − u) where α = 263.9320225,

β = 4736.067977. Then P (t) = u(t) + β =
αu(0)

βu(0) + (α− βu(0))e−αt + β.

70. (Extinction) Let an endangered species satisfy P ′ = bP 2 − aP for a > 0,
b > 0. The term bP 2 represents births due to chance encounters of males and
females, while the term aP represents deaths. Use the change of variable
u = P/(bP − a) to solve it. Show from the answer that initial population
sizes P (0) below a/b become extinct.

Solution: The model equation is P ′ = P (P − 1) with change of variables
u = P/(P − 1). Solve the simpler equation first, then generalize to P ′ =
P (bP − a).

71. (Logistic Answer Check) Let P = au/(1 + bu), u = u0e
at, u0 = P0/(a −

bP0). Verify that P (t) is a solution the differential equation P ′ = (a− bP )P
and P (0) = P0.

Solution: Extract the details from the Logistic Solution Verification, located
immediately above the exercises for this section.

72. (Logistic Equation) Let k, α, β be positive constants, α < β. Solve
w′ = k(α−w)(β −w), w(0) = w0 by the substitution u = (α−w)/(β −w),
showing that w = (α−βu)/(1−u), u = u0e

(α−β)kt, u0 = (α−w0)/(β−w0).
This equation is a special case of the harvesting equation P ′ = (a−bP )P+H.

Growth-Decay Uniqueness Proof

73. State precisely and give a calculus text reference for Rolle’s Theorem, which
says that a function vanishing at x = a and x = b must have slope zero at
some point in a < x < b.

Solution: Rolle’s Theorem can be found in most college level calculus
textbooks. The hypothesis is f(x) is differentiable on a < x < b and
f(a) = f(b) = 0. The conclusion: f ′(x) = 0 for some point x between
a, b.

74. Apply Rolle’s Theorem to prove that a differentiable function v(x) with
v′(x) = 0 on a < x < b must be constant.

8



1.2 Exponential Application Library

1.2 Exponential Application Library

Light Intensity
The following exercises apply the theory of light intensity on page 16 �, using
the model I(t) = I0e

−kx with x in meters. Methods parallel Example 1.8 on
page 21 �.

1. The light intensity is I(x) = I0e
−1.4x in a certain swimming pool. At what

depth x does the light intensity fall off by 50%?

Solution: Solve I(x) = 0.5I0 for x = 0.4951051290 using logarithms.

2. The light intensity in a swimming pool falls off by 50% at a depth of 2.5
meters. Find the depletion constant k in the exponential model.

3. Plastic film is used to cover window glass, which reduces the interior light
intensity by 10%. By what percentage is the intensity reduced, if two layers
are used?

Solution: Let the plastic film have thickness X. Model I(x) = I0e
−kx will

be used where I0 is the light intensity on the surface of the glass (x = 0).
Given is I(X) = 0.9I0. The task is to find I(2X) as a percentage of I0.
Using logarithms on e−kX = 0.9 gives kX = 0.1053605157, then e−2kX =
0.8099999999. The answer: 81% for two layers. Misgivings: Should x = 0
be the surface of the glass or the surface of the plastic film or the surface of
the glass where the materials are sandwiched together?

4. Double-thickness colored window glass is supposed to reduce the interior
light intensity by 20%. What is the reduction for single-thickness colored
glass?

RC-Electric Circuits
In the exercises below, solve forQ(t) whenQ0 = 10 and graphQ(t) on 0 ≤ t ≤ 5.

5. R = 1, C = 0.01.

Solution: Model: RQ′+Q/C = 0 with solution Q(t) = Q0e
−kt, k = 1/(RC).

Then k = 100, Q0 = 10, Q(t) = 10e−10t. The graph is a strictly decreasing
curve joining points (0, 10), (1, 0.06737947) and (5, 0). Maple computed
Q(5) ≈ 1.9/1021. See Appendix A for hand graphing of exponentials.

6. R = 0.05, C = 0.001.

7. R = 0.05, C = 0.01.

Solution: Q(t) = 10e−2000t
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8. R = 5, C = 0.1.

9. R = 2, C = 0.01.

Solution: Q(t) = 10e−50t

10. R = 4, C = 0.15.

11. R = 4, C = 0.02.

Solution: Q(t) = 10e−12.5t

12. R = 50, C = 0.001.

LR-Electric Circuits
In the exercises below, solve for I(t) when I0 = 5 and graph I(t) on 0 ≤ t ≤ 5.

13. L = 1, R = 0.5.

Solution: Model: LI ′ + RI = 0, I0 = 5, I(t) = I0e
−Rt/L. Then R/L = 1/2

and I(t) = 5e−t/5.

14. L = 0.1, R = 0.5.

15. L = 0.1, R = 0.05.

Solution: I(t) = 5e−t/5

16. L = 0.01, R = 0.05.

17. L = 0.2, R = 0.01.

Solution: I(t) = 5e−t/20

18. L = 0.03, R = 0.01.

19. L = 0.05, R = 0.005.

Solution: I(t) = 5e−t/10

20. L = 0.04, R = 0.005.

Interest and Continuous Interest
Financial formulas which appear on page 18 � are applied below, following the
ideas in Examples 1.11, 1.12 and 1.13, pages 22 � and 24 �.
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21. (Total Interest) Compute the total daily interest and also the total con-
tinuous interest for a 10-year loan of 5, 000 dollars at 5% per annum.

Solution: Answer: 1366.889426 for daily interest and 1366.990456 for con-
tinuous interest. The difference is 10 cents.
Part (a): Daily Interest
The Auto Loan example in this section contains the formulas and ideas.
Assume a month is 30 days and a year is 360 days. The problem can be
viewed as follows: the $5000 loan is a checking account with $5000 deposit
that accrues interest at 5% per annum compounded daily. The twist: a
check of amount P is subtracted from the account every 30 days. The prob-
lem can then be phrased as follows:
(1) Find the amount P to be written as a monthly check so that the account
balance is zero after 3600 days;
(2) Report the total interest added to the checking account over the 3600
days (10 years).
Let the daily simple interest rate be R = 0.05/360. Let B(n) be the check-
ing account balance after n days. Define B(0) = 5000, Z = (1 + R)30.
The monthly check of amount P is posted at the end of day 30. Then
B(30) = B(0)Z − P .
Similarly, B(60) = B(30)Z − P , B(90) = B(60)Z − P . Induction is
used to obtain the formula B(30k) = B(0)Zk − P

(
1 + · · ·+ Zk−1

)
. The

geometric sum formula 1 + u + · · · + un =
un+1 − 1

u− 1
implies B(30k) =

B(0)Zk − P
Zk − 1

Z − 1
.

The checking account has zero balance after 3600 days (10 years) provided
the payment P satisfies the equation B(30k) = 0 for k = 120. Then

0 = B(0)Z120 − P
Z120 − 1

Z − 1
. Solve for

P = B(0)Z120 Z − 1

Z120 − 1
.

Substitute B(0) = 5000 and Z = (1+R)30. Then P = 53.05741190, 120P =
6366.889426 which implies the total interest paid over ten years would be
that amount less $5000: interest paid = 1366.889426.
Part (b): Continuous Interest
Following the Auto Loan example, the part (a) formulas are correct provided
Z = e30R = 1.004175359. The remaining details are unchanged from the
computation above, which implies

P = B(0)Z120 Z − 1

Z120 − 1
, Z = e30R = 1.004175359.

Then P = 53.05825380 and the interest paid = 1366.990456.
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22. (Total Interest) Compute the total daily interest and also the total con-
tinuous interest for a 15-year loan of 7, 000 dollars at 5 1

4% per annum.

23. (Monthly Payment) Find the monthly payment for a 3-year loan of 8, 000
dollars at 7% per annum compounded continuously.

Solution: Payment = 216.2051540.

24. (Monthly Payment) Find the monthly payment for a 4-year loan of 7, 000
dollars at 61

3% per annum compounded continuously.

25. (Effective Yield) Determine the effective annual yield for a certificate of
deposit at 7 1

4% interest per annum, compounded continuously.

Solution: Follow the Effective Annual Yield example. The answer
for one year is 100(e0.0725 − 1) = 7.5192806% based on 360 days and
100(e365(0.0725)/360 − 1) = 7.6276011% for 365 days.

26. (Effective Yield) Determine the effective annual yield for a certificate of
deposit at 5 3

4% interest per annum, compounded continuously.

27. (Retirement Funds) Assume a starting salary of 35, 000 dollars per year,
which is expected to increase 3% per year. Retirement contributions are
10 1

2% of salary, deposited monthly, growing at 5 1
2% continuous interest per

annum. Find the retirement amount after 30 years.

Solution: Answer: 396, 588.1407. Follow the Retirement Funds example.
Maple code:

s:=0.055/12;P:=n->(35000/12)*(1.03)^(n-1);

R:=n->0.105*P(n);

X:=0;for j from 1 to 30 do

X:=X*exp(12*s)+R(j)*(exp(12*s)-1)/(1-exp(-s));end do:

X;

28. (Retirement Funds) Assume a starting salary of 45, 000 dollars per year,
which is expected to increase 3% per year. Retirement contributions are
9 1
2% of salary, deposited monthly, growing at 6 1

4% continuous interest per
annum. Find the retirement amount after 30 years.

29. (Actual Cost) A van is purchased for 18, 000 dollars with no money down.
Monthly payments are spread over 8 years at 12 1

2% interest per annum,
compounded continuously. What is the actual cost of the van?

Solution: Answer: Cost = $28, 624.40733, payment = $298.1709097. Maple
code:

R:=0.125/360;Z:=exp(30*R);T:=12*8;

P:=18000*(Z-1)*Z^T/(Z^T - 1);T*P;T*P-18000;

12
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30. (Actual Cost) Furniture is purchased for 15, 000 dollars with no money
down. Monthly payments are spread over 5 years at 11 1

8% interest per
annum, compounded continuously. What is the actual cost of the furniture?

Radioactive Decay
Assume the decay model A′ = −kA from page 19 �. Below, A(T ) = 0.5A(0)
defines the half-life T . Methods parallel Examples 1.14– 1.17 on pages 25 �–
26 �.

31. (Half-Life) Determine the half-life of a radium sample which decays by
5.5% in 13 years.

Solution: Answer: About 159 years. Follow the Half–life of Radium
example. Solve for k = −0.004351565499 in e13k = 0.945. Then solve for
t = 159.2868545 in e−0.004351565499 t = 0.5.

32. (Half-Life) Determine the half-life of a radium sample which decays by
4.5% in 10 years.

33. (Half-Life) Assume a radioactive isotope has half-life 1800 years. Deter-
mine the percentage decayed after 150 years.

Solution: Answer: 5.6%. Follow the Radium Disintegration ex-
ample. Solve e1800 k = 0.5 for k = −0.0003850817670. Evaluate
e−0.0003850817670(150) = 0.9438743127.

34. (Half-Life) Assume a radioactive isotope has half-life 1650 years. Deter-
mine the percentage decayed after 99 years.

35. (Disintegration Constant) Determine the constant k in the model A′ =
−kA for radioactive material that disintegrates by 5.5% in 13 years.

Solution: Answer: k = −0.3498922950. Follow the Radium Disintegra-
tion example. Solve e−13k = 94.5 for k = −0.3498922950.

36. (Disintegration Constant) Determine the constant k in the model A′ =
−kA for radioactive material that disintegrates by 4.5% in 10 years.

37. (Radiocarbon Dating) A fossil found near the town of Dinosaur, Utah
contains carbon-14 at a ratio of 6.21% to the atmospheric value. Determine
its approximate age according to Libby’s method.

Solution: Answer: 22, 323.576 years. Follow the Radiocarbon Dating
example, assuming model A(t) = A(0)e−kt, the half-life of carbon-14 is 5568
years and k = ln(2)/5568. Known is A(0) = 0.0621A(t) for some time t in
the past. Solve A(0) = 0.0621A(0)e−kt for t = ln(0.0621)/k = −22323.576.
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38. (Radiocarbon Dating) A fossil found in Colorado contains carbon-14 at
a ratio of 5.73% to the atmospheric value. Determine its approximate age
according to Libby’s method.

39. (Radiocarbon Dating) In 1950, the Lascaux Cave in France contained
charcoal with 14.52% of the carbon-14 present in living wood samples
nearby. Estimate by Libby’s method the age of the charcoal sample.

Solution: Answer: 15500.68 years.

40. (Radiocarbon Dating) At an excavation in 1960, charcoal from building
material had 61% of the carbon-14 present in living wood nearby. Estimate
the age of the building.

41. (Percentage of an Isotope) A radioactive isotope disintegrates by 5% in
12 years. By what percentage is it reduced in 99 years?

Solution: Answer: 34.5%. Follow the Percentage of an Isotope exam-
ple. Model A(t) = A(0)e−kt. Solve 0.95 = e−12k for k = 0.004274441199.
Evaluate e−99k = 0.6549674897.

42. (Percentage of an Isotope) A radioactive isotope disintegrates by 6.5% in
1, 000 years. By what percentage is it reduced in 5, 000 years?

Chemical Reactions
Assume below the model A′ = kA for a first-order reaction. See page 21 �
and Example 1.18, page 27 �.

43. (First-Order A + B −→ C) A chemical reaction produces X(t) grams of
product C from 50 grams of chemical A and 32 grams of catalyst B. The
reaction uses 1 gram of A to 4 grams of B. Variable t is in minutes. Jus-

tify for some constant K the model
dX

dt
= K

(
50− 1

5X
) (

32− 4
5X
)
and

calculate limt→∞ X(t) = 40.

Solution: The rate of change of X(t) is proportional to the product of the
amounts present of A and B. These amounts are 50 − 1

5X and 32 − 4
5X.

Fractions 1
5 ,

4
5 mean that from 5 grams of C there is 1 gram of A used

(supply=50) and 4 grams of B used (supply=32). Proportionality constant
K times the product of the two amounts of A and B then equals dX

dt . Factor

out the two fractions from the two amounts to obtain the new form
dX

dt
=

4
25K (40−X) (250−X) and define α = 40, β = 250, k = 4K

25 (re-arranged
to insure α < β). Follow the subsection on Chemical Reactions. The
amount X(t) of product C satisfies

X(t) =
α− βu(t)

1− u(t)
, u(t) = u0e

(α−β)kt, u0 =
α−X0

β −X0
.(1)
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Then

X(t) =
40− 250 u0 e−210 t

1− u0 e−210 t

and limt→∞ X(t) = 40, because limt→∞ ect = 0 for c negative.

44. (First-Order A+B −→ C) A first order reaction produces product C from
chemical A and catalyst B. Model the production of C using a grams of A
and b grams of B, assuming initial amounts M of A and N of B, M < N .

45. (Law of Mass-Action) Consider a second-order chemical reaction X(t)
with k = 0.14, α = 1, β = 1.75, X(0) = 0. Find an explicit formula for X(t)
and graph it on t = 0 to t = 2.

Solution: Follow the Chemical Reaction example. The amount X(t) of
product C satisfies

X(t) =
α− βu(t)

1− u(t)
, u(t) = u0e

(α−β)kt, u0 =
α−X0

β −X0
.(2)

Substitute k = 0.14 = 14
100 , α = 1, β = 1.75 = 7

4 , X(0) = 0. Then

u0 = α/β = 4
7 , u(t) =

4
7e

−3kt/4 and

X(t) =
1− 7

4
u(t)

1− u(t)
=

1− e−21t/200

1− 4

7
e−21t/200

The plot on 0 ≤ t ≤ 2 is a strictly increasing curve from (0, 0) to (2, 0.353).

46. (Law of Mass-Action) Consider a second-order chemical reaction X(t)
with k = 0.015, α = 1, β = 1.35, X(0) = 0. Find an explicit formula for
X(t) and graph it on t = 0 to t = 10.

47. (Mass-Action Derivation) Let k, α, β be positive constants, α < β. Solve
X ′ = k(α−X)(β−X), X(0) = X0 by the substitution u = (α−X)/(β−X),
showing that X = (α−βu)/(1−u), u = u0e

(α−β)kt, u0 = (α−X0)/(β−X0).

Solution: Algebra on u = (α − X)/(β − X) gives X = (α − βu)/(1 − u).

Compute u′ =
−X ′(β −X) + (α−X)X ′

(β −X)2
by the quotient rule in calculus.

Used is α′ = β′ = 0 by the constant rule in calculus. Simplify the fraction:

u′ =
(α− β)X ′

(β −X)2

= (α− β)X ′ X

(β −X)2
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= (α− β)k(α−X)(β −X)
X

(β −X)2

= (α− β)k
α−X

β −X
= (α− β)ku

Exponential modeling for u′ = cu gives u = u0e
ct = u0e

(α−β)kt. ■

48. (Mass-Action Derivation) Let k, α, β be positive constants, α < β. Define
X = (α− βu)/(1− u), where u = u0e

(α−β)kt and u0 = (α−X0)/(β −X0).
Verify by calculus computation that (1) X ′ = k(α − X)(β − X) and (2)
X(0) = X0.

Drug Dosage
Employ the drug dosage model D(t) = D0e

−ht given on page 21 �. Apply the
techniques of Example 1.19, page 27 �.

49. (Injection Dosage) Bloodstream injection of a drug into an animal requires
a minimum of 20 milligrams per pound of body weight. Predict the dosage
for a 12-pound animal which will maintain a drug level 3% higher than the
minimum for two hours. Assume half-life 3 hours.

Solution: Answer: 393 milligrams. Follow the Drug Dosage example.
The drug model is D(t) = D0e

−ht, where D0 is the initial dosage and h is
the elimination constant. A half-life of three hours means D0e

−3h = 1
2D0,

which determines h = 1
3 ln(2) = 0.2310490602. Constant D0 is unknown.

The requirement on D0 is inequality D(t) > 1.03(12)(20), valid for t = 0
to t = 2 hours. Depletion of the drug in the bloodstream means the drug
levels are always decreasing, so it is enough to require that the level at 2
hours exceeds 1.03(12)(20). The critical value of dosage D0 then occurs
when D(2) = 1.03(12)(20) = 247.20 or D0e

−2h = 247.20. Then D0 =
247.20e2h = 392.4055401 milligrams.

50. (Injection Dosage) Bloodstream injection of an antihistamine into an ani-
mal requires a minimum of 4 milligrams per pound of body weight. Predict
the dosage for a 40-pound animal which will maintain an antihistamine level
5% higher than the minimum for twelve hours. Assume half-life 3 hours.

51. (Oral Dosage) An oral drug with half-life 2 hours is fully absorbed into
the bloodstream in 45 minutes, blood level 63% of the dose. Assume 500
milligrams in the first dose is fully absorbed at t = 0. A second dose is
taken 1 hour later to maintain a blood level of at least 180 milligrams for
2.5 hours. Explain why 1 hour might be reasonable.

Solution: Follow the Drug Dosage example. A typical drug brand is
Tylenol, 500 milligrams per tablet. A 45-minute absorption means the blood
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level is (0.63)500 = 315 milligrams at time t = 0 hours. Then the body starts
to eliminate the drug according to drug model D(t) = 315e−ht, where h is
the elimination constant. The half-life information implies e−2h = 0.5 and
then h = ln(2)/2 = 0.3465735903. The problem: predict the time T in
hours at which the second dose of 500 milligrams should be ingested. A
guess for the answer T is provided by the blood level 315 depleting to 180,
which happens when D(t) = 180. Equation 315e−hT = 180 has solution
T = 1.614709844 hours. When the second dose is taken, about 45 minutes
is required for the blood level to return to 315. In 45 minutes after dose
two (taken at the one hour mark), the blood level from dose one falls to
D(1.075) = 315e−(1+0.75)h = 171.7549679. This contribution from dose one
is slightly below 180, while contributions from dose two have maximized the
blood level to 315. If 1.6 hours is used instead of one hour for dose two, then
D(1.6+0.75) = 315e−(1.6+0.75)h = 139.5083842, which means the blood level
can drop below 180 for some time interval after dose two was ingested. The
absorption rate of the drug affects blood levels significantly, but all that is
known is 45 minutes to full absorption. Once the blood level is 315, then
the previous analysis applies: D(1.5) = 315e−(1.5)h = 187.3001206 insures
blood level 180 for 2.5 hours.

52. (Oral Dosage) An oral drug with half-life 2 hours is fully absorbed into
the bloodstream in 45 minutes, blood level 63% of the dose. Determine
three (small) dosage amounts, and their administration time, which keep
the blood level above 180 milligrams but below 280 milligrams over three
hours.
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1.3 Differential Equations of First Order

Solution Verification
Given the differential equation, initial condition and proposed solution y, verify
that y is a solution. Don’t try to solve the equation!

1.
dy

dx
= y, y(0) = 2, y = 2ex

Solution: The details are an answer check with two panels.
Panel 1: Test DE.

LHS =
dy

dx
Left side of DE dy

dx = y

=
d

dx
(2ex) Substitute expected answer y = 2ex.

= 2ex Calculus constant rule and exponential rule.

= y Definition y = 2ex.

= RHS Equal left and right side expressions for all symbols. DE
verified.

Panel 2: Test IC.

LHS = y(0) Left side of IC y(0) = 2

= 2ex|x=0 Substitute expected answer y = 2ex.

= 2e0 Substitute x = 0.

= 2 · 1 Use e0 = 1.

= RHS Left and right side of y(0) = 2 match for all symbols. IC
verified.

2. y′ = 2y, y(0) = 1, y = e2x

3. y′ = y2, y(0) = 1, y = (1− x)−1

Solution: Follow Exercise 1. In panel 1, dy/dx is found by the calculus
power rule (un)′ = nun−1u′ as y′ = ((1− x)−1)′ = (−1)(1− x)−2(−1). The
RHS = y2 = (1− x)−2.

4.
dy

dx
= y3, y(0) = 1,

y = (1− 2x)−1/2

5. D2y(x) = y(x), y(0) = 2,
Dy(0) = 2, y = 2ex

Solution: Follow Exercise 1.
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6. D2y(x) = −y(x), y(0) = 0,
Dy(0) = 1, y = sinx

7. y′ = sec2 x, y(0) = 0, y = tanx

Solution: Follow Exercise 1. Needed in panel 1 is calculus identity
(tan(x))′ = sec2(x) and trig identities tanx = sinx/ cosx, sin 0 = 0,
cos 0 = 1.

8. y′ = − csc2 x, y(π/2) = 0,
y = cotx

9. y′ = e−x, y(0) = −1, y = −e−x

Solution: Follow Exercise 1. Needed in panel 1 is calculus identity (eu)′ =
eu u′. In panels 1,2 use pre-calculus identity e0 = 1.

10. y′ = 1/x, y(1) = 1, y = lnx

Explicit and Implicit Solutions
Identify the given solution as implicit or explicit. If implicit, then solve for y in
terms of x by college algebra methods.

11. y = x+ sinx

Solution: Explicit. The test: y isolated left, right side independent of symbol
y.

12. y = x+ sinx

Solution: Explicit.

13. 2y + x2 + x+ 1 = 0

Solution: Implicit. Left side is not y alone.

14. x− 2y + sinx+ cosx = 0

Solution: Implicit.

15. y = eπ

Solution: Explicit. The test: y isolated left, right side independent of symbol
y.

16. ey = π

Solution: Implicit.
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17. e2y = ln(1 + x)

Solution: Implicit. Left side is not y alone but a composition involving y.

18. ln |1 + y2| = ex

Solution: Implicit.

19. tan y = 1 + x

Solution: Implicit. Left side is not y alone but a composition involving y.

20. sin y = (x− 1)2

Solution: Explicit.

Tables and Explicit Equations
For the given explicit equation, make a table of values x = 0 to x = 1 in steps
of 0.2.

21. y = x2 − 2x

Solution:
x y
0. 0.
0.2 -0.36
0.4 -0.64
0.6 -0.84
0.8 -0.96
1.0 -1.00

# Maple code

Y:=x->x^2-2*x;

seq([0+n*0.2,Y(0+n*0.2)],n=0..5);

22. y = x2 − 3x+ 1

23. y = sinπx

Solution: Follow exercise 21.

24. y = cosπx

25. y = e2x

Solution: Follow exercise 21.

26. y = e−x
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27. y = ln(1 + x)

Solution: Follow exercise 21.

28. y = x ln(1 + x)

Tables and Approximate Equations
Make a table of values x = 0 to x = 1 in steps of 0.2 for the given approximate
equation. Identify precisely the recursion formulas applied to obtain the next
table pair from the previous table pair.

29. y(x+ 0.2) ≈ y(x) + 0.2(1− y(x)), y(0) = 1

Solution: The idea is to replace ≈ by =, then replace x by 0.2n, for n =
0, . . . , 5 in order for x to exhaust x = 0 to 1 in steps of 0.2. Define yn =
y(0.2n). Then the recursion is yn+1 = yn + 0.2(1− yn), y0 = 1.

30. y(x+ 0.2) ≈ y(x) + 0.2(1 + y(x)), y(0) = 1

31. y(x+ 0.2) ≈ y(x) + 0.2(x− y(x)), y(0) = 0

Solution: yn+1 = yn + 0.2(0.2n− yn), y0 = 0.

32. y(x+ 0.2) ≈ y(x) + 0.2(2x+ y(x)), y(0) = 0

33. y(x+ 0.2) ≈ y(x) + 0.2(sinx+ xy(x)), y(0) = 2

Solution: yn+1 = yn + 0.2(sin(0.2n) + 0.2nyn), y0 = 2.

34. y(x+ 0.2) ≈ y(x) + 0.2(sinx− x2y(x)), y(0) = 2

35. y(x+ 0.2) ≈ y(x) + 0.2(ex − 7y(x)), y(0) = −1

Solution: yn+1 = yn + 0.2(e0.2n − 7yn), y0 = −1.

36. y(x+ 0.2) ≈ y(x) + 0.2(e−x − 5y(x)), y(0) = −1

37. y(x+ 0.2) ≈ y(x) + 0.1(e−2x − 3y(x)), y(0) = 2

Solution: yn+1 = yn + 0.1(e−0.4n − 3yn), y0 = 2.

38. y(x+ 0.2) ≈ y(x) + 0.2(sin 2x− 2y(x)), y(0) = 2

Hand Graphing
Make a graphic by hand on engineering paper, using 6 data points. Cite the
divisions assigned horizontally and vertically. Label the axes and the center
of coordinates. Supply one sample hand computation per graph. Employ a
computer program or calculator to obtain the data points.
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39. y = 5x3, x = 0 to x = 1.

Solution: Maple:

Y:=x->5*x^3;L:=seq([0+n*0.2,Y(0+n*0.2)],n=0..5);

# [0., 0.], [0.2, 0.040], [0.4, 0.320], [0.6, 1.080],

# [0.8, 2.560], [1.0, 5.000]

plot([L],font=[times,bold,20],symbolsize=20,

style=pointline,thickness=3);

x y
0.0 0.0

0.2 0.04

0.4 0.32

0.6 1.08

0.8 2.56

1.0 5.0

A hand-drawn graphic is expected, using the methods in Appendix A.

40. y = 3x, x = 0 to x = 1.

41. y = 2x5, x = 0 to x = 1.

Solution: Follow exercise 39.

42. y = 3x7, x = 0 to x = 1/2.

43. y = 2x4, x = 0 to x = 1.

Solution: Follow exercise 39.
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44. y = 3x6, x = 0 to x = 1.

45. y = sinx, x = 0 to x = π/4.

Solution: Follow exercise 39.

46. y = cosx, x = 0 to x = π/4.

47. y =
x+ 1

x+ 2
, x = 0 to x = 1.

Solution: Follow exercise 39.

48. y =
x− 1

x+ 1
, x = 0 to x = 1.

49. y = ln(1 + x), x = 0 to x = 1.

Solution: Follow exercise 39.

50. y = ln(1 + 2x), x = 0 to x = 1.
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Window and Grid
Find the equilibrium solutions, then determine a graph window which includes
them and construct a 5× 5 uniform grid. Follow Example 1.25.

1. y′ = 2y

Solution: Equilibrium solution: y = 0.
Equilibrium solutions are found by substitution into the DE (y′ = 2y in the
present case) using substitution y = c. The same substitution is used for
every DE, where c is a constant. Then (c)′ = 2c determines c. There is just
one value c = 0 that satisfies the equation (c)′ = 2c, because (c)′ = 0 for
any constant c. It is possible for some DE that no value of c exists or that
multiple values of c exist. In the present case: y = 0 results from y = c after
substitution of the answer(s) for c. Equilibrium solution y = 0 is reported.

The graph window could be −0.2 ≤ x ≤ 1.2, −5 ≤ y ≤ 5. It contains edge-
to-edge curve y = 0, the equilibrium solution. There is no unique graph
window to report: there are infinitely many choices, all correct.
The grid points are then selected for a 5× 5 uniform grid (25 grid points).
For instance, xk = 0.2k, k = 1, . . . , 5 and yk = k(−1)k for k = 1, . . . , 5. The
grid point pairs (x, y) are:

(0.2, -1), (0.4, -1), (0.6, -1), (0.8, -1), (1.0, -1),

(0.2, 2), (0.4, 2), (0.6, 2), (0.8, 2), (1.0, 2),

(0.2, -3), (0.4, -3), (0.6, -3), (0.8, -3), (1.0, -3),

(0.2, 4), (0.4, 4), (0.6, 4), (0.8, 4), (1.0, 4),

(0.2, -5), (0.4, -5), (0.6, -5), (0.8, -5), (1.0, -5)

# Maple code

L:=seq(seq( [0.2*k,j*(-1)^j ],k=1..5),j=1..5);

plot([L],style=point,font=[courier,bold,20],

view=[0 ..1.2,-6..6]);
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2. y′ = 3y

3. y′ = 2y + 2

Solution: Follow Exercise 1. Equilibrium solution y = −1.

4. y′ = 3y − 2

5. y′ = y(1− y)

Solution: Follow Exercise 1. Equilibrium solutions y = 0 and y = 1.

6. y′ = 2y(3− y)

7. y′ = y(1− y)(2− y)

Solution: Follow Exercise 1. Equilibrium solutions y = 0, y = 1 and y = 2.
Suitable graph window: −1 ≤ x ≤ 1, −0.2 ≤ y ≤ 2.2.

8. y′ = 2y(1− y)(1 + y)

9. y′ = 2(y − 1)(y + 1)2

Solution: Follow Exercise 1. Equilibrium solutions y = 1 and y = −1.

10. y′ = 2y2(y − 1)2

11. y′ = (x+ 1)(y + 1)(y − 1)y

Solution: Follow Exercise 1. Equilibrium solutions y = −1 and y = 1.
The factor (x + 1) is canceled from the solution process for c, because the
equation (c)′ = (x+1)(c+1)(c− 1) is valid for all x. For instance, at x = 0
it says 0 = (c+1)(c−1), which results in the two answers c = −1 and c = 1.

12. y′ = 2(x+ 1)y2(y + 1)(y − 1)2

13. y′ = (x+ 2)y(y − 3)(y + 2)

Solution: Follow Exercise 1. Equilibrium solutions y = 0, y = 3 and y = −2.
Factor (x+ 2) cancels from the solution process for c; see Exercise 11.

14. y′ = (x+ 1)y(y − 2)(y + 3)

Threading Solutions
Each direction field below has window 0 ≤ x ≤ 3, 0 ≤ y ≤ 3. Start each
threaded solution at a black dot and continue it left and right across the field.
Dotted horizontal lines are equilibrium solutions. See Example 1.26.
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15.

1

2

0

Solution: A computer-generated plot is not expected, just a hand-sketched
drawing made over a paper print of the figure in Exercise 15. Drawing details
expected: the curve has to go through the solid black dot; the curve’s slope
must match the slope of each arrow it passes.

The computer plot:

with(DEtools): # maple

phaseportrait((D(y))(x) = y(x)*(2-y(x))*(1-y(x)), y(x),

x = 0 .. 3, [[y(0) = 0], [y(0) = 1], [y(0) = 2],

[y(1.5) = 0.5], [y(1.5) = 1.4], [y(1.5) = 2.5]]);

Phase portrait packages make it possible to efficiently generate threaded
curves by mouse-click.

16.

1

2

0
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17.

1

2

0

18.

1

2

0

19.

1

2

0

20.

1

2

0

21.
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1

2

0
.5

22.

1

2

0
.5

23.

1

2

0

24.

1

2

0

Uniform Grid Method
Apply the uniform grid method as in Example 1.27, page 45 � to make a
direction field of 11× 11 grid points for the given differential equation on −1 ≤
x ≤ 1, −2 ≤ y ≤ 2. If using a computer program, then use about 20× 20 grid
points.
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25. y′ = 2y

Solution: The computer plot:

with(DEtools): # maple

dfieldplot(diff(y(x),x) = 2*y(x), y(x), x = 0 .. 2,

y = 0..2,color=black,dirfield=[11,11],

arrows=THICK,axes=none);

26. y′ = 3y

27. y′ = 1 + y

28. y′ = 2 + 3y

29. y′ = x+ y(2− y)

30. y′ = x+ y(1− 2y)

31. y′ = 1 + y(2− y)

32. y′ = 1 + 2y(2− y)

33. y′ = x− y

34. y′ = x+ y

35. y′ = y − sin(x)

36. y′ = y + sin(x)

Isocline Method
Apply the isocline method as in Example 1.28, page 47 � to make a direction
field of about 11 × 11 points for the given differential equation on 0 ≤ x ≤ 1,
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0 ≤ y ≤ 2. Computer programs are used on these kinds of problems to find grid
points as intersections of isoclines and horizontal lines. Graphics are expected
to be done by hand. Extra isoclines can fill large white spaces.

37. y′ = x− y2

Solution: Needed are 11 or more isoclines x− y2 = M that remain mostly
inside the graph window. Values of M are chosen by successive trial and
error. Isoclines curves are standard curve library parabolas y − y0 = x2

which can be drawn by tracing and vertex translation. The five figures
below show:
(1) a set of isoclines
(2) a 3D interpretation of the contours (z equals M),
(3) computer-generated direction field,
(4) isoclines plus lineal elements,
(5) lineal elements only.

A lineal element drawn in the direction field has constant value M along an
isocline x−y2 = M . There are only 14 different slopes to draw. The clumsy
part of the effort is matching the lineal element slope M to the correct
isocline in the figure, the plan being to duplicate the lineal element along
the isocline curve by rigid translation (easel and T-square work on paper).
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# Maple isocline plot

MM:=[seq(0.9-k/10,k=0..18)]:evalf(MM,1);

plots[implicitplot]([seq(x-y*y=M,M in MM)],x=0..1,y=0..2,

thickness=4,color=black,axes=none,scaling=constrained);

# Maple contour plot of isoclines

plot3d(x-y*y,x=0..1,y=0..2,style=contour,

thickness=4,color=black,font=[courier,bold,16],

labelfont=[courier,bold,24]);

# Maple direction field plot

DEtools[dfieldplot](diff(y(x),x) = x-y(x)*y(x), y(x),

x = 0 .. 1, y = 0..2,color=black,dirfield=[7,11],

arrows=THICK,axes=none,scaling=constrained);

38. y′ = 2x− y2

39. y′ = 2y/(x+ 1)

40. y′ = −y2/(x+ 1)2

41. y′ = sin(x− y)

42. y′ = cos(x− y)

43. y′ = xy

44. y′ = x2y

45. y′ = xy + 2x

46. y′ = x2y + 2x2
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1.5 Phase Line Diagrams

Stability-Instability Test
Find all equilibria for the given differential equation and then apply Theorem
1.3, page 55 �, to obtain a classification of each equilibrium as a source, sink
or node. Do not draw a phase line diagram.

1. P ′ = (2− P )P

Solution: Equilibria P = 0, P = 2. Let f(y) = (2 − y)y. Then samples
f(−1) = −3, f(1) = 1, f(3) = −3 show that f changes from minus to plus
at y = 0 and from plus to minus at y = 2. Theorem 1.3 applies: y = 0 is a
source and y = 2 is a sink.

2. P ′ = (1− P )(P − 1)

3. y′ = y(2− 3y)

Solution: y = 0 is a source and y = 2/3 is a sink

4. y′ = y(1− 5y)

5. A′ = A(A− 1)(A− 2)

Solution: A = 0 is a source, A = 1 is a sink, A = 2 is a source.

6. A′ = (A− 1)(A− 2)2

7. w′ =
w(1− w)

1 + w2

Solution: The sign of f(y) = y(1−y)/(1+y2) alternates from minus to plus
to minus crossing the equilibria y = 0, 1. Then w = 0 is a source and w = 1
is a sink.

8. w′ =
w(2− w)

1 + w4

9. v′ =
v(1 + v)

4 + v2

Solution: Sink v = 0, source v = −1.

10. v′ =
(1− v)(1 + v)

2 + v2

Phase Line Diagram
Draw a phase line diagram, with detail similar to Figure 20.
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11. y′ = y(2− y)

Solution:

− + −
y

0 2

12. y′ = (y + 1)(1− y)

13. y′ = (y − 1)(y − 2)

Solution:

+ − +
y

1 2

14. y′ = (y − 2)(y + 3)

15. y′ = y(y − 2)(y − 1)

Solution:

− + − +
y

0 1 2

16. y′ = y(2− y)(y − 1)

17. y′ =
(y − 2)(y − 1)

1 + y2

Solution:

+ − +
y

1 2

18. y′ =
(2− y)(y − 1)

1 + y2

19. y′ =
(y − 2)2(y − 1)

1 + y2

Solution:

− + +
y

1 2

20. y′ =
(y − 2)(y − 1)2

1 + y2

Phase Portrait
Draw a phase portrait of threaded curves, using the phase line diagram con-
structed in the previous ten exercises.
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21. y′ = y(2− y)

Solution:

− + −
y

0 2
The curves drawn by hand should be either increasing or decreasing. The
phase portrait contains horizontal lines y = 0 and y = 2. A threaded curve
started at x = 0, y < 0 is decreasing and exits the bottom edge of the
graphic. A threaded curve started at x = 0 with 0 < y < 1 will increase and
be trapped between the lines y = 0 and y = 1, limiting at infinity to the line
y = 1. A threaded curve started at x = 0 with y > 1 will decrease and limit
at infinity to the line y = 1. SPOUT: y = 0, FUNNEL: y = 1. Duplicate
labels are SOURCE and SINK. The expected figure is drawn from the phase
line diagram above using the three rules for constructing a phase portrait:

1. Equilibrium solutions are horizontal lines.
Plotted equilibria are y = 2, y = 0, RED in the graphic.

2. Threaded solutions of y′ = f(y) don’t cross.
These are the BLACK curves in the graphic.

3. A threaded non-equilibrium solution that starts at x = 0 at a point y0
must be increasing if f(y0) > 0, and decreasing if f(y0) < 0.
Initial values used: y(0) = −1/2, y(0) = 1.7, y(0) = 2.3.

with(DEtools): # maple

phaseportrait((D(y))(x) = y(x)*(2-y(x)), y(x),

x = 0 .. 0.6, [[y(0) = -0.5], [y(0) = 0],

[y(0)=1.7],[y(0)=2],[y(0)=2.3]],arrows=none,

linecolor=[black,red,black,red,black],

thickness=5,font=[courier,bold,18],labels=["",""]);

22. y′ = (y + 1)(1− y)
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23. y′ = (y − 1)(y − 2)

24. y′ = (y − 2)(y + 3)

25. y′ = y(y − 2)(y − 1)

26. y′ = y(2− y)(y − 1)

27. y′ =
(y − 2)(y − 1)

1 + y2

28. y′ =
(2− y)(y − 1)

1 + y2

29. y′ =
(y − 2)2(y − 1)

1 + y2

30. y′ =
(y − 2)(y − 1)2

1 + y2

Bifurcation Diagram
Draw a stack of phase line diagrams and construct from it a succinct bifurcation
diagram with abscissa k and ordinate y(0). Don’t justify details at a bifurcation
point.

31. y′ = (2− y)y − k

Solution: Follow the Bifurcation Diagram example. Exercise 23 below
will be solved as a second distinct example.

32. y′ = (3− y)y − k

33. y′ = (2− y)(y − 1)− k

Solution: Follow the Bifurcation Diagram example. The change of
variables u = y − 1 changes the y-equation into u′ = (1 − u)u − k,
which is an autonomous differential equation similar to Exercise 21. Let
f(u) = (1 − u)u − k, where k is a parameter that controls the harvesting
rate per annum. A phase line diagram will be made for each relevant value
of k. First, the equilibria are computed as the roots u = a(k), u = b(k) of
f(u) = 0 by the quadratic formula in college algebra:

a(k) =
1

2
+

1

2

√
1− 4 k, b(k) =

1

2
− 1

2

√
1− 4 k

The roots are real only in case 1−4k ≥ 0 or k ≤ 0.25. A double root occurs
at k = 0.25.
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− + −
u, k = 0.05

0.053 0.947

u, k = 0.1

0.113 0.887

u, k = 0.15

0.184 0.816

u, k = 0.2

0.276 0.724

The phase line diagrams are rotated counter-clockwise 90 degrees and
assembled into a bifurcation diagram with connect-the-dots applied to the
equilibria. The bifurcation point is at k = 0.25.

f:=u->u*(1-u)-k;

w:=unapply([solve(f(y)=0,y)],k);w(0.05),w(0.1),w(0.15),w(0.2);

with(plots):

eqs := [y=1/2 + sqrt(1 - 4*k)/2, y=1/2 - sqrt(1 - 4*k)/2]

Plot1:=implicitplot(eqs,k=0..0.25,y=0..2,font=[courier,bold,18],

thickness=5,color=[red,green],labelfont=[courier,bold,24]);

Plot2:=pointplot([[0.25,1/2],[0.05, 0.95], [.1, 0.89],

[0.15, 0.82], [0.2, 0.72], [0.05,0.053], [0.1,.11],

[0.15,0.18], [0.2,0.28]],symbol=solidcircle,symbolsize=30)

display(Plot1,Plot2,labels=[k,u])

The bifurcation diagram for the original equation y′ = (2− y)(y − 1)− k is
obtained by translation y = u+ 1.

34. y′ = (3− y)(y − 2)− k

35. y′ = y(0.5− 0.001y)− k
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Solution: Factor out 0.001. Then follow the Bifurcation Diagram exam-
ple.

36. y′ = y(0.4− 0.045y)− k

Details and Proofs
Supply details for the following statements.

37. (Stability Test)

Verify (b) of Theorem 1.3, page 55 �, by altering the proof given in the
text for (a).

Solution: Replace f by −f in the proof of part (a) to discover the proof for
part (b).

38. (Stability Test)

Verify (b) of Theorem 1.3, page 55 �, by means of the change of variable
x → −x.

39. (Autonomous Equations)

Let y′ = f(y) have solution y(x) on a < x < b. Then for any c, a < c < b,
the function z(x) = y(x+ c) is a solution of z′ = f(z).

Solution: The chain rule gives z′(x) = y′(x + c)(x + c)′ = y′(x + c) 1 =
f(y(x+ c)) = f(z(x)). Therefore, z is a solution if y is a solution.

40. (Autonomous Equations)

The method of isoclines can be applied to an autonomous equation y′ = f(y)
by choosing equally spaced horizontal lines y = ci, i = 1, . . . , k. Along each
horizontal line y = ci the slope is a constant Mi = f(ci), and this determines
the set of invented slopes {Mi}ki=1 for the method of isoclines.
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1.6 Computing and Existence

Multiple Solution Example
Define f(x, y) = 3(y − 1)2/3. Consider y′ = f(x, y), y(0) = 1.

1. Do an answer check for y(x) = 1. Do a second answer check for y(x) = 1+x3.

Solution: A formal 2-panel answer check will be given for both solutions.
It is expected that everyone will abbreviate the answer check, but essential
details are expected.

Define f(x, y) = 3(y − 1)2/3 and
y(x) = 1.
Panel 1: Verify DE.

LHS = y′

= (1)′

= 0

RHS = f(x, y)

= f(x, 1)

= 3(0)2/3

= 0 DE verified.

Panel 2: Verify IC.

LHS = y(0)

= (1) |x=0

= 1 IC verified.

Define f(x, y) = 3(y − 1)2/3 and
y(x) = 1 + x3.
Panel 1: Verify DE.

LHS = y′

= (1 + x3)′

= 3x2

RHS = f(x, y)

= f(x, 1 + x3)

= 3(x3)2/3

= 3x2 DE verified.

Panel 2: Verify IC.

LHS = y(0)

= (1 + x3)
∣∣
x=0

= 1 IC verified.

2. Let y(x) = 1 on 0 ≤ x ≤ 1 and y(x) = 1+ (x− 1)3 for x ≥ 1. Do an answer
check for y(x).

3. Does fy(x, y) exist for all (x, y)?

Solution: Let f(x, y) = 3(y − 1)2/3. Then fy(x, y) = 2(y − 1)−1/3. There is
a divide by zero error at y = 1. Answer: No, it does not exist for all (x.y).

4. Verify that Picard’s theorem does not apply to y′ = f(x, y), y(0) = 1, due
to discontinuity of fy.

5. Verify that Picard’s theorem applies to y′ = f(x, y), y(0) = 2.

Solution: Let f(x, y) = 3(y − 1)2/3, y(0) = 2. Then f is everywhere con-
tinuous and fy(x, y) = 2(y − 1)−1/3 is continuous near y = 2 (the initial
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condition is y(0) = 2). The hypotheses of Picard’s theorem are satisfied.
The theorem applies.

Be advised that a theorem applies just means that the theorem’s hypothe-
ses should be checked for validity. This particular question has been often
misinterpreted, the question left unanswered while providing details for a
closed-form solution found with calculus and differential equations methods.
Such details do not check hypotheses, instead they find a formula for the
solution, a question not asked.

6. Let y(x) = 1 + (x + 1)3. Do an answer check for y′ = f(x, y), y(0) = 2.
Does another solution exist?

Discontinuous Equation Example

Consider y′ =
2y

x− 1
, y(0) = 1. Define y1(x) = (x− 1)2 and y2(x) = c(x− 1)2.

Define y(x) = y1(x) on −∞ < x < 1 and y(x) = y2(x) on 1 < x < ∞. Define
y(1) = 0.

7. Do an answer check for y1(x) on −∞ < x < 1. Do an answer check for
y2(x) on 1 < x < ∞. Skip condition y(0) = 1.

Solution: Define f(x, y) =
2y

x− 1
, y(x) = (x− 1)2.

Panel 1: Verify DE.

LHS = y′

= ((x− 1)2)′

= 2(x− 1) Chain rule and power rule.

RHS = f(x, y)

= f(x, (x− 1)2)

=
2(x− 1)2

x− 1
= 2(x− 1) DE verified.

Define f(x, y) =
2y

x− 1
, y(x) = c(x− 1)2.

LHS = y′

= (c(x− 1)2)′

= 2c(x− 1) Chain rule and constant rule.

RHS = f(x, y)

= f(x, c(x− 1)2)

=
2c(x− 1)2

x− 1
= 2c(x− 1) DE verified.
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8. Justify one-sided limits y(1+) = y(1−) = 0. The functions y1 and y2 join
continuously at x = 1 with common value zero and the formula for y(x)
gives one continuous formal solution for each value of c (∞-many solutions).

9. (a) For which values of c does y′2(1) exist? (b) For which values of c is y2(x)
continuously differentiable?

Solution: Define y2(x) = c(x − 1)2. Then y′2(x) = 2c(x − 1), which is
continuous. Answer: For all values of constant c.

10. Find all values of c such that y2(x) is a continuously differentiable function
that satisfies the differential equation and the initial condition.

Finite Blowup Example
Consider y′ = 1 + y2, y(0) = 0. Let y(x) = tanx.

11. Do an answer check for y(x).

Solution: Let f(x, y = 1 + y2, y(x) = tanx.
Panel 1: Verify DE.

LHS = y′

= (tanx)′

= sec2 x Derivative table, calculus.

RHS = f(x, y)

= f(x, tanx)

= 1 + tan2 x

= sec2 x Trig identity. DE verified.

Panel 2: Verify IC.

LHS = y(0)

= (tanx) |x=0

= tan 0

= 0 Trig identity. IC verified.

12. Find the partial derivative fy for f(x, y) = 1 + y2. Justify that f and fy
are everywhere continuous.

13. Justify that Picard’s theorem applies, hence y(x) is the only possible solu-
tion to the initial value problem.

Solution: Both f(x, y) = 1 + y2 and its derivative fy(x, y) = 2y are every-
where continuous. The hypotheses of Picard’s theorem are satisfied.
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14. Justify for a = −π/2 and b = π/2 that y(a+) = −∞, y(b−) = ∞. Hence
y(x) blows up for finite values of x.

Numerical Instability Example
Let f(x, y) = y − 2e−x.

15. Do an answer check for y(x) = e−x as a solution of the initial value problem
y′ = f(x, y), y(0) = 1.

Solution: Let f(x, y) = y − 2e−x, y(x) = e−x.
Panel 1: Verify DE.

LHS = y′

= (e−x)′

= −e−x Chain rule (eu)′ = u′eu.

RHS = f(x, y)

= f(x, e−x)

= e−x − 2e−x

= −e−x DE verified.

Panel 2: Verify IC.

LHS = y(0)

= (e−x) |x=0

= e0

= 1 Exponential identity. IC verified.

16. Do an answer check for y(x) = cex + e−x as a solution of y′ = f(x, y).

Multiple Solutions
Consider the initial value problem y′ = 5(y − 2)4/5, y(0) = 2.

17. Do an answer check for y(x) = 2. Do a second answer check for y(x) =
2 + x5.

Solution: The answer check for y(x) = 2 will be skipped, because it parallels
the one supplied below.
Let f(x, y) = 5(y − 2)4/5, y(x) = 2 + x5.
Panel 1: Verify DE y′ = 5(y − 2)4/5.

LHS = y′

= (2 + x5)′

= 5x4 Power rule.

RHS = f(x, y)

= f(x, 2 + x5)
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= 5(2 + x5 − 2)4/5

= 5x4 DE verified.

Panel 2: Verify IC y(0) = 2.

LHS = y(0)

= (2 + x5) |x=0

= 2 IC verified.

18. Verify that the hypotheses of Picard’s theorem fail to apply.

19. Find a formula which displays infinitely many solutions to y′ = f(x, y),
y(0) = 2.

Solution: The initial value problem is y′ = 5(y − 2)4/5, y(0) = 2. Define
y = 2 on −1 ≤ x ≤ c and y = 2 + (x − c)5 for x > c > 0. By definition,
y(0) = 2. Let’s focus on verifying the DE. For −1 ≤ x ≤ c with c > 0 the
answer check is identical to exercise 17. For x > c, the details are:
Panel 1: Verify DE y′ = 5(y − 2)4/5.

LHS = y′

= (2 + (x− c)5)′

= 5(x− c)4 Power rule.

RHS = f(x, y)

= f(x, 2 + (x− c)5)

= 5(2 + (x− c)5 − 2)4/5

= 5(x− c)4 DE verified.

20. Verify that the hypotheses of Peano’s theorem apply.

Solution: Suggestion: Use continuity of compositions of continuous func-
tions.

Discontinuous Equation
Consider y′ =

y

x− 1
, y(0) = 1. Define y(x) piecewise by y(x) = −(x − 1) on

−∞ < x < 1 and y(x) = c(x− 1) on 1 < x < ∞. Leave y(1) undefined.

21. Do an answer check for y(x). The initial condition y(0) = 1 applies only to
the domain −∞ < x < 1.

Solution: To be checked: y′ =
y

x− 1
, y(0) = 1.

Part I.
Let y(x) = −(x − 1) on −∞ < x < 1. Because y(0) = −(0 − 1) = 1, just
the DE will be verified.

Panel 1: Verify DE y′ =
y

x− 1
for y(x) = −(x− 1).
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LHS = y′

= (−(x− 1))′

= −1 Constant rule.

RHS = f(x, y)

= f(x,−(x− 1))

=
−(x− 1)

x− 1
= −1 DE verified.

Part II.
Let y(x) = c(x − 1) on 1 < x < ∞. Because x = 0 is not in the domain,
just the DE will be verified.

Panel 1: Verify DE y′ =
y

x− 1
for y(x) = c(x− 1).

LHS = y′

= (c(x− 1))′

= c Constant rule.

RHS = f(x, y)

= f(x, c(x− 1))

=
c(x− 1)

x− 1
= c DE verified.

22. Justify one-sided limits y(1+) = y(1−) = 0. The piecewise definitions of
y(x) join continuously at x = 1 with common value zero and the formula
for y(x) gives one continuous formal solution for each value of c (∞-many
solutions).

23. (a) For which values of c does y′(1) exist? (b) For which values of c is y(x)
continuously differentiable?

Solution: (a) All x ̸= 1. (b) All x ̸= 1.

24. Find all values of c such that y(x) is a continuously differentiable function
that satisfies the differential equation and the initial condition.

Picard Iteration
Find the Picard iterates y0, y1, y2, y3.

25. y′ = y + 1, y(0) = 2

Solution: Answer:
y0 = 2,
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y1 = 2 + 3x,
y2 = 2 + 3x+ 3/2x2,
y3 = 2 + 3x+ 3/2x2 + 1/2x3

y0:=2:f:=(x,y)->y+1:# Maple

y1:=x->y0+int(f(t,y0),t=0..x):

y2:=x->y0+int(f(t,y1(t)),t=0..x):

y3:=x->y0+int(f(t,y2(t)),t=0..x):

u[0]:=y0;u[1]:=y1(x);u[2]:=y2(x);u[3]:=y3(x);

ANS:=seq(y[i]=u[i],i=0..3);# List of iterates

SOL:=u[0]+sum(u[i]-u[i-1],i=1..3);# approximates y(x)

#

# Test series solution against iterate SOL

de:=diff(y(x),x)=f(x,y(x)): ic:=y(0)=y0:

dsolve({de,ic},y(x)); dsolve({de,ic},y(x),series);

26. y′ = 2y + 1, y(0) = 0

27. y′ = y2, y(0) = 1

Solution: Answer:
y0 = 1,
y1 = x+ 1,
y2 = 2/3 + 1/3 (x+ 1)

3
,

y3 = 1 + x+ x7

63 + 1/9x6 + 1/3x5 + 2/3x4 + x3 + x2

The exact solution is 1/(1 − x) = 1 + x + x2 + x3 + · · ·. Picard iteration
performs poorly on this example, requiring many iterations to obtain 1 +
x+ x2 + x3 + x4 in the expansion SOL.

y0:=1:f:=(x,y)->y^2:# Maple

y1:=x->y0+int(f(t,y0),t=0..x):

y2:=x->y0+int(f(t,y1(t)),t=0..x):

y3:=x->y0+int(f(t,y2(t)),t=0..x):

u[0]:=y0;u[1]:=y1(x);u[2]:=y2(x);u[3]:=y3(x);

ANS:=seq(y[i]=u[i],i=0..3);# List of iterates

SOL:=u[0]+sum(u[i]-u[i-1],i=1..3);# approximates y(x)

28. y′ = y2, y(0) = 2

29. y′ = y2 + 1, y(0) = 0

Solution: Answer: The exact solution is y(x) = tanx. Iterates:
y0 = 0,
y1 = x,
y2 = 1/3x3 + x,

y3 = x+ x7

63 + 2/15x5 + 1/3x3
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y0:=0:f:=(x,y)->y^2+1:# Maple

y1:=x->y0+int(f(t,y0),t=0..x):

y2:=x->y0+int(f(t,y1(t)),t=0..x):

y3:=x->y0+int(f(t,y2(t)),t=0..x):

u[0]:=y0;u[1]:=y1(x);u[2]:=y2(x);u[3]:=y3(x);

ANS:=seq(y[i]=u[i],i=0..3);# List of iterates

SOL:=u[0]+sum(u[i]-u[i-1],i=1..3);# approximates y(x)

30. y′ = 4y2 + 4, y(0) = 0

31. y′ = y + x, y(0) = 0

Solution: Answer:
y0 = 0,
y1 = 1/2x2,
y2 = 1/2x2 + 1/6x3,
y3 = 1/2x2 + 1/24x4 + 1/6x3

y0:=0:f:=(x,y)->y+x:# Maple

y1:=x->y0+int(f(t,y0),t=0..x):

y2:=x->y0+int(f(t,y1(t)),t=0..x):

y3:=x->y0+int(f(t,y2(t)),t=0..x):

u[0]:=y0;u[1]:=y1(x);u[2]:=y2(x);u[3]:=y3(x);

ANS:=seq(y[i]=u[i],i=0..3);# List of iterates

SOL:=u[0]+sum(u[i]-u[i-1],i=1..3);# approximates y(x)

32. y′ = y + 2x, y(0) = 0

Picard Iteration and Taylor Series
Find the Taylor polynomial Pn(x) = y(0) + y′(0)x + · · · + y(n)(0)xn/n! and
compare with the Picard iterates. Use a computer algebra system, if possible.

33. y′ = y, y(0) = 1, n = 4,
y(x) = ex

Solution: Answer: Taylor polynomial (1/2)x2 + (1/6)x3 + (1/24)x4 +
(1/120)x5 +O(x6)

Solution from the iterates 1/6x3 + x5

120 + 1/24x4 + 1/2x2, which matches
the Taylor polynomial except for ordering of terms.

y0:=1:f:=(x,y)->y:# Maple

y1:=x->y0+int(f(t,y0),t=0..x):

y2:=x->y0+int(f(t,y1(t)),t=0..x):

y3:=x->y0+int(f(t,y2(t)),t=0..x):

u[0]:=y0;u[1]:=y1(x);u[2]:=y2(x);u[3]:=y3(x);

ANS:=seq(y[i]=u[i],i=0..3);# List of iterates

SOL:=u[0]+sum(u[i]-u[i-1],i=1..3);# approximates y(x)

taylor(exp(x),x=0,4);
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34. y′ = 2y, y(0) = 1, n = 4,
y(x) = e2x

35. y′ = x− y, y(0) = 1, n = 4,
y(x) = −1 + x+ 2e−x

Solution: Answer: Taylor polynomial 1− x+ x2 − (1/3)x3 +O(x4)
Solution from the iterates 1+x2−x− (1/3)x3+(1/24) ∗x4, which matches
the Taylor polynomial except for ordering of terms.

y0:=1:f:=(x,y)->x-y:# Maple

y1:=x->y0+int(f(t,y0),t=0..x):

y2:=x->y0+int(f(t,y1(t)),t=0..x):

y3:=x->y0+int(f(t,y2(t)),t=0..x):

u[0]:=y0;u[1]:=y1(x);u[2]:=y2(x);u[3]:=y3(x);

ANS:=seq(y[i]=u[i],i=0..3);# List of iterates

SOL:=u[0]+sum(u[i]-u[i-1],i=1..3);# approximates y(x)

taylor(-1 + x + 2*exp(-x),x=0,4);

36. y′ = 2x− y, y(0) = 1, n = 4,
y(x) = −2 + 2x+ 3e−x

Numerical Instability
Use a computer algebra system or numerical laboratory. Let f(x, y) = y−2e−x.

37. Solve y′ = f(x, y), y(0) = 1 numerically for y(30).

Solution: Answer: At x = 30, y(x) = −1533016.91678766, which is about
1.5 million.

y0:=1:f:=(x,y)->y-2*exp(-x):# Maple

de:=diff(y(x),x)=f(x,y(x)): ic:=y(0)=y0:

Y:=dsolve({de,ic},y(x),numeric): Y(30);

38. Solve y′ = f(x, y), y(0) = 1 + 0.0000001 numerically for y(30).

Solution: At x = 30, y(x) = −464432.443214007, which is about 0.5 million.

Closed–Form Existence
Solve these initial value problems using a computer algebra system.

39. y′ = y, y(0) = 1

Solution: Answer: y = ex.

de:=diff(y(x),x)=y(x);ic:=y(0)=1;# Maple

dsolve([de,ic],y(x));
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40. y′ = 2y, y(0) = 2

41. y′ = 2y + 1, y(0) = 1

Solution: Answer: y = − 1
2 + 3

2e
2x.

de:=diff(y(x),x)=2*y(x)+1;ic:=y(0)=1;# Maple

dsolve([de,ic],y(x));

42. y′ = 3y + 2, y(0) = 1

43. y′ = y(y − 1), y(0) = 2

Solution: Answer: y =
2

2− ex
.

de:=diff(y(x),x)=y(x)*(y(x)-1);ic:=y(0)=2;# Maple

dsolve([de,ic],y(x));

44. y′ = y(1− y), y(0) = 2

45. y′ = (y − 1)(y − 2), y(0) = 3

Solution: Answer: y =
ex − 4

ex − 2
.

de:=diff(y(x),x)=(y(x)-1)*(y(x)-2);ic:=y(0)=3;# Maple

dsolve([de,ic],y(x));

46. y′ = (y − 2)(y − 3), y(0) = 1

47. y′ = −10(1− y), y(0) = 0

Solution: Answer: y = 1− e10x.

de:=diff(y(x),x)=(-10)*(1-y(x));ic:=y(0)=0;# Maple

dsolve([de,ic],y(x));

48. y′ = −10(2− 3y), y(0) = 0

Lipschitz Condition
Justify the following results.

49. The function f(x, y) = x− 10(2− 3y) satisfies a Lipschitz condition on the
whole plane.

Solution: f(x, y1) − f(x, y2) = 30(y1 − y2) implies |f(x, y1) − f(x, y2)| ≤
M |y1 − y2| for M = 30.

50. The function f(x, y) = ax + by + c satisfies a Lipschitz condition on the
whole plane.

47



1.6 Computing and Existence

51. The function f(x, y) = xy(1 − y) satisfies a Lipschitz condition on D =
{(x, y) : |x| ≤ 1, |y| ≤ 1}.
Solution: Details using the triangle inequality:
|f(x, y1)− f(x, y2)| = |x||(y2 − y1)(y2 + y1)− (y2 − y1)|

≤ |x|(|y2|+ |y1|+ 1)|y2 − y1)|
≤ 1 · (1 + 1 + 1)|y2 − y1)|
= M |y2 − y1)| for M = 3.

52. The function f(x, y) = x2y(a − by) satisfies a Lipschitz condition on D =
{(x, y) : x2 + y2 ≤ R2}.

53. If fy is continuous on D and the line segment from (x, y1) to (x, y2) is in
D, then f(x, y1)− f(x, y2) =

∫ y2

y1
fy(x, u)du.

Solution: Let G(y) = fy(x, y) for this fixed value of x, y1 ≤ y ≤ y2. Then G
is a continuous function of y and the integral

∫ y2

y1
G(y)dy is defined. Further,

G(y) = F ′(y) where F (y) = f(x, y). Apply the fundamental theorem of
calculus:

∫ y2

y1
F ′(y)dy = F (y1)− F (y1) = f(x, y1)− f(x, y1). ■

54. If f and fy are continuous on a disk D, then f is Lipschitz with M =
maxD{|fy(x, u)|}.
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Chapter 2

First Order Differential
Equations

Contents

2.1 Quadrature Method . . . . . . . . . . . . . 49

2.2 Separable Equations . . . . . . . . . . . . . 62

2.3 Linear Equations . . . . . . . . . . . . . . . 71

2.4 Undetermined Coefficients . . . . . . . . . 79

2.5 Linear Applications . . . . . . . . . . . . . 89

2.6 Kinetics . . . . . . . . . . . . . . . . . . . . 108

2.7 Logistic Equation . . . . . . . . . . . . . . 131

2.8 Science and Engineering Applications . . 139

2.9 Exact Equations and Level Curves . . . . 150

2.10 Special equations . . . . . . . . . . . . . . . 153

2.1 Quadrature Method

Quadrature
Find a candidate solution for each initial value problem and verify the solution.
See Example 2.1 and Example 2.2, page 76 �.

1. y′ = 4e2x, y(0) = 0.
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Solution: Answer: y(x) = −2 + 2 e2 x.
Solution steps:

y′ = 4e2x Given DE.∫
y′dx =

∫
4e2xdx Method of quadrature: Multiply by dx across

the DE and integrate.

y(x) + c1 =
∫
4e2xdx FTC left, c1=constant.

y(x) + c1 = 4
∫
e2xdx Constant rule.

y(x) + c1 =
4e2x

2
+ c2 Integral table, c2=constant.

y(x) = 2e2x + c Isolate y left, c=c2 − c1=constant.

0 = y(0) = 2e0 + c Substitute x = 0. Solve for c = −2.

y(x) = 2e2x − 2 Isolate y left, c=c2 − c1=constant. Candidate
solution.

It remains to do an answer check. For illustration, maple will be used to
verify the solution instead of a handwritten 2-panel answer check.

y0:=0;F:=x->4*exp(2*x); y=y0+int(F(t),t=0..x);

# ANS := -2+2*exp(2*x)

2. y′ = 2e4x, y(0) = 0.

3. (1 + x)y′ = x, y(0) = 0.

Solution: Answer: y(x) = x− ln (x+ 1)

y0:=0;F:=x->x/(1+x);

ANS:=y0+int(F(t),t=0..x) assuming x > -1;

# ANS := x - ln(x + 1)

4. (1− x)y′ = x, y(0) = 0.

5. y′ = sin 2x, y(0) = 1.

Solution: Answer: y(x) = 3/2− 1/2 cos (2x)

y0:=1;F:=x->sin(2*x); ANS:=y0+int(F(t),t=0..x);

# ANS := 3/2-(1/2)*cos(2*x)

6. y′ = cos 2x, y(0) = 1.

7. y′ = xex, y(0) = 0.

Solution: Answer: y(x) = exx− ex + 1

y0:=0;F:=x->x*exp(x); ANS:=y0+int(F(t),t=0..x);

# ANS := exp(x)*x-exp(x)+1
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8. y′ = xe−x2

, y(0) = 0.

9. y′ = tanx, y(0) = 0.

Solution: Answer: y(x) = − ln (cos (x))

y0:=0;F:=x->tan(x);

ANS:=y0+int(F(t),t=0..x) assuming x>0 and x < Pi/2;

# ANS := -ln(cos(x))

10. y′ = 1 + tan2 x, y(0) = 0.

11. (1 + x2)y′ = 1, y(0) = 0.

Solution: Answer: y(x) = arctan (x)

y0:=0;F:=x->1/(1+x^2); ANS:=y0+int(F(t),t=0..x);

# ANS := arctan(x)

12. (1 + 4x2)y′ = 1, y(0) = 0.

13. y′ = sin3 x, y(0) = 0.

Solution: Answer: y(x) = 2/3− 1/3 (sin (x))
2
cos (x)− 2/3 cos (x)

Integration uses the trig identity sin3(x) = sin(x)(1 − cos2(x)), obtained
from cos2(x) + sin2(x) = 1.

y0:=0;F:=x->sin(x)^3; ANS:=y0+int(F(t),t=0..x);

# ANS := 2/3-(1/3)*sin(x)^2*cos(x)-(2/3)*cos(x)

14. y′ = cos3 x, y(0) = 0.

15. (1 + x)y′ = 1, y(0) = 0.

Solution: Answer: y(x) = ln (x+ 1)

y0:=0;F:=x->1/(1+x); ANS:=y0+int(F(t),t=0..x) assuming 1+x>0;

# ANS := ln(x+1)

16. (2 + x)y′ = 2, y(0) = 0.

17. (2 + x)(1 + x)y′ = 2, y(0) = 0.

Solution: Answer: y(x) = 2 ln (2)− 2 ln (2 + x) + 2 ln (x+ 1)

y0:=0;F:=x->2/(1+x)/(2+x);

ANS:=y0+int(F(t),t=0..x) assuming 1+x>0 and 2+x > 0;

# ANS := 2*ln(2)-2*ln(2+x)+2*ln(x+1)

18. (2 + x)(3 + x)y′ = 3, y(0) = 0.
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19. y′ = sinx cos 2x, y(0) = 0.

Solution: Answer: y(x) = −1/3− 1/6 cos (3x) + 1/2 cos (x)

y0:=0;F:=x->sin(x)*cos(2*x); ANS:=y0+int(F(t),t=0..x);

# ANS := -1/3-(1/6)*cos(3*x)+(1/2)*cos(x)

20. y′ = (1 + cos 2x) sin 2x, y(0) = 0.

River Crossing
A boat crosses a river of width w miles at vb miles per hour with power applied
perpendicular to the shoreline. The river’s midstream velocity is vc miles per
hour. Find the transit time and the downstream drift to the opposite shore.
See Example 2.3, page 78 �, and the details for (6).

21. w = 1, vb = 4, vc = 12

Solution: The simplest solution uses the equation in Example 2.3:

y(x) =
4vc
vbw2

(
−1

3
x3 +

1

2
wx2

)
.(1)

Then

y(x) =
4(12)

4(12)

(
−1

3
x3 +

1

2
4x2

)
.

The transit time is 1/vb hours or 15 minutes.

The downstream drift is y(1/vb) = y(0.25) =
4(12)

4(12)

(
−1

3

1

43
+

1

2

4

42

)
=

0.3125 miles.
Y:=(x,w,vb,vc) -> (4*vc)/(vb* w^2)*(-1/3* x^3+ 1/2* w*x^2 );

# DRIFT := Y(0.25,1,4,12) = 0.3125000000 or 1650 feet

22. w = 1, vb = 5, vc = 15

23. w = 1.2, vb = 3, vc = 13

Solution: The transit time is 1/vb hours or 20 minutes.
The downstream drift is y(1/vb) = y(1/3) = 0.65386374 miles or 3452.40
feet.

Y:=(x,w,vb,vc) -> (4*vc)/(vb*w^2)*(-1/3*x^3+1/2*w*x^2 );

# TRANSIT := 1/3.0; DRIFT := Y(1/3.0,1.2,3,13);

24. w = 1.2, vb = 5, vc = 9

25. w = 1.5, vb = 7, vc = 16

Solution: The transit time is 1/vb hours or 8.57 minutes.
The downstream drift is y(1/vb) = y(1/7) = 0.05824733528 miles or 307.55
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feet.
Y:=(x,w,vb,vc) -> (4*vc)/(vb* w^2)*(-1/3* x^3+ 1/2* w*x^2 );

# TRANSIT := 1/7.0; DRIFT := Y(1/7.0,1.5,7,16);

26. w = 2, vb = 7, vc = 10

27. w = 1.6, vb = 4.5, vc = 14.7

Solution: The transit time is 1/vb hours or 13.33 minutes.
The downstream drift is y(1/vb) = y(1/4.5) = 0.1176268861 miles or 621.07
feet.

Y:=(x,w,vb,vc) -> (4*vc)/(vb* w^2)*(-1/3* x^3+ 1/2* w*x^2 );

# TRANSIT := 1/4.5; DRIFT := Y(1/4.5,1.6,7,14.7);

28. w = 1.6, vb = 5.5, vc = 17

Fundamental Theorem I
Verify the identity. Use the fundamental theorem of calculus part (b), page
75 �.

29.
∫ x

0
(1 + t)3dt = 1

4

(
(1 + x)4 − 1

)
.

Solution: Let F (x) = 1
4

(
(1 + x)4 − 1

)
. It is enough to verify F ′(x) = (1 +

x)3, because the FTC gives
∫ x

0
F ′(t) = F (x) − F (0), which equals F (x)

because F (0) = 0. Details:
F ′(x) = d

dx

(
1
4

(
(1 + x)4 − 1

))
= 1

4

(
4(1 + x)3 − 0

)
= (1 + x)3.

30.
∫ x

0
(1 + t)4dt = 1

5

(
(1 + x)5 − 1

)
.

31.
∫ x

0
te−tdt = −xe−x − e−x + 1.

Solution: As in exercise 29, it suffices to show that (RHS)′ = integrand.

32.
∫ x

0
tetdt = xex − ex + 1.

Fundamental Theorem II
Differentiate. Use the fundamental theorem of calculus part (b), page 75 �.

33.
∫ 2x

0
t2 tan(t3)dt.

Solution: The chain rule is required. Define G(u) =
∫ u

0
t2 tan(t3)dt and

u = 2x. Then the integral I = G(2x) and
dI
dx = dG

du
du
dx

= u2 tan(u)(2x)′

= 4x2 tan(2x)(2) = 8x2 tan(2x).
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2.1 Quadrature Method

34.
∫ 3x

0
t3 tan(t2)dt.

35.
∫ sin x

0
tet+t2dt.

Solution: cosx
(
tet+t2

)
|t=sin x = (cosx sinx)esin x+sin2 x

36.
∫ sin x

0
ln(1 + t3)dt.

Fundamental Theorem III
Integrate

∫ 1

0
f(x)dx. Use the fundamental theorem of calculus part (a), page

75 �. Check answers with computer or calculator assist. Some require a clever
u-substitution or an integral table.

37. f(x) = x(x− 1)

Solution: Expand f(x) = x2 − x, then f ′(x) = 2x− 1.

38. f(x) = x2(x+ 1)

39. f(x) = cos(3πx/4)

Solution: The chain rule applies: f ′(x) = − sin(3πx/4)
3π

4

40. f(x) = sin(5πx/6)

41. f(x) =
1

1 + x2

Solution: Power and chain rules apply:

f ′(x) =
(
(1 + x2)−1

)′
= (−1)(1 + x2)−2(1 + x2)′

= (−2x)(1 + x2)−2

42. f(x) =
2x

1 + x4

43. f(x) = x2ex
3

Solution: Power rule, product rule, exponential rule, chain rule.
f ′(x) = 2xex

3

+ 3x4ex
3

F:=x->x^2*exp(x^3);# Maple

ANS:=diff(F(x),x);

# ANS := 2*x*exp(x^3)+3*x^4*exp(x^3)

44. f(x) = x(sin(x2) + ex
2

)
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45. f(x) =
1√

−1 + x2

Solution: Power rule, quotient rule, chain rule.

f ′(x) = − x(
x2 − 1

)3/2
F:=x->1/sqrt(x^2 - 1);# Maple

ANS:=diff(F(x),x);

# ANS := -x/(x^2-1)^(3/2)

46. f(x) =
1√

1− x2

47. f(x) =
1√

1 + x2

Solution: Power rule, chain rule.

f ′(x) = − x(
x2 + 1

)3/2
F:=x->1/sqrt(x^2 + 1);# Maple

ANS:=diff(F(x),x);

# ANS := -x/(x^2+1)^(3/2)

48. f(x) =
1√

1 + 4x2

49. f(x) =
x√

1 + x2

Solution: Power rule, quotient rule, chain rule.

f ′(x) =
1√

x2 + 1
− x2(

x2 + 1
)3/2

F:=x->x/sqrt(x^2 + 1);# Maple

ANS:=diff(F(x),x);

# ANS := 1/sqrt(x^2+1)-x^2/(x^2+1)^(3/2)

50. f(x) =
4x√

1− 4x2

51. f(x) =
cosx

sinx
Solution: Because f(x) = cotx, then f ′(x) = − csc2 x from integral tables.

Computer algebra systems give −1− cos2 x

sin2 x
which equals −1− cot2 x. Trig

identity 1 + cot2 x = csc2 x explains the form of the answer from integral
tables.
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52. f(x) =
cosx

sin3 x

53. f(x) =
ex

1 + ex

Solution: Exponential rule, quotient rule.

f ′(x) =
ex

(1 + ex)
2

F:=x->F:=x->exp(x)/(1+exp(x));# Maple

ANS:=diff(F(x),x);

# ANS := exp(x)/(1+exp(x))-(exp(x))^2/(1+exp(x))^2

54. f(x) =
ln |x|
x

55. f(x) = sec2 x

Solution: Power rule, chain rule.
f ′(x) = 2 sec(x) sec(x) tan(x)

56. f(x) = sec2 x− tan2 x

57. f(x) = csc2 x

Solution: Power rule, chain rule.
f ′(x) = −2 csc(x) csc(x) cot(x)

58. f(x) = csc2 x− cot2 x

59. f(x) = cscx cotx

Solution: Product rule.
f ′(x) = − cscx cotx cotx− cscx csc2 x

60. f(x) = secx tanx

Integration by Parts
Integrate

∫ 1

0
f(x)dx by parts,

∫
udv = uv−

∫
vdu. Check answers with computer

or calculator assist.

61. f(x) = xex

Solution: Let u = x, dv = exdx. Then du = dx, v = −e−x. Parts gives∫
xexdx =

∫
udv

= uv −
∫
vdu

= −xe−x −
∫
−e−xdx

= −xe−x − e−x + c
The answer is checked by differentiation:
(−xe−x − e−x + c)′ = −e−x + xe−x + e−x = xe−x
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62. f(x) = xe−x

63. f(x) = ln |x|
Solution: Let u = lnx, dv = dx.∫
f(x)dx = x ln(x)− x

64. f(x) = x ln |x|

65. f(x) = x2e2x

Solution: Let u = x2, dv = e2xdx.∫
f(x)dx = 1

4 (2x
2 − 2x+ 1)e2x

66. f(x) = (1 + 2x)e2x

67. f(x) = x coshx

Solution: Let u = x, dv = cosh(x)dx. Then v = sinhx.∫
f(x)dx = x sinh(x)− cosh(x)

68. f(x) = x sinhx

69. f(x) = x arctan(x)

Solution: Let u = x, dv = arctan(x)dx. Then v =
1

1 + x2 .∫
f(x)dx = 1

2x
2 arctan(x)− 1

2x+ 1
2 arctan(x)

70. f(x) = x arcsin(x)

Partial Fractions
Integrate f by partial fractions. Check answers with computer or calculator
assist.

71. f(x) =
x+ 4

x+ 5

Solution: Long division applies: f(x) = 1+
−4

x+ 5
. Then integration is from

tables:∫
f(x)dx = x− 4 ln |x+ 5|+ c.

72. f(x) =
x− 2

x− 4
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73. f(x) =
x2 + 4

(x+ 1)(x+ 2)

Solution: Long division and partial fractions applies:
f(x) = 1− 8/(x+ 2) + 5/(x+ 1), then from integral tables∫
f(x)dx = x+ 5 ln (x+ 1)− 8 ln (x+ 2) + c

The partial fraction steps:
1. Expand the denominator (x+1)(x+2) into x2+3x+2 and then perform
long division:

f(x) = QUO +
REM

DENOM
= 1 +

2− 3x

(x+ 1)(x+ 2))

2. Expand REM/DENOM in partial fractions:

2− 3x

(x+ 1)(x+ 2))
=

a

x+ 1
+

b

x+ 2

3. Clear fractions: multiply by DENOM.

4. Match coefficients to get equations for a, b, then solve for a = 5, b = −8.

F:=x->(x^2 + 4)/((x+1)*(x+2));# Maple

ANS:=int(F(x),x);

FRACTIONS:=convert(F(x),parfrac);

bot:=denom(F(x));top:=numer(F(x));

QUO:=quo(top,bot,x);REM:=rem(top,bot,x);

# QUO := 1, REM := 2-3*x

# ANS := x+5*ln(x+1)-8*ln(x+2)

# FRACTIONS := 1-8/(x+2)+5/(x+1)

74. f(x) =
x(x− 1)

(x+ 1)(x+ 2)

75. f(x) =
x+ 4

(x+ 1)(x+ 2)

Solution: Partial fractions applies:
f(x) = −2/(x+ 2) + 3/(x+ 1), then from integral tables∫
f(x)dx = 3 ln (x+ 1)− 2 ln (x+ 2) + c

F:=x->(x+4)/((x+1)*(x+2));# Maple

ANS:=int(F(x),x);

FRACTIONS:=convert(F(x),parfrac);

# ANS := 3*ln(x+1)-2*ln(x+2)

# FRACTIONS := -2/(x+2)+3/(x+1)

76. f(x) =
x− 1

(x+ 1)(x+ 2))
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77. f(x) =
x+ 4

(x+ 1)(x+ 2)(x+ 5)

Solution: Partial fractions applies:

f(x) =
−2/3

x+ 2
+

−1/12

x+ 5
+

3/4

x+ 1
, then from integral tables∫

f(x)dx = 3/4 ln (x+ 1)− 2/3 ln (x+ 2)− 1/12 ln (x+ 5) + c

F:=x->(x+4)/((x+1)*(x+2)*(x+5));# Maple

ANS:=int(F(x),x);

FRACTIONS:=convert(F(x),parfrac);

# ANS := (3/4)*ln(x+1)-(2/3)*ln(x+2)-(1/12)*ln(x+5)

# FRACTIONS := -2/(3*(x+2))-1/(12*(x+5))+3/(4*(x+1))

78. f(x) =
x(x− 1)

(x+ 1)(x+ 2)(x+ 3)

79. f(x) =
x+ 4

(x+ 1)(x+ 2)(x− 1)

Solution: Partial fractions applies:

f(x) =
2/3

x+ 2
+

5/6

x− 1
+

−3/2

x+ 1
, then from integral tables∫

f(x)dx = 2/3 ln (x+ 2) + 5/6 ln (x− 1)− 3/2 ln (x+ 1) + c

F:=x->(x+4)/((x+1)*(x+2)*(x-1));# Maple

ANS:=int(F(x),x);

FRACTIONS:=convert(F(x),parfrac);

# ANS := (5/6)*ln(x-1)-(3/2)*ln(x+1)+(2/3)*ln(x+2)

# FRACTIONS := 2/(3*(x+2))-3/(2*(x+1))+5/(6*(x-1))

80. f(x) =
x(x− 1)

(x+ 1)(x+ 2)(x− 1)

Special Methods
Integrate f by using the suggested u-substitution or method. Check answers
with computer or calculator assist.

81. f(x) =
x2 + 2

(x+ 1)2
, u = x+ 1.

Solution: Answer:
∫
f(x)dx = x− 2 ln (x+ 1)− 3 (x+ 1)

−1

Let u = x+ 1. Then x = u− 1 and

f(x) =
(u− 1)2 + 2

(u)2

=
u2 − 2u+ 3

u2

59
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= 1− 2u−1 + 3u−2∫
f(x)dx =

∫
(1− 2u−1 + 3u−2)du

= u− 2 ln |u| − 3u−1 + c

= x+ 1− 2 ln |x+ 1| − 3/(x+ 1) + c

F:=x->(x^2+2)/(x+1)^2;# Maple

ANS:=int(F(x),x);

# ANS := (5/6)*ln(x-1)-(3/2)*ln(x+1)+(2/3)*ln(x+2)

82. f(x) =
x2 + 2

(x− 1)2
, u = x− 1.

Solution:
∫
f(x)dx = x+ 2 ln (x− 1)− 3 (x− 1)

−1
+ c

83. f(x) =
2x

(x2 + 1)3
, u = x2 + 1.

Solution: Let u = x2 + 1. Then du = 2xdx:

f(x) =
du

u3

= u−3du∫
f(x)dx =

∫
u−3du

= u−2/(−2) + c

= −1

2

1

(x2 + 1)2
+ c

F:=x->(2*x)/(x^2+1)^3;# Maple

ANS:=int(F(x),x);

# ANS := -1/(2*(x^2+1)^2)

84. f(x) =
3x2

(x3 + 1)2
, u = x3 + 1.

85. f(x) =
x3 + 1

x2 + 1
, use long division.

Solution: Long division:

f(x) =
x3 + 1

x2 + 1

= x+
1− x

x2 + 1

= x+
1

x2 + 1
+

−x

x2 + 1
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2.1 Quadrature Method

= x+
1

x2 + 1
+

−du/2

u
, where u = x2 + 1∫

f(x) =

∫
xdx+

∫
dx

x2 + 1
+

−1

2

∫
du

u

= x2/2 + arctan(x) +
−1

2
ln |u|+ c

= x2/2 + arctan(x) +
−1

2
ln |x2 + 1|+ c

F:=x->(x^3+ 1)/(x^2 + 1);# Maple

ANS:=int(F(x),x);

FRACTIONS:=convert(F(x),parfrac);

bot:=denom(F(x));top:=numer(F(x));

QUO:=quo(top,bot,x);REM:=rem(top,bot,x);

# ANS := (1/2)*x^2-(1/2)*ln(x^2+1)+arctan(x)

# FRACTIONS := x+(1-x)/(x^2+1)

86. f(x) =
x4 + 2

x2 + 1
, use long division.
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2.2 Separable Equations

2.2 Separable Equations

Separated Form Test
Test the given equation by the separated form test on page 83 �.

Report whether or not the equation passes or fails, as written. In this test,
algebraic operations on the equation are disallowed. See Examples 2.4 and 2.5,
page 86 �.

1. y′ = 2

Solution: Passes. The left side has x absent and y′ is a factor. The right
side has y and y′ absent.

2. y′ = x

3. y′ + y = 2

Solution: Fails. Left side fails to have factor y′.

4. y′ + 2y = x

5. yy′ = 2− x

Solution: Passes.

6. 2yy′ = x+ x2

7. yy′ + sin(y′) = 2− x

Solution: Fails. Left side fails to have factor y′.

8. 2yy′ + cos(y) = x

9. 2yy′ = y′ cos(y) + x

Solution: Fails. The right side contains y (and also y′).

10. (2y + tan(y))y′ = x

Separated Equation
Determine the separated form y′/G(y) = F (x) for the given separable equation.
See Example 2.6, page 86 �.

11. (1 + x)y′ = 2 + y

Solution:
y′

2 + y
=

1

1 + x
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12. (1 + y)y′ = xy

13. y′ =
x+ xy

(x+ 1)2 − 1

Solution:
y′

1 + y
=

x

(x+ 1)2 − 1

14. y′ = sin(x)
1 + y

(x+ 2)2 − 4

15. xy′ = y sin(y) cos(x)

Solution:
y′

y sin(y)
=

cos(x)

x

16. x2y′ = y cos(y) tan(x)

17. y2(x− y)y′ =
x2 − y2

x+ y

Solution: Factor:
x2 − y2

x+ y
=

(x− y)(x+ y)2

x+ y
. Cancel like factors on the

right. Then divide to get separated form y2y′ = 1.

18. xy2(x+ y)y′ =
y2 − x2

x− y

19. xy2y′ =
y − x

x− y

Solution: Cancel like factors on the right, then divide by x to get separated

form y2y′ =
−1

x

20. xy2y′ =
x2 − xy

x− y

Equilibrium solutions
Determine the equilibria for the given equation. See Examples 2.7 and 2.9.

21. y′ = xy(1 + y)

Solution: Let f(x, y) = xy(1 + y). Substitute y = c in equation f(x, y) = 0
to get xc(1 + c) = 0. Cancel x, legal because x can be any number, e.g.,
x = 1. Solve for c = 0, c = −1. Substitute the answers for c back into the
substitution y = c. Report the equilibria as y = 0 and y = −1
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22. xy′ = y(1− y)

23. y′ =
1 + y

1− y

Solution: Let f(x, y) = 1+y
1−y . Equilibria: y = 1. The often-reported answer

y = −1 is a singular value, not an equilibrium: y = −1 makes f(x, y) =
infinity, not zero.

24. xy′ =
y(1− y)

1 + y

25. y′ = (1 + x) tan(y)

Solution: Equilibria: y = nπ for n = any integer. The often-reported expres-
sion x = −1 is not an equilibrium. All equilibria have form y = constant.
Equation y = c is required to be a solution, that is, y = c passes a formal
answer check. In the answer check, x is allowed to be any value.

26. y′ = y(1 + ln y)

27. y′ = xey(1 + y)

Solution: Equilibria: y = −1. Because e0 = 1, then y = 0 is not an
equilibrium.

28. xy′ = ey(1− y)

29. xy′ = ey(1− y2)(1 + y)3

Solution: Equilibria: y = −1, y = 1. Let f(x, y) = ey(1 − y2)(1 + y)3. In
equation f(x, c) = 0, factor ec cancels leaving (1− y)(1 + y)(1 + y)3 = 0.

30. xy′ = ey(1− y3)(1 + y3)

Non-Equilibrium Solutions
Find the non-equilibrium solutions for the given separable equation. See Ex-
amples 2.8 and 2.10 for details.

31. y′ = (xy)1/3, y(0) = y0.

Solution: The separated form is y−1/3y′ = x1/3. Apply quadrature:∫
y−1/3(x)y′(x)dx =

∫
x1/3dx

Non-equilibrium solution:
y2/3(x)

2/3
=

x4/3

4/3
+ c

Equilibria: y = 0
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Value c is determined by substitution of x = 0, y = y0:
y
2/3
0

2/3
=

04/3

4/3
+ c.

Then c =
y
2/3
0

2/3
.

32. y′ = (xy)1/5, y(0) = y0.

33. y′ = 1 + x− y − xy, y(0) = y0.

Solution: Factor 1 + x− y − xy = (1 + x)(1− y).

Separated form:
y′

1− y
= 1 + x

Non-equilibrium solution: − ln |1− y(x)| = x+ x2/2 + c

Equilibria: y = 1

Value c = − ln |1− y(0)| because − ln |1− y(0)| = 0 + 02/2 + c.

34. y′ = 1 + x+ 2y + 2xy, y(0) = y0.

35. y′ =
(x+ 1)y3

x2(y3 − y)
, y(1) = y0 ̸= 0.

Solution: Factor y3 − y = y(y2 − 1). Cancel factor y. Divide.

Separated form:
(y2 − 1)y′

y2
=

1 + x

x2

Ready to integrate: (1− y−2)y′ = x−2 + x−1

Non-equilibrium solution: y +
1

y
=

−1

x
+ ln |x|+ c

Equilibria: y = 1

Initial value: y(1) +
1

y(1)
=

−1

1
+ ln |1|+ c

c = y0 +
1

y0
+ 1

36. y′ =
(x− 1)y2

x3(y3 + y)
, y(0) = y0.

37. 2yy′ = x(1− y2)

Solution: Divide.

Separated form:
2yy′

1− y2
= x

Substitution: u = y2 − 1, du = 2yy′
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Ready to integrate:
du

u
= x

Non-equilibrium solution:

ln |u| = x2/2 + c
ln |y2 − 1| = x2/2 + c

Equilibria: y = 1, y = −1 from f(x, y) = x
1− y2

2y

38. 2yy′ = x(1 + y2)

39. (1 + x)y′ = 1− y

Solution: Divide.

Separated form:
y′

1− y
=

1

1 + x

Substitution: u = 1− y, du = −dy

Ready to integrate:
−du

u
=

1

1 + x

Non-equilibrium solution:

− ln |u| = ln |1 + x|+ c
− ln |1− y| = ln |1 + x|+ c

Equilibria: y = 1, from f(x, y) =
1− y

1 + x

40. (1− x)y′ = 1 + y, y(0) = y0.

41. tan(x)y′ = y, y(π/2) = y0.

Solution: Trig identity tanx = sinx/ cosx.

Separated form:
y′

y
=

cosx

sinx

Substitution: u = sinx, du = cos(x)dx

Ready to integrate:
dy

y
=

du

u

Non-equilibrium solution:

ln |y| = ln |u|+ c
ln |y| = ln | sin(x)|+ c

Equilibria: y = 0, from f(x, y) =
y

tanx
Initial value: ln |y(π/2)| = ln | sin(π/2)|+ c
ln |y0| = ln |1|+ c
c = ln |y0|
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42. tan(x)y′ = 1 + y, y(π/2) = y0.

43.
√
xy′ = cos2(y), y(1) = y0.

Solution: Trig identity: sec2(y) = 1/ cos2(y)

Separated form: sec2(y)y′ = x−1/2

Substitution: (tan y)′dy = sec2(y)y′dx

Ready to integrate: (tan(y))′dy = x−1/2dx

Non-equilibrium solution:

tan(y) = 2x1/2 + c

Equilibria: y = (2n+ 1)π/2, n = any integer, from f(x, y) =
cos2 y√

x
Initial value: tan(y0) = 2 + c

44.
√
1− xy′ = sin2(y), y(0) = y0.

45.
√
x2 − 16yy′ = x, y(5) = y0.

Solution: Separated form: yy′ =
x√

x2 − 16

Substitution: u = x2 − 16, du = 2xdx

yy′ =
du/2√

u

Ready to integrate: ydy = 1
2u

−1/2du

Non-equilibrium solution:

y2/2 = 2u1/2 + c
y2/2 = 2

√
x2 − 16 + c

Equilibria: none, from f(x, y) =
x

y
√
x2 − 16

Initial value: y20/2 = 2
√
25− 16 + c or c = −6 + y20/2

46.
√

x2 − 1yy′ = x, y(2) = y0.

47. y′ = x2(1 + y2), y(0) = 1.

Solution: Separated form:
y′

1 + y2
= x2

Identity: (arctan(y))′dy =
y′dx

1 + y2

Ready to integrate: (arctan(y))′dy = x2dx

Non-equilibrium solution: arctan(y) = x3/3 + c
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Equilibria: none, from f(x, y) = x2(1 + y2)

Initial value: arctan(y(0)) = 03/3 + c or c = arctan(1)

48. (1− x)y′ = x(1 + y2), y(0) = 1.

Independent of x
Solve the given equation, finding all solutions. See Example 2.11.

49. y′ = sin y, y(0) = y0.

Solution: Separated form: csc(y)y′ = 1
Answer: − csc(y) cot(y) = x+ c, with c = − csc(y0) cot(y0)

50. y′ = cos y, y(0) = y0.

51. y′ = y(1 + ln y), y(0) = y0.

Solution: Separated form:
y′

y(1 + lny)
= 1, which makes sense for y > 0.

Answer: ln(1 + ln(y) = x+ c, with c = ln(1 + ln(y0))

52. y′ = y(2 + ln y), y(0) = y0.

53. y′ = y(y − 1)(y − 2), y(0) = y0.

Solution: Separated form:
y′

y(y − 1)(y − 2)
= 1

Answer: − ln |y − 1|+ (1/2) ln |y|+ (1/2) ln |y − 2| = x+ c
Initial Value: c = − ln |y0 − 1|+ (1/2) ln |y0|+ (1/2) ln |y0 − 2|

54. y′ = y(y − 1)(y + 1), y(0) = y0.

55. y′ = y2 + 2y + 5, y(0) = y0.

Solution: Separated form:
y′

y2 + 2y + 5
= 1

Factor: y2+2y+5 = 4((y+1)2/4+1), college algebra complete-the-square.
Substitution: u = (y + 1)/2, 2du = dy

2du

4(u2 + 1)
= dx∫ 2du

4(u2 + 1)
=
∫
dx

1
2 arctan(u) = x+ c1
arctan((y + 1)/2) = 2x+ 2c1

Answer: arctan((y + 1)/2) = 2x+ c
Initial Value: c = arctan((y0 + 1)/2)
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56. y′ = y2 + 2y + 7, y(0) = y0.

Details in the Examples
Collected here are verifications for details in the examples.

57. (Example 2.7) The equation x(1−y)(1+y) = 0 was solved in the example,
but x = 0 was ignored, and only y = −1 and y = 1 were reported. Why?

Solution: Symbol x is the independent variable, which means it is allowed
to assume all values. For instance, x = 1. Equation x(1 − y)(1 + y) = 0
specializes at x = 1 to (1− y)(1 + y) = 0 with exactly two roots y = 1 and
y = −1.

58. (Example 2.8) An absolute value equation |u| = w was replaced by u = kw
where k = ±1. Justify the replacement using the definition |u| = u for u ≥ 0,
|u| = −u for u < 0.

59. (Example 2.8) Verify directly that y = (1 + y0)e
x3/3 − 1 solves the initial

value problem y′ = x2(1 + y), y(0) = y0.

Solution: At x = 0, equation y = (1 + y0)e
x3/3 − 1 reduces to y = (1 +

y0)e
0 − 1 = y0, because e0 = 1. The IC is verified.

Panel 1: DE Answer Check
LHS = y′

=
(
(1 + y0)e

x3/3 − 1
)′

= x2(1 + y0)e
x3/3.

RHS = y′

= x2(1 + y)

= x2 + x2
(
(1 + y0)e

x3/3 − 1
)

= x2(1 + y0)e
x3/3

Then LHS = RHS, which verifies the DE.

60. (Example 2.9) The relation y = 1 + nπ, n = 0,±1,±2, . . . describes the
list . . . , 1−π, 1, 1+π, . . .. Write the list for the relation y = −1+(2n+1)π2 .

61. (Example 2.9) Solve sin(u) = 0 and cos(v) = 0 for u and v. Supply graphs
which show why there are infinity many solutions.

Solution: u = nπ and v = (2n + 1)π/2, n = any integer. Graphs omitted,
found in any trig reference, show infinitely many crossings of the two trig
functions and the x-axis y = 0.

62. (Example 2.10) Explain why y0/2 does not equal Arctan(tan(y0/2)). Give
a calculator example.
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63. (Example 2.10) Establish the identity tan(y/2) = csc y − cot y.

Solution: Let y = 2u.

csc y − cot y =
1

sin y
− cos y

sin y

=
1− cos(y)

sin(y)

=
1− cos(2u)

sin(2u)

Double angle trig formulas:
sin(2u) = 2 sin(u) cos(u), cos(2u) = 2 cos2(u)− 1

csc y − cot y =
1− cos(2u)

sin(2u)

=
2− 2 cos2(u)

2 sin(u) cos(u)

=
sin2(u)

sin(u) cos(u)
, used cos2(θ) + sin2(θ) = 1

= tan(u)

= tan(y/2)

64. (Example 2.11) Let y0 > 0. Verify that y = e1− (1− ln y0)e
−x

solves

y′ = y(1− ln y), y(0) = y0.
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2.3 Linear Equations

Integrating Factor Method
Apply the integrating factor method, page 96 �, to solve the given linear equa-
tion. See the examples starting on page 99 � for details.

1. y′ + y = e−x

Solution: Standard Form y′ + py = r: p = 1, r = e−x

Integrating Factor: W (x) = e
∫
p(x)dx = ex

Integrating Factor Identity:
(Wy)

′

W
= y′ + py

(exy)
′

ex
= e−x

(exy)
′
= e−xex, Multiply by ex∫

(exy)
′
dx =

∫
e−xexdx, Quadrature

exy = x+ c, Fund. Thm. Calc.
y = xe−x + ce−x, Candidate solution

Answer check:

# Maple

de:=diff(y(x),x)+y(x)=exp(-x); dsolve(de,y(x));

# y(x) = (x+_C1)*exp(-x)

2. y′ + y = e−2x

3. 2y′ + y = e−x

Solution: y (x) = −e−x + e−x/2c

4. 2y′ + y = e−2x

5. 2y′ + y = 1

Solution: y (x) = 1 + e−x/2c

6. 3y′ + 2y = 2

7. 2xy′ + y = x

Solution: y (x) = x/3 +
c√
x

8. 3xy′ + y = 3x

9. y′ + 2y = e2x

Solution: y (x) =
(
1/4 e4 x + c

)
e−2 x
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10. 2y′ + y = 2ex/2

11. y′ + 2y = e−2x

Solution: y (x) = (x+ c) e−2 x

12. y′ + 4y = e−4x

13. 2y′ + y = e−x

Solution: y (x) = −e−x + e−x/2c

14. 2y′ + y = e−2x

15. 4y′ + y = 1

Solution: y (x) = 1 + e−x/4c

16. 4y′ + 2y = 3

17. 2xy′ + y = 2x

Solution: y (x) = 2/3x+ c√
x

18. 3xy′ + y = 4x

19. y′ + 2y = e−x

Solution: y (x) = (ex + c) e−2 x

20. 2y′ + y = 2e−x

Superposition
Find a particular solution with fewest terms. See Example 2.15, page 99 �.

21. 3y′ = x

Solution: Quadrature applies: y(x) = x2/6 + c
Specialize c = 0 to find a particular solution with fewest terms.
Then yp(x) = x2/6.
This linear equation has non-constant coefficients. No shortcut is available.

22. 3y′ = 2x

23. y′ + y = 1

Solution: yp(x) = 1
The equation has constant coefficients, therefore a shortcut applies: yp =
equilibrium solution = 1.
To find an equilibrium solution, formally replace y′ by zero and solve for y.
It only works if the coefficients are constant!
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24. y′ + 2y = 2

25. 2y′ + y = 1

Solution: yp(x) = 1
The equation has constant coefficients, therefore a shortcut applies: yp =
equilibrium solution = 1.

26. 3y′ + 2y = 1

27. y′ − y = ex

Solution: y = xex.
This linear equation has non-constant coefficients. No shortcut is available.
Solve by the linear integrating factor method: y (x) = (x+ c) ex then let
c = 0.

28. y′ − y = xex

29. xy′ + y = sinx (x > 0)

Solution: y =
− cosx

x
This linear equation has non-constant coefficients. No shortcut is available.

Solve by the linear integrating factor method: y (x) =
− cos (x) + c

x
then let

c = 0.

30. xy′ + y = cosx (x > 0)

31. y′ + y = x− x2

Solution: y = −x2 + 3x− 3
This linear equation has non-constant coefficients. No shortcut is available.
Solve by the linear integrating factor method: y (x) = −x2 + 3x− 3 + e−xc
then let c = 0.

32. y′ + y = x+ x2

General Solution
Find yh and a particular solution yp. Report the general solution y = yh + yp.
See Example 2.17, page 100 �.

33. y′ + y = 1

Solution: The answers: yh = ce−x, yp = 1

To find yh, solve the homogeneous DE: y′ + y = 0. The answer is y = c/W
where W is the integrating factor. See Special Equations in this textbook
section. The details:
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Standard Homogeneous Form y′ + py = 0: p = 1
Integrating Factor: W = e

∫
pdx = e

∫
(1)dx = ex+c

As explained in the textbook, take c = 0 to simplify the compu-
tation, then

W = ex, yh =
c

W
= ce−x

Method 1: Equilibrium shortcut to find yp = 1.

The equation y′ + y = 1 has constant coefficients. The method applies,
which replaces y′ by zero in the equation y′ + y = 1 to find y = 1, the
equilibrium solution. In applications, y = 1 would be the limit at x = ∞ of
y(x), referred to as the steady-state solution.

Method 2: Find yh and yp simultaneously.

The Integrating Factor Method will be applied.

Integrating Factor Identity:
(Wy)′

W
replaced y′ + py

In the present case:
(Wy)′

W
replaces y′ + y in y′ + y = 1

(Wy)′

W
= 1

(Wy)′ = 1()W Clear fractions.

Quadrature: Integrate across the replacement equation on vari-
able x:∫

(Wy)′dx =
∫
(1)Wdx

Wy =
∫
(1)exdx FTC and equality W = ex.

y =
1

W

∫
(1)exdx Divide by W .

y = e−x
∫
(1)exdx Use W = ex.

y = e−x(ex + c) Integral table.

y = 1 + ce−x Candidate solution.

Isolate yp = 1 by letting c = 0. The remaining terms with factor c assemble
the homogeneous solution yh = ce−x.

It remains to check the answer. A simple option is a CAS like maple,
mathematica or Wolfram Alpha.

p:=1; r:=1;# MAPLE

de:=(1)*diff(y(x),x)+(p)*y(x)=r; ANS:=dsolve(de,y(x));

# ANS := y(x) = 1+exp(-x)*_C1
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34. xy′ + y = 2

35. y′ + y = x

Solution: y (x) = x− 1 + ce−x, yh(x) = ce−x, yp(x) = x− 1

The equilibrium shortcut does not apply. The homogeneous shortcut always
applies: yh = c/W , W = the integrating factor. However, it saves no time
to use it, because the full integrating factor method computation is required.

36. xy′ + y = 2x

37. y′ − y = x+ 1

Solution: y (x) = −x− 2 + cex, yh (x) = cex, yp (x) = −x− 2

38. xy′ − y = 2x− 1

39. 2xy′ + y = 2x2 (x > 0)

Solution: y (x) = 2/5x2 +
c√
x
, yh (x) =

c√
x
, yp (x) = 2/5x2

40. xy′ + y = 2x2 (x > 0)

Classification
Classify as linear or non-linear. Use the test f(x, y) = f(x, 0) + fy(x, 0)y and
a computer algebra system, when available, to check the answer. See Example
2.18, page 101 �.

41. y′ = 1 + 2y2

Solution: Nonlinear.
f:=(x,y)->1+2*y^2; # MAPLE

a:=f(x,0); b:=subs(y=0,diff(f(x,y),y));

LHS:=f(x,y);RHS:=a+b*y;

ZERO:=LHS-RHS; # zero for linear DE

42. y′ = 1 + 2y3

43. yy′ = (1 + x) ln ey

Solution: Linear when the equation makes sense.
For y = 0 there is no differential equation defined.
Equation yy′ = (1 + x) ln ey is identical to y′ = 1 + x for y ̸= 0, because
ln(ey) = y for all y, and then y cancels. The equation causes issues for any

CAS, because of division by zero with definition f(x, y) = (1 + x)
ey

y
.
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44. yy′ = (1 + x) (ln ey)
2

45. y′ sec2 y = 1 + tan2 y

Solution: Linear. Equation y′ sec2 y = 1 + tan2 y is identical to y′ = 1
because 1 + tan2(y) = sec2(y). A quadrature equation is always linear, in
this case y′ = 1, no test required.

46. y′ = cos2(xy) + sin2(xy)

47. y′(1 + y) = xy

Solution: Nonlinear. Write it as y′ = f(x, y) =
xy

1 + y
. The a = f(x, 0) = 0,

b = fy(x, 0) =

f:=(x,y)->(x*y)/(1+y); # MAPLE

g:=unapply(diff(f(x,y),y),x);

a:=f(x,0); b:=g(0);

LHS:=f(x,y);RHS:=a+b*y; ZERO:=LHS-RHS; # zero for linear DE

# ZERO := x*y/(y+1) # Must be zero to be linear

48. y′ = y(1 + y)

49. xy′ = (x+ 1)y − xeln y

Solution: Linear. The equation is undefined for x = 0. For x ̸= 0 the
equation is the same as xy′ = (x+1)y−xy which reduces to y′ = y/x. This
is a homogeneous equation of the form y′ + p(x)y = 0, all such known to be
linear. No test required.

50. 2xy′ = (2x+ 1)y − xye− ln y

Shortcuts
Apply theorems for the homogeneous equation y′ + p(x)y = 0 or for constant
coefficient equations y′ + py = r. Solutions should be done without paper or
pencil, then write the answer and check it.

51. y′ − 5y = −1

Solution: yp = 1/5, yh = ce5x

Equilibrium solution: yp = 1/5, obtained formally by letting y′ = 0, then
solve for y.
Homogeneous solution y′ − 5y = 0:
y = c/W , W = integrating factor = e

∫
p(x)dx = e−5x.

yh = ce5x

de:=(1)*diff(y(x),x)+(-5)*y(x) = -1;

ANS:=dsolve(de,y(x));# MAPLE

# ANS := y(x) = 1/5+exp(5*x)*_C1
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52. 3y′ − 5y = −1

53. 2y′ + xy = 0

Solution: yh = ce−x2/4, yp = 0.

Homogeneous shortcut: y = c/W , W = e
∫
(x/2)dx = ex

2/4

yh = ce−x2/4

yp = 0 because the equation is homogeneous

54. 3y′ − x2y = 0

55. y′ = 3x4y

Solution: yh = ce3x
5/5, yp = 0

Homogeneous shortcut: y = c/W , W = e
∫
(−3x4)dx = e−3x5/5

yh = ce3x
5/5

yp = 0 because the equation is homogeneous

56. y′ = (1 + x2)y

57. πy′ − π2y = −e2

Solution: yh = ceπx, yp = e2/π2

Homogeneous shortcut: y = c/W , W = e
∫
(−π)dx = e−πx

yh = ceπx

yp = −e2/(−π2) by formally letting y′ = 0

58. e2y′ + e3y = π2

59. xy′ = (1 + x2)y

Solution: yh =
cex

2/2

x
, yp = 0

Homogeneous shortcut: y = c1/W ,

W = e
∫
(−x−1−x)dx = e− ln |x|−x2/2 = |x|e−x2/2

yh =
c1

|x|e−x2/2
=

c

xe−x2/2
=

cex
2/2

x

where c = ±c1 to eliminate absolute values on |x|.
yp = 0 because the equation is homogeneous

60. exy′ = (1 + e2x)y

Proofs and Details
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61. Prove directly without appeal to Theorem 2.6 that the difference of two
solutions of y′ + p(x)y = r(x) is a solution of the homogeneous equation
y′ + p(x)y = 0.

Solution: Let y′1 + p(x)y1 = r(x), y′2 + p(x)y2 = r(x). Define y = y1 − y2.
To be proved: y′ + p(x)y = 0.

y′ + p(x)y = y′1 − y′2 − p(x)(y1 − y2)
= y′1 − y′2 + p(x)y1 − p(x)y2
= (y′1 + p(x)y1)− (y′2 + p(x)y2)
= (r(x))− (r(x)) = 0 ■

62. Prove that y∗p given by equation (2) and yp = W−1
∫
r(x)W (x)dx given in

the integrating factor method are related by yp = y∗p + yh for some solution
yh of the homogeneous equation.

63. The equation y′ = r with r constant can be solved by quadrature, without
pencil and paper. Find y.

Solution: y = rx+ c by integrating mentally across the DE.
Then yh = c and yp = rx.

64. The equation y′ = r(x) with r(x) continuous can be solved by quadrature.
Find a formula for y.
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2.4 Undetermined Coefficients

Variation of Parameters I
Report the shortest particular solution given by the formula

yp(x) =

∫
rW

W
, W = e

∫
p(x)dx

1. y′ = x+ 1

Solution: yp = x2/2 + x

Method 1: Integrate across the equation to obtain y = x2/2 + x+ c, then
choose c = 0 to find the shortest solution. A number of solutions have used
this method: it is not wrong, because the exercise does not require use of
the Variation of Parameters formula.

Method 2: This is the expected method. Define p = 0. r(x) = x+1. Then
W = e

∫
pdx = e0 = 1. The formula produces

yp =
1

W

∫
rW dx =

1

1

∫
(x+ 1)(1)dx = x2/2 + x+ c

The shortest solution is with c = 0. A no-paper-and-pencil answer check is
provided by Method 1.

2. y′ = 2x− 1

3. y′ + y = e−x

Solution: yp (x) = xe−x

Follow exercise 1. Use the formula with
p(x) = 1,
r(x) = e−x

W (x) = e
∫
p(x)dx = ex

Then yh = ce−x, rW = e−xex = 1 and yp = xe−x

4. y′ + y = e−2x

5. y′ − 2y = 1

Solution: yp (x) = −1/2

Follow exercise 1. Use the formula with
p(x) = −2,
r(x) = 1
W (x) = e

∫
p(x)dx = e−2x

Then yh = ce2x, rW = e−2x and

yp =
−1

2
e−2x + c

e−2x = 1/2 for c = 0.
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Alternative Method:
The DE has constant coefficients, therefore yp = the equilibrium solution,
which means yp = 1/(−2) = −1/2.

6. y′ − y = 1

7. 2y′ + y = ex

Solution: yp (x) = 1/3 ex

Divide by 2 to obtain the standard form

y′ +
1

2
y =

1

2
ex.

Define p(x) = 1/2, r(x) = 1
2e

x. Apply the formula.

8. 2y′ + y = e−x

9. xy′ = x+ 1

Solution: yp (x) = ln |x|+ x
The statement requires x ̸= 0 to make sense. Assume x > 0.
The details for x < 0 are omitted below, but similar.
Divide by x to obtain the standard form

y′ = 1 +
1

x
.

Method 1: Solve by quadrature.
Method 2: Define p(x) = 0, r(x) = 1 + 1/x. Apply the formula.

10. xy′ = 1− x2

Variation of Parameters II

Define W (t) = e
∫ t
x0

p(x)dx
. Compute

y∗p(x) =

∫ x
x0

r(t)W (t) dt

W (x)

11. y′ = x+ 1, y(0) = 0

Solution: y∗ (x) = 1/2x2 + x
Exercises 11-20 were solved as exercises 1-10. The exercises evaluate con-
stant c in solution y∗p(x) from values x0 and y0 = 0 in initial condition
y∗(x0) = 0.
An answer check:

a:=1;b:=0;f:=x->x+1;x0:=0;y0:=0; # Maple

de:=a*diff(y(x),x) + b*y(x) = f(x);

ANS:=dsolve([de,y(x0)=y0],y(x));

# ANS := y(x) = (1/2)*x^2+x

12. y′ = 2x− 1, x0 = 0
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13. y′ + y = e−x, x0 = 0

Solution: y∗(x) = xe−x

14. y′ + y = e−2x, x0 = 0

15. y′ − 2y = 1, x0 = 0

Solution: y∗ (x) = −1/2 + 1/2 e2 x

16. y′ − y = 1, x0 = 0

17. 2y′ + y = ex, x0 = 0

Solution: y∗ (x) = 1/3 ex − 1/3 e−x/2

18. 2y′ + y = e−x, x0 = 0

19. xy′ = x+ 2, x0 = 1

Solution: y∗ (x) = x+ 2 ln |x| − 1

20. xy′ = 1− x2, x0 = 1

Euler Solution Atoms
Report the list L of distinct Euler solution atoms found in function f(x). Then
f(x) is a sum of constants times the Euler atoms from L.

21. x+ ex

Solution: x, ex

1, x, x2, . . . are Euler solution atoms
eax is an Euler solution atom

22. 1 + 2x+ 5ex

23. x(1 + x+ 2ex)

Solution: x, x2, xex

Constants and signs are stripped because Euler solution atoms have coeffi-
cient one.

24. x2(2 + x2) + x2e−x

25. sinx cosx+ ex sin 2x

Solution: sin 2x, ex sin 2x
Term sinx cosx is a product of two Euler atoms, which is generally not an
Euler atom. Trig identity 2 sinx cosx = sin 2x allows the product to be
rewritten as 1

2 sin 2x, then the constant 1
2 is stripped to expose the Euler

solution atom sin 2x.
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26. cos2 x− sin2 x+ x2ex cos 2x

27. (1 + 2x+ 4x5)exe−3xex/2

Solution: eax, xeax, x5eax where a = 1− 3 + 1/2 = −3/2

28. (1 + 2x+ 4x5 + ex sin 2x)e−3x/4ex/2

29.
x+ ex

e−2x
sin 3x+ e3x cos 3x

Solution: xe2x sin 3x, e3x sin 3x, e3x cos 3x

Expand the expression as
(x+ ex)e2x sin 3x+ e3x cos 3x, or
xe2x sin 3x+ e3x sin 3x+ e3x cos 3x

30.
x+ ex sin 2x+ x3

e−2x
sin 5x

Initial Trial Solution
Differentiate repeatedly f(x) and report the list M of distinct Euler solution
atoms which appear in f and all its derivatives. Then each of f, f ′, . . . is a sum
of constants times Euler atoms in M .

31. 12 + 5x2 + 6x7

Solution: 1, x, x2, x3, x4, x5, x46, x7

The first two terms 12, 5x2 merely duplicate Euler atoms found from term
6x7.

32. x6/x−4 + 10x4/x−6

33. x2 + ex

Solution: 1, x, x2, ex

34. x3 + 5e2x

35. (1 + x+ x3)ex + cos 2x

Solution: 1, x, x2, x3, cosx, sinx

36. (x+ ex) sinx+ (x− e−x) cos 2x

37. (x+ ex + sin 3x+ cos 2x)e−2x

Solution: e−2x, xe−2x, e−x, e−2x cos 3x, e−2x sin 3x, e−2x cos 2x, e−2x sin 2x
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38. (x2e−x + 4 cos 3x+ 5 sin 2x)e−3x

39. (1 + x2)(sinx cosx− sin 2x)e−x

Solution: e−x sin(2x), e−x cos(2x), xe−x sin(2x), xe−x cos(2x),
x2e−x sin(2x), x2e−x cos(2x)

Change sinx cosx into 1
2 sin 2x, then

f = − 1
2e

−x sin 2x− 1
2x

2e−x sin 2x
f ′ = −1/2 e−x sin (2x) + e−x cos (2x)− xe−x sin (2x)
+1/2x2e−x sin (2x)− x2e−x cos (2x)

Derivative f ′′ introduces one more Euler atom.
Derivatives f ′′′, . . . do not generate more Euler atoms.

# Maple

F:=x->1/2)exp(-x)*sin (2*x)-1/2* x^2*exp(-x)* sin (2*x);

diff(F(x),x,x);

diff(F(x),x,x,x);

diff(F(x),x,x,x,x);

diff(F(x),x,x,x,x,x);

40. (8− x3)(cos2 x− sin2 x)e3x

Correction Rule
Given the homogeneous solution yh and an initial trial solution y, determine
the final trial solution according to the correction rule.

41. yh(x) = ce2x, y = d1 + d2x+ d3e
2x

Solution: y = d1 + d2x+ d3xe
2x

Break trial solution y into two Euler atom groups:
Group 1: 1, x
Group 2: e2x

Solution yh has only one Euler atom: e2x.
Group 1 is unchanged. Group 2 requires multiplication by x. Then
Group 1: 1, x
New Group 2: xe2x

Check: the Euler atoms found in the last two groups do not repeat any
Euler atom found in yh = ce2x. The corrected trial solution is a linear
combination of the Euler atoms found in Group 1 and New Group 2:

y = d1 + d2x+ d3xe
2x

42. yh(x) = ce2x, y = d1 + d2e
2x + d3xe

2x

43. yh(x) = ce0x, y = d1 + d2x+ d3x
2

Solution: y = d1x+ d2x
2 + d3x

3
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The Euler atom found in yh is 1 (same as e0). There is one group of Euler
atoms in y: 1, x, x2. Multiply the group by x and test for a conflict with
yh. The new group is x, x2, x3 and the corrected trial solution is a linear
combination of the Euler atoms in the new group.

44. yh(x) = cex, y = d1 + d2x+ d3x
2

45. yh(x) = cex, y = d1 cosx+ d2 sinx+ d3e
x

Solution: y = d1 cosx+ d2 sinx+ d3xe
x

46. yh(x) = ce2x, y = d1e
2x cosx+ d2e

2x sinx

47. yh(x) = ce2x, y = d1e
2x + d2xe

2x + d3x
2e2x

Solution: y = d1xe
2x + d2x

2e2x + d3x
3e2x

48. yh(x) = ce−2x, y = d1e
−2x + d2xe

−2x + d3e
2x + d4xe

2x

49. yh(x) = cx2, y = d1 + d2x+ d3x
2

Solution: y = d1x
3 + d2x

4 + d3x
5

The group for y is 1, x, x2. Three multiplications by x across the group will
eliminate conflict with Euler atom x2 found in yh.

50. yh(x) = cx3, y = d1 + d2x+ d3x
2

Trial Solution
Find the form of the corrected trial solution y but do not evaluate the unde-
termined coefficients.

51. y′ = x3 + 5 + x2ex(3 + 2x+ sin 2x)

Solution: y = a linear combination of

x, x2, x3, x4,
ex, xex, x2ex, x3ex,
ex cos 2x, xex cos 2x, x2ex cos 2x,
ex sin 2x, xex sin 2x, x2ex sin 2x

The homogeneous equation is y′ = 0 and yh = c with Euler atom 1. The
Euler atoms found from RHS f(x) = x3 + 5 + x2ex(3 + 2x + sin 2x) are in
four groups:

Group 1: 1, x, x2, x3

Group 2: ex, xex, x2ex, x3ex

Group 3: ex cos 2x, xex cos 2x, x2ex cos 2x
Group 4: ex sin 2x, xex sin 2x, x2ex sin 2x

The Euler atom in yh conflicts only with Group 1.
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Fix Group 1 by multiplying by x:
New Group 1: x, x2, x3, x4

Then the corrected trial solution is a linear combination of New Group 1
and Groups 2,3,4.

52. y′ = x2 + 5x+ 2 + x3ex(2 + 3x+ 5 cos 4x)

53. y′ − y = x3 + 2x+ 5 + x4ex(2 + 4x+ 7 cos 2x)

Solution: y = a linear combination of

1, x, x2, x3

xex, x2ex, x3ex , x4ex, x5ex, x6ex

ex cos 2x, xex cos 2x, x2ex cos 2x, x3ex cos 2x, x4ex cos 2x
ex sin 2x, xex sin 2x, x2ex sin 2x, x3ex sin 2x, x4ex sin 2x

The homogeneous equation is y′ − y = 0. Then yh = cex with Euler atom
ex. The Euler atoms found from RHS f(x) = x3+2x+5+2x4ex+4x5ex+
7x4ex cos 2x are in four groups:

Group 1: 1, x, x2, x3

Group 2: ex, xex, x2ex, x3ex , x4ex, x5ex

Group 3: ex cos 2x, xex cos 2x, x2ex cos 2x, x3ex cos 2x, x4ex cos 2x
Group 4: ex sin 2x, xex sin 2x, x2ex sin 2x, x3ex sin 2x, x4ex sin 2x

The Euler atom in yh conflicts only with Group 2.
Multiply by x across Group 2:
New Group 2: xex, x2ex, x3ex , x4ex, x5ex, x6ex

Then the corrected trial solution is a linear combination of New Group 2
and Groups 1,3,4.

54. y′ − y = x4 + 5x+ 2 + x3ex(2 + 3x+ 5 cos 4x)

55. y′ − 2y = x3 + x2 + x3ex(2ex + 3x+ 5 sin 4x)

Solution: y = a linear combination of

1, x, x2, x3

e2x, xe2x, x2e2x, x3e2x

ex, xex, x2ex, x3ex , x4ex

ex cos 4x, xex cos 4x, x2ex cos 4x, x3ex cos 4x
ex sin 4x, xex sin 4x, x2ex sin 4x, x3ex sin 4x

The homogeneous equation is y′ − 2y = 0. Then yh = ce2x with Euler atom
e2x. The Euler atoms found from RHS f(x) = x3 + x2 + 2x3e2x + 3x4ex +
5x3ex sin 4x are in five groups:

Group 1: 1, x, x2, x3

Group 2: e2x, xe2x, x2e2x, x3e2x

Group 3: ex, xex, x2ex, x3ex , x4ex
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Group 4: ex cos 4x, xex cos 4x, x2ex cos 4x, x3ex cos 4x
Group 5: ex sin 4x, xex sin 4x, x2ex sin 4x, x3ex sin 4x

The Euler atom in yh conflicts only with Group 2.
Multiply by x across Group 2:
New Group 2: xe2x, x2e2x, x3e2x, x4e2x

Then the corrected trial solution is a linear combination of New Group 2
and Groups 1,3,4,5.

56. y′ − 2y = x3e2x + x2ex(3 + 4ex + 2 cos 2x)

57. y′ + y = x2 + 5x+ 2 + x3e−x(6x+ 3 sinx+ 2 cosx)

Solution: y = a linear combination of

1, x, x2

e2x, xe2x, x2e2x

xe−x, x2e−x, x3e−x , x4e−x, x4e−x

ex cosx, xex cosx, x2ex cosx, x3ex cosx
ex sinx, xex sinx, x2ex sinx, x3ex sinx

58. y′ − 2y = x5 + 5x3 + 14 + x3ex(5 + 7xe−3x)

59. 2y′ + 4y = x4 + 5x5 + 2x8 + x3ex(7 + 5xex + 5 sin 11x)

Solution: y = a linear combination of

1, x, x2, x3, x5, x5, x6, x7, x8

ex, xex, x2ex, x3ex

e2x, xe2x, x2e2x, x3e2x, x4e2x

ex cos 11x, xex cos 11x, x2ex cos 11x, x3ex cos 11x
ex sin 11x, xex sin 11x, x2ex sin 11x, x3ex sin 11x

There is no Euler atom conflict between the homogeneous equation 2y′ +
4y = 0 (Euler atom e−2x) and the Euler atoms found from the RHS of the
non-homogeneous equation. No correction rule used.

60. 5y′ + y = x2 + 5x+ 2ex/5 + x3ex/5(7 + 9x+ 2 sin(9x/2))

Undetermined Coefficients
Compute a particular solution yp according to the method of undetermined
coefficients. Expected details include:

(1) Initial trial solution
(2) Corrected trial solution
(3) Undetermined coefficient algebraic equations and solution
(4) Formula for yp, coefficients evaluated
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61. y′ + y = x+ 1

Solution: yp − x. The answer can be checked by inspection. Experienced
solvers would try to guess the answer first, finding quickly the solution y = x.
In such simple examples there is no need for the method of undetermined
coefficients.

Details:
The homogeneous equation is y′ + y = 0 with Euler atom e−x.
Euler atoms 1, x are found from the RHS = x+ 1.
(1) yp = d1 + d2x

(2) No correction rule needed, e−2x does not appear in the list 1, x.

(3) Equations for the undetermined coefficients:
(d1 + d2x)

′ + (d1 + d2x) = x+ 1 Substitute y = d1 + d2x
d2 + (d1 + d2x) = x+ 1
(d2 + d1) + d2x = 1 + x Prepare to match coefficients
d2 + d1 = 1, d2 = 1 Linear algebraic equations found.
d1 = 0, d2 = 1 Solved by back-substitution.

(4) Report yp = d1 + d2x = x

62. y′ + y = 2x− 1

63. y′ − y = ex + e−x

Solution: yp (x) = x− 1/2 e−2 x

# Maple answer check

de:=diff(y(x),x)+(-1)*y(x)=exp(x)+exp(-x);

ANS:=dsolve(de,y(x));

# ANS := y(x) = (x-(1/2)*exp(-2*x)+_C1)*exp(x)

64. y′ − y = xex + e−x

65. y′ − 2y = 1 + x+ e2x + sinx

Solution: yp (x) = −3/4− x/2 + e2 xx− 1/5 cos (x)− 2/5 sin (x)

Compute yh = ce2x from y′ − 2y = 0. Euler atoms 1, x, e2x, sinx, cosx are
found from the RHS = 1+ x+ e2x + sinx. The correction rule is applied to
replace e2x by xe2x, then corrected trial solution y is a linear combination
of 1, x, xe2x, sinx, cosx. Computer algebra system maple is a useful tool
to discover algebra and calculus errors on paper.
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# Maple answer check

de:=de:=diff(y(x),x)+(-2)*y(x)=1+x+exp(2*x)+sin(x);

ANS:=dsolve(de,y(x));

# ANS := -3/4-(1/2)*x+exp(2*x)*x-(1/5)*cos(x)

-(2/5)*sin(x)+exp(2*x)*_C1

# Discovery of calculus and algebra errors on paper

Trial:=x-> d[1] + d[2]*x+d[3]*exp(2*x)*x+

d[4]*cos(x)+d[5]*sin(x);

eq1:=diff(Trial(x),x)+(-2)*Trial(x)=1+x+exp(2*x)+sin(x);

66. y′ − 2y = 1 + x+ xe2x + cosx

67. y′ + 2y = xe−2x + x3

Solution: yp (x) = 1/2x3 − 3/4x2 + 3/4x− 3/8 + 1/2 e−2 xx2

# Maple answer check

de:=diff(y(x),x)+(2)*y(x)=x*exp(-2*x)+x^3;

# ANS := (1/2)*x^3-(3/4)*x^2+(3/4)*x

-3/8+(1/2)*exp(-2*x)*x^2+exp(-2*x)*_C1

68. y′ + 2y = (2 + x)e−2x + xex

69. y′ = x2 + 4 + xex(3 + cosx)

Solution: yp (x) = 1/2 exx cos (x)− (−x/2 + 1/2) ex sin (x) + 3 exx− 3 ex +
1/3x3 + 4x

# Maple answer check

de:=diff(y(x),x)+(0)*y(x)=x^2+4+x*exp(x)*(3+cos(x));

ANS:=dsolve(de,y(x));

# ANS := (1/2)*exp(x)*x*cos(x)-(-(1/2)*x

+1/2)*exp(x)*sin(x)+3*exp(x)*x-3*exp(x)

+(1/3)*x^3+4*x+_C1

70. y′ = x2 + 5 + xex(2 + sinx)
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2.5 Linear Applications

Concentration
A lab assistant collects a volume of brine, boils it until only salt crystals remain,
then uses a scale to determine the crystal mass or weight.

Find the salt concentration of the brine in kilograms per liter.

1. One liter of brine, crystal mass 0.2275 kg

Solution: Answer=0.2275 kg/l.

Concentration is amount/volume. The units are mass: kilograms, volume:
liters. This exercise is a check on the definition and the use of proper units.

2. Two liters, crystal mass 0.32665 kg

3. Two liters, crystal mass 15.5 grams

Solution: (15.5/1000)/2 = 0.00775 kilograms per liter

4. Five pints, crystals weigh 1/4 lb

5. Eighty cups, crystals weigh 5 lb

Solution: 8.344906553 kilograms per liter

One liter = 4.227 cups. One kilogram is 2.20462 pounds. Let
vol=80(1/4.227) = 18.92595221 liters, amt=5/2.20462 = 2.267964547 kilo-
grams. Then amt/vol=18.92595221/2.267964547 = 8.344906553 kilograms
per liter.

6. Five gallons, crystals weigh 200 ounces

One-Tank Mixing
Assume one inlet and one outlet. Determine the amount x(t) of salt in the tank
at time t. Use the text notation for equation (1).

7. The inlet adds 10 liters per minute with concentration C1 = 0.023 kilograms
per liter. The tank contains 110 liters of distilled water. The outlet drains
10 liters per minute.

Solution: x(t) = 2.53
(
1− e−t/11

)
.

Follow the Pollution example. Use equation

dx

dt
= a(t)C1 − b(t)

x(t)

V (t)

Let a(t) = 10 liters per minute, C1 = 0.023 kilograms per liter, b(t) = 10
liters per minute. The volume is constant: V (t) = 110 liters. Because the
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tank initially has no salt, then x(0) = 0. The initial value problem:

dx

dt
= 10(0.023)− 10

x(t)

110
. x(0) = 0

Convert to linear DE standard form using symbols x, y: y′ +
10

110
y = 0.23,

y(0) = 0. The constant-equation shortcut solution is y = yp+yh where yp =

equilibrium solution, yh = c/W , W = integrating factor for y′ +
10

110
y = 0.

Then W = e
∫
(1/11)dx = ex/11. The equilibrium solution is found from

y′ +
10

110
y = 0.23 by replacing y′ by zero, then yp = 11(0.23) = 2.53. The

solution is y = yp + yh = 2.53 + c e−x/11. Use y(0) = 0 to find c = −2.53,
then y = 2.53

(
1− e−x/11

)
.

Change symbols x, y → t, x. The solution: x(t) = 2.53
(
1− e−t/11

)
.

de:=diff(x(t),t)=10*(0.023) - 10 *x(t)/110;# Maple

ic:=x(0)=0;

dsolve([de,ic],x(t));

# x(t) = 253/100-(253/100)*exp(-(1/11)*t)

8. The inlet adds 12 liters per minute with concentration C1 = 0.0205 kilo-
grams per liter. The tank contains 200 liters of distilled water. The outlet
drains 12 liters per minute.

9. The inlet adds 10 liters per minute with concentration C1 = 0.0375 kilo-
grams per liter. The tank contains 200 liters of brine in which 3 kilograms
of salt is dissolved. The outlet drains 10 liters per minute.

Solution: x(t) =
15

2
− 9

2
e−t/20.

Follow exercise 1 above. The initial value problem:

dx

dt
= 10(0.0375)− 10

x(t)

200
, x(0) = 3

de:=diff(x(t),t)=10*(0.0375) - 10 *x(t)/200;# Maple

ic:=x(0)=3;

dsolve([de,ic],x(t));

# x(t) = 15/2-(9/2)*exp(-(1/20)*t)

10. The inlet adds 12 liters per minute with concentration C1 = 0.0375 kilo-
grams per liter. The tank contains 500 liters of brine in which 7 kilograms
of salt is dissolved. The outlet drains 12 liters per minute.
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11. The inlet adds 10 liters per minute with concentration C1 = 0.1075 kilo-
grams per liter. The tank contains 1000 liters of brine in which k kilograms
of salt is dissolved. The outlet drains 10 liters per minute.

Solution: x(t) =
215

2
−
(
k − 215

2

)
e−t/100.

Follow exercise 1 above. The initial value problem:

dx

dt
= 10(0.10755)− 10

x(t)

1000
, x(0) = k

de:=diff(x(t),t)=10*(0.1075) - 10 *x(t)/1000;# Maple

ic:=x(0)=k;

dsolve([de,ic],x(t));

# x(t) = 215/2+exp(-(1/100)*t)*(k-215/2)

12. The inlet adds 14 liters per minute with concentration C1 = 0.1124 kilo-
grams per liter. The tank contains 2000 liters of brine in which k kilograms
of salt is dissolved. The outlet drains 14 liters per minute.

13. The inlet adds 10 liters per minute with concentration C1 = 0.104 kilograms
per liter. The tank contains 100 liters of brine in which 0.25 kilograms of salt
is dissolved. The outlet drains 11 liters per minute. Determine additionally
the time when the tank is empty.

Solution: xp =
52

5
− 13

125
t, xh = c (100− t)11, c = −203

20
100−11

The tank drains at time t = 100, because the tank drains faster than it fills,
drain rate = 1 liters per minute.

Follow exercise 1 above. Let a(t) = 10, b(t) = 11, C1 = 0.104, V (t) = 100−t.
The initial value problem:

dx

dt
= 10(0.104)− 11

x(t)

100− t
, x(0) = 0.25

Solution requires the linear integrating factor method, due to non-constant
coefficients. No shortcut applies.

Let p(t) =
11

100− t
Let r(t) = 1.04
Standard linear DE form x′ + px = r is verified.
Let W (t) = e

∫
p(t)dt = e−11 ln |100−t|+c1 , then select

W = (100− t)−11 for t = 0 to 100.

Find xh and xp:
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xp = 1
W

∫
rWdt =

52

5
− 13

125
t

xh = c/W = c (100− t)11

It remains to determine c from x(0) = 0.25.

0.25 = xh(0) + xp(0) = c 10011 +
52

5
− 13

125
(0)

c =

(
1

4
− 52

5

)
100−11 = − 203

200000000000000000000000

V:=t->100-t; # Tank volume after t minutes

de:=diff(x(t),t)=10*(0.104) - 11 *x(t)/V(t);# Maple

ic:=x(0)=0.25;

dsolve([de,ic],x(t));

# x(t) = 52/5-(13/125)*t

+(203/200000000000000000000000)*(-100+t)^11

The graphic shows that the amount of salt x(t) is zero at time t = 100.

14. The inlet adds 16 liters per minute with concentration C1 = 0.01114 kilo-
grams per liter. The tank contains 1000 liters of brine in which 4 kilograms
of salt is dissolved. The outlet drains 20 liters per minute. Determine addi-
tionally the time when the tank is empty.

15. The inlet adds 10 liters per minute with concentration C1 = 0.1 kilograms
per liter. The tank contains 500 liters of brine in which k kilograms of salt
is dissolved. The outlet drains 12 liters per minute. Determine additionally
the time when the tank is empty.

Solution: xp = 1
W

∫
rWdt = 50− 1

5 t, xh = c (250− t)6, c = (k − 50) /2506

The tank drains at time t = 250, because the tank drains faster than it fills,
drain rate = 2 liters per minute.
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Follow exercise 1 above. Let a(t) = 10, b(t) = 12, C1 = 0.1, V (t) = 500−2t.
The initial value problem:

dx

dt
= 10(0.1)− 12

x(t)

500− 2t
, x(0) = k

Solution requires the linear integrating factor method, due to non-constant
coefficients. No shortcut applies.

Let p(t) =
12

500− 2t
=

6

250− t
Let r(t) = (10)(0.1) = 1
Standard linear DE form x′ + px = r is verified.
Let W (t) = e

∫
p(t)dt = e−6 ln |250−t|+c1 , then select

W = (250− t)−6 for t = 0 to 250.

Find xh and xp:

xp = 1
W

∫
rWdt = 50− 1

5 t

xh = c/W = c (250− t)6

It remains to determine c from x(0) = k.

k = xh(0) + xp(0) = c 2506 + 50− 1
5 (0)

c = (k − 50) /2506

V:=t->500-2*t; # Tank volume after t minutes

de:=diff(x(t),t)=10*(0.1) - 12 *x(t)/V(t);# Maple

ic:=x(0)=k;

dsolve([de,ic],x(t));

# x(t) = 50-(1/5)*t+(-250+t)^6*(k-1/2)/250^6

16. The inlet adds 11 liters per minute with concentration C1 = 0.0156 kilo-
grams per liter. The tank contains 700 liters of brine in which k kilograms
of salt is dissolved. The outlet drains 12 liters per minute. Determine addi-
tionally the time when the tank is empty.

Two-Tank Mixing
Assume brine tanks A and B in Figure 4 have volumes 100 and 200 gallons,
respectively. Let x(t) and y(t) denote the number of pounds of salt at time t,
respectively, in tanks A and B. Distilled water flows into tank A, then brine
flows out of tank A and into tank B, then out of tank B. All flows are at r
gallons per minute. Given rate r and initial salt amounts x(0) and y(0), find
x(t) and y(t).

17. r = 4, x(0) = 40, y(0) = 20.
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Solution: x(t) = 40 e−4t/100, y(t) = −80 e−4t/100 + 100 e−4t/200

The model:

dx

dt
= a(t)C1 − b(t)

x(t)

VA(t)
,

dy

dt
= b(t)

x(t)

VA(t)
− c(t)

y(t)

VB(t)
.

Define tank volumes A0 = 100, B0 = 200. Flow rates are defined by a(t) =
b(t) = c(t) = r. Given: VA = A0 = 100, VB = B0 = 200. Distilled water
has no salt: C1 = 0. The initial value problem:

dx

dt
= (r)(0) − r

x(t)

A0
, x(0) = 40,

dy

dt
= r

x(t)

A0
− r

y(t)

B0
, y(0) = 20

After substitutions and simplifications:

dx

dt
= − r

x(t)

100
, x(0) = 40,

dy

dt
= r

x(t)

100
− r

y(t)

200
, y(0) = 20

The first equation is homogeneous first order with solution

x(t) = x(0)e−rt/100 = 40e−4t/100

The second equation then becomes

dy

dt
=

r

100
x(0)e−rt/100 − r

y(t)

200
where r = 4 and x(0) = 40

The classification is linear first order non-homogeneous with non-constant
coefficients. The linear integrating factor method is required to solve it:

y(t) = −80 e−4t/100 + 100 e−4t/200

de:=diff(y(t),t)=(r/100)*x[0]*exp(-r*t/100) - r*y(t)/200;

ic:=y(0)=y[0];

dsolve([de,ic],y(t));

# y(t) = -2*x[0]*exp(-r*t/100)+(y[0]+2*x[0])*exp(-r*t/200)

18. r = 3, x(0) = 10, y(0) = 15.

19. r = 5, x(0) = 20, y(0) = 40.

Solution: y(t) = −40e−t/20 + 80e−t/40

r:=5;x0:=20;y0:=40;

de:=diff(y(t),t)=(r/100)*x0*exp(-r*t/100) - r*y(t)/200;

ic:=y(0)=y0;

dsolve([de,ic],y(t));

# y(t) = -40*exp(-t/20)+80*exp(-t/40)
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20. r = 5, x(0) = 40, y(0) = 30.

21. r = 8, x(0) = 10, y(0) = 12.

Solution: y(t) = −20e−2t/25 + 32e−t/25

r:=8;x0:=10;y0:=12;

de:=diff(y(t),t)=(r/100)*x0*exp(-r*t/100) - r*y(t)/200;

ic:=y(0)=y0;

dsolve([de,ic],y(t));

# y(t) = -20*exp(-2*t/25)+32*exp(-t/25)

22. r = 8, x(0) = 30, y(0) = 12.

23. r = 9, x(0) = 16, y(0) = 14.

Solution: y(t) = −32e−9t/100 + 46e−9t/200

r:=9;x0:=16;y0:=14;

de:=diff(y(t),t)=(r/100)*x0*exp(-r*t/100) - r*y(t)/200;

ic:=y(0)=y0;

dsolve([de,ic],y(t));

# y(t) = (-32*exp(-(9/200)*t)+46)*exp(-(9/200)*t)

24. r = 9, x(0) = 22, y(0) = 10.

25. r = 7, x(0) = 6, y(0) = 5.

Solution: y(t) = −12e−7t/100 + 17e−7t/200

r:=7;x0:=6;y0:=5;

de:=diff(y(t),t)=(r/100)*x0*exp(-r*t/100) - r*y(t)/200;

ic:=y(0)=y0;

dsolve([de,ic],y(t));

# y(t) = (-12*exp(-(7/200)*t)+17)*exp(-(7/200)*t)

26. r = 7, x(0) = 13, y(0) = 26

Residential Heating
Assume the Newton cooling model for heating and insulation values 1/4 ≤ k ≤
1/2. Follow Example 2.23, page 116 �.

27. The office heat goes off at 7PM. It’s 74◦F inside and 58◦F outside overnight.
Estimate the office temperature at 10PM, 1AM and 6AM.

Solution: The ranges for 10PM, 1AM and 6AM (t = 3, 6, 11):

t = 3: 61.57008256 ≤ k ≤ 65.55786484,
t = 6: 58.79659309 ≤ k ≤ 61.57008256,
t = 11: 58.06538834 ≤ k ≤ 59.02284578
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Follow the Office Heating example. Newton’s law of cooling for linear
convection is used:

du

dt
= k(a(t)− u(t)) + s(t) + f(t)

There are no sources, s(t) = f(t) = 0. Supplied are values a(t) = a0 = 58
and u(0) = 74. Unknown constant k is expected to be in the range of normal
insulation: 1

2 ≤ k ≤ 1
2 . Then

u′(t) + ku(t) = 58k, u(0) = 74

The constant-coefficient shortcut u = equilibrium + c/W applies, W =
integrating factor = ekt. Then

u(t) = 58 + (74− 58)e−kt

The question is answered by finding the max and min of u(t) when t = 3,
t = 6 and t = 11 hours, corresponding to times 10PM, 1AM and 6AM.
Possible ways to solve the max-min problem are graphing, hand calculation
and CAS. The quantities to apply max-min methods are:

u(3) = 58 + 16 e−3k,
u(6) = 58 + 16 e−6k,
u(11) = 58 + 16 e−11k

Computed max-min ranges:

t = 3: 61.57008256 ≤ k ≤ 65.55786484,
t = 6: 58.79659309 ≤ k ≤ 61.57008256,
t = 11: 58.06538834 ≤ k ≤ 59.02284578

Hand computation can use the monotonicity of e−kt to deduce that the
max-min is at the endpoint. A calculator will provide the decimal values.

u:=t->58+(74-58)*exp(-k*t);# Maple

Krange:=k=1/4 .. 1/2;

F:=t->evalf([minimize(u(t),Krange),maximize(u(t),Krange)]);

F(3);F(6);F(11);

# [61.57008256, 65.55786484]

# [58.79659309, 61.57008256]

# [58.06538834, 59.02284578]

28. The office heat goes off at 6:30PM. It’s 73◦F inside and 55◦F outside
overnight. Estimate the office temperature at 9PM, 3AM and 7AM.

29. The radiator goes off at 9PM. It’s 74◦F inside and 58◦F outside overnight.
Estimate the room temperature at 11PM, 2AM and 6AM.

Solution: The ranges for 10PM, 1AM and 6AM (t = 3, 6, 11):

t = 2: 63.88607106 ≤ k ≤ 67.70449056,
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t = 5: 59.31335998 ≤ k ≤ 62.58407675,
t = 9: 58.17774394 ≤ k ≤ 59.6863875

The solution from exercise 27 applies directly.

u:=t->58+(74-58)*exp(-k*t);# Maple

Krange:=k=1/4 .. 1/2;

F:=t->evalf([minimize(u(t),Krange),maximize(u(t),Krange)]);

F(2);F(5);F(9);

# [63.88607106, 67.70449056]

# [59.31335998, 62.58407675]

# [58.17774394, 59.68638759]

30. The radiator goes off at 10PM. It’s 72◦F inside and 55◦F outside overnight.
Estimate the room temperature at 2AM, 5AM and 7AM.

31. The office heat goes on in the morning at 6:30AM. It’s 57◦F inside and 40◦

to 55◦F outside until 11AM. Estimate the office temperature at 8AM, 9AM
and 10AM. Assume the furnace provides a five degree temperature rise in
30 minutes with perfect insulation and the thermostat is set for 76◦F.

Solution: Estimates:
54 to 65 at 8:00AM,
54 to 66 at 9:00 AM,
54 to 66 at 10:00 AM.

Model:
du

dt
= k(a(t)− u(t)) + s(t) + k1(T0 − u(t))

Assumptions: No sources: s(t) = 0. Thermostat setting: T0 = 76. As-
sume 0.5 ≤ k ≤ 1, good to poor insulation. Assume 40 ≤ a(t) ≤ 55 for the
duration of the analysis. Let t = 0 hours correspond to 6:30 AM.

Estimates required: u(1.5), u(2.5), u(3.5) which are temperatures for
8:00, 9:00 and 10:00 AM.

Refined model:
du

dt
= k(a(t)− u(t)) + k1(76− u(t)), u(0) = 57

Determine constant k1 = 0.611: Assume a five degree temperature rise
in 30 minutes with perfect insulation. The refined model uses k = 0
to give Newton’s cooling equation w′(t) = k1(76 − w(t)), w(0) = 57,
w(0.5) = w(0) + 5 = 62. The constant-coefficient shortcut for standard
form y′ + py = q gives w(t) = 76 + ce−k1t. Let t = 0 in this equa-
tion: 57 = 76 + c. Solve for c = −19, then w(t) = 76 − 19e−k1t.
Substitute t = 0.5 and w(0.5) = 62. Solve 62 = 76 − 19e−k1/2 for
k1 = −2 ln |14/19| = 0.6107632991.

Final model:
du

dt
= k(a(t)− u(t)) + 0.611(76− u(t)), u(0) = 57
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0.5 ≤ k ≤ 1, 40 ≤ a(t) ≤ 55

Estimates for u(1.5), u(2.5), u(3.5):
The worst-case scenarios are a(t) = 40 and a(t) = 55. Two solution formu-
las are obtained:

Case a(t) = 40:

u(t) = e−(k+0.611)t

(
57− 4

10 k + 11.609

k + 0.611

)
+ 4

10 k + 11.609

k + 0.611

The max and min for 0.5 ≤ k ≤ 1 and
t = 1.5: 53.95 ≤ u ≤ 59.27
t = 2.5: 53.71 ≤ u ≤ 59.62
t = 3.5: 53.67 ≤ u ≤ 59.74

Case a(t) = 55:

u(t) = e−(k+0.611)t

(
57− 4

13.750 k + 11.609

k + 0.611

)
+ 4

13.750 k + 11.609

k + 0.611

The max and min for 0.5 ≤ k ≤ 1 and
t = 1.5: 62.43 ≤ u ≤ 64.75
t = 2.5: 62.86 ≤ u ≤ 65.96
t = 3.5: 62.94 ≤ u ≤ 66.35

98



2.5 Linear Applications

# Assume u0:=57 F inside, heater R=5 F rise after

# RT:=30/60 hours, no sources,

# outside a1:=40 to a2:=55 F, thermostat T0:=76 F

u0:=57;R:=5;RT:=0.5;

a1:=40;a2:=55;T0:=76;

# Estimate k1 from first RT hours

# Assume perfect insulation k=0, outside a1 degrees

# Assume u(RT)=u(0)+R

kk:=0;a:=t->a1;

de:=diff(u(t),t)=kk*(a(t)-u(t))+k1*(T0-u(t));

ic:=u(0)=u0;

ANS:=dsolve([de,ic],u(t));

X:=unapply(rhs(ANS),(t,k1));

kk1:=solve(X(RT,k1)=u0+R,k1);

# Assume hereafter k1 equals kk1 = 0.6107632991

# === worst-case a==a1.

a:=t->a1;

de1:=diff(u(t),t)=k*(a(t)-u(t))+kk1*(T0-u(t));

ic:=u(0)=u0;

ANS:=dsolve([de1,ic],u(t));

X1:=unapply(rhs(ANS),(t,k));

with(Optimization):

# 6:30am is t=0 hours, 8am is T1:=1.5 hours

# 9am is T2:=2.5 hours, 10am is T3:=3.5 hours

# Assume insulation constants k = 0.5 to 1.0

T1:=1.5;T2:=2.5;T3:=3.5;

Minimize(X1(T1,k),k=0.5..1);Maximize(X1(T1,k),k=0.5..1);

Minimize(X1(T2,k),k=0.5..1);Maximize(X1(T2,k),k=0.5..1);

Minimize(X1(T3,k),k=0.5..1);Maximize(X1(T3,k),k=0.5..1);

# T1: 53.949354482610886 to 59.26675808435088

# T2: 53.71006968557396 to 59.62099708075318

# T3: 53.66227611314616 to 59.73765063938258

#plot3d(X1(t,k),t=0..4,k=0.5 .. 1);

# worst-case a==a2.

a:=t->a2;

de2:=diff(u(t),t)=k*(a(t)-u(t))+kk1*(T0-u(t));

ANS:=dsolve([de2,ic],u(t));

X2:=unapply(rhs(ANS),(t,k));

T1:=1.5;T2:=2.5;T3:=3.5;

Minimize(X2(T1,k),k=0.5..1);Maximize(X2(T1,k),k=0.5..1);

Minimize(X2(T2,k),k=0.5..1);Maximize(X2(T2,k),k=0.5..1);

Minimize(X2(T3,k),k=0.5..1);Maximize(X2(T3,k),k=0.5..1);

# T1: 62.430441592457164 to 64.74289674260832

# T2: 62.85639147974006 to 65.9529226338951

# T3: 62.94146862229387 to 66.35139323618871

99



2.5 Linear Applications

32. The office heat goes on at 6AM. It’s 55◦F inside and 43◦ to 53◦F outside
until 10AM. Estimate the office temperature at 7AM, 8AM and 9AM. As-
sume the furnace provides a seven degree temperature rise in 45 minutes
with perfect insulation and the thermostat is set for 78◦F.

33. The hot water heating goes on at 6AM. It’s 55◦F inside and 50◦ to 60◦F
outside until 10AM. Estimate the room temperature at 7:30AM. Assume the
radiator provides a four degree temperature rise in 45 minutes with perfect
insulation and the thermostat is set for 74◦F.

Solution: Estimate: 56 to 62 F. Follow the solution of Exercise 31. Ans
check:

# Assume u0:=55 F inside, heater R=4 F

# rise after RT:=45/60 hours, no sources,

# outside a1:=50 to a2:=60 F, thermostat T0:=74 F

u0:=55;R:=4;RT:=0.75;a1:=50;a2:=60;T0:=74;

# Estimate k1 from first RT hours

# Assume perfect insulation k=0, outside constant a1 degrees

# Assume u(RT)=u(0)+R

kk:=0;a:=t->a1;

de:=diff(u(t),t)=kk*(a(t)-u(t))+k1*(T0-u(t));

ic:=u(0)=u0;

ANS:=dsolve([de,ic],u(t));

X:=unapply(rhs(ANS),(t,k1));

kk1:=solve(X(RT,k1)=u0+R,k1);

# Assume hereafter k1 equals kk1 = 0.3151850374

a:=t->a1;# worst-case a==a1.

de1:=diff(u(t),t)=k*(a(t)-u(t))+kk1*(T0-u(t));

ic:=u(0)=u0;ANS:=dsolve([de1,ic],u(t));

X1:=unapply(rhs(ANS),(t,k));

with(Optimization):

# 6:00am is t=0 hours, 7:30am is T1:=1.5 hours

# Assume insulation constants k = 0.5 to 1.0

T1:=1.5;

Minimize(X1(T1,k),k=0.5 .. 1);

Maximize(X1(T1,k),k=0.5 .. 1);

# T1: 55.6470897741918 to 58.0195074023563

#plot3d(X1(t,k),t=0..4,k=0.5 .. 1);

a:=t->a2;# worst-case a==a2.

de2:=diff(u(t),t)=k*(a(t)-u(t))+kk1*(T0-u(t));

ANS:=dsolve([de2,ic],u(t));

X2:=unapply(rhs(ANS),(t,k));T1:=1.5;

Minimize(X2(T1,k),k=0.5 .. 1);

Maximize(X2(T1,k),k=0.5 .. 1);

# T1: 62.1931645171822 to 62.3472900101369
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34. The hot water heating goes on at 5:30AM. It’s 54◦F inside and 48◦ to 58◦F
outside until 9AM. Estimate the room temperature at 7AM. Assume the
radiator provides a five degree temperature rise in 45 minutes with perfect
insulation and the thermostat is set for 74◦F.

35. A portable heater goes on at 7AM. It’s 45◦F inside and 40◦ to 46◦F outside
until 11AM. Estimate the room temperature at 9AM. Assume the heater
provides a two degree temperature rise in 30 minutes with perfect insulation
and the thermostat is set for 90◦F.

Solution: At 9 am it is about 56 F to 62 F.
Follow the solution to Exercise 33.

36. A portable heater goes on at 8AM. It’s 40◦F inside and 40◦ to 45◦F outside
until 11AM. Estimate the room temperature at 10AM. Assume the heater
provides a two degree temperature rise in 20 minutes with perfect insulation
and the thermostat is set for 90◦F.

Evaporative Cooling
Define outside temperature (see Figure 3)

a(t) =



75− 2 t 0 ≤ t ≤ 6
39 + 4 t 6 < t ≤ 9
30 + 5 t 9 < t ≤ 12
54 + 3 t 12 < t ≤ 15
129− 2 t 15 < t ≤ 21
170− 4 t 21 < t ≤ 23
147− 3 t 23 < t ≤ 24

.

Given k, k1, P (t) = wa(t) and u(0) = 69, then plot u(t), P (t) and a(t) on one
graphic.

u(t) = u(0)e−kt−k1t+

(k + wk1)
∫ t

0
a(r)e(k+k1)(r−t)dr.

37. k = 1/4, k1 = 2, w = 0.85

Solution: It is necessary to use a computing workbench or CAS with graph-
ics. The code for maple appears below.
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w:=0.85;k:=1/4;k1:=2;

F:=< 75-2*t, 39+4*t, 30+5*t, 54+3*t,

129-2*t, 170-4*t, 147-3*t>;

V:=<0,6,9,12,15,21,23,24>;

N:=ArrayNumElems(F);

for i from 1 to N do

W[i] := piecewise(V[i] <t and t <= V[i+1],F[i],0);

od;

a:=unapply(sum(W[j],j=1..N),t);

P:=t->w*a(t);

u:=unapply( 69*exp(-k*t-k1*t)+

(k+w*k1)*int(a(r)*exp((k+k1)*(r-t)),r=0..t),t);

opts:=thickness=4,font=[Courier,bold,20],

color=[red,blue,yellow],legend=[a,P,u];

plot([a(t),P(t),u(t)],t=0..24,50..100,opts);

38. k = 1/4, k1 = 1.8, w = 0.85

39. k = 3/8, k1 = 2, w = 0.85

Solution: A computing workbench or CAS with graphics is re-
quired. The maple code in Exercise 37 is used, changes are below.

# Minor change to Exercise 37

w:=0.85;k:=3/8;k1:=2;

40. k = 3/8, k1 = 2.4, w = 0.85

41. k = 1/4, k1 = 3, w = 0.80

Solution: A computing workbench or CAS with graphics is re-
quired. The maple code in Exercise 37 is used, changes are below.
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# Minor change to Exercise 37

w:=0.80;k:=1/4;k1:=3;

42. k = 1/4, k1 = 4, w = 0.80

43. k = 1/2, k1 = 4, w = 0.80

Solution: A computing workbench or CAS with graphics is re-
quired. The maple code in Exercise 37 is used, changes are below.

# Minor change to Exercise 37

w:=0.80;k:=1/2;k1:=4;

44. k = 1/2, k1 = 5, w = 0.80

45. k = 3/8, k1 = 3, w = 0.80

Solution: A computing workbench or CAS with graphics is re-
quired. The maple code in Exercise 37 is used, changes are below.
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# Minor change to Exercise 37

w:=0.80;k:=3/8;k1:=3;

46. k = 3/8, k1 = 4, w = 0.80

Radioactive Chain
Let A, B and C be the amounts of three radioactive isotopes. Assume A decays
into B at rate a, then B decays into C at rate b. Given a, b, A(0) = A0 and
B(0) = B0, find formulas for A and B.

47. a = 2, b = 3, A0 = 100, B0 = 10

Solution: The Radioactive Chain Example 2.26, page 119 � will be used.
Formulas for A and B:

A(t) = A0e
−at, B(t) = B0e

−bt + aA0
e−at − e−bt

b− a
.

Then:

A(t) = 100e−2t, B(t) = 200e−3t + 200
e−2t − e−3t

3− 2
.

The solution for B(t) is B(t) = homogeneous + particular. The homoge-
neous solution of B′ = aA − bB is the solution Bh = Ce−bt of equation
B′

h = −bBh. The particular solution is extracted from the Example.

48. a = 2, b = 3, A0 = 100, B0 = 100

49. a = 1, b = 4, A0 = 100, B0 = 200

Solution: Use Exercise 47:

A(t) = 100e−t, B(t) = 200e−4t + 1(100)
e−t − e−4t

4− 1
.

50. a = 1, b = 4, A0 = 300, B0 = 100
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51. a = 4, b = 3, A0 = 100, B0 = 100

Solution: Use Exercise 47:

A(t) = 100e−4t, B(t) = 100e−3t + 4(100)
e−4t − e−3t

3− 4
.

52. a = 4, b = 3, A0 = 100, B0 = 200

53. a = 6, b = 1, A0 = 600, B0 = 100

Solution: Use Exercise 47:

A(t) = 600e−6t, B(t) = 100e−3t + 6(600)
e−6t − e−t

1− 6
.

54. a = 6, b = 1, A0 = 500, B0 = 400

55. a = 3, b = 1, A0 = 100, B0 = 200

Solution: Use Exercise 47:

A(t) = 100e−3t, B(t) = 200e−t + 3(100)
e−3t − e−t

1− 3
.

56. a = 3, b = 1, A0 = 400, B0 = 700

Electric Circuits
In the LR-circuit of Figure 5, assume E(t) = A coswt and I(0) = 0. Solve for
I(t).

57. A = 100, w = 2π, R = 1, L = 2

Solution: The answer:

I(t) = C e−t/2 + 100
4π sin (2π t) + cos (2π t)

16π2 + 1

Electric Circuits Example 2.27 will be used. The current is found from
I(t) = homogeneous + particular. The homogeneous solution is the tran-
sient current Itr = Ce−Rt/L for some constant C. Let’s use the linear
integrating factor method, which finds both the homogeneous solution and
a particular solution in one computation.

The Model: LI ′(t) +RI(t) = A coswt

I ′(t) + R
L I(t) =

A
L coswt Standard Form

W = eRt/L Integrating Factor
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(W (t)I(t))′

W (t)
= A

LW (t) coswt Quadrature Form

(W (t)I(t))′ = A
LW (t) cos(wt) Clear Fraction Left∫

(W (t)I(t))′dt = A
L

∫
W (t) cos(wt)dt Quadrature Step

W (t)I(t) = C + A
L

∫
e−Rt/L cos(wt)dt Fund. Theorem of Calculus

Integral Table:

W (t)I(t) = C + 2
et/2 (4π sin (2π t) + cos (2π t))

16π2 + 1

# Maple integration

int(exp(R*t/L)*cos(w*t),t);simplify(%);

# Answer check for L I’(t) + R I(t) = A cos wt

A:=100;w:=2*Pi;R:=1;L:=2;

de:=L*diff(u(t),t) + R*u(t) = A * cos(w*t);

dsolve(de,u(t));

58. A = 100, w = 4π, R = 1, L = 2

59. A = 100, w = 2π, R = 10, L = 1

Solution: Use the methods in Exercise 57.

I (t) = C e−10 t + 50
π sin (2π t) + 5 cos (2π t)

π2 + 25

A:=100;w:=2*Pi;R:=10;L:=1;

60. A = 100, w = 2π, R = 10, L = 2

61. A = 5, w = 10, R = 2, L = 3

Solution: Use the methods in Exercise 57.

I (t) = C + e−2/3 t +
5 cos (10 t)

452
+

75 sin (10 t)

452

A:=5;w:=10;R:=2;L:=3;

62. A = 5, w = 4, R = 3, L = 2

63. A = 15, w = 2, R = 1, L = 4

Solution: Use the methods in Exercise 57.

I (t) = C e−t/4 +
3

13
cos (2 t) +

24 sin (2 t)

13

A:=15;w:=2;R:=1;L:=4;
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64. A = 20, w = 2, R = 1, L = 3

65. A = 25, w = 100, R = 5, L = 15

Solution: Use the methods in Exercise 57.

I (t) = C e−t/3 +
5 cos (100 t)

90001
+

1500 sin (100 t)

90001

A:=25;w:=100;R:=5;L:=15;

66. A = 25, w = 50, R = 5, L = 5
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2.6 Kinetics

Newton’s Laws
Review of units and conversions.

1. An object weighs 100 pounds. Find its mass in slugs and kilograms.

Solution: Confusion exists for lb, libre and lbf (pound-force not foot-
pound). The pound-force lbf is the product of one avoirdupois pound (ex-
actly 0.45359237 kg) and the standard sea level acceleration due to gravity,
g = 9.80665 m/sec/sec, briefly 1 lbf = 4.448221615 Newtons. Newton’s Law
F = ma at sea level in a vacuum then gives 4.448221615 = m(9.80665) for
mass m = 0.4535923700 kg. On a kitchen scale with a kg/lb switch some
package marked 453 grams will read 453 g or 1 lb, depending on the switch
position. This information explains why consumer courses say 1 kg=2.2
lb: it is valid in a vacuum at sea level as a quick way to interpret kg scale
values as lb scale values. Most people find an approximate answer: 100 lb
on a scale has mass 100/2.2 = 45.45 kg. Other answers close to 45.45 are
also acceptable, one not being better than the other, because the value of g
depends on the unknown location on the earth.

The mass in slugs is found directly from Newton’s Law F = ma using
F = 100 lbf and g = 9.80665 m/sec/sec or g = 32.17404856 ft/sec/sec.
Then 100 = 32.17404856m gives m = 3.108095017 slugs.

2. An object has mass 50 kilograms. Find its mass in slugs and its weight in
pounds.

3. Convert from fps to mks systems: position 1000, velocity 10, acceleration
2.

Solution: Answers:
Position = 1000 ft = 1000 ∗ 30.48 cm = 304.8 m.
Velocity = 10 ft/sec = 10 ∗ 30.48 cm/sec = 10 ∗ 30.48/100 m/sec = 3.048
m/sec.
Acceleration = 2 ft/sec/sec = 2∗30.48 cm/sec/sec = 2∗30.48/100 cm/sec/sec
= 0.6096 m/sec/sec.

4. Derive g =
Gm

R2 , where m is the mass of the earth and R is its radius.

Velocity and Acceleration
Find the velocity x′ and acceleration x′′.

5. x(t) = 16t2 + 100
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Solution: Answer:
Velocity = x′(t) = 32t,
Acceleration = x′′(t) = 32.

6. x(t) = 16t2 + 10t+ 100

7. x(t) = t3 + t+ 1

Solution: Answer:
Velocity = x′(t) = 3t2 + 1,
Acceleration = x′′(t) = 6t.

8. x(t) = t(t− 1)(t− 2)

Free Fall with Constant Gravity
Solve using the model x′′(t) = −g, x(0) = x0, x

′(0) = v0.

9. A brick falls from a tall building, straight down. Find the distance it fell
and its speed at three seconds.

Solution: It fell 144 feet and reached 288 ft/sec in 3 seconds.

Model: x′′(t) = −g, x(0) = x0, x
′(0) = v0

Choose coordinates x = 0 for the top of the building. Define v0 = 0, the
brick falls from rest. Let g = 32 ft/sec/sec instead of g = 32.088 in system
fps, because other physical factors have been ignored. Coordinates cause
the model to change signs −g to +g because the position vector is x(t)⃗j,
which aligns with the gravity vector gj⃗. Effectively, x has been replaced by
−x in the original model. Then the model becomes

x′′(t) = 32, x(0) = 0, x′(0) = 0

A quadrature finds x(t) = 16t2. Then x(3) = 16(9) = 144, which means the
brick fell 144 feet. The speed at 3 seconds is x′(3) = (gt)|t=3 = 288 ft/sec.

10. An iron ingot falls from a tall building, straight down. Find the distance
it fell and its speed at four seconds.

11. A ball is thrown straight up from the ground with initial velocity 66 feet
per second. Find its maximum height.

Solution: It reached 2.0625 feet and then fell back to the ground.

Model: x′′(t) = −g, x(0) = x0, x
′(0) = v0

Choose coordinates x = 0 for the ground. Define v0 = 66 ft/sec, the starting
velocity. Let g = 32 ft/sec/sec instead of g = 32.088 in system fps, because
other physical factors have been ignored. Then the model becomes

x′′(t) = −32, x(0) = 0, x′(0) = 66
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A quadrature finds x(t) = −16t2 + at + b for some constants a, b. Initial
conditions x(0) = 0, x′(0) = 66 evaluate a = 66, b = 0. The maximum
height is x(T ) = maxt≥0 x(t), the value T guaranteed by continuity of x(t).
Find T from x′(T ) = 0: −32T + a = 0 or T = a/32 = 66/32 = 2.0625 feet.

12. A ball is thrown straight up from the ground with initial velocity 88 feet
per second. Find its maximum height.

13. An arrow is shot straight up from the ground with initial velocity 23 meters
per second. Find the flight time back to the ground.

Solution: The flight time is T = 0.2 sec.

Model: x′′(t) = −g, x(0) = x0, x
′(0) = v0

Choose coordinates x = 0 for the ground. Define v0 = 23 m/sec, the starting
velocity. Let g = 9.8 ft/sec/sec, because other physical factors have been
ignored. Then the model becomes

x′′(t) = −9.8, x(0) = 0, x′(0) = 23

A quadrature finds x(t) = −4.6t2 + at + b for some constants a, b. Initial
conditions x(0) = 0, x′(0) = 23 evaluate a = 23, b = 0. The flight time is the
first value T > 0 with x(T ) = 0. The equation for T is 0 = −4.6T 2 + 23T .
Then T = 4.6/23 = 0.2 = 1/5.

14. An arrow is shot straight up from the ground with initial velocity 44 meters
per second. Find the flight time back to the ground.

15. A car travels 140 kilometers per hour. Brakes are applied, with deceleration
10 meters per second per second. Find the distance the car travels before
stopping.

Solution: Answer: 75.62 meters.

Assume the car is on a level road traveling with constant velocity 140 km/h.
At t = 0 the brakes are applied with acceleration a = −10 m/sec/sec. Then
x′′(t) = −10 for t > 0 and x′(0) = 140 km/h. Data units must be changed
to meters and seconds. Then x′(0) = 140∗1000/3600 = 350/9 m/sec. Solve
by quadrature: x′(t) = −10t+350/9 and x(t) = −5t2 +350t/9+ x(0). The
car stops when the velocity is zero: 0 = −10t + 350/9. Then the distance
traveled is x(t) − x(0) = −5t2 + 350t/9 = −5(35/9)2 + (350/9)(35/9) =
6125/81 = 75.62 m.

16. A car travels 120 kilometers per hour. Brakes are applied, with deceleration
40 feet per second per second. Find the distance the car travels before
stopping.
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17. An arrow is shot straight down from a height of 500 feet, with initial velocity
44 feet per second. Find the flight time to the ground and its impact speed.

Solution: Answer: Flight time 7.13 seconds, impact speed −184.22 ft/sec.

Assume no air resistance. The distance x(t) of the arrow center of mass to
the ground has model x′′(t) = −32 (position vector ground to arrow has
direction opposite the gravity vector). Also known is x(0) = 500, x′(0) = 44
in fps units. Solve by quadrature: x′(t) = −32t+ 44, x(t) = −16t2 + 44t+
500. The arrow impacts the ground at time t satisfying x(t) = 0. Solve
−16t2 +44t+500 = 0 for t = 1

8 (11±
√
2121) = −4.381789470, 7.131789470.

The positive time is relevant: impact at t = 7.131789470 seconds. The
impact speed is x′(7.131789470) = −4

√
2121 = −184.2172630 ft/sec.

18. An arrow is shot straight down from a height of 200 meters, with initial
velocity 13 meters per second. Find the flight time to the ground and its
impact speed.

Linear Air Resistance
Solve using the linear air resistance model mx′′(t) = −kx′(t)−mg. An equiv-
alent model is x′′ = −ρx′ − g, where ρ = k/m is the drag factor.

19. An arrow is shot straight up from the ground with initial velocity 23 meters
per second. Find the flight time back to the ground. Assume ρ = 0.035.

Solution: Answer: 4.57 seconds.

Assume model x′′ = −ρx′ − g with drag factor ρ = 0.035. The velocity
model is v′ = −0.035v− 9.8, v(0) = 23 with solution given by (see equation
9)

v(t) = −g

ρ
+

(
v(0) +

g

ρ

)
e−ρt,

x(t) = x(0)− g

ρ
t+

1

ρ

(
v(0) +

g

ρ

)(
1− e−ρt

)
.

The flight time to return to the ground is time T > 0 with x(T ) = 0.
Because x(0) = 0 (launch from the ground), then

0 = −g

ρ
T +

1

ρ

(
v(0) +

g

ρ

)(
1− e−ρT

)
This nonlinear equation is solved graphically for T by plotting two curves on

the same xy-axes: y = g
ρx and y = 1

ρ

(
v(0) + g

ρ

)
(1− e−ρx). Alternatively,

a CAS can find T . Both methods require numbers in the equation:

0 = −280T +
1

0.035
(23 + 280)

(
1− e−0.035T

)
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Maple answer: T=4.571994605 seconds.

EQ:=-280 *x+(1/0.035)*(23+280)*( 1 - exp(-0.035* x) );

solve(EQ=0,x);

20. An arrow is shot straight up from the ground with initial velocity 27 meters
per second. Find the maximum height. Assume ρ = 0.04.

21. A parcel is dropped from an aircraft at 32, 000 feet. It has a parachute that
opens automatically after 25 seconds. Assume drag factor ρ = 0.16 without
the parachute and ρ = 1.45 with it. Find the descent time to the ground.

Solution: The descent time to the ground is 1298.59 seconds, about 22 min-
utes.

The problem requires two models, switching from Model 1 to Model 2
at time t = 25 seconds. Let x(t) be the distance in feet from the parcel
to the ground, x(0) = 32000. Let y(0) = x(25), which is the distance in
feet to the ground when the parachute opens. For t > 0, value y(t) is the
parcel distance in feet to the ground. Technical issues: the parcel falls from
rest, x′(0) = 0, but y′(0) is not zero: it is the speed of the parcel at t = 25
seconds.

Flight Time: Let T > 0 be the first root of y(T ) = 0. The flight time to
the ground is 25 + T .

Model 0: u′′ = −0.00u′ − 32, u(0) = 32000, u′(0) = 0
Assume zero drag force, then compute terminal velocity and flight time: it
is used for comparison.

Model 1: x′′ = −0.16x′ − 32, x(0) = 32000, x′(0) = 0

Model 2: y′′ = −1.45y′ − 32, y(0) = x(25), y′(0) = x′(25)

Solve Model 0: u(t) = −16t2 + 32000
The parcel flight time is T0 = 44.72 seconds and the impact speed is
|u′(T0)| = 1431.1 ft/sec = 975.75 miles/hour. Unrealistic.

Solve Model 1: x(t) = −1250 e−
4 t
25 − 200 t+ 33250

Then x(25) = 28227.10545 and x′(25) = −196.3368722.

Solve Model 2: y(t) = 120.1847632⃗e−1.45 t − 22.06896552 t+ 28106.92069
Then y(T ) = 0 when T = 1273.594844 seconds. Flight time 25 +
T = 1298.594844 seconds, about 22 minutes, terminal velocity y′(T ) =
−22.06896552 ft/sec, about 15 mph. This speed is reached for practical
purposes after about 5 seconds into flight. The parcel falls from 28, 000 feet
at 15 mph, taking about 21 minutes.
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de:=diff(x(t),t,t)=-rho*diff(x(t),t)-g;

de0:=subs(rho=0,g=32,de);

de1:=subs(rho=0.16,g=32,de);

de2:=subs(rho=1.45,g=32,de);

ans0:=dsolve([de0,x(0)=32000,D(x)(0)=0],x(t));

X0:=unapply(rhs(ans0),t);solve(X0(t)=0,t);

T0:=20*sqrt(5); X0(T0);

"X0 terminal velocity"=evalf(D(X0)(T0));

"X0 flight time"=evalf(T0);

ans1:=dsolve([de1,x(0)=32000,D(x)(0)=0],x(t));

X:=unapply(evalf(rhs(ans1)),t);

y0:=X(25);y1:=D(X)(25);

ans2:=dsolve([de2,x(0)=y0,D(x)(0)=y1],x(t));

Y:=unapply(evalf(rhs(ans2)),t);

"Y Time to ground" = solve(Y(t)=0,t);# 1273.594844 sec

"Flight Time" = 25+1273.594844; # 1298.594844 sec

22. A first aid kit is dropped from a helicopter at 12, 000 feet. It has a parachute
that opens automatically after 15 seconds. Assume drag factor ρ = 0.12
without the parachute and ρ = 1.55 with it. Find the impact speed with
the ground.

23. A motorboat has velocity v satisfying 1100v′(t) = 6000 − 110v, v(0) = 0.
Find the maximum speed of the boat.

Solution: The maximum speed should be the maximum of v(t). However,
the calculus theory applies to a finite interval and not to interval 0 ≤ t < ∞.
There is an equilibrium solution found from formally setting v′(t) = 0:
0 = 6000 − 110v(t) gives v(t) = 6000/110 = 54.55. A maximum speed
report of about 54 or 55 is a good answer: the boat never travels faster than
54.55.

24. A motorboat has velocity v satisfying 1000v′(t) = 4000 − 90v, v(0) = 0.
Find the maximum speed of the boat.

25. A parachutist falls until his speed is 65 miles per hour. He opens the
parachute. Assume parachute drag factor ρ = 1.57. About how many
seconds must elapse before his speed is reduced to within 1% of terminal
velocity?

Solution: It takes about 3.76 seconds to reach within 1% of terminal velocity
−20.38216561 fps.

Details: Use ρ = 1.57 and assume x(0) = x0 is unknown, x′(0) = −65
mph. Units must be converted to match g = 32, which is in fps units. Then
x′(0) = −95.3333 fps.
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Model: x′′ = −1.57x′ − 32, x(0) = x0, x
′(0) = −95.3333

Solve the Model: Solve first for v(t) = x′(t) in v′ = −1.57v−32, then use
quadrature to find

v(t) = −74.95113440 e−1.57 t − 20.38216561
x(t) = 47.73957605 e−1.57 t − 20.38216561 t+ x0 − 47.73957605

Solve the equation v(t) = 1.01 v(∞) which is the equation

−74.95113440 e−1.57 t − 20.38216561 = 1.01(−20.38216561)

Then t = 3.762640919 seconds.

Why use 1.01 instead of 0.99? Answer: The velocity is negative with mag-
nitude always larger than |v(∞)|.

de:=diff(x(t),t,t)=-32-1.57*diff(x(t),t);

ans1:=dsolve([de,x(0)=x0,D(x)(0)=-95.3333],x(t));

X:=unapply(evalf(rhs(ans1)),t);

solve(D(X)(t)=1.01*(-20.38216561),t);

26. A parachutist falls until his speed is 120 kilometers per hour. He opens the
parachute. Assume drag factor ρ = 1.51. About how many seconds must
elapse before his speed is reduced to within 2% of terminal velocity?

27. A ball is thrown straight up with initial velocity 35 miles per hour. Find
the ascent time and the descent time. Assume drag factor 0.042

Solution: Answers: Rise time = 1.55 seconds, fall time = 1.69 seconds.

Let x(t) be the distance from the ground in feet. Then x(0) = 0 and
x′(0) = 35 mph = 51.3333 ft/sec. The rise time T is the first T > 0 such
that x′(T ) = 0. The fall time is the second solution S to x(S) = 0.

Model: x′′ = −0.042x′ − 32, x(0) = 0, x′(0) = 51.3333
Then

v(t) = 813.238062 e−0.042 t − 761.9047619
x(t) = −19362.811 e−0.042 t − 761.9047619 t+ 19362.811

Solve v(T ) = 0 for T = 1.552436247 seconds. Then solve x(S) = 0 for
S = 3.139362078 seconds. The rise time is T = 1.552436247 and the fall
time is S − T = 1.586925831.

de:=diff(x(t),t,t)=-32-0.042*diff(x(t),t)

ans1:=dsolve([de,x(0)=0,D(x)(0)=51.3333],x(t));

X:=unapply(evalf(rhs(ans1)),t);

solve(D(X)(T)=0,T); # T = 1.552436247

solve(X(S)=0,S); # S = 3.139362078

S,S-T; # 1.552436247, 1.586925831
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28. A ball is thrown straight up with initial velocity 60 kilometers per hour.
Find the ascent time and the descent time. Assume drag factor 0.042

Linear Ascent and Descent Times
Find the ascent time t1 and the descent time t2 for the linear model x′′ =
−ρx′ − g, x(0) = 0, x′(0) = v0 where ρ = k/m is the drag factor. Unit system
fps. Computer algebra system expected.

29. ρ = 0.01, v0 = 50

Solution: t1 = −100 ln(64/65), t2 = 1.558472345.

v0:=50;rho:=1/100;de:=diff(x(t),t,t)=-32-rho*diff(x(t),t);

ans1:=dsolve([de,x(0)=0,D(x)(0)=v0],x(t));

X1:=unapply(rhs(ans1),t);

t1:=solve(diff(X1(t),t)=0,t);

# t1 = -100*ln(64/65)

ans2:=dsolve([de,x(0)=X1(t1),D(x)(0)=0],x(t));

X2:=unapply(rhs(ans2),t);

t2:=solve(X2(t)=0,t);

evalf(t2); # t2 = 1.558472345

30. ρ = 0.015, v0 = 30

31. ρ = 0.02, v0 = 50

Solution: t1 = −50 ln(32/33), t2 = 1.554528027.

32. ρ = 0.018, v0 = 30

33. ρ = 0.022, v0 = 50

Solution: t1 = −(500/11) ln(320/331), t2 = 1.553748824.

34. ρ = 0.025, v0 = 30

35. ρ = 1.5, v0 = 50

Solution: t1 = −(2/3) ln(32/107), t2 = 1.334352324.

36. ρ = 1.55, v0 = 30

37. ρ = 1.6, v0 = 50

Solution: t1 = −(5/8) ln(2/7), t2 = 1.330114810.

38. ρ = 1.65, v0 = 30
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39. ρ = 1.45, v0 = 50

Solution: t1 = −(20/29) ln(64/209), t2 = 1.336698502.

40. ρ = 1.48, v0 = 30

Nonlinear Air Resistance
Assume ascent velocity v1 satisfies v′1 = −ρv21 − g. Assume descent velocity
v2 satisfies v′2 = ρv22 − g. Motion from the ground x = 0. Let t1 and t2 be
the ascent and descent times, so that t1 + t2 is the flight time. Let g = 9.8,
v1(0) = v0, v1(t1) = v2(t1) = 0, units mks. Define M = maximum height and
vf = impact velocity. Computer algebra system expected.

41. Let ρ = 0.0012, v0 = 50. Find t1, t2.

Solution: Answers:

t1 =
50

21

√
15 arctan(

1

7

√
15) = 4.6601258,

t2 =
−200

√
15

21
ln

(
1

7

4

√
2744− 343

√
15

)
= 4.872170

Methods follow previous exercises on rise and fall times, the models being
replaced by quadratic drag models. The work can be completed by hand
using the equations for downward and upward launch in the section on
nonlinear air resistance. Some details of the hand calculation:

Rise Time: Solve for t = t1 in the equation

0 = v(t) =

√
mg

k
tan

(√
kg

m
(c− t)

)
,

which means c− t = 0 and then t1 = c. By the same equation

50 = v0

=

√
mg

k
tan

(√
kg

m
(c− 0)

)
=

√
9.8

0.0012
tan

(
c
√
(9.8)(0.0012)

)
Then 0.1084435337 c = arctan

(
50/
√

9.8
0.0012

)
gives t1 = c = 4.660125809.

Maximum Height: The height reached on the upward launch is x(t1).
To find the height requires the quadrature result for x(t) obtained from
x′(t) = v(t), x(0) = 0 (ground launch):

x(t) = d+
m

k
ln

∣∣∣∣∣cos
(√

kg

m
(c− t)

)∣∣∣∣∣ ,
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where c = t1 = 4.660125809 and d is a constant. Initial data x(0) = 0
determines

d = −m

k
ln

∣∣∣∣∣cos
(√

kg

m
(c− 0)

)∣∣∣∣∣
= − 1

0.0012
ln
∣∣∣cos(√(0.0012)(9.8)(4.660125809)

)∣∣∣
= 111.2761605

The maximum height of the upward launch is

x(t1) = x(c)
= 111.2761605 + 1

0.0012 ln |cos (0)|
= 111.2761605 + 1

0.0012 ln |1|
= 111.2761605

Fall Time: Let y(t) be the distance to the ground at time t for the
downward motion, differential equation y′′ = −g + ρ (y′)2. Initial data:
y(0) = x(t1) = 111.2761605, y′(0) = x′(t1) = 0 (at rest). The textbook
solution for y(t) will be used below. Let’s solve for t = t2 in the equation

0 = y(t)

= D − m
k ln

∣∣∣∣cosh(√kg
m (C − t)

)∣∣∣∣
= D − 1

0.0012 ln
∣∣cosh (√ρ g(C − t)

)∣∣
where uppercase symbols C and D are constants to be determined from
physical data in the problem. Constants C, D are found from equations

111.2761605 = y(0)

= D − 1

0.0012
ln |cosh (√ρ g(C − 0))|

0 = y′(0)

=
1

0.0012
tanh (

√
ρ g(C − 0)) ,

Because tanh(u) = 0 at u = 0, then C = 0. Because cosh(u) = 1 at u = 0
and ln(1) = 0, then 111.2761605 = D. The problem simplifies to solving for
t = t2 in equation

0 = D − 1

0.0012
ln |cosh (√ρ g(C − t))|

Then

D =
1

0.0012
ln |cosh (√ρ g(0− t))|
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Because cosh(−u) = cosh(u), then

(D)(0.0012) = ln |cosh (√ρ g(t))|
(111.2761605)(0.0012) = ln |cosh (√ρ g(t))|
0.1335313926 = ln |cosh (√ρ g(t))|
e0.1335313926 = cosh (

√
ρ g(t))

1.142857143 = cosh (
√
ρ g(t))

arccosh(1.142857143) =
√

(0.0012)(9.8) t

0.5283553632 = 0.1084435337 t

t =
0.5283553632

0.1084435337

t2 = 4.872170292

v0:=50;g:=9.8;rho:=0.0012;

de1:=diff(x(t),t,t)=-g-rho*diff(x(t),t)^2;

ans1:=dsolve([de1,x(0)=0,D(x)(0)=v0],x(t));

X1:=unapply(rhs(ans1),t);

t1:=solve(diff(X1(t),t)=0,t);

evalf(t1); # t1 = 4.660125812

de2:=diff(x(t),t,t)=-g+rho*diff(x(t),t)^2;

ans2:=dsolve([de2,x(0)=X1(t1),D(x)(0)=0],x(t));

X2:=unapply(rhs(ans2),t);

t2:=solve(X2(t)=0,t);

evalf(t2); # t2 = 4.872170280

42. Let ρ = 0.0012, v0 = 30. Find t1, t2.

43. Let ρ = 0.0015, v0 = 50. Find t1, t2.

Solution: Answers:

t1 =
100 arctan(3/14

√
3)

√
3

21 = 2.931243230

t2 =

(
100 ln

(
1/14+ 3

√
669

3122

)
+50 ln(223)

)√
3

21 = 2.994971288
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v0:=30;g:=9.8;rho:=0.0015;

de1:=diff(x(t),t,t)=-g-rho*diff(x(t),t)^2;

ans1:=dsolve([de1,x(0)=0,D(x)(0)=v0],x(t));

X1:=unapply(rhs(ans1),t);

t1:=solve(diff(X1(t),t)=0,t);

evalf(t1); # t1 = 2.931243230$

de2:=diff(x(t),t,t)=-g+rho*diff(x(t),t)^2;

ans2:=dsolve([de2,x(0)=X1(t1),D(x)(0)=0],x(t));

X2:=unapply(rhs(ans2),t);

t2:=solve(X2(t)=0,t);

evalf(t2); # t2 = 2.994971288

44. Let ρ = 0.0015, v0 = 30. Find t1, t2.

45. Let ρ = 0.001, v0 = 50. Find M , vf .

Solution: Answers:

M = 500 ln(123/98) = 113.6084384 meters

vf = −44.63036986 meters per second

v0:=50;g:=9.8;rho:=0.001;

de1:=diff(x(t),t,t)=-g-rho*diff(x(t),t)^2;

ans1:=dsolve([de1,x(0)=0,D(x)(0)=v0],x(t));

X1:=unapply(rhs(ans1),t);

t1:=solve(diff(X1(t),t)=0,t);

evalf(t1); # t1 = 4.724487241

M:=X1(t1); evalf(M);# M = 113.6084384

de2:=diff(x(t),t,t)=-g+rho*diff(x(t),t)^2;

ans2:=dsolve([de2,x(0)=X1(t1),D(x)(0)=0],x(t));

X2:=unapply(rhs(ans2),t);

t2:=solve(X2(t)=0,t);

evalf(t2); # t2 = 4.872170280

vf:=D(X2)(t2);evalf(vf);# vf = -44.63036986

46. Let ρ = 0.001, v0 = 30. Find M , vf .

47. Let ρ = 0.0014, v0 = 50. Find M , vf .

Solution: Answers:

M = (2500/7) ln(19/14) = 109.0648748 meters

vf = −42.91975375 meters per second
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v0:=50;g:=9.8;rho:=0.0014;

de1:=diff(x(t),t,t)=-g-rho*diff(x(t),t)^2;

ans1:=dsolve([de1,x(0)=0,D(x)(0)=v0],x(t));

X1:=unapply(rhs(ans1),t);

t1:=solve(diff(X1(t),t)=0,t);

evalf(t1); # t1 = 4.598757038

M:=X1(t1); evalf(M);# M = 109.0648748

de2:=diff(x(t),t,t)=-g+rho*diff(x(t),t)^2;

ans2:=dsolve([de2,x(0)=X1(t1),D(x)(0)=0],x(t));

X2:=unapply(rhs(ans2),t);

t2:=solve(X2(t)=0,t);

evalf(t2); # t2 = 4.838781478,

vf:=D(X2)(t2);evalf(vf);# vf = -42.91975375

48. Let ρ = 0.0014, v0 = 30. Find M , vf .

49. Find t1, t2, M and vf for ρ = 0.00152, v0 = 60.

Solution: Answers:

t1 = (250/133)
√
19 arctan((6/35)

√
10) = 5.257981263 seconds

t2 = 5.661141086 seconds

M = (6250/19) ln(1909/1225) = 145.9337831 meters

vf = −48.06360384 meters per second

v0:=60;g:=9.8;rho:=0.00152;

de1:=diff(x(t),t,t)=-g-rho*diff(x(t),t)^2;

ans1:=dsolve([de1,x(0)=0,D(x)(0)=v0],x(t));

X1:=unapply(rhs(ans1),t);

t1:=solve(diff(X1(t),t)=0,t);

evalf(t1); # t1 = 5.257981263

M:=X1(t1); evalf(M);# M = 145.9337831

de2:=diff(x(t),t,t)=-g+rho*diff(x(t),t)^2;

ans2:=dsolve([de2,x(0)=X1(t1),D(x)(0)=0],x(t));

X2:=unapply(rhs(ans2),t);

t2:=solve(X2(t)=0,t);

evalf(t2); # t2 = 5.661141086,

vf:=D(X2)(t2);evalf(vf);# vf = -48.06360384

50. Find t1, t2, M and vf for ρ = 0.00152, v0 = 40.

Terminal Velocity
Find the terminal velocity for (a) a linear air resistance a(t) = ρv(t) and (b)
a nonlinear air resistance a(t) = ρv2(t). Use the model equation v′ = a(t) − g
and the given drag factor ρ, mks units.
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51. ρ = 0.15

Solution: Answers:

(a) vf = 9.8/0.15 = 65.33333333 meters per second

(b) vf =
√
9.8/0.15 = 8.082903768 meters per second

Models:

(a) v′ = −g − ρ v. g = 9.8, ρ = 0.15, vf = g/ρ

(b) v′ = −g − ρ v2. g = 9.8, ρ = 0.15, vf =
√
g/ρ

rho:=0.15;g:=9.8;g/rho;sqrt(g/rho);

52. ρ = 0.155

53. ρ = 0.015

Solution: Answers:

(a) vf = 9.8/0.015 = 653.3333333 meters per second

(b) vf =
√
9.8/0.015 = 25.56038602 meters per second

54. ρ = 0.017

55. ρ = 1.5

Solution: Answers:

(a) vf = 9.8/1.5 = 6.533333333 meters per second

(b) vf =
√
9.8/1.5 = 2.556038602 meters per second

56. ρ = 1.55

57. ρ = 2.0

Solution: Answers:

(a) vf = 9.8/2.0 = 4.9 meters per second

(b) vf =
√
9.8/2.0 = 2.213594362 meters per second

58. ρ = 1.89

59. ρ = 0.001

Solution: Answers:

(a) vf = 9.8/0.001 = 9800 meters per second

(b) vf =
√
9.8/0.001 = 98.99494937 meters per second
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60. ρ = 0.0015

Parachutes
A skydiver has velocity v0 and height 5, 500 feet when the parachute opens.
Velocity v(t) is given by (a) linear resistance model v′ = −ρv−g or (b) nonlinear
resistance downward model v′ = ρv2 − g. Given the drag factor ρ and the
parachute-open velocity v0, compute the elapsed time until the parachutist slows
to within 2% of terminal velocity. Then find the flight time from parachute open
to the ground. Report two values for (a) and two values for (b).

61. ρ = 1.446, v0 = −116 ft/sec.

Solution: Answers:
(a) About 3.7 seconds to reach within 2% of terminal velocity −22.13001383
fps. Flight time 4.1 min.

(b) About 0.33 seconds to reach within 2% of terminal velocity−4.704254864
fps. Flight time 19.5 min.

Sanity Check: The linear model applies below Mach 1 (1115 ft/sec) and
the nonlinear model above Mach 1. The skydiver flight is below Mach 1:
the nonlinear model is the wrong model to use. Skydivers usually ride the
parachute for 4-5 min.

Model 1: x′′ = −ρx′ − g, x(0) = x0, x
′(0) = v0

Terminal Velocity Model 1:
vf = g/m = 22.13001383 feet per second.

Time to 2% error Model 1:
Solve the equation v(t) = −1.02 vf for t = 3.704701879 seconds.

Why use 1.02 instead of 0.98? Answer: The velocity is negative with mag-
nitude always larger than |vf |.

Flight Time Model 1: Solve x(t) = 0 for t = 245.5978129 sec, 4.1 min.

Model 2: y′′ = ρ|y′|2 − g, y(0) = x0, y
′(0) = v0

Terminal Velocity Model 2:
vf =

√
g/m = 4.704254864 feet per second.

Time to 2% error Model 2:
Solve the equation y′(t) = −1.02 vf for t = 0.3332647152 seconds.

Flight Time Model 2:
Solve y(t) = 0 for t = 1168.779217 sec, 19.8 min.
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rho:=1.446;v0:=-116;g:=32;x0:=5500;

de1:=diff(x(t),t,t)=-g-rho*diff(x(t),t);

ans1:=dsolve([de1,x(0)=x0,D(x)(0)=v0],x(t));

X1:=unapply(evalf(rhs(ans1)),t);

vf1:=g/rho; # 22.13001383

de2:=diff(x(t),t,t)=-g+rho*diff(x(t),t)^2;

ans2:=dsolve([de2,x(0)=x0,D(x)(0)=v0],x(t));

X2:=unapply(evalf(rhs(ans2)),t);

vf2:=sqrt(g/rho); # 4.704254864

solve(D(X1)(t)= -1.02*vf1,t); # 3.704701879 sec

solve(X1(t)=0,t); # 245.5978129 sec, 4.1 min

solve(D(X2)(t)= -1.02*vf2,t); # 0.3332647152 sec

fsolve(X2(t)= 0,t=0..1200); # 1168.779217 sec, 19.48 min

62. ρ = 1.446, v0 = −84 ft/sec.

63. ρ = 1.2, v0 = −116 ft/sec.

Solution: Answers:
(a) About 4.3 seconds to reach within 2% of terminal velocity −26.66666667
fps. Flight time 3.4 min.

(b) About 0.37 seconds to reach within 2% of terminal velocity−5.163977795
fps. Flight time 17.7 min.

64. ρ = 1.2, v0 = −84 ft/sec.

65. ρ = 1.01, v0 = −120 ft/sec.

Solution: Answers:
(a) About 4.9 seconds to reach within 2% of terminal velocity −31.68316832
fps. Flight time 2.85 min.

(b) About 0.4 seconds to reach within 2% of terminal velocity −5.628780358
fps. Flight time 16.3 min.

66. ρ = 1.01, v0 = −60 ft/sec.

67. ρ = 0.95, v0 = −10 ft/sec.

Solution: Answers:
(a) About 3.75 seconds to reach within 2% of terminal velocity−33.68421053
fps. Flight time 2.7 min.

(b) About 0.3 seconds to reach within 2% of terminal velocity −5.803810001
fps. Flight time 15.8 min.

68. ρ = 0.95, v0 = −5 ft/sec.
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69. ρ = 0.8, v0 = −66 ft/sec.

Solution: Answers:
(a) About 4.4 seconds to reach within 2% of terminal velocity −40 fps.
Flight time 2.8 min.

(b) About 0.4 seconds to reach within 2% of terminal velocity −6.324555320
fps. Flight time 14.4 min.

70. ρ = 0.8, v0 = −33 ft/sec.

Lunar Lander
A lunar lander falls to the moon’s surface at v0 miles per hour. The retrorockets
in free space provide a deceleration effect on the lander of a miles per hour per
hour. Estimate the retrorocket activation height above the surface which will
give the lander zero touch-down velocity. Follow Example 2.30, page 133 �.

71. v0 = −1000, a = 18000

Solution: Answers:
Constant field:
t0 = 729.13 seconds = 12.15 minutes, retrorocket activation height
r(0) = 162.98 kilometers = 101.27 miles.
Variable field:
retrorocket activation height r(0) ≈ 136.65 kilometers or 84.91 miles.

Conversions: Let’s use 1 meter = 3.280839895 feet, 1 mile = 1.609344
kilometers, a = 18000 mi/h/h = 2.2352 m/s/s, v0 = −1000 m/h = −447.04
m/s.

Constant Field Model:

r′(t) = (a− G)t+ v0,
r(t) = (a− G)t2/2 + v0t+ r(0).

Requirements r′(t0) = 0 and r(t0) = 0 give the equations

(a− G)t0 + v0 = 0, r(0) = −v0t0 − (a− G)t20/2.

Evaluation uses mks units: a = 2.2352, v0 = −447.04, G = 1.621942132.
Solving simultaneously provides the numerical answers

t0 = 728.13 seconds = 12.15 minutes,

r(0) = 162975.73 meters = 101.27 miles.

Variable Field Model:

mr′′(t) = ma− Gmm1

(R+ r(t))2
, r(t0) = 0, r′(t0) = 0, r′(0) = v0.
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Multiply the differential equation by r′(t)/m and integrate. Then

(r′(t))2

2
= ar(t) +

Gm1

R+ r(t)
+ c, c ≡ −Gm1

R
.

We will find r(0), the height above the moon. The equation to solve for r(0)
is found by substitution of t = 0 into the previous equation:

(r′(0))2

2
= a r(0) +

Gm1

R+ r(0)
− Gm1

R
.

After substitution of known values, the quadratic equation for x = r(0) is
given by

92088.46615 = 2.2352x+
4.9110336× 1012

x+ 1740000
− 2.822433103× 106

Solving for the positive root gives r(0) ≈ 136.65 kilometers or 84.91 miles.

# Constant field model

V0:=-1000;A:=18000;

R:=1740*1000;m1:=7.36*10^(22);G:=6.6726*10^(-11);

miles2meters:=(5280*12*2.54/100);meter2feet:=3.280839895;

a:=A*miles2meters/3600/3600;

v0:=(V0*miles2meters)/3600; gm:=G*m1/R^2;

ans1:=dsolve({diff(r(t),t,t)=a-gm,r(0)=r0,D(r)(0)=v0},r(t)):

r1:=unapply(rhs(ans1),t);

t0:=fsolve(diff(r1(t),t)=0,t);

retroHt1:=fsolve(r1(t0)=0,r0=0..infinity);

printf("Constant field: %f minutes, %f miles",

t0/60,(retroHt1*meter2feet/5280) );

# Variable field model

eq:=(v0)^2/2 = a*x+G*m1/(R+x)-G*m1/R;

retroHt2:=fsolve(eq,x=0..infinity);

printf("Variable field: %f kilometers, %f miles",

(retroHt2/1000),(retroHt2*meter2feet/5280) );

72. v0 = −980, a = 18000

73. v0 = −1000, a = 20000

Solution: Answers:
Constant field:
t0 = 518.93 seconds = 8.65 minutes, retrorocket activation height r(0) =
115.99 kilometers = 72.07 miles.
Variable field:
retrorocket activation height r(0) ≈ 104.78 kilometers or 65.11 miles.
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74. v0 = −1000, a = 19000

75. v0 = −900, a = 18000

Solution: Answers:
Constant field:
t0 = 656.22 seconds = 10.94 minutes, retrorocket activation height r(0) =
132.01 kilometers = 82.03 miles.
Variable field:
retrorocket activation height r(0) ≈ 113.59 kilometers or 70.58 miles.

76. v0 = −900, a = 20000

77. v0 = −1100, a = 22000

Solution: Answers:
Constant field:
t0 = 443.08 seconds = 7.38 minutes, retrorocket activation height r(0) =
108.94 kilometers = 67.69 miles.
Variable field:
retrorocket activation height r(0) ≈ 100.86 kilometers or 62.67 miles.

78. v0 = −1100, a = 21000

79. v0 = −800, a = 18000

Solution: Answers:
Constant field:
t0 = 498.91 seconds = 8.32 minutes, retrorocket activation height r(0) =
122.67 kilometers = 76.22 miles.
Variable field:
retrorocket activation height r(0) ≈ 111.6 kilometers or 69.34 miles.

80. v0 = −800, a = 21000

Escape velocity
Find the escape velocity of the given planet, given the planet’s mass m and
radius R.

81. (Planet A) m = 3.1× 1023 kilograms, R = 2.4× 107 meters.

Solution: Answer: v0 = 1312.918505 meters/sec = 4726.5 kilometers/hour.

Model: v0 =
√
2gR, gR2 = Gm, G = 6.6726× 10−11

# Escape velocity

m:=3.1*10^(23); # kilograms

R:=2.4*10^7; # meters

G:=6.6726*10^(-11);g:=G*m/R^2;v0:=sqrt(2*g*R);

printf("Escape velocity = %f meters/sec = %f kilometers/hour",

v0,v0*3.6);
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82. (Mercury) m = 3.18× 1023 kilograms, R = 2.43× 106 meters.

83. (Venus) m = 4.88× 1024 kilograms, R = 6.06× 106 meters.

Solution: Answer: v0 = 10366.595250 meters/sec = 37319.7 kilome-
ters/hour.

m:=4.88*10^(24); # kilograms

R:=6.06*10^6; # meters

G:=6.6726*10^(-11);g:=G*m/R^2;v0:=sqrt(2*g*R);

printf("Escape velocity = %f meters/sec = %f kilometers/hour",

v0,v0*3.6);

84. (Mars) m = 6.42× 1023 kilograms, R = 3.37× 106 meters.

85. (Neptune) m = 1.03× 1026 kilograms, R = 2.21× 107 meters.

Solution: Answer: v0 = 24939.343610 meters/sec = 89781.6 kilome-
ters/hour.

86. (Jupiter) m = 1.90× 1027 kilograms, R = 6.99× 107 meters.

87. (Uranus) m = 8.68× 1025 kilograms, R = 2.33× 107 meters.

Solution: Answer: v0 = 22296.897920 meters/sec = 80268.8 kilome-
ters/hour.

88. (Saturn) m = 5.68× 1026 kilograms, R = 5.85× 107 meters.

Lunar Lander Experiments

89. (Lunar Lander) Verify that the variable field model for Example 2.30 gives
a soft landing flight model in MKS units

u′′(t)=2.2352− c1
(c2 + u(t))2

,

u(0) =127254.1306,
u′(0)=−429.1584,

where c1 = 4911033599000 and c2 = 1740000.

Solution: The model was developed in the text. It remains to evaluate
symbols and verify the constants reported. Computer assist is expected.

The flight time calculation uses graphing of a numerical solution on t = 0 to
t = 12 minutes, because the constant field model reported about 12 minutes
flight time. The graph then suggests the flight time is between 580 and 650
seconds. A numerical solver finds a flight time of about 625 seconds.
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# Variable field model

V0:=-960;A:=18000;

R:=1740*1000;m1:=7.36*10^(22);G:=6.6726*10^(-11);

miles2meters:=(5280*12*2.54/100);meter2feet:=3.280839895;

a:=A*miles2meters/3600/3600;

v0:=(V0*miles2meters)/3600;

gm:=G*m1/R^2;

u0:=1.272541306*10^5;# activation height in meters

de:=diff(u(t),t,t)=a-gm*R^2/(R+u(t))^2;

ic:=u(0)=u0,D(u)(0)=v0;

# Find the flight time

ans:=dsolve({de,ic},numeric,output=listprocedure);

uu:=rhs(ans[2]);vv:=rhs(ans[3]);# position, velocity

plot(uu(t),t=0..12*60);

ftime:=fsolve(uu(t)=0,t=590..650);

uu(ftime);# error < 1/10^8

90. (Lunar Lander: Numerical Experiment) Using a computer, solve the
flight model of the previous exercise. Determine the flight time t0 ≈ 625.6
seconds by solving u(t) = 0 for t.

Details and Proofs

91. (Linear Rise Time) Using the inequality eu > 1 + u for u > 0, show that
the ascent time t1 in equation (17) satisfies

g(1 + ρt1) < geρt1 = v0ρ+ g.

Conclude that t1 < v0/g, proving Lemma 2.2.

Solution: Let u = ρt1 in the inequality eu > 1+u. All symbols are positive,
so u > 0. Then eu > 1 + u implies eρt1 > 1 + ρt1. Multiply this inequality
by g to prove the result g(1 + ρt1) < geρt1 .

Equality geρt1 = v0ρ+ g is established using t1(ρ, v0) =
1

ρ
ln

∣∣∣∣v0ρ+ g

g

∣∣∣∣. The
absolute value can be erased: all symbols are positive. Then

eρt1 = e
ln

(
v0ρ+ g

g

)
=

v0ρ+ g

g
,

which completes the proof.

92. (Linear Maximum) Verify that Lemma 2.2 plus the inequality x(t) <
−gt2/2 + v0t imply x(t1) < gv20/2. Conclude that the maximum for ρ > 0
is less than the maximum for ρ = 0.
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93. (Linear Rise Time) Consider the ascent time t1(ρ, v0) given by equation
(17). Prove that

dt1
dρ

=
ln g

v0ρ+g

ρ2
+

v0

ρ(v0ρ+ g)
.

Solution: Arrange equation

t1(ρ, v0) =
1

ρ
ln

∣∣∣∣v0ρ+ g

g

∣∣∣∣
in the form

ρt1 = ln |v0ρ+ g| − ln |g|

Differentiate across this equation on symbol ρ using d
du ln |u| = 1/u and the

chain rule of calculus. Then

t1 + ρ
d t1
dρ

=
v0

v0ρ+ g
− 0

Use identity ln(1/u) = − ln(u) and fraction algebra to arrive at the claimed
identity.

94. (Linear Rise Time) Consider dt1(ρ, v0)/dρ given in the previous exercise.
Let ρ = gx/v0. Show that dt1/dρ < 0 by considering properties of the
function −(x+ 1) ln(x+ 1) + x. Then prove Lemma 2.2.

95. (Compare Rise Times) The ascent time for nonlinear model v′ = −g−ρv2

is less than the ascent time for linear model u′ = −g− ρu. Verify for ρ = 1,
g = 32 ft/sec/sec and initial velocity 50 ft/sec.

Solution: Let t1, t2 be the rise times for the linear and nonlinear drag
models, respectively. To be shown: t2 < t1.
The models:

Linear drag: u′ = −32− u, u(0) = 50

Nonlinear drag: v′ = −32− v2, v(0) = 50

The solutions:

u(t) = −g

ρ
+

(
v0 +

g

ρ

)
e−ρt = −32 + (50 + 32) e−ρt

v(t) =

√
g

ρ
tan (

√
ρg(c− t)) =

√
32 tan

(√
32(c− t)

)
Rise times are found by solving u(t1) = 0, v(t2) = 0 for t1 = 0.9409833446
and t2 = 0.2577648674. This verifies t2 < t1.
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rho:=1;v0:=50;g:=32;

de1:=diff(v(t),t)=-g-rho*v(t)^2;

ans1:=dsolve([de1,v(0)=v0],v(t));

V1:=unapply(rhs(ans1),t);

t1:=fsolve(V1(t)=0,t=0..1);

de2:=diff(v(t),t)=-g-rho*v(t);

ans2:=dsolve([de2,v(0)=v0],v(t));

V2:=unapply(rhs(ans2),t);

t2:=fsolve(V2(t)=0,t=0..0.5);

96. (Compare Fall Times) The descent time for nonlinear model v′ = ρv2−g,
v(0) = 0 is greater than the descent time for linear model u′ = −ρu − g,
u(0) = 0. Verify for ρ = 1, g = 32 ft/sec/sec and maximum heights both
100 feet.

Solution: Let t1, t2 be the fall times for the nonlinear and linear drag models,
respectively. Each falls at t = 0 from maximum height h0 = 100 feet and
velocity v0 = 0 feet/second. The maple code below finds t1 = 17.80020180
seconds and t2 = 4.108568725 seconds.

v0:=0;g:=32;rho:=1;h0:=100;

de1:=diff(x(t),t,t)=-g+rho*diff(x(t),t)^2;

ans1:=dsolve([de1,x(0)=h0,D(x)(0)=v0],x(t));

X1:=unapply(rhs(ans1),t);

t1:=fsolve(X1(t)=0,t=0..20);

de2:=diff(x(t),t,t)=-g-rho*diff(x(t),t);

ans2:=dsolve([de2,x(0)=h0,D(x)(0)=v0],x(t));

X2:=unapply(rhs(ans2),t);

t2:=fsolve(X2(t)=0,t=0..5);
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2.7 Logistic Equation

Limited Environment
Find the equilibrium solutions and the carrying capacity for each logistic equa-
tion.

1. P ′ = 0.01(2− 3P )P

Solution: Solve 0 = 0.01(2 − 3P )P for P = 0 and P = 2/3. These are the
equilibrium solutions. Symbols are a = 2, b = 3. The carrying capacity is
M = 2/3.

2. P ′ = 0.2P − 3.5P 2

3. y′ = 0.01(−3− 2y)y

Solution: Equilibria y = 0 and y = −3/2. The symbols in the solution
model are a = −3(0.01), b = 2(0.01). Then M = a/b = −3/2. A negative
number for M has no population interpretation. The limit at infinity of the
solution

y(t) =
ay(0)

by(0) + (a− by(0))e−at

=
−3y(0)

2y(0) + (−3− 2y(0))e3t

is zero, which means the carrying capacity is zero. Every positive population
size y(0) gives limt→∞ y(t) = 0, the extinction state.

4. y′ = −0.3y − 4y2

5. u′ = 30u+ 4u2

Solution: Factor as 30u + 4u2 = (30 + 4u)u, then equilibria are u = 0 and
u = −15/2. Symbols are a = 30, b = −4. Because a/b = −15/2 is negative,
the carrying capacity is M = 0, extinction.

6. u′ = 10u+ 3u2

7. w′ = 2(2− 5w)w

Solution: Factor as 2(2−5w)w = (4−10w)w, then equilibria are w = 0 and
w = 4/10. Symbols are a = 4, b = 10. Because a/b = 4/10 is positive, then
the carrying capacity is M = 0.4.

8. w′ = −2(3− 7w)w
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9. Q′ = Q2 − 3(Q− 2)Q

Solution: Expand as Q2 − 3Q2 +6Q = −2Q2 +6Q = (6− 2Q)Q. Equilibria
are Q = 0 and Q = 3. Symbols are a = 6, b = 2. Because a/b = 6/2 is
positive, then the carrying capacity is M = 3.

10. Q′ = −Q2 − 2(Q− 3)Q

Spread of a Disease
In each model, find the number of infectives and then the number of susceptibles
at t = 2 months. Follow Example 2.34, page 143 �. A calculator is required
for approximations.

11. y′ = (5/10− 3y/100000)y, y(0) = 100.

Solution: Define a = 5/10, b = 3/100000. Let M = a/b = 50000/3 =
16666.66667. We will find the number of infectives y(2) and the number of
susceptibles M − y(2).

The logistic formula with a = 5, b = 2 and y(0) = 100 gives

y(t) =
50000

3 + 497e−t/2
.

The number of infectives is y(2) = 269.0543160. The number of susceptibles
is M − y(2) = 16397.61235.

12. y′ = (13/10− 3y/100000)y, y(0) = 200.

13. y′ = (1/2− 12y/100000)y, y(0) = 200.

Solution: Let a = 1/2, b = 12/100000, M = a/b = 4166.666667. The
number of infectives is y(2) = 502.2333968. The number of susceptibles is
M − y(2) = 3664.433270.

14. y′ = (15/10− 4y/100000)y, y(0) = 100.

15. P ′ = (1/5− 3P/100000)P , P (0) = 500.

Solution: Let a = 1/5, b = 3/100000, M = a/b = 6666.666667. The
number of infectives is y(2) = 719.3768030. The number of susceptibles is
M − y(2) = 5947.289864.

16. P ′ = (5/10− 3P/100000)P , P (0) = 600.

17. 10P ′ = 2P − 5P 2/10000, P (0) = 500.

Solution: Let a = 1/5, b = 5/100000, M = a/b = 4000. The number of
infectives is y(2) = 702.7110198. The number of susceptibles is M − y(2) =
3297.288980.
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18. P ′ = 3P − 8P 2, P (0) = 10.

Explosion–Extinction
Classify the model as explosion or extinction.

19. y′ = 2(y − 100)y, y(0) = 200

Solution: Let M = 100. Then y = 0 and y = M are equilibrium solutions.
The sign of y′(0) detects explosion, because y′(0) = 2(y(0) − M)y(0) =
2(200−M)(200) is positive, meaning y(t) increases without bound to infinity.

20. y′ = 2(y − 200)y, y(0) = 300

21. y′ = −100y + 250y2, y(0) = 200

Solution: Explosion, because y′(0) = 200(−100 + 250(200)) > 0.

22. y′ = −50y + 3y2, y(0) = 25

23. y′ = −60y + 70y2, y(0) = 30

Solution: Explosion, because y′(0) = 30(−60 + 70(30)) > 0.

24. y′ = −540y + 70y2, y(0) = 30

25. y′ = −16y + 12y2, y(0) = 1

Solution: Extinction, because y′(0) = 1(−16 + 12(1)) < 0.

26. y′ = −8y + 12y2, y(0) = 1/2

Constant Harvesting
Find the carrying capacity N and the threshold population M .

27. P ′ = (3− 2P )P − 1

Solution: The carrying capacity is M = 1 and the threshold population is
N = 1/2.

Let f(P ) = (3− 2P )P − 1. Solve f(P ) = 0 for P = 1/2, P = 1. A shortcut
after finding the roots is to declare the larger root to be the carrying capacity
and declare the smaller root to be the threshold population. A careful
solution can be modeled after the Constant Harvesting Example 2.36
page 144 �. The shortcut works for quadratic f(P ) with two distinct real
positive roots.
The carrying capacity M = limt→∞ P (t) is the expected population size
found by a biologist estimating or counting the population at some random
time. Units could be billions, e.g., expected population size 1 billion and
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threshold population 1/2 billion.

# stability test calculations

F:=P->(3-2*P)*P-1;

L:=[solve(F(P)=0,P)];# L:=[1/2,1], array of roots

D(F)(L[1]);D(F)(L[2]);# find F’(1/2), F’(1)

# M=1 is a funnel/sink by the stability test

28. P ′ = (4− 3P )P − 1

29. P ′ = (5− 4P )P − 1

Solution: Carrying capacity M = 1, threshold population N = 1/4.

30. P ′ = (6− 5P )P − 1

31. P ′ = (6− 3P )P − 1

Solution: Carrying capacity M = 1.816496581, threshold population N =
0.1835034191. The roots are P = 1± 1

3

√
6.

32. P ′ = (6− 4P )P − 1

33. P ′ = (8− 5P )P − 2

Solution: Carrying capacity M = 1.289897949, threshold population N =
0.3101020514. The roots are P = 4

5 ± 1
5

√
6.

34. P ′ = (8− 3P )P − 2

35. P ′ = (9− 4P )P − 2

Solution: Carrying capacity M = 2, threshold population N = 1/4.

36. P ′ = (10− P )P − 2

Variable Harvesting
Re-model the variable harvesting equation as y′ = (a − by)y and solve the
equation by logistic solution (2) on page 142 �.

37. P ′ = (3− 2P )P − P

Solution: The equation is rewritten as P ′ = (3− 2P )P − P = (2− 2P )P .
This has the form of y′ = (a − by)y where a = b = 2. Then equation (2)
page 142 � gives formula

P (t) =
2P0

2P0 + (2− 2P0)e−2t

which simplifies to

P (t) =
P0

P0 + (1− P0)e−2t
.
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38. P ′ = (4− 3P )P − P

39. P ′ = (5− 4P )P − P

Solution: The equation is rewritten as P ′ = (5− 4P )P − P = (4− 2P )P ,
which has the form of y′ = (a− by)y with a = 4, b = 2. Then equation (2)
page 142 � gives formula

P (t) =
4P0

2P0 + (4− 2P0)e−4t

40. P ′ = (6− 5P )P − P

41. P ′ = (6− 3P )P − P

Solution: Because P ′ = (6 − 3P )P − P = (5 − 3P )P has the form of
y′ = (a − by)y with a = 5, b = 3, then equation (2) page 142 � gives
formula

P (t) =
5P0

3P0 + (5− 3P0)e−5t

42. P ′ = (6− 4P )P − P

43. P ′ = (8− 5P )P − 2P

Solution: P (t) = 6P0

5P0+(6−5P0)e−6t

44. P ′ = (8− 3P )P − 2P

45. P ′ = (9− 4P )P − 2P

Solution: P (t) =
7P0

4P0 + (7− 4P0)e
−7t

46. P ′ = (10− P )P − 2P

Restocking
Make a direction field graphic by computer following Example 2.38. Using the
graphic, report (a) an estimate for the carrying capacity C and (b) approxima-
tions for the amplitude A and period T of a periodic solution which oscillates
about P = C.

47. P ′ = (2− P )P − sin(πt/3)

Solution: Answers: The period is about 5.5, the amplitude is about 0.9
and the oscillation is approximately about line P = 1.9.
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The graphic is a computer experiment which selects 15 initial values −7 to
7 and plots the 15 solution curves on one graphic. The plan is to locate a
periodic curve and guess its initial value.

The graphic uses guess P (0) = 2 to make a single graphic, then extract
a section from the graphic to find the amplitude, period and median line
P = C. The amplitude is decided by cursor probe of maxima and minima.
The period is about 5.5 by cursor probe of two adjacent maxima. The
median line is P = 1.9 by computation from the minima and amplitude.
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# maple2021

f:=(t,P) -> (2-P)*P-1*sin(1*Pi*t/3);

de:=diff(P(t),t)=f(t,P(t));H:=1;HH:=0.01;

vals:=[seq(H*(i-7),i=0..14)];

a:=-10;b:=50;c:=-5;d:=5;# graph window by experiment

ics:=[seq([P(0)=vals[i]],i=1..nops(vals))];

opts:=font=[courier,16,bold],labelfont=[courier,16,bold],

thickness=3,axes=framed,labels=[t,P(t)]:

pts1:=stepsize=HH,arrows=none,opts,title="Experimental plot";

# First plot to find P(0)=2 initial value

DEtools[DEplot](de,P(t),t=a..b,P=c..d,ics,opts1);

# second plot to determine periodic solution

ans:=dsolve([de,P(0)=2],numeric,output=operator);

PP:=rhs(ans[2]);# DE solution P(t)

opts2:=opts,title="Periodic curve from P(0)=2":

plot(PP(x),x=40..50,opts2);

MM:=Optimization[Maximize](PP(x),x=45 .. 49);

# MM := [2.38568114929172, [x = 46.8843119054944]]

mm:=Optimization[Minimize](PP(x),x=43 .. 45);

# mm := [1.45203158538608, [x = 44.1213517742313]]

period:=(rhs(MM[2][1])-rhs(mm[2][1]) )*2;# 5.52592026252636

amplitude:=MM[1]-mm[1];# 0.933649563905633

C:=mm[1]+amplitude/2;# 1.91885636733890

48. P ′ = (2− P )P − sin(πt/5)

49. P ′ = (2− P )P − sin(πt/7)

Solution: Answers: The period is about 12.8, the amplitude is about 1.1
and the oscillation is approximately about line P = 1.9.

Details follow Exercise 47 using modified computer code. Initial value
P (0) = 0.5 is selected to make an eventually periodic curve. The curve
section to study is on 20 ≤ t ≤ 50. Modified code sections from Exercise 47
are below.

MM:=Optimization[Maximize](PP(x),x=30 .. 50);

# MM := [2.40962353216826, [x = 38.8591015537082]]

mm:=Optimization[Minimize](PP(x),x=30 .. 40);

# mm := [1.30118248632842, [x = 32.4563671060699]]

# period := 12.8054688952765

# amplitude := 1.10844104583984

# C := 1.85540300924834

50. P ′ = (2− P )P − sin(πt/8)
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Richard Function
Ideas of L. von Bertalanffy (1934), A. Pütter (1920) and Verhulst were used
by F. J. Richards (1957) to define a sigmoid function Y (t) which generalizes
the logistic function. It is suited for data-fitting models, for example forestry,
tumor growth and stock-production problems. The Richard function is

Y (t) = A+
K −A

(1 +Qe−B(t−M))1/ν
,

where Y = weight, height, size, amount, etc., and t = time.

51. Differentiate for α > 0, ν > 0, the specialized Richard function

Y (t) =
K

(1 +Qe−αν(t−t0))1/ν

to obtain the sigmoid differential equation

Y ′(t) = α

(
1−

(
Y

K

)ν)
Y.

The relation Y (t0) =
K

(1+Q)1/ν
implies Q = −1 +

(
K

Y (t0)

)ν
.

Solution: The details expand the left side LHS and right side RHS of the
equivalent differential equation

Y ′

αY
= 1−

(
Y

K

)ν

Computer algebra is used to check the computation of Y ′: see the maple

code below. Then

LHS =
Q e−αν (t−t0)

1 +Q e−αν (t−t0)

Define Z = 1 +Q e−αν(t−t0). Then Y = K/Z1/ν and

RHS = 1− 1

Z1/ν

ν

= 1− 1

Z
, LHS =

Q e−αν (t−t0)

1 +Q e−αν (t−t0)
=

Z − 1

Z

Conclusion: LHS = RHS, which verifies the Richard differential equation.

Y:=t->K/(1+Q*exp( -alpha*nu*(t-t0) ) )^(1/nu);

LHS:=simplify(diff(Y(t),t)/Y(t)/alpha);

#LHS:=Q*exp(-alpha*nu*(t-t0))/(1+Q*exp(-alpha*nu*(t-t0)))

52. Solve the differential equation Y ′(t) = α
(
1−

(
Y
K

)ν)
Y by means of the

substitution w = (Y/K)ν , which gives a familiar logistic equation w′ =
αν(1− w)w.
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2.8 Science and Engineering Applications

Tank Draining

1. A cylindrical tank 6 feet high with 6-foot diameter is filled with gasoline. In
15 seconds, 5 gallons drain out. Find the drain times for the next 20 gallons
and the half-volume.

Solution: The answers are approximately 60.299 seconds and 2227.95 sec-
onds or 37.13 minutes. Why not exactly 1 minute more to drain the next
20 gallons? Because Torricelli’s Lemma says droplets fall to the orifice at
changing speeds. The fraction 25/1270 of the tank drained in 75 seconds
is about 2% of the tank. The half-volume time 37.13 minutes is 5 minutes
longer than the guess (1270/2)/20 = 31.75 minutes.

Formulas. A USA gallon is defined to be 231 cubic inches, which is 0.133681
cubic feet or 3.785411784 liters. The volume V of a cylindrical tank of ra-
dius R and height H is V = π R2 H. The area A of a cross-section of
this tank at any height y is A(y) = π R2. The half-volume of the tank is
1
2 V = 1

2 π R2 H.

Parameters. Time variable t is in seconds, fluid height variable y is in
feet, tank radius R = 6/2 feet, tank cross-sectional area A = 9π, tank
height H = 6 feet, tank volume V = πR2H = 54π = 169.6460033 cubic
feet, tank volume at t = 15 is V0 = V − 5(0.133681) = 168.9775983 cubic
feet, tank height at t = 15 is y0 = V0/A(15) = 5.976360008 feet.

Torricelli’s Equation.

y′(t) = −k

√
y(t)

A(y(t))
= −k

√
y(t)

πR2
, y(0) = H.

The implicit solution: √
y(t) +

k t

18π
− c = 0

Find constant c. Let t = 0 and height y(0) = 6 in the implicit solution to
find c =

√
6. Then the implicit solution is√

y(t) +
k t

18π
−
√
6 = 0

Find k. Height y(15) = 5.976360008 and time t = 15 seconds are used in
the implicit solution to find k = 0.01820963530:

√
5.976360008 +

15 k

18π
−

√
6 = 0
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Drain Time after 20 more Gallons. Let V1 = V − 25(0.133681) be the
tank volume after 25 gallons drain. The tank height is then H1 = V1/(9π).
Let y(T1) = H1. Because the first 5 gallons drained in 15 seconds, then
T1 − 15 seconds is the drain time for the next 20 gallons. The implicit
solution for t = T1 gives equation√

H1 +
k T1

18π
−
√
6 = 0

with answer T1 = 75.29873845 seconds. Then T1−15 = 60.29873845 seconds
is the requested drain time.

Drain Time for Half-Volume. Let V2 = 1
2V , the half-volume. The half-

volume height H2 satisfies πR2H2 = V2, therefore H2 = V2/(9π) = 3. The
implicit solution at the half-volume drain time t = T2 gives equation

√
H2 +

k T2

18π −
√
6 = 0

√
3 + 0.0003220170522T2 −

√
6 = 0

Solve for time T2 = 2227.953242 seconds = 37.13 minutes.

# Torricelli drain cylindrical tank

R:=6/2;H:=6;V:=Pi*R^2*H;A:=unapply(Pi*R^2,y);

gallons2CubicFeet:=0.133681;

V0:=V-5*gallons2CubicFeet;# Tank vol at 15 sec

H0:=V0/A(15);# Tank height at 15 sec

f:=unapply(-k*sqrt(y)/A(y),y);

de:=diff(y(t),t) = f(y(t));

ans:=dsolve(de,y(t));# implicit solution

c:=solve(subs(t=0,y(0)=H,ans),_C1);

ans1:=subs( _C1=c,ans);

equk:=subs(t=15,y(15)=H0,ans1);

kk:=solve(equk,k);

# Drain time on next 20 gallons

V1:=V-25*0.133681; H1:=V1/9/Pi;

T1:=solve(subs(k=kk,y(t)=H1,ans1),t);

Drain20:=T1-15;

# half-volume time

V2:=V/2;H2:=V2/Pi/R^2;

equT2:=sqrt(H2)+kk*t/18/Pi - sqrt(6)=0;

T2:=solve(equT2,t);T2min:=T2/60;

2. A cylindrical tank 4 feet high with 5-foot diameter is filled with gasoline.
The half-volume drain time is 11 minutes. Find the drain time for the full
volume.
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3. A conical tank is filled with water. The tank geometry is a solid of revolution
formed from y = 2x, 0 ≤ x ≤ 5. The units are in feet. Find the drain time
for the tank, given the first 5 gallons drain out in 12 seconds.

Solution: The answer is approximately 703.8 seconds = 11.73 minutes.

The details follow the book’s example for a conical tank. The maple code
is a modification of Exercise 1.

# Torricelli drain conical tank

a:=0;b:=5;

A:=y->Pi*(y/2)^2;# y=2x, a <= x <= b

gallons2CubicFeet:=0.133681;

V:=int(A(y),y=a..b);# V = tank volume 32.72492349 ft^3

f:=unapply(-k*sqrt(y)/A(y),y);

de:=diff(y(t),t) = f(y(t));

H:=2*b;# tank height is y=2x at x=b

ans:=dsolve([de,y(0)=H],y(t));# implicit solution

V0:=V-5*gallons2CubicFeet;# Tank vol at 12 sec

solve(int(A(y),y=a..x)=V0,x);# find x0,y0

x0:=4.965723981;# x-value for integral=V0

y0:=2*x0;# y=2x fluid height = 9.931447962

ansk:=subs(t=12,y(12)=y0,ans);

kk:=solve(ansk,k);# kk = 0.1411539155

# Drain time for the whole tank

Y:=unapply(rhs(subs(k=kk,ans)),t);

solve(Y(t)=0,t);# t = 703.8124469 seconds

4. A conical tank is filled with oil. The tank geometry is a solid of revolution
formed from y = 3x, 0 ≤ x ≤ 5. The units are in meters. Find the
half-volume drain time for the tank, given the first 5 liters drain out in 10
seconds.

5. A spherical tank of diameter 12 feet is filled with water. Find the drain time
for the tank, given the first 5 gallons drain out in 20 seconds.

Solution: A layman guess for the answer is 7.5 hours to drain the tank.
The correct answer is about 11.97 hours. The difference in the two times is
explained by Torricelli’s Lemma: the speed of a droplet through the orifice
decreases with decreasing water surface height.

The tank is a solid whose spherical boundary is formed by rotation of a half
circle around the y-axis. The orifice is assumed at the origin x = y = 0.
The tank has diameter D = 12 feet and radius R = 6 feet. The full circle
has equation x2 + (y − R)2 = R2. Along the half-circle in the right half-
plane x ≥ 0, variable x is defined by equation x =

√
R2 − (R− y)2 for

0 ≤ y ≤ 2R. The cross-sectional area A(y) at height y is

A(y) = πx2 = π(R2 − (R− y)2), 0 ≤ y ≤ 2R
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and the tank volume V (y) at height y is

V (y) =

∫ y

0

A(z)dz =
1

3
πy3 + 6πy2

The differential equation is y′(t) = f(y(t)), f(y) = −k
√
y/A(y), with im-

plicit solution

t− 2π

5k
y3/2(y − 20) + c = 0

Substitute y(0) = 12 to find c = − 192π
√
12

5k . Then the implicit solution is

t− 2π

5k
y3/2(y − 20)− 192π

√
12

5k
= 0

After 20 seconds, 5 gallons drained. Conversion of gallons to cubic feet
gives tank volume V1 = V (D) − 5(0.133681) = 904.1102794 cubic feet.
Solve V (y) = V1 for y = 11.81069370, 12.18733587, −5.998029570. Select
y1 = 11.81069370, because the others are outside 0 ≤ y ≤ 12. Check
V (y1) = V1.

Substitute t = 20, y(20) = y1 into the implicit solution:

20 k + 417.7053992− (192/5)
√
12π = 0

Then k = 0.009698715978 and the implicit solution becomes

t− 129.5673639 y(t)3/2(y(t)− 20)− 12438.46693
√
12 = 0

Substitute y(t) = 0 to find the drain time:

t− 12438.46693
√
12 = 0, t = 43088.11338 seconds.
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# Torricelli drain spherical tank

DD:=12;R:=DD/2;A:=unapply(Pi*(R^2 - (R-y)^2),y);

V:=unapply(int(A(z),z=0..y),y);

V0:=V(2*R);# Full tank volume in cubic feet

gallons2CubicFeet:=0.133681;

capacity:=V0/gallons2CubicFeet;# gallons in the tank

laymanDrainTimeSecs:=(capacity/5)*20;# Estimate in secs

laymanTimeMin:=laymanDrainTimeSecs/60;# Estimate in minutes

V1:=V(2*R)-5*gallons2CubicFeet;# Tank vol at 20 sec

f:=unapply(-k*sqrt(y)/A(y),y);# RHS of the DE

de:=diff(y(t),t) = f(y(t));

ans:=dsolve(de,y(t));# implicit solution

c:=solve(subs(t=0,y(0)=DD,ans),_C1);

ans1:=subs( _C1=c,ans);

solve(V(y)=V1,y);# Height y=y1 after 20 secs

y1:=11.81069370;# range 0 to 12 required

V(y1)-V1;# Check if zero

equk:=subs(t=20,y(20)=y1,ans1);

kk:=solve(equk,k);

subs(k=kk,ans1);

# Drain time whole tank in seconds

ans2:=subs(y(t)=0,k=kk,ans1);

T:=solve(ans2,t);

6. A spherical tank of diameter 9 feet is filled with solvent. Find the half-
volume drain time for the tank, given the first gallon drains out in 3 seconds.

7. A hemispherical tank of diameter 16 feet is filled with water. Find the drain
time for the tank, given the first 5 gallons drain out in 25 seconds.

Solution: A layman guess for the answer is 11.14 hours to drain the tank.
The correct answer is about 15.6 hours.

Details parallel Exercise 5, restricting the range of y to 0 ≤ y ≤ R. The
maple code in Exercise 5 applies, suitably modified.

8. A hemispherical tank of diameter 10 feet is filled with solvent. Find the
half-volume drain time for the tank, given the first gallon drains out in 4
seconds.

9. A parabolic tank is filled with water. The tank geometry is a solid of
revolution formed from y = 2x2, 0 ≤ x ≤ 2. The units are in feet. Find the
drain time for the tank, given the first 5 gallons drain out in 12 seconds.

Solution: A layman guess for the answer is 15.04 minutes to drain the tank.
The correct answer is about 13.34 minutes. A similar tank shape is a saline
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drip bag in a hospital.

Details use A(y) = πy/2, V (y) = πy2/4, 0 ≤ y ≤ H ≡ 8. The tank capacity
is 376 gallons, from which the layman answer is (376/5)(12) seconds. Fol-
lowing Exercise 5, k = 0.02961387652 and the drain time is T = 800.1443397
seconds.

# Torricelli drain parabolic tank

# y=2x^2 on 0 \le x \le 2

A:=unapply(Pi*y/2,y);

H:=2*(2)^2;# y=2x^2 at x=2, tank height

V:=unapply(int(A(z),z=0..y),y);

V0:=V(H);gallons2CubicFeet:=0.133681;

capacity:=V0/gallons2CubicFeet;# gallons in the tank

laymanDrainTimeSecs:=(capacity/5)*12;# Estimate drain time

laymanTimeMin:=laymanDrainTimeSecs/60;

V1:=V(R)-5*gallons2CubicFeet;# Tank vol at 12 sec

f:=unapply(-k*sqrt(y)/A(y),y);

de:=diff(y(t),t) = f(y(t));

ans:=dsolve(de,y(t));# implicit solution

c:=solve(subs(t=0,y(0)=R,ans),_C1);

ans1:=subs( _C1=c,ans);

solve(V(y)=V1,y);H1:=7.919813160;# range 0 to H required

equk:=subs(t=12,y(12)=H1,ans1);

kk:=solve(equk,k);# k = 0.02961387652

ans2:=subs(y(t)=0,k=kk,ans1);# Drain time t for whole tank

T:=solve(ans2,t);

10. A parabolic tank is filled with oil. The tank geometry is a solid of revolution
formed from y = 3x2, 0 ≤ x ≤ 2. The units are in meters. Find the half-
volume drain time for the tank, given the first 4 liters drain out in 16
seconds.

Torricelli’s Law and Uniqueness
It it known that Torricelli’s law gives a differential equation for which Picard’s
existence-uniqueness theorem is inapplicable for initial data y(0) = 0.

11. Explain why Torricelli’s equation y′ = k
√
y plus initial condition y(0) = 0

fails to satisfy the hypotheses in Picard’s theorem. Cite all failed hypotheses.

Solution: The partial derivative of the RHS of the differential equation in
variable y fails to be continuous at y = 0. All other hypotheses are satisfied.

12. Consider a typical Torricelli’s law equation y′ = k
√
y with initial condition

y(0) = 0. Argue physically that the depth y(t) of the tank for t < 0 can be
zero for an arbitrary duration of time t near t = 0, even though y(t) is not
zero for all t.
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13. Display infinitely many solutions y(t) on −5 ≤ t ≤ 5 of Torricelli’s equation
y′ = k

√
y such that y(t) is not identically zero but y(t) = 0 for 0 ≤ t ≤ 1.

Solution: The solutions correspond to a full tank at an earlier time t = t0 <
0, followed by the tank emptying at time t = 0. The tank cross-sectional
area in this example is constant. We’ll discuss the case k = 1 to give the
idea of the construction.

One solution y(t) = (t/2)2 of y′ =
√
y can be found by separation of vari-

ables, valid for t > 0. The differential equation is autonomous, therefore a
horizontal translate z(t) = y(t − d) = (t − d)2/4 is a solution of z′ =

√
z

with z(d) = 0. Define for −5 < d < 0 function

yd(t) =

{
0 d ≤ t ≤ 5,
(t− d)2/4 −5 ≤ t < d.

Then y′d(t) =
√

yd(t) for −5 < t < 5. Each function yd models a tank of
height yd(−5) = (−5 − d)2/4 which empties at t = d < 0 and the tank
remains empty until t = 5. There are infinitely many functions yd.

# exercise 13

k:=1;f:=unapply(k*sqrt(y)/1,y);

de:=diff(y(t),t) = f(y(t));

ans:=dsolve(de,y(t));# implicit solution

# ans := sqrt(y(t))-(1/2)*t-_C1 = 0

Y:=unapply((t/2)^2,t);# explicit solution

14. Does Torricelli’s equation y′ = k
√
y plus initial condition y(0) = 0 have a

solution y(t) defined for t ≥ 0? Is it unique? Apply Picard’s theorem and
Peano’s theorem, if possible.

Clepsydra: Water Clock Design
A surface of revolution is used to make a container of height h feet for a water
clock. An increasing curve y = f(x) on 0 ≤ x ≤ 1 is revolved around the y-axis
to make the container shape, e.g., y = x makes a conical tank. Water drains
by gravity out of diameter d orifice at (0, 0). The tank water level must fall at
a constant rate of r inches per hour, important for marking a time scale on the
tank. Find d and f(x), given h and r.

15. h = 5 feet, r = 4 inches/hour. Answers: f(x) = 5x4, d = 0.05460241726 ≈
3/64 inch.

Solution: Answers: f(x) = 5x4, d ≈ 1/16 inch.

Known is f(x) = cx4 for some constant c. Below is a derivation of this fact

from Torricelli’s Lemma. Constant c =

(
π r

π(d/2)2
√

2g

)2

is in terms of g, h
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and r. Units are second, foot, pound. Let g = 32 ft/sec/sec.

Define A(y) = πx2 where y = f(x) is the curve revolved around the y-
axis, x = 0 to x = 1 feet. Value h = 5 = f(1) is the tank height in feet.
Value r = 4 is in inches/hour. Let R = 1 inch/hour = 1

12 feet / 3600
seconds = 1/43200 ft/sec. Then r equals 4R feet/sec. Orifice diameter d
feet is to be determined, a small decimal value. Apply Torricelli’s model:
A(y)y′ = −a

√
2gy, a = π(d/2)2 = orifice area. Symbol a is defined in the

Torricelli Equation proof, technical details page 148 �.

Let A(y) = πx2, y′ = −rR, y = f(x) in Torricelli’s model to obtain the

equation −π (r)x2 = −π(d/2)2
√

2g
√

f(x). Solve for f(x) = cx4 where

c =

(
π (r)

π(d/2)2
√
2g

)2

Because h = f(1) = c, then d is determined by the equation

r2

2g(d/2)4
= h, or (d/2)4 =

r2

2gh

Conclusion:
f(x) = cx4 = hx4 = 5x4,

d = 2

(
r2

2gh

) 1
4

= 0.00455 ft = 0.0546 in ≈ 3/64 in.

# Exercise 15 Clepsydra

AA:=Pi*x^2; # Area of a cross-section

R:=1/12/3600;# unit change inch/hour => ft/sec

a:=Pi*(d/2)^2; # orifice area

DE:=AA*diff(y(t),t)=-a*sqrt(2*g)*sqrt(y(t));

DE1:=subs(diff(y(t),t)=-r,y(t)=Y,g=32,DE);

ff:=unapply(solve(DE1,Y),x);

h:=5;r:=4*R;

d_roots:=solve(ff(1)=h,d);# 4 roots, choose d>0

dd:=evalf(d_roots[1]);# diameter dd feet

dd*12*16;# sixteenths, about 7/128 inch

solve( (d/2)^4=r^2/(2*32.0*h), d);# Equation check

16. h = 4, r = 4

17. h = 3, r = 6

Solution: Answers: f(x) = 3x4, d = 0.07598356858 ≈ 5/64 inch.

Follow Exercise 15.
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18. h = 4, r = 3

19. h = 3, r = 2

Solution: Answers: f(x) = 3x4, d = 0.04386913378 ≈ 3/64 inch.

Follow Exercise 15.

20. h = 4, r = 1

Stefan’s Law
An unclothed prison inmate is handcuffed to a chair. The inmate’s skin tem-
perature is 33◦ Celsius. Find the number of Joules of heat lost by the inmate’s
skin after t0 minutes, given skin area A in square meters, Kelvin room temper-
ature T0(r) = C(r/60)+273.15 and Celsius room temperature C(t). Variables:
t minutes, r seconds. Use equation dQ

dt = k(T 4 − T0(t)
4) page 149 �. Assume

emissivity σ = 5.6696× 10−8K−4 Watts per square meter, K=degrees Kelvin.

21. E = 0.9, A = 1.5, t0 = 10, C(t) = 24 + 7t/t0

Solution: The theory implies that the answer is Q(t1) where t1 = (10)(60)
is in seconds and Q′ = kT 4−kT 4

0 . Value k = 7.65396×10−8, T = 33+273.15
degrees K and T0(t) = C(t/60) + 273.15 degrees K. Then

Q(t1) = k

∫ t1

0

(T 4 − (T0(t))
4)dt = 28117.35641 ≈ 28, 117 joules.

# Exercise 21 Stefan’s Law

t0:=10;t1:=t0*60;T:=33+273.15;

A:=1.5:EE:=0.9:sigma:=5.6696*10^(-8):k:=sigma*A*EE;r:=’r’;

C:=t->24+(7*t)/t0;# t minutes

T0:=r->C(r/60)+273.15;

dQ:=unapply(k*T^4-k*T0(r)^4,r);

Q1:=int(dQ(t),t=0..t1);# 28117.35641

22. E = 0.9, A = 1.7, t0 = 12, C(t) = 21 + 10t/12

23. E = 0.9, A = 1.4, t0 = 10, C(t) = 15 + 15t/t0

Solution: Q1 = 48637.89027 joules

24. E = 0.9, A = 1.5, t0 = 12, C(t) = 15 + 14t/t0

On the next two exercises, use a computer algebra system (CAS).
Same assumptions as Exercise 21.

147

https://math.utah.edu/~gustafso/debook/chapters/2.pdf#page=150


2.8 Science and Engineering Applications

25. E = 0.8, A = 1.4, t0 = 15, C(t) = 15 + 15 sinπ(t− t0)/12

Solution: Q1 = 108329.3834 joules.

# Exercise 25 Stefan’s Law

t0:=15;t1:=t0*60;T:=33+273.15;

A:=1.4:EE:=0.8:sigma:=5.6696*10^(-8):k:=sigma*A*EE;r:=’r’;

C:=t->15+15*sin(Pi*(t-t0))/12;# t minutes

T0:=r->C(r/60)+273.15;

dQ:=unapply(k*T^4-k*T0(r)^4,r);

Q1:=int(dQ(t),t=0..t1);# 108329.3834

26. E = 0.8, A = 1.4, t0 = 20, C(t) = 15 + 14 sinπ(t− t0)/12

Tsunami Wave Shape
Plot the piecewise solution

y(x) = 2−
{

2 tanh2(x− x0) x>x0,
0 x≤x0.

(1)

See Figure 12 page 155 �.

27. x0 = 2, |x− x0| ≤ 2

Solution:

# Exercise 27 Tsunami plot

g:=x->2-2*tanh((x-x0))^2;

opts:=thickness=3,font=[courier,18,bold];

f:=x->piecewise(x<x0,2,g(x));

plot(f,x0-2..x0+2,opts);

28. x0 = 3, |x− x0| ≤ 4.

Tsunami Wavefront
Find non-equilibrium solutions for the given differential equation.
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29. (y′)2 = 12y2 − 10y3.

Solution: Factor 12y2−10y3 = y2(12−10y) to find the equilibrium solutions
y = 0 (sea level) and y = 12/10 (water wall). A solution with y′ ≥ 0 satisfies
the first order differential equation y′ = y

√
16− 10y which can be solved by

separation of variables:

3x+
√
3 arctanh(

1

6

√
36− 30y) + c1 = 0. < y < 12/10

Solve for y:

y = −6

5
tanh2(

√
3(x+ c)) +

6

5

f:=y->y*sqrt(12-10*y);

de:=diff(y(x),x)=f(y(x));

ans:=dsolve(de,y(x));

ans1:=4*subs(y(x)=u,ans);

ans2:=solve(subs(_C1=c,ans1),u);

30. (y′)2 = 13y2 − 12y3.

31. (y′)2 = 8y2 − 2y3.

Solution: y = −4 tanh2(
√
2(x+ c)) + 4

32. (y′)2 = 7y2 − 4y3.

Gompertz Tumor Equation
Solve the Gompertz tumor equation y′ = (a− b ln y)y.

33. a = 1, b = 1

Solution: y(x) = ee
−c−x+1

34. a = 1, b = 2

35. a = −1, b = 1

Solution: y(x) = ee
−c−x−1

36. a = −1, b = 2

37. a = 4, b = 1

Solution: y(x) = ee
−c−x+4

38. a = 5, b = 1
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2.9 Exact Equations and Level Curves

Exactness Test
Test the equality My = Nx for the given equation, as written, and report exact
when true. Do not try to solve the differential equation. See Example 2.43,
page 163 �.

1. (y − x)dx+ (y + x)dy = 0

Solution: Exact: My −Nx = 1− 1 = 0.

2. (y + x)dx+ (x− y)dy = 0

3. (y +
√
xy)dx+ (−y)dy = 0

Solution: Not exact: My −Nx = 1 + (1/2)x/
√
x y.

4. (y +
√
xy)dx+ xydy = 0

5. (x2 + 3y2)dx+ 6xydy = 0

Solution: Exact: My −Nx = 6y − 6y = 0.

6. (y2 + 3x2)dx+ 2xydy = 0

7. (y3 + x3)dx+ 3xy2dy = 0

Solution: Not exact: My −Nx = 3y2 − 2y2 = y2.

8. (y3 + x3)dx+ 2xy2dy = 0

9. 2xydx+ (x2 − y2)dy = 0

Solution: Exact: My −Nx = 2x− 2x = 0.

10. 2xydx+ (x2 + y2)dy = 0

Conservation Law Test
Test conservation law U(x, y) = c for a solution to Mdx + Ndy = 0. See
Example 2.44, page 163 �.

11. 2xydx+ (x2 + 3y2)dy = 0,
x2y + y3 = c

Solution: Let U = x2y+y3, M = 2xy, N = x2+3y2. Then Ux = 2xy = M ,
Uy = x2 + 3y2 = N . Differentiate across U(x, y) = c implicitly: Uxdx +
Uydy = (c)′ = 0. Then Mdx+Ndt = 0 and U − c is a solution.
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12. 2xydx+ (x2 − 3y2)dy = 0,
x2y − y3 = c

13. (3x2 + 3y2)dx+ 6xydy = 0,
x3 + 3xy2 = c

Solution: Let U = x3 + 3xy2, M = 3x2 + 3y2, N = 6xy. Then Ux =
3x2 + 3y2 = M , Uy = 6xy = N . Therefore, U = c is a solution.

14. (x2 + 3y2)dx+ 6xydy = 0,
x3 + 3xy2 = c

15. (y − 2x)dx+ (2y + x)dy = 0,
xy − x2 + y2 = c

Solution: Let U = xy − x2 + y2, M = y − 2x, N = 2y + x. Then Ux =
y − 2xy = M , Uy = x+ 2y = N . Therefore, U = c is a solution.

16. (y + 2x)dx+ (−2y + x)dy = 0,
xy + x2 − y2 = c

Exactness Theorem
Find an implicit solution U(x, y) = c. See Examples 2.45-2.46, page 163 �.

17. (y − 4x)dx+ (4y + x)dy = 0

Solution: The equation has the form Mdx +Ndy = 0 where M = y − 4x
and N = 4y+ x. It is exact, by Theorem 2.10, because My = 1 and Nx = 1
are equal.

The method of potentials applies to find the potential U = x2y + xy3 + xy
as follows.

U =
∫ x

0
M(x, y)dx+

∫ y

0
N(0, y)dy Formula for U , Theorem 2.10.

=
∫ x

0
(y − 4x) dx+

∫ y

0
(4y + 0)dy Insert M and N .

= xy − 2x2 + 2y2 Evaluate integrals.

Answer check: Ux = y − 4x+ 0 = M , Uy = x− 0 + 4y = N .

# Exercise 17 Method of Potentials

M:=(x,y)->y-4*x;N:=(x,y)-> 4*y+x;

A:=diff(M(x,y),y);B:=diff(N(x,y),x);A-B;# Check Exact

M(0,0);N(0,0);# Check (0,0) in domain of M and N

U:=int(M(t,y),t=0..x)+int(N(0,s),s=0..y);

# U := -2*x^2+x*y+2*y^2

18. (y + 4x)dx+ (4y + x)dy = 0
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19. (ey + ex)dx+ (xey)dy = 0

Solution: U = −1 + xey + ex

20. (e2y + ex)dx+ (2xe2y)dy = 0

21. (1 + yexy)dx+ (2y + xexy)dy = 0

Solution: U = −1 + x+ exy + y2

22. (1 + ye−xy)dx+ (xe−xy − 4y)dy = 0

23. (2x+ arctan y)dx+
x

1 + y2
dy = 0

Solution: U = x2 + x arctan(y)

24. (2x+ arctan y)dx+
x+ 2y

1 + y2
dy = 0

25.
2x5 + 3y3

x4y
dx− 2y3 + x5

x3y2
dy = 0

Solution: U =
x5 − y3

yx3

# Exercise 25 Method of Potentials

# Cannot use (0,0) in the formulas

M:=(x,y)-> (2*x^5+3*y^3)/(x^4*y);

N:=(x,y)-> -(2*y^3+x^5)/(x^3*y^2);

A:=diff(M(x,y),y);B:=diff(N(x,y),x);

simplify(A-B);# Check Exact

a:=1;b:=1;M(a,b);N(a,b);# Domain check

U:=int(M(t,y),t=a..x)+int(N(a,s),s=b..y)

assuming x::positive, y::positive;

# U := (x^5-y^3)/(y*x^3)

26.
2x4 + y2

x3y
dx− 2x4 + y2

2x2y2
dy = 0

27. Mdx+Ndy = 0, M = ex sin y + tan y, N = ex cos y + x sec2 y

Solution: U = ex sin(y) + x tan(y)

28. Mdx+Ndy = 0, M = ex cos y + tan y, N = −ex sin y + x sec2 y

29.
(
x2 + ln y

)
dx+

(
y3 + x/y

)
dy = 0

Solution: U := (1/3)x3 + x ln(y) + (1/4)y4 − 1/4

30.
(
x3 + ln y

)
dx+

(
y3 + x/y

)
dy = 0
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Homogeneous-A Equations
Find f such that the equation can be written in the form y′ = f(y/x). Solve
for y using a computer algebra system.

1. xy′ = y2/x

Solution: Answer: f(u) = u2, y = x/(cx+ 1).

Let f(u) = u2, then f(y/x) = y2/x2 = y′. Change variable y → u by
equation u(x) = y(x)/x. The new equation is xu′ + u = f(u) = u2, which
is separable: u′ = F (x)G(u) with F (x) = 1/x, G(u) = u2 − u. Solve by the
variables separable method: u(x) = 1/(cx+ 1), y(x) = xu(x) = x/(cx+ 1).

2. x2y′ = x2 + y2

3. yy′ =
xy2

x2 + y2

Solution: f(u) = −u3/(u2+1), y(x) =
√
x/W (c x2) whereW is the Lambert

W function.

# Exercise 3, Lambert W function

F:=(x,y)->x*y/(x^2+y^2);

de1:=diff(y(x),x)=F(x,y(x));

dsolve(de1,y(x));

f:=(x,u)->simplify(F(x,x*u)-u);

de2:=x*diff(u(x),x)=f(x,u(x));

dsolve(de2,u(x));

?LambertW

4. yy′ = 2xy2

x2+y2

5. y′ =
1

x+ y

Solution: f(u) = u2/(1 + u), y(x) = eW (ec x) − c where W is the Lambert
W function.

6. y′ = y/x+ x/y

7. y′ = (1 + y/x)2

Solution: f(u) = u2 + u+ 1,
y (x) = 1

6 x
(
−
√
3 + 3 tan

(
1
2 (ln (x) + c)

√
3
))√

3

8. y′ = 2y/x+ x/y
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9. y′ = 3y/x+ x/y

Solution: f(u) = 3u+ 1/u, y(x) = ± 1
2 x

√
4cx4 − 2

10. y′ = 4y/x+ x/y

Homogeneous-C Equations
Given y′ = f(x, y), decompose f(x, y) = G(R(x, y)) whereR(x, y) = a1x+b1y+c1

a2x+b2y+c2
,

then convert to Homogeneous-A. Investigate solving y′ = f(x, y) by computer.

11. y′ = − (y+1)x
y2+2 y+1+x2

Solution: Answers: G(u) = −u/(1 + u2), R(x, y) = x/(1 + y), then let X =
x, Y = y + 1. The Homogeneous-A equation is dY

dX = G(X/Y ). Computer
solution:

y (x) = −1 +

√
c2x4 − cx2

√
c2x4 + 1

c2x3 − cx
√

c2x4 + 1

Factor y2 + 2 y + 1 + x2 = (y + 1)2 + x2, then divide by (y + 1)2 to arrive
at G(u) = −u/(1 + u2), R(x, y) = x/(1 + y). Change variables: X =
x, Y = y + 1. Then f(x, y) = G(R(x, y)) = G(R(X,Y − 1)) = G(X/Y ) and
dy
dx = dY

dX . The new Homogeneous-A equation is dY
dX = G(X/Y ).

# Exercise 11, Homogeneous C

infolevel[dsolve]:= 3;# Get classification info

# ?dsolve,algorithms

G:=u->-u/(1+u^2);R:=(x,y)->x/(1+y);

de:=diff(y(x),x)=G(R(x,y(x)));

dsolve(de);# infolevel: homogeneous

# y(x) = -1+sqrt(-(-_C1*x^2+

# sqrt(_C1^2*x^4+1))*x^2*_C1)/

# (x*(_C1*x^2-sqrt(_C1^2*x^4+1))*_C1)

dsolve(diff(u(X),X)=G(u(X)));# infolevel: separable

# u(X) = exp(-(1/2)*LambertW(exp(-2*X-2*_C1))-X-_C1)

12. y′ = 2
(1 + y)x

x2 + y2 + 2 y + 1

Solution: y(x) = −1− 1
2c

(
1 +

√
4 c2 x2 + 1

)
13. y′ =

(1 + x) y

x2 + 4 y2 + 2x+ 1

Solution: Answers: G(u) = u/(4 + u2), R(x, y) = (1 + x)/y, then let X =
x + 1, Y = y. The Homogeneous-A equation is dY

dX = G(X/Y ). Computer
solution in terms of W = Lambert W function:

y(x) = −e
1
2W ( 1

4 e
2c(1+x)2)−c
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# Exercise 13, Homogeneous C

G:=u->u/(4+u^2);

R:=(x,y)->(1+x)/y;

de:=diff(y(x),x)=G(R(x,y(x)));

dsolve(de);

# y(x) = -exp((1/2)*LambertW((1/4)*(exp(_C1))^2*(1+x)^2)-_C1)

14. y′ =
1 + x

y + 1 + x
Solution:

−1

2
ln

(
− (x+ 1)

2 − (x+ 1) y (x)− (y (x))
2

(x+ 1)
2

)

+
1

5

√
5 arctanh

(
1

5

(x+ 1 + 2 y (x))
√
5

x+ 1

)
− ln (x+ 1)− c = 0

15. y′ =
1 + y

x+ y + 1

Solution: G(u) = u/(u+ 1), R(x, y) = (1 + y)/x, Computer solution:

y (x) = eW(xec)−c − 1 where W is the Lambert W function.

# Exercise 15, Homogeneous C

G:=u->u/(1+u);

R:=(x,y)->(1+y)/x;

de:=diff(y(x),x)=G(R(x,y(x)));

dsolve(de);# infolevel: homogeneous

# implicit solution returned

16. x(y + 1)y′ = x2 + y2 + 2y + 1

Solution: y (x) = −1 +
√

2 ln (x) + 2 cx

17. y′ =
x2 − y2 − 2 y − 1

(1 + y)x

Solution: G(u) = u− 1/u, R(x, y) = x/(1 + y), Computer solution:

y(x) = −1− c

2x

√
2 + 2x4/c2

18. y′ =
(y + 2x)

2

x2

Solution: y (x) =
−3x

2
+

x
√
7

2
tan

(√
7

2
ln |x|+ c

√
7

2

)
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19. y′ =
x2 + xy + y2 + 5x+ 4 y + 7

(x+ 2) (3 + y + x)

Solution: G(u) = u+1/(u+1), R(x, y) = (y+1)/(x+2), Computer solution:

y(x) = −1− (x+ 2) (1 +
√
1 + 2 ln(x+ 2) + 2c)

20. y′ = −x2 − xy − y2 + 5x− 5 y + 5

(3 + x) (4 + y + x)

Solution: y(x) = −1− (3 + x)(1 +
√
1− 2 ln(3 + x)− 2c)

Bernoulli’s Equation
Identify the exponent n in Bernoulli’s equation y′ + p(x)y = q(x)yn and solve
for y(x).

21. y−2y′ = 1 + x

Solution: n = 2, p = 0, q = 1 + x, y (x) = 1/
(
−x− x2/2 + c

)
.

Substitution u = y/yn = y−1 gives u′ = −y−2y′ = −q = −1 − x. Quadra-
ture: u = −x− x2/2 + c, y = 1/u = 1/(−x− x2/2 + c).

# Exercise 21, Bernoulli DE

p:=unapply(0,x);

q:=unapply(1+x,x);

n:=2;

de:=diff(y(x),x)=-p(x)*y(x)+q(x)*y(x)^n;

dsolve(de,y(x));

22. yy′ = 1 + x

23. y−2y′ + y−1 = 1 + x

Solution: n = 2, p = 1, q = 1 + x, y (x) = 1/ (2 + x+ cex).

Substitution u = y/yn = y−1 gives u′ = −y−2y′ and then −u′+pu = q. The
linear integrating factor method applies to −u′+pu = q: u(x) = 2+x+cex.
Then y = 1/u = 1/(2 + x+ cex).

# Exercise 23, Bernoulli DE

p:=unapply(1,x);

q:=unapply(1+x,x);

n:=2;

de:=diff(y(x),x)=-p(x)*y(x)+q(x)*y(x)^n;

dsolve(de,y(x));

# Check substitution u=1/y

dsolve(-diff(u(x),x)+p(x)*u(x)=q(x),u(x));
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24. yy′ + y2 = 1 + x

25. y′ + y = y1/3

Solution: n = 1/3, p = 1, q = 1, (y (x))
2/3 − 1− ce−2x/3 = 0.

Substitution u = y/yn = y2/3 gives u′ = (2/3)y−1/3y′ and then u′/(2/3) +
pu = q. The linear integrating factor method applies to 3u′/2 + pu = q:
u (x) = 1 + ce−2x/3. Then u = y2/3 implies y2/3 = 1 + ce−2x/3.

# Exercise 25, Bernoulli DE

p:=unapply(1,x);

q:=unapply(1,x);

n:=1/3;

de:=diff(y(x),x)=-p(x)*y(x)+q(x)*y(x)^n;

dsolve(de,y(x));

# Check substitution u=y/y^(1/3)=y^(2/3)

dsolve(diff(u(x),x)/(2/3)+p(x)*u(x)=q(x),u(x));

26. y′ + y = y1/5

27. y′ − y = y−1/2

Solution: n = 1/3, p = 1, q = 1, (y (x))
3/2

+ 1− c e3x/2 = 0.

Substitution u = y/yn = y3/2 gives u′ = (3/2)y1/2y′ and then u′/(3/2) +
pu = q. The linear integrating factor method applies to 2u′/3 + pu = q:
u (x) = −1 + ce3x/2. Then u = y3/2 implies y3/2 = −1 + ce3x/2.

# Exercise 27, Bernoulli DE

p:=unapply(-1,x);

q:=unapply(1,x);

n:=-1/2;

de:=diff(y(x),x)=-p(x)*y(x)+q(x)*y(x)^n;

dsolve(de,y(x));

# Check substitution u=y/y^(-1/2)=y^(3/2)

dsolve(diff(u(x),x)/(3/2)+p(x)*u(x)=q(x),u(x));

28. y′ − y = y−1/3

29. yy′ + y2 = ex

Solution: Isolate y′: y′ + y = exy−1. Then n = −1, p = 1, q = ex.
The substitution is u = y/y−1 = y2. Then u (x) = c e−2 x + 2

3 e
x and

y2 = c e−2 x + 2
3 e

x.
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# Exercise 29, Bernoulli DE

p:=unapply(1,x);

q:=unapply(exp(x),x);

n:=-1;

de:=diff(y(x),x)=-p(x)*y(x)+q(x)*y(x)^n;

dsolve(de,y(x));

# Check substitution u=y/y^(-1)=y^2

dsolve(diff(u(x),x)/(2)+p(x)*u(x)=q(x),u(x));

30. y′ + y = e2xy2

Integrating Factor xayb

Report an implicit solution for the given equation Mdx + Ndy = 0, using an
integrating factor Q = xayb. Follow Example 2.50, page 169 �. Computer
assist expected.

31. M = 3xy − 6y2, N = 4x2 − 15xy

Solution: Integrating factor xy3, y4(x3 − 1) − 3y5(x2 − 1) − 3y5 + y4 = c,
Details follow the example: solve xy(My −Nx)− (ayN − bxM) = xy(−5x+
3y)−ay(4x2−15xy)+bx(3xy−6y2) = 0 for a = 1, b = 3 by coefficients of xiyj

equal to zero. Let M1 = Mxayb, N1 = Nxayb and solve M1dx+N1dy = 0
by the Exactness Theorem.

# Exercise 31, Integrating factor x^a*y^b

findIntFactor:=proc(M1,N1)

local p,q,a,b,Test;

Test:=(M,N)->x*y*(diff(M,y)-diff(N,x)) - (a*y*N-b*x*M);

p:=expand(Test(M1,N1));printf("%a",p);

q:=solve({coeffs(p,[x,y])},{a,b});

RETURN (q);

end proc;

M1:=3*x*y-6*y^2;N1:=4*x^2-15*x*y;

findIntFactor(M1,N1);# {a = 1, b = 3}

IF:=x^1 * y^3;

M:=unapply(M1*IF,(x,y));

N:=unapply(N1*IF,(x,y));

A:=diff(M(x,y),y);B:=diff(N(x,y),x);

"Exact if zero" = simplify(A-B);# Check Exact

x0:=1;y0:=1;M(x0,y0);N(x0,y0);# Domain check

# Solve Mdx + Ndy=0

U:=int(M(t,y),t=x0..x)+int(N(x0,s),s=y0..y)

assuming x::positive, y::positive;

# U := y^4*(x^3-1)-3*y^5*(x^2-1)-3*y^5+y^4+2

32. M = 3xy − 10y2, N = 4x2 − 25xy
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33. M = 2 y − 12xy2, N = 4x− 20x2y

Solution: Integrating factor x1y3, solution −4y5(x3−1)+y4(x2−1)−4y5+
y4 = c

34. M = 2 y − 21xy2, N = 4x− 35x2y

35. M = 3 y − 32xy2, N = 4x− 40x2y

Solution: Integrating factor xy3, solution

−(32/3)y5(x3 − 1) + (3/2)y4(x2 − 1)− 8y5 + y4 = c

36. M = 3 y − 20xy2, N = 4x− 25x2y

37. M = 12 y − 30x2y2,
N = 12x− 25x3y

Solution: Integrating factor x3y3, solution

−(15/2)y5(x4 − 1) + 6y4(x2 − 1)− 5y5 + 3y4 = c

38. M = 12 y + 90x2y2,
N = 12x+ 75x3y

39. M = 15 y + 90xy2,
N = 12x+ 75x2y

Solution: Integrating factor x4y3, solution

30y5(x3 − 1) + (15/2)y4(x2 − 1) + 15y5 + 3y4 = c

40. M = 35 y + 30xy2,
N = 28x+ 25x2y.

Integrating Factor eax+by

Report an implicit solution U(x, y) = c for the given equation Mdx+Ndy = 0
using an integrating factor Q = eax+by. Follow Example 2.51, page 170 �.

41. M = ex + 2e2y, N = ex + 5e2y

Solution: Integrating factor e3 y+2 x, solution e3 x+3 y + 3 e2 x+5 y = c.

The test for integrating factor eax+by is

My −Nx − aN + bM = 0

The plan is to expand the left side and obtain two equations in unknowns
a, b by the sampling method: substitute values x = y = 0 in the above
equation to get 3− 6a+ 3b = 0, then substitute x = y = 1 to get 4e2 − e−
ae− 5ae2 + be+2be2 = 0. Solve the two equations in two unknowns to find
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a = 2, b = 3. Then the integrating factor is e2x+3y. Multiply Mdx +Ndy
by the integrating factor and solve by the Method of Potentials: U =
(1/3)e3x+3y + e2x+5y − 4/3. A simplified solution is e3x+3y + 3e2x+5y = c.

# Exercise 41, Integrating factor exp(a*x+b*y)

findIntFactorExp:=proc(M1,N1)

local p,q,a,b,Test,eq1,eq2;

Test:=(M,N)->diff(M,y)-diff(N,x) - a*N+b*M;

p:=expand(Test(M1,N1));

eq1:=simplify(subs(x=0,y=0,p));

eq2:=simplify(subs(x=1,y=1,p));

q:=solve([eq1,eq2],[a,b]);p:=q[1];

RETURN (rhs(p[1]),rhs(p[2]);

end proc;

M1:=exp(x)+2*exp(2*y);N1:=exp(x)+5*exp(2*y);

A,B:=findIntFactorExp(M1,N1);# Failed? Modify samples in proc

IF:=subs(a=A,b=B,exp(a*x+b*y));

M:=unapply(simplify(expand(M1*IF)),(x,y));

N:=unapply(simplify(expand(N1*IF)),(x,y));

A:=diff(M(x,y),y);B:=diff(N(x,y),x);

"Exact if zero" = simplify(A-B);# Check Exact

x0:=0;y0:=0;M(x0,y0);N(x0,y0);# Domain check

# Solve Mdx + Ndy=0, method of potentials

U:=int(M(t,y),t=x0..x)+int(N(x0,s),s=y0..y);

# U := (1/3)*exp(3*x+3*y)+exp(2*x+5*y)-4/3

42. M = 3ex + 2ey, N = 4ex + 5ey

43. M = 12 ex + 2, N = 20 ex + 5

Solution: Integrating factor e2x+5y, solution 4e3x+5y + e2x+5y = c.

44. M = 12 ex + 2 e−y, N = 24 ex + 5 e−y

45. M = 12 ey + 2 e−x, N = 24 ey + 5 e−x

Solution: Integrating factor e3x+5y, solution 4 e6 y+3 x + e2 x+5 y = c.

46. M = 12 e−2 y + 2 e−x, N = 12 e−2 y + 5 e−x

47. M = 16 ey + 2 e−2 x+3 y, N = 12 ey + 5 e−2 x+3 y

Solution: Integrating factor e4x+2y, solution 4 e4 x+3 y + e2 x+5 y = c.

The sampling method changes: use x = y = 0 for the first equation and
x = 0, y = 1 for the second equation. Computer code is edited to change
the sample values for eq2: x = 0, y = 1. The edit modifies function
findIntFactorExp in the maple text of Exercise 41.
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48. M = 16 e−y + 2 e−2 x−3 y, N = −12 e−y − 5 e−2 x−3 y

49. M = −16− 2 e2 x+y, N = 12 + 4 e2 x+y

Solution: Integrating factor e−4 x+3 y, solution e−2 x+4 y + 4 e−4 x+3 y = c

50. M = −16 e−3 y − 2 e2 x, N = 8 e−3 y + 5 e2 x

Integrating Factor Q(x)
Report an implicit solution U(x, y) = c for the given equation, using an inte-
grating factor Q = Q(x). Follow Example 2.52, page 171 �.

51. (x+ 2y)dx+ (x− x2)dy = 0

Solution: Integrating factor Q = x/(x− 1)3. Solution

−8y +
2 ln (x− 1)x2 + 6x2y − 4x ln (x− 1)

x2 − 2x+ 1

+
5x2 − 16xy + 2 ln (x− 1)− 14x+ 8 y + 8

x2 − 2x+ 1
= c

The plan for Q(x) a function of x alone: form µ = (My −Nx)/N and then
Q =

∫
µdx. The new equation Mµdx+Nµdy = 0 is exact and can be solved

by the method of potentials.

# Exercise 51, Integrating factor Q(x)

findIntFactorQ:=proc(M1,N1)

local p,q,mu;

mu:=(diff(M1,y)-diff(N1,x))/N1;# depends on x only

p:=expand(mu);printf("mu=%a",p);

q:=exp(int(p,x));

if subs(y=’Y’,q) = q then RETURN (q) fi;

RETURN ("ERROR");

end proc;

M1:=x+2*y;N1:=x-x^2;

IF:=findIntFactorQ(M1,N1);# "ERROR" means no x-only IF

M:=unapply(simplify(expand(M1*IF)),(x,y));

N:=unapply(simplify(expand(N1*IF)),(x,y));

A:=diff(M(x,y),y);B:=diff(N(x,y),x);

"Exact if zero" = simplify(A-B);# Check Exact

x0:=0;y0:=0;M(x0,y0);N(x0,y0);# Domain check

# Solve Mdx + Ndy=0, method of potentials

U:=int(M(t,y),t=x0..x)+int(N(x0,s),s=y0..y);

# U := (1/2)*(2*ln(x-1)*x^2+6*x^2*y-4*x*ln(x-1)

# +5*x^2-16*x*y+2*ln(x-1)-14*x+8*y+8)/(x^2-2*x+1)-4*y

52. (x+ 3y)dx+ (x− x2)dy = 0
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53. (2x+ y)dx+ (x− x2)dy = 0

Solution: Integrating factor Q = 1/(x− 1)2.

Solution
2x ln (x− 1) + xy − 2 ln (x− 1) + 2x− 2 y − 4

x− 1
− 2 y = c

54. (2x+ y)dx+ (x+ x2)dy = 0

55. (2x+ y)dx+ (−x− x2)dy = 0

Solution: Integrating factor Q = 1/x2.

Solution
1

3

6x ln (x)− 6 ln (3)x+ xy − 3 y

x
− 4

3
y

56. (x+ y)dx+ (−x− x2)dy = 0

57. (x+ y)dx+ (−x− 2x2)dy = 0

Solution: Integrating factor Q = 1/x2.

Solution
1

3

3x ln (x)− 3 ln (3)x+ xy − 3 y

x
− 7

3
y

58. (x+ y)dx+ (x+ 5x2)dy = 0

59. (x+ y)dx+ (3x)dy = 0

Solution: Integrating factor Q = 1/x2/3.
Solution − 9

4
3
√
3 + 3/4x4/3 + 3 3

√
xy

60. (x+ y)dx+ (7x)dy = 0

Integrating Factor Q(y)

61. (y − y2)dx+ (x+ y)dy = 0

Solution: Integrating factor Q = 1/(y − 1)2.

Solution − xy

y − 1
+

ln (y − 1) y − ln (y − 1) + y − 2

y − 1
= c
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# Exercise 61, Integrating factor Q(y)

findIntFactorQ:=proc(M1,N1)

local p,q,mu;

mu:=(diff(N1,x)-diff(M1,y))/M1;# depends on y only

p:=expand(mu);printf("mu=%a",p);

q:=exp(int(p,y));

if subs(x=’X’,q) = q then RETURN (q) fi;

RETURN ("ERROR");

end proc;

M1:=y-y^2;N1:=x+y;

IF:=findIntFactorQ(M1,N1);# "ERROR" means no y-only IF

M:=unapply(simplify(expand(M1*IF)),(x,y));

N:=unapply(simplify(expand(N1*IF)),(x,y));

A:=diff(M(x,y),y);B:=diff(N(x,y),x);

"Exact if zero" = simplify(A-B);# Check Exact

x0:=0;y0:=2;M(x0,y0);N(x0,y0);# Domain check

# Solve Mdx + Ndy=0, method of potentials

U:=int(M(t,y),t=x0..x)+int(N(x0,s),s=y0..y) assuming y>1;

# U := -y*x/(y-1)+(ln(y-1)*y-ln(y-1)+y-2)/(y-1)

62. (y − y2)dx+ (2x+ y)dy = 0

63. (y − y2)dx+ (2x+ 3y)dy = 0

Solution: Integrating factor Q = y/(y − 1)3. Solution

− xy2

(y − 1)
2

+
3

2

2 ln (y − 1) y2 − 4 ln (y − 1) y + 5 y2 + 2 ln (y − 1)− 14 y + 8

y2 − 2 y + 1
= c

64. (y + y2)dx+ (2x+ 3y)dy = 0

65. (y + y2)dx+ (x+ 3y)dy = 0

Solution: Integrating factor Q = 1/(y + 1)2. Solution
xy

1 + y
+

3 ln (1 + y) y − 3 ln (3) y + 3 ln (1 + y)− 3 ln (3)− y + 2

1 + y
= c

66. (y + 5y2)dx+ (x+ 3y)dy = 0

67. (y + 3y2)dx+ (x+ 3y)dy = 0

Solution: Integrating factor Q = 1/(3y + 1)2. Solution

xy

1 + 3 y
+

21 ln (1 + 3 y) y − 21 ln (7) y + 7 ln (1 + 3 y)− 7 ln (7)− 3 y + 6

21(1 + 3 y)
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68. (2y + 5y2)dx+ (7x+ 11y)dy = 0

69. (2y + 5y2)dx+ (x+ 7y)dy = 0

Solution: Integrating factor
1

(5 y + 2)
3/2 √

y
, solution

√
yx√

5 y + 2
+ 2

25

7
√
5
√
5 y + 2 ln

(√
5
√
5 y + 2 + 5

√
y
)

√
5 y + 2

+

2
25

−7
√
5 ln

(√
5
√
7 + 5

)√
5 y + 2√

5 y + 2
+ 2

25

5
√
7
√

5 y + 2− 35
√
y√

5 y + 2

70. (3y + 5y3)dx+ (7x+ 9y)dy = 0
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3.1 Systems of Linear Equations

Toolkit
Compute the equivalent system of equations. Definitions of combo, swap and
mult on page 177 �.

1. Given

∣∣∣∣∣∣
x + 2z = 1
x + y + 2z = 4

z = 0

∣∣∣∣∣∣, find the system that results from

combo(2,1,-1).

Solution:

∣∣∣∣∣∣
− y = −3

x + y + 2z = 4
z = 0

∣∣∣∣∣∣
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2. Given

∣∣∣∣∣∣
x + 2z = 1
x + y + 2z = 4

z = 0

∣∣∣∣∣∣, find the system that results from swap(1,2)

followed by combo(2,1,-1).

3. Given

∣∣∣∣∣∣
x + 3z = 1
x + y + 3z = 4

z = 1

∣∣∣∣∣∣, find the system that results from

combo(1,2,-1).

Solution:

∣∣∣∣∣∣
x + 3z = 1

y = 3
z = 1

∣∣∣∣∣∣
4. Given

∣∣∣∣∣∣
x + 3z = 1
x + y + 3z = 4

z = 1

∣∣∣∣∣∣, find the system that results from swap(1,2)

followed by combo(1,2,-1).

5. Given

∣∣∣∣∣∣
y + z = 2

3y + 3z = 6
y = 0

∣∣∣∣∣∣, find the system that results from swap(2,3),

combo(2,1,-1).

Solution:∣∣∣∣∣∣
y + z = 2
y = 0
3y + 3z = 6

∣∣∣∣∣∣ after swap

∣∣∣∣∣∣
z = 2

y = 0
3y + 3z = 6

∣∣∣∣∣∣ after combo

6. Given

∣∣∣∣∣∣
y + z = 2
3y + 3z = 6
y = 0

∣∣∣∣∣∣, find the system that results from mult(2,1/3),

combo(1,2,-1), swap(2,3), swap(1,2).

Inverse Toolkit
Compute the equivalent system of equations.

7. If

∣∣∣∣∣∣
− y = −3

x + y + 2z = 4
z = 0

∣∣∣∣∣∣ resulted from combo(2,1,-1), then find the orig-

inal system.
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Solution:

∣∣∣∣∣∣
x + 2z = 1
x + y + 2z = 4

z = 0

∣∣∣∣∣∣ after combo(2,1,c) with c = 1 = addi-

tive inverse of −1

8. If

∣∣∣∣∣∣
y = 3

x + 2z = 1
z = 0

∣∣∣∣∣∣ resulted from swap(1,2) followed by

combo(2,1,-1), then find the original system.

9. If

∣∣∣∣∣∣
x + 3z = 1

y − 3z = 4
z = 1

∣∣∣∣∣∣ resulted from combo(1,2,-1), then find the original

system.

Solution:

∣∣∣∣∣∣
x + 3z = 1
x + y = 5

z = 1

∣∣∣∣∣∣
10. If

∣∣∣∣∣∣
x + 3z = 1
x + y + 3z = 4

z = 1

∣∣∣∣∣∣ resulted from swap(1,2) followed by

combo(2,1,2), then find the original system.

11. If

∣∣∣∣∣∣
y + z = 2
3y + 3z = 6
y = 0

∣∣∣∣∣∣ resulted from mult(2,-1), swap(2,3),

combo(2,1,-1), then find the original system.

Solution: Apply inverse operations in reverse order: combo(2,1,1),
swap(2,3), mult(2,1).∣∣∣∣∣∣

4y + 4z = 8
− 3y + 3z = 6

y = 0

∣∣∣∣∣∣ after combo(2,1,1)

∣∣∣∣∣∣
4y + 4z = 8
y = 0

− 3y + 3z = 6

∣∣∣∣∣∣ after swap(2,3)

∣∣∣∣∣∣
4y + 4z = 8
y = 0

− 3y + 3z = 6

∣∣∣∣∣∣ after mult(2,1)

12. If

∣∣∣∣∣∣
2y + z = 2
3y + 3z = 6
y = 0

∣∣∣∣∣∣ resulted from mult(2,1/3), combo(1,2,-1),

swap(2,3), swap(1,2), then find the original system.
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Planar System
Solve the xy–system and interpret the solution geometrically as

(a) parallel lines

(b) equal lines

(c) intersecting lines.

13.

∣∣∣∣ x + y = 1,
y = 1

∣∣∣∣
Solution: x = 0, y = 1 intersecting lines

14.

∣∣∣∣ x + y = −1
x = 3

∣∣∣∣
15.

∣∣∣∣ x + y = 1
x + 2y = 2

∣∣∣∣
Solution: x = −1, y = 2, intersecting lines

16.

∣∣∣∣ x + y = 1
x + 2y = 3

∣∣∣∣
17.

∣∣∣∣ x + y = 1
2x + 2y = 2

∣∣∣∣
Solution: Divide the second equation by 2 to get two equal equations. The
two lines are actually one line: equal lines.

18.

∣∣∣∣ 2x + y = 1
6x + 3y = 3

∣∣∣∣
19.

∣∣∣∣ x − y = 1
−x − y = −1

∣∣∣∣
Solution: x = 1, y = 0, intersecting lines

20.

∣∣∣∣ 2x − y = 1
x − 0.5y = 0.5

∣∣∣∣
21.

∣∣∣∣ x + y = 1
x + y = 2

∣∣∣∣
Solution: Parallel lines, because equation 2 minus equation 1 is a signal
equation 0 = 1.

22.

∣∣∣∣ x − y = 1
x − y = 0

∣∣∣∣
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System in Space
For each xyz–system:

(a) If no solution, then report three identical shelves, pup tent, two
parallel shelves or book shelf.

(b) If infinitely many solutions, then report one shelf, open book or saw
tooth.

(c) If a unique intersection point, then report the values of x, y and z.

23.

∣∣∣∣∣∣
x − y + z = 2
x = 1

y = 0

∣∣∣∣∣∣
Solution: Answer: (c) unique intersection x = 1, y = 0, z = 1.

24.

∣∣∣∣∣∣
x + y − 2z = 3
x = 2

z = 1

∣∣∣∣∣∣
25.

∣∣∣∣∣∣
x − y = 2
x − y = 1
x − y = 0

∣∣∣∣∣∣
Solution: Answer: (a) No solution. Three parallel planes x − y = c for
c = 0, 1, 2. Book shelves.

26.

∣∣∣∣∣∣
x + y = 3
x + y = 2
x + y = 1

∣∣∣∣∣∣
27.

∣∣∣∣∣∣
x + y + z = 3
x + y + z = 2
x + y + z = 1

∣∣∣∣∣∣
Solution: Answer: (a) No solution. Three parallel planes x+ y + z = c for
c = 1, 2, 3. Book shelves.

28.

∣∣∣∣∣∣
x + y + 2z = 2
x + y + 2z = 1
x + y + 2z = 0

∣∣∣∣∣∣
29.

∣∣∣∣∣∣
x − y + z = 2
2x − 2y + 2z = 4

y = 0

∣∣∣∣∣∣
Solution: Answer: (b) Infinitely many solutions. Open book. Two identical
planes intersect a second plane y = 0.
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30.

∣∣∣∣∣∣
x + y − 2z = 3
3x + 3y − 6z = 6

z = 1

∣∣∣∣∣∣
31.

∣∣∣∣∣∣
x − y + z = 2

0 = 0
0 = 0

∣∣∣∣∣∣
Solution: Answer: (b) Infinitely many solutions. One shelf.

32.

∣∣∣∣∣∣
x + y − 2z = 3

0 = 0
1 = 1

∣∣∣∣∣∣
33.

∣∣∣∣∣∣
x + y = 2
x − y = 2

y = −1

∣∣∣∣∣∣
Solution: Answer: (a) No solution. Three planes intersect pairwise. Pup
tent.

Exercise 33 pup tent

eqs:=x+y=2,x-y=2,y=-1;

plots[implicitplot3d]({eqs},x=-2..5,y=-2..1,z=-2..2);

34.

∣∣∣∣∣∣
x − 2z = 4
x + 2z = 0

z = 2

∣∣∣∣∣∣
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35.

∣∣∣∣∣∣
y + z = 2
3y + 3z = 6
y = 0

∣∣∣∣∣∣
Solution: Answer: (b) Open book.

36.

∣∣∣∣∣∣
x + 2z = 1
4x + 8z = 4

z = 0

∣∣∣∣∣∣
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3.2 Filmstrips and Toolkit Sequences

Lead and free variables
For each system assume variable list x1, . . . , x5. List the lead and free variables.

1.

∣∣∣∣∣∣
x2+3x3 =0

x4 =0
0=0

∣∣∣∣∣∣
Solution: x2, x4

2.

∣∣∣∣∣∣
x2 = 0

x3 + 3x5 = 0
x4 + 2x5 = 0

∣∣∣∣∣∣
3.

∣∣∣∣∣∣
x1 + 3x3 = 0

x4 = 0
0= 0

∣∣∣∣∣∣
Solution: x1, x4

4.

∣∣∣∣∣∣
x1 + 2x2 + 3x3 = 0

x4 = 0
0= 0

∣∣∣∣∣∣
5.

∣∣∣∣∣∣∣∣
x1 + 2x2 + 3x3 = 0

0= 0
0 = 0
0 = 0

∣∣∣∣∣∣∣∣
Solution: x1

6.

∣∣∣∣∣∣
x1 + x2 = 0

x3 = 0
0= 0

∣∣∣∣∣∣
7.

∣∣∣∣∣∣
x1 + x2 + 3x3 + 5x4 = 0

x5 = 0
0= 0

∣∣∣∣∣∣
Solution: x1, x5

8.

∣∣∣∣∣∣
x1 + 2x2 + 3x4 + 4x5 = 0

x3 + x4 + x5 = 0
0= 0

∣∣∣∣∣∣
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9.

∣∣∣∣∣∣∣∣
x3 + 2x4 = 0

x5 = 0
0= 0
0 = 0

∣∣∣∣∣∣∣∣
Solution: x3, x5

10.

∣∣∣∣∣∣∣∣
x4 + x5 = 0

0= 0
0 = 0
0 = 0

∣∣∣∣∣∣∣∣
11.

∣∣∣∣∣∣∣∣
x2 + 5x4 = 0

x3 + 2x4 = 0
x5 = 0
0= 0

∣∣∣∣∣∣∣∣
Solution: x2, x3, x5

12.

∣∣∣∣∣∣∣∣
x1 + 3x3 = 0

x2 + x4 = 0
x5 = 0
0= 0

∣∣∣∣∣∣∣∣
Elementary Operations
Consider the 3× 3 system

x + 2y + 3z = 2,
−2x + 3y + 4z = 0,
−3x + 5y + 7z = 3.

Define symbols combo, swap and mult as in the textbook. Write the 3 × 3
system which results from each of the following operations.

13. combo(1,3,-1)

Solution: Define combo(s,t,c) to be the result after adding c times source
equation s to target equation t. The operation changes only the target
equation. The new system after combo(1,3,-1):

x + 2y + 3z = 2,
−2x + 3y + 4z = 0,
−4x + 3y + 4z = 1.

14. combo(2,3,-5)
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15. combo(3,2,4)

Solution:
x + 2y + 3z = 2,

−14x + 23y + 32z = 12,
−3x + 5y + 7z = 3.

16. combo(2,1,4)

17. combo(1,2,-1)

Solution:
x + 2y + 3z = 2,

−3x + y + z = −2,
−3x + 5y + 7z = 3.

18. combo(1,2,-e2)

19. mult(1,5)

Solution: Define mult(1,5) to be the result after multiplying equation 1 by
5:

5x + 10y + 15z = 10,
−2x + 3y + 4z = 0,
−3x + 5y + 7z = 3.

20. mult(1,-3)

21. mult(2,5)

Solution:
x + 2y + 3z = 2,

−10x + 15y + 20z = 0,
−3x + 5y + 7z = 3.

22. mult(2,-2)

23. mult(3,4)

Solution:
x + 2y + 3z = 2,

−2x + 3y + 4z = 0,
−12x + 20y + 28z = 12.

24. mult(3,5)
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25. mult(2,-π)

Solution:
x + 2y + 3z = 2,

2πx + −3πy + −4πz = 0,
−3x + 5y + 7z = 3.

26. mult(2,π)

27. mult(1,e2)

Solution:
e2x + 2e2y + 3e2z = 2e2,
−2x + 3y + 4z = 0,
−3x + 5y + 7z = 3.

28. mult(1,-e−2)

29. swap(1,3)

Solution: Define swap(1,3) to be the result after swapping equations 1 and
3:

−3x + 5y + 7z = 3,
−2x + 3y + 4z = 0,

x + 2y + 3z = 2.

30. swap(1,2)

31. swap(2,3)

Solution:
x + 2y + 3z = 2,

−3x + 5y + 7z = 3,
−2x + 3y + 4z = 0.

32. swap(2,1)

33. swap(3,2)

Solution:
x + 2y + 3z = 2,

−3x + 5y + 7z = 3,
−2x + 3y + 4z = 0.

34. swap(3,1)
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Unique Solution
Create a toolkit sequence for each system, whose final frame displays the unique
solution of the system of equations. Assume variable list order x1, x2, x3, x4, x5

and the number of variables is the number of equations.

35.

∣∣∣∣x1+3x2= 0
x2=−1

∣∣∣∣
Solution:

∣∣∣∣x1+3x2= 0
x2=−1

∣∣∣∣ Frame 1∣∣∣∣x1 = 3
x2=−1

∣∣∣∣ Frame 2, combo(2,1,-3)

36.

∣∣∣∣x1+2x2= 0
x2=−2

∣∣∣∣
37.

∣∣∣∣x1+3x2=2
x1− x2=1

∣∣∣∣
Solution: Definition: combo(s,t,c) arguments s=source equation, t=target
equation, c=multiplier∣∣∣∣x1+3x2=2
x1− x2=1

∣∣∣∣ Frame 1∣∣∣∣x1+3x2= 2
−4x2=−1

∣∣∣∣ Frame 2, combo(1,2,-1)∣∣∣∣x1+3x2= 2
x2=1/4

∣∣∣∣ Frame 3, mult(2,-1/4)∣∣∣∣x1 =5/4
x2=1/4

∣∣∣∣ Frame 4, combo(2,1,-3)

38.

∣∣∣∣x1+ x2=−1
x1+2x2=−2

∣∣∣∣
39.

∣∣∣∣∣∣
x1 + 3x2 + 2x3 = 1

x2 + 4x3 = 3
4x3 = 4

∣∣∣∣∣∣
Solution:∣∣∣∣∣∣
x1 + 3x2 + 2x3 = 1

x2 + 4x3 = 3
4x3 = 4

∣∣∣∣∣∣ Frame 1

∣∣∣∣∣∣
x1 + 3x2 + 2x3 = 1

x2 + 4x3 = 3
x3 = 1

∣∣∣∣∣∣ Frame 2: mult(3,1/4)
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∣∣∣∣∣∣
x1 + 3x2 + 2x3 = 1

x2 =−1
x3 = 1

∣∣∣∣∣∣ Frame 3: combo(3,2,-4)

∣∣∣∣∣∣
x1 + 3x2 =−1

x2 =−1
x3 = 1

∣∣∣∣∣∣ Frame 4: combo(3,1,-2)

∣∣∣∣∣∣
x1 = 2

x2 =−1
x3 = 1

∣∣∣∣∣∣ Frame 5: combo(2,1,-3)

40.

∣∣∣∣∣∣
x1 = 1
3x1 + x2 = 0
2x1 + 2x2 + 3x3 = 3

∣∣∣∣∣∣
41.

∣∣∣∣∣∣
x1 + x2 + 3x3 = 1

x2 = 2
3x3 = 0

∣∣∣∣∣∣
Solution: Reminder: combo(s,t,c) arguments s=source equation, t=target
equation, c=multiplier∣∣∣∣∣∣
x1 + x2 + 3x3 = 1

x2 = 2
x3 = 0

∣∣∣∣∣∣ Frame 2: mult(3,1/3)

∣∣∣∣∣∣
x1 + x2 = 1

x2 = 2
x3 = 0

∣∣∣∣∣∣ Frame 3: combo(3,1,-3)

∣∣∣∣∣∣
x1 =−1

x2 = 2
x3 = 0

∣∣∣∣∣∣ Frame 4: combo(2,1,-1)

42.

∣∣∣∣∣∣
x1 + 3x2 + 2x3 = 1

x2 = 3
3x3 = 0

∣∣∣∣∣∣
43.

∣∣∣∣∣∣∣∣
x1 = 2
x1 + 2x2 = 1
2x1 + 2x2 + x3 = 0
3x1 + 6x2 + x3 + 2x4 = 2

∣∣∣∣∣∣∣∣
Solution:∣∣∣∣∣∣∣∣

x1 = 2
2x2 =−1

2x1 + 2x2 + x3 = 0
3x1 + 6x2 + x3 + 2x4 = 2

∣∣∣∣∣∣∣∣ Frame 2: combo(1,2,-1)
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∣∣∣∣∣∣∣∣
x1 = 2

2x2 =−1
2x2 + x3 =−4

3x1 + 6x2 + x3 + 2x4 = 2

∣∣∣∣∣∣∣∣ Frame 3: combo(1,3,-2)

∣∣∣∣∣∣∣∣
x1 = 2

2x2 =−1
2x2 + x3 =−4
6x2 + x3 + 2x4 =−4

∣∣∣∣∣∣∣∣ Frame 4: combo(1,4,-3)

∣∣∣∣∣∣∣∣
x1 = 2

2x2 =−1
x3 =−3

6x2 + x3 + 2x4 =−4

∣∣∣∣∣∣∣∣ Frame 5: combo(2,3,-1)

∣∣∣∣∣∣∣∣
x1 = 2

2x2 =−1
x3 =−3
x3 + 2x4 =−1

∣∣∣∣∣∣∣∣ Frame 6: combo(2,4,-3)

∣∣∣∣∣∣∣∣
x1 = 2

2x2 =−1
x3 =−3

2x4 = 2

∣∣∣∣∣∣∣∣ Frame 7: combo(3,4,-1)

∣∣∣∣∣∣∣∣
x1 = 2

x2 =−1/2
x3 = −3

x4 = 1

∣∣∣∣∣∣∣∣ Frame 8: mult(2,1/2), mult(4,1/2)

44.

∣∣∣∣∣∣∣∣
x1 = 3
x1 − 2x2 = 1
2x1 + 2x2 + x3 = 0
3x1 + 6x2 + x3 + 4x4 = 2

∣∣∣∣∣∣∣∣
45.

∣∣∣∣∣∣∣∣
x1 + x2 = 2
x1 + 2x2 = 1
2x1 + 2x2 + x3 = 0
3x1 + 6x2 + x3 + 2x4 = 2

∣∣∣∣∣∣∣∣
Solution:∣∣∣∣∣∣∣∣

x1 + x2 = 2
x1 + 2x2 = 1

2x1 + 2x2 + x3 = 0
3x1 + 6x2 + x3 + 2x4 = 2

∣∣∣∣∣∣∣∣ Frame 1

∣∣∣∣∣∣∣∣
x1 + x2 = 2

x2 =−1
2x1 + 2x2 + x3 = 0
3x1 + 6x2 + x3 + 2x4 = 2

∣∣∣∣∣∣∣∣ Frame 2: combo(1,2,-1)

178



3.2 Filmstrips and Toolkit Sequences

∣∣∣∣∣∣∣∣
x1 + x2 = 2

x2 =−1
x3 =−4

3x1 + 6x2 + x3 + 2x4 = 2

∣∣∣∣∣∣∣∣ Frame 3: combo(1,3,-2)

∣∣∣∣∣∣∣∣
x1 + x2 = 2

x2 =−1
x3 =−4

3x2 + x3 + 2x4 =−4

∣∣∣∣∣∣∣∣ Frame 4: combo(1,4,-3).

Variable x1 has just one occurrence. The next variable to eliminate to just
once occurrence is x2, taken from variable list order x1, x2, x3, x4.∣∣∣∣∣∣∣∣
x1 + x2 = 2

x2 =−1
x3 =−4
x3 + 2x4 =−1

∣∣∣∣∣∣∣∣ Frame 5: combo(2,4,-3)

∣∣∣∣∣∣∣∣
x1 = 3

x2 =−1
x3 =−4
x3 + 2x4 =−1

∣∣∣∣∣∣∣∣ Frame 6: combo(2,1,-1).

Variables x1, x2 isolated to just one occurrence. Next variable: x3.∣∣∣∣∣∣∣∣
x1 + = 3

x2 =−1
x3 =−4

2x4 = 3

∣∣∣∣∣∣∣∣ Frame 7: combo(3,4,-1).

All variables isolated to just one occurrence.∣∣∣∣∣∣∣∣
x1 + = 3

x2 = −1
x3 = −4

x4 = 3/2

∣∣∣∣∣∣∣∣ Frame 8: mult(4,1/2).

This is the Reduced Echelon Form of the system of equations, which displays
the unique solution.

46.

∣∣∣∣∣∣∣∣
x1 − 2x2 = 3
x1 − x2 = 1
2x1 + 2x2 + x3 = 0
3x1 + 6x2 + x3 + 4x4 = 1

∣∣∣∣∣∣∣∣

47.

∣∣∣∣∣∣∣∣∣∣
x1 = 3
x1 − x2 = 1
2x1 + 2x2 + x3 = 0
3x1 + 6x2 + x3 + 4x4 = 1
3x1 + x3 + 2x5 = 1

∣∣∣∣∣∣∣∣∣∣
Solution: x1 = 3, x2 = 2, x3 = −10, x4 = −5/2, x5 = 1
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# Maple answer check Ex 47

A:=Matrix

([

[1,0,0,0,0],

[1,-1,0,0,0],

[2,2,1,0,0],

[3,6,1,4,0],

[3,0,1,0,2]

]);

b:=<3,1,0,1,1>;

LinearAlgebra[LinearSolve](A,b,free=t);

48.

∣∣∣∣∣∣∣∣∣∣
x1 = 2
x1 − x2 = 0
2x1 + 2x2 + x3 = 1
3x1 + 6x2 + x3 + 3x4 = 1
3x1 + x3 + 3x5 = 1

∣∣∣∣∣∣∣∣∣∣
49.

∣∣∣∣∣∣∣∣∣∣
x1− x2+ x3− x4+ x5= 0

2x2− x3+ x4− x5= 0
3x3− x4+ x5= 0

4x4− x5= 0
5x5=20

∣∣∣∣∣∣∣∣∣∣
Solution: x1 = −1, x2 = 1, x3 = −1, x4 = 1, x5 = 4

# Maple answer check Ex 49

A:=Matrix

([

[1, -1, 1, -1, 1],

[0, 2, -1, 1, -1],

[0, 0, 3, -1, 1],

[0, 0, 0, 4, -1],

[0, 0, 0, 0, 5]

]);

b:=<0,0,0,0,20>;

LinearAlgebra[LinearSolve](A,b,free=t);

50.

∣∣∣∣∣∣∣∣∣∣
x1 − x2 = 3
x1 − 2x2 = 0
2x1 + 2x2 + x3 = 1
3x1 + 6x2 + x3 + 3x4 = 1
3x1 + x3 + x5 = 3

∣∣∣∣∣∣∣∣∣∣
No Solution
Develop a toolkit sequence for each system, whose final frame contains a signal
equation (e.g., 0 = 1), thereby showing that the system has no solution.

180



3.2 Filmstrips and Toolkit Sequences

51.

∣∣∣∣x1+3x2=0
x1+3x2=1

∣∣∣∣
Solution: Parallel lines. Subtract the equations to get signal equation 0 = 1.

52.

∣∣∣∣ x1+2x2=1
2x1+4x2=2

∣∣∣∣
53.

∣∣∣∣∣∣
x1 + 3x2 + 2x3 = 1

x2 + 4x3 = 3
x2 + 4x3 = 4

∣∣∣∣∣∣
Solution: Equations 2 and 3 are parallel lines in 3D. Subtract them to get
signal equation 0 = 1.

54.

∣∣∣∣∣∣
x1 = 0
3x1 + x2 + 3x3 = 1
2x1 + 2x2 + 6x3 = 0

∣∣∣∣∣∣
55.

∣∣∣∣∣∣
x1 + x2 + 3x3 = 1

x2 = 2
x1 + 2x2 + 3x3 = 2

∣∣∣∣∣∣
Solution: Subtract equation 2 from equation 3: x1 + x2 + 3x3 = 0, which
is parallel to equation 1. Subtract it from equation 1 to arrive at signal
equation 0 = 1.

56.

∣∣∣∣∣∣
x1 + 3x2 + 2x3 = 1

x2 + 2x3 = 3
x1 + 5x3 = 5

∣∣∣∣∣∣
57.

∣∣∣∣∣∣∣∣
x1 = 2
x1 + 2x2 = 2
x1 + 2x2 + x3 + 2x4 = 0
x1 + 6x2 + x3 + 2x4 = 2

∣∣∣∣∣∣∣∣
Solution: The first two equations give x1 = 2, x2 = 0. Then the last two
equations become x3 + 2x4 = −2, x3 + 2x4 = 0. Subtract them to arrive at
signal equation −2 = 0.

58.

∣∣∣∣∣∣∣∣
x1 = 3
x1 − 2x2 = 1
2x1 + 2x2 + x3 + 4x4 = 0
3x1 + 6x2 + x3 + 4x4 = 2

∣∣∣∣∣∣∣∣
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59.

∣∣∣∣∣∣∣∣∣∣
x1 = 3
x1 − x2 = 1
2x1 + 2x2 + x3 = 0
3x1 + 6x2 + x3 + 4x4 − x5 = 1

− 6x2 − x3 + 4x4 + x5 = 0

∣∣∣∣∣∣∣∣∣∣
Solution: Solve the first 3 equations for x1 = 3, x2 = 2, x3 = −10. Substi-
tute into equations 4,5: 4x4 + x5 = −10, 4x4 + x5 = 2. Subtract them to
arrive at signal equation 0 = 12.

60.

∣∣∣∣∣∣∣∣∣∣
x1 = 3
x1 − x2 = 1
3x1 + 2x2 + x3 = 0
3x1 + 6x2 + x3 + 4x4 − x5 = 1

− 6x2 − x3 − 4x4 + x5 = 2

∣∣∣∣∣∣∣∣∣∣
Infinitely Many Solutions
Display a toolkit sequence for each system, whose final frame has this prop-
erty: each nonzero equation has a lead variable. Then apply the last frame
algorithm to write out the standard general solution of the system. Assume
in each system variable list x1 to x5.

61.

∣∣∣∣∣∣
x1+x2+3x3 =0

x2 +x4 =0
0=0

∣∣∣∣∣∣
Solution:∣∣∣∣∣∣
x1 +3x3−x4 =0

x2 +x4 =0
0=0

∣∣∣∣∣∣ Frame 2 = Last Frame

The lead variables are x1, x2 and the free variables are x3, x4, x5. The last
frame algorithm applies:

x1 = −3x3 + x4, isolate lead variables left
x2 = −x4,
x3 = t1, assign symbols to the free variables
x4 = t2,
x5 = t3.

Substitute symbols t1, t2, t3 for free variables on the right side of the lead
variable equations.

x1 = −3t1 + t2,
x2 = −t2,
x3 = t1,
x4 = t2,
x5 = t3.

This is the general solution in terms of invented symbols t1, t2, t3.
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62.

∣∣∣∣∣∣
x1 + x3 = 0
x1 + x2 + x3 + 3x5 = 0

x4 + 2x5 = 0

∣∣∣∣∣∣
63.

∣∣∣∣∣∣
x2 + 3x3 = 0

x4 = 0
0= 0

∣∣∣∣∣∣
Solution: Lead variables x2, x4 and free variables x1, x3, x5. Last frame
algorithm:
x2 = −3x3, isolate lead variables left
x4 = 0,
x1 = t1, assign symbols to the free variables
x3 = t2,
x5 = t3.

The general solution:

x1 = t1,
x2 = −3t2,
x3 = t2,
x4 = 0,
x5 = t3.

64.

∣∣∣∣∣∣
x1 + 2x2 + 3x3 = 0

x4 = 0
0= 0

∣∣∣∣∣∣
65.

∣∣∣∣ x1 + 2x2 + 3x3 = 0
x3 + x4 0 = 0

∣∣∣∣
Solution: Lead variables x1, x3 and free variables x2, x4, x5.∣∣∣∣ x1 + 2x2 − 3x4 = 0

x3 + x4 0 = 0

∣∣∣∣ Last frame.

Last frame algorithm:

x1 = −2x2 + 3x4, isolate lead variables left
x3 = −x4,
x2 = t1, assign symbols to the free variables
x4 = t2,
x5 = t3.

The general solution:

x1 = −2t1 + 3t2,
x2 = −t2,
x3 = t1,
x4 = t2,
x5 = t3.
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66.

∣∣∣∣∣∣
x1 + x2 = 0

x2 + x3 = 0
x3 0 = 1

∣∣∣∣∣∣
67.

∣∣∣∣ x1 + x2 + 3x3 + 5x4 + 2x5 = 0
x5 = 0

∣∣∣∣
Solution: Lead variables x1, x5 and free variables x2, x3, x4.∣∣∣∣ x1 + x2 + 3x3 + 5x4 = 0

x5 = 0

∣∣∣∣ Last Frame.

Last frame algorithm:

x1 = −x2 − 3x3 − 5x4, isolate lead variables left
x5 = 0,
x2 = t1, assign symbols to the free variables
x3 = t2,
x4 = t3.

The general solution:

x1 = −t1 − 3t2 − 5t3,
x2 = t1,
x3 = t2,
x4 = t3,
x5 = 0.

68.

∣∣∣∣ x1 + 2x2 + x3 + 3x4 + 4x5 = 0
x3 + x4 + x5 = 0

∣∣∣∣
69.

∣∣∣∣∣∣
x3 + 2x4 + x5 = 0
2x3 + 2x4 + 2x5 = 0

x5 = 0

∣∣∣∣∣∣
Solution: //

∣∣∣∣∣∣
x3 + 2x4 + x5 = 0

− 2x4 = 0
x5 = 0

∣∣∣∣∣∣ Frame 2: combo(1,2,-2)

∣∣∣∣∣∣
x3 + x5 = 0

− 2x4 = 0
x5 = 0

∣∣∣∣∣∣ Frame 3: combo(2,1,1)

∣∣∣∣∣∣
x3 + x5 = 0

x4 = 0
x5 = 0

∣∣∣∣∣∣ Frame 4: mult(2,-1/2)

∣∣∣∣∣∣
x3 = 0

x4 = 0
x5 = 0

∣∣∣∣∣∣ Last Frame: combo(3,1,-1)

Lead variables x3, x4, x5 and free variables x1, x2. Last frame algorithm:
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x3 = 0, isolate lead variables left
x4 = 0,
x5 = 0,
x1 = t1, assign symbols to the free variables
x2 = t2.

The general solution:

x1 = t1,
x2 = t2,
x3 = 0,
x4 = 0,
x5 = 0.

70.

∣∣∣∣∣∣∣∣
x4 + x5 = 0

0= 0
0 = 0
0 = 0

∣∣∣∣∣∣∣∣
71.

∣∣∣∣∣∣∣∣
x2 + x3 + 5x4 = 0

x3 + 2x4 = 0
x5 = 0
0= 0

∣∣∣∣∣∣∣∣
Solution:∣∣∣∣∣∣∣∣
x2 + 3x4 = 0

x3 + 2x4 = 0
x5 = 0
0= 0

∣∣∣∣∣∣∣∣ Last Frame: combo(2,1,-1)

Lead variables x2, x3, x5 and free variables x1, x4. Last frame algorithm:

x2 = −3x4, isolate lead variables left
x3 = −2x4,
x5 = 0,
x1 = t1, assign symbols to the free variables
x4 = t2.

The general solution:

x1 = t1,
x2 = −3t2,
x3 = −2t2,
x4 = t2,
x5 = 0.

72.

∣∣∣∣∣∣∣∣
x1 + 3x3 = 0
x1 + x2 + x4 = 0

x5 = 0
0= 0

∣∣∣∣∣∣∣∣
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Inverses of Elementary Operations
Given the final frame of a toolkit sequence is∣∣∣∣∣∣

3x + 2y + 4z = 2
x + 3y + 2z = −1

2x + y + 5z = 0

∣∣∣∣∣∣
and the given operations, find the original system in the first frame.

73. combo(1,2,-1), combo(2,3,-3), mult(1,-2), swap(2,3).

Solution: Apply to the given system the inverse operations in reverse order:
swap(2,3), mult(1,-1/2), combo(2,3,3). The steps:∣∣∣∣∣∣
3x + 2y + 4z = 2
2x + y + 5z = 0
x + 3y + 2z = −1

∣∣∣∣∣∣ swap(2,3)

∣∣∣∣∣∣
−3x/2 − y − 2z = −1

2x + y + 5z = 0
x + 3y + 2z = −1

∣∣∣∣∣∣ mult(1,-1/2)

∣∣∣∣∣∣
−3x/2 − y − 2z = −1

2x + y + 5z = 0
7x + 6y + 17z = −1

∣∣∣∣∣∣ combo(2,3,3)

This is the original system.

74. combo(1,2,-1), combo(2,3,3), mult(1,2), swap(3,2).

75. combo(1,2,-1), combo(2,3,3), mult(1,4), swap(1,3).

Solution:∣∣∣∣∣∣
−3x/2 − y − 2z = −1

x/2 + 3z = −1
7x + 6y + 17z = −1

∣∣∣∣∣∣
76. combo(1,2,-1), combo(2,3,4), mult(1,3), swap(3,2).

77. combo(1,2,-1), combo(2,3,3),
mult(1,4), swap(1,3),
swap(2,3).

Solution:∣∣∣∣∣∣
x/4 + 3y/4 + z/2 = −1/4

9x/4 + 7y/4 + 11z/2 = −1/4
−3x − y − 11z = 2

∣∣∣∣∣∣
78. swap(2,3), combo(1,2,-1),

combo(2,3,4), mult(1,3),
swap(3,2).
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79. combo(1,2,-1), combo(2,3,3),
mult(1,4), swap(1,3),
mult(2,3).

Solution:∣∣∣∣∣∣
x/2 + y/4 + 5z/4 = 0
5x/6 + 5y/4 + 23z/12 = −1/3

2x − y + 2z = 3

∣∣∣∣∣∣
80. combo(1,2,-1), combo(2,3,4),

mult(1,3), swap(3,2),
combo(2,3,-3).
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Classification
Classify the parametric equations as a point, line or plane, then compute as
appropriate the tangent to the line or the normal to the plane.

1. x = 0, y = 1, z = −2

Solution: Point.

2. x = 1, y = −1, z = 2

3. x = t1, y = 1 + t1, z = 0

Solution: Line. Tangent = ı⃗+ ȷ⃗.

4. x = 0, y = 0, z = 1 + t1

5. x = 1 + t1, y = 0, z = t2

Solution: Plane. The partial derivatives on t1 and t2 generate vectors ı⃗ and
k⃗. The cross product of these two vectors is −ȷ⃗ by the right hand rule. The
normal vector N⃗ can also be generated by determinant expansion:

N⃗ =

∣∣∣∣∣∣
ı⃗ ȷ⃗ k⃗
1 0 0
0 0 1

∣∣∣∣∣∣ = 0⃗ı− ȷ⃗+ 0k⃗ = −ȷ⃗

6. x = t2 + t1, y = t2, z = t1

7. x = 1, y = 1 + t1, z = 1 + t2

Solution: Plane. The normal vector:

N⃗ =

∣∣∣∣∣∣
ı⃗ ȷ⃗ k⃗
0 1 0
0 0 1

∣∣∣∣∣∣ = 1⃗ı− 0ȷ⃗+ 0k⃗ = ı⃗

8. x = t2 + t1, y = t1 − t2, z = 0
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9. x = t2, y = 1 + t1, z = t1 + t2

Solution: Plane.The normal vector:

N⃗ =

∣∣∣∣∣∣
ı⃗ ȷ⃗ k⃗
0 1 0
1 0 1

∣∣∣∣∣∣ = 1⃗ı− 0ȷ⃗+ (−1)k⃗ = ı⃗− k⃗

10. x = 3t2 + t1, y = t1 − t2, z = 2t1

Reduced Echelon System
Solve the xyz–system and interpret the solution geometrically.

11.

∣∣∣∣ y + z = 1
x + 2z = 2

∣∣∣∣
Solution:∣∣∣∣ y + z = 1
x + 2z = 2

∣∣∣∣ Frame 1∣∣∣∣ x + 2z = 2
y + z = 1

∣∣∣∣ Last Frame : swap(1,2)

Lead variables x, y, free variable z.

x = 2− 2z, isolate lead variables left
y = 1− z,
z = t1. assign symbols to free variables

x = 2− 2t1, replace RHS free variables by symbols
y = 1− t1, and report answer in variable list order
z = t1.

Geometry: two planes intersect along a line.

# Maple answer check

with(LinearAlgebra):

A:=Matrix([[0,1,1,1],[1,0,2,2]]):

ReducedRowEchelonForm(A):

LinearSolve(A,free=t);

# ans=[2-2*t, 1-t, t]

12.

∣∣∣∣ x + z = 1
y + 2z = 4

∣∣∣∣
13.

∣∣∣∣ y + z = 1
x + 3z = 2

∣∣∣∣
Solution: x = 2− 3t, y = 1− t, z = t, two planes intersect in a line.
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14.

∣∣∣∣ x + z = 1
y + z = 5

∣∣∣∣
15.

∣∣∣∣ x + z = 1
2x + 2z = 2

∣∣∣∣
Solution: x = 1− t2, y = t1, z = t2, two equal planes.

16.

∣∣∣∣ x + y = 1
3x + 3y = 3

∣∣∣∣
17.

∣∣ x + y + z = 1.
∣∣

Solution: x = 1− t1 − t2, y = t1, z = t2, one plane.

18.
∣∣ x + 2y + 4z = 0.

∣∣
19.

∣∣∣∣ x + y = 2
z = 1

∣∣∣∣
Solution: x = 2− t, y = t, z = 1, two planes intersect in a line.

20.

∣∣∣∣ x + 4z = 0
y = 1

∣∣∣∣
Homogeneous System
Solve the xyz–system using elimination with variable list order x, y, z.

21.

∣∣∣∣ y + z = 0
2x + 2z = 0

∣∣∣∣
Solution: x = −t1, y = −t1, z = t1

# Maple answer check

with(LinearAlgebra):

A:=Matrix([[0,1,1],[2,0,2],[0,0,0]]):

LinearSolve(A,Vector([0,0,0]),free=t);

# ans=[-t, -t, t]

22.

∣∣∣∣ x + z = 0
2y + 2z = 0

∣∣∣∣
23.

∣∣∣∣ x + z = 0
2z = 0

∣∣∣∣
Solution: x = 0, y = t, z = 0

24.

∣∣∣∣ y + z = 0
y + 3z = 0

∣∣∣∣
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25.

∣∣∣∣ x + 2y + 3z = 0
0 = 0

∣∣∣∣
Solution: x = −2t1 − 3t2, y = t1, z = t2

26.

∣∣∣∣ x + 2y = 0
0 = 0

∣∣∣∣
27.

∣∣∣∣∣∣
y + z = 0

2x + 2z = 0
x + z = 0

∣∣∣∣∣∣
Solution: x = −t, y = −t, z = t

28.

∣∣∣∣∣∣
2x + y + z = 0
x + 2z = 0
x + y − z = 0

∣∣∣∣∣∣
29.

∣∣∣∣∣∣
x + y + z = 0
2x + 2z = 0
x + z = 0

∣∣∣∣∣∣
Solution: x = t, y = 0, z = t

30.

∣∣∣∣∣∣
x + y + z = 0
2x + 2z = 0
3x + y + 3z = 0

∣∣∣∣∣∣
Nonhomogeneous 3× 3 System
Solve the xyz-system using elimination and variable list order x, y, z.

31.

∣∣∣∣ y = 1
2z = 2

∣∣∣∣
Solution: x = t, y = 1, z = 1

# Maple answer check

with(LinearAlgebra):

A:=Matrix([[0,1,0],[0,0,2],[0,0,0]]):

LinearSolve(A,Vector([1,2,0]),free=t);

# ans=[t, 1, 1]

32.

∣∣∣∣ x = 1
2z = 2

∣∣∣∣
33.

∣∣∣∣∣∣
y + z = 1

2x + 2z = 2
x + z = 1

∣∣∣∣∣∣
Solution: x = 1− t, y = 1− t, z = t
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34.

∣∣∣∣∣∣
2x + y + z = 1
x + 2z = 2
x + y − z = −1

∣∣∣∣∣∣
35.

∣∣∣∣∣∣
x + y + z = 1
2x + 2z = 2
x + z = 1

∣∣∣∣∣∣
Solution: x = 1− t, y = 0, z = t

36.

∣∣∣∣∣∣
x + y + z = 1
2x + 2z = 2
3x + y + 3z = 3

∣∣∣∣∣∣
37.

∣∣∣∣∣∣
2x + y + z = 3
2x + 2z = 2
4x + y + 3z = 5

∣∣∣∣∣∣
Solution: x = 1− t, y = 1 + t, z = t

38.

∣∣∣∣∣∣
2x + y + z = 2
6x y + 5z = 2
4x + y + 3z = 2

∣∣∣∣∣∣
39.

∣∣∣∣∣∣
6x + 2y + 6z = 10
6x y + 6z = 11
4x + y + 4z = 7

∣∣∣∣∣∣
Solution: x = 2− t, y = −1, z = t

40.

∣∣∣∣∣∣
6x + 2y + 4z = 6
6x y + 5z = 9
4x + y + 3z = 5

∣∣∣∣∣∣
Nonhomogeneous 3× 4 System
Solve the yzuv-system using elimination with variable list order y, z, u, v.

41.

∣∣∣∣∣∣
y + z + 4u + 8v = 10

2z − u + v = 10
2y − u + 5v = 10

∣∣∣∣∣∣
Solution: y = 5− 3t, z = 5− t, u = −t, v = t

# Maple answer check

with(LinearAlgebra):

A:=Matrix([[1,1,4,8],[0,2,-1,1],[2,0,-1,5]]):

LinearSolve(A,Vector([10,10,10]),free=t);

# ans=[5-3*t, 5-t, -t, t]
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42.

∣∣∣∣∣∣
y + z + 4u + 8v = 10

2z − 2u + 2v = 0
y + 3z + 2u + 5v = 5

∣∣∣∣∣∣
43.

∣∣∣∣∣∣
y + z + 4u + 8v = 1

2z − 2u + 4v = 0
y + 3z + 2u + 6v = 1

∣∣∣∣∣∣
Solution: y = 1− t, z = t, u = t, v = 0

44.

∣∣∣∣∣∣
y + 3z + 4u + 8v = 1

2z − 2u + 4v = 0
y + 3z + 2u + 6v = 1

∣∣∣∣∣∣
45.

∣∣∣∣∣∣
y + 3z + 4u + 8v = 1

2z − 2u + 4v = 0
y + 4z + 2u + 7v = 1

∣∣∣∣∣∣
Solution: y = 1 + 19t, z = −5t, u = −3t, v = t

46.

∣∣∣∣∣∣
y + z + 4u + 9v = 1

2z − 2u + 4v = 0
y + 4z + 2u + 7v = 1

∣∣∣∣∣∣
47.

∣∣∣∣∣∣
y + z + 4u + 9v = 1

2z − 2u + 4v = 0
y + 4z + 2u + 7v = 1

∣∣∣∣∣∣
Solution: y = 1− 47t, z = 6t, u = 8t, v = t

48.

∣∣∣∣∣∣
y + z + 4u + 9v = 10

2z − 2u + 4v = 4
y + 4z + 2u + 7v = 8

∣∣∣∣∣∣
49.

∣∣∣∣∣∣
y + z + 4u + 9v = 2

2z − 2u + 4v = 4
y + 3z + 5u + 13v = 0

∣∣∣∣∣∣
Solution: y = 10− 7t, z = −2t, u = −2, v = t

50.

∣∣∣∣∣∣
y + z + 4u + 3v = 2

2z − 2u + 4v = 4
y + 3z + 5u + 7v = 0

∣∣∣∣∣∣
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Rank and Nullity
Compute an abbreviated sequence of combo, swap, mult steps which finds the
value of the rank and nullity.

1.

∣∣∣∣ x1 + x2 + 4x3 + 8x4 = 0
2x2 − x3 + x4 = 0

∣∣∣∣
Solution:∣∣∣∣ x1 + 9x3/2 + 15x4/2 = 0

2x2 − x3 + x4 = 0

∣∣∣∣ combo(2,1,-1/2)

Lead variables x1, x2 and free variables x3, x4. Rank = 2, nullity = 2.

# Maple answer check Ex 1

with(LinearAlgebra):

A:=Matrix([[1,1,4,8],[0,2,-1,1]]);

B:=Vector([0,0]);

ReducedRowEchelonForm(A);

LinearSolve(A,B,free=t);

# ans=[-9*t-12*s, t, 2*t+s, s]

2.

∣∣∣∣ x1 + x2 + 8x4 = 0
2x2 + x4 = 0

∣∣∣∣
3.

∣∣∣∣ x1 + 2x2 + 4x3 + 9x4 = 0
x1 + 8x2 + 2x3 + 7x4 = 0

∣∣∣∣
Solution: Steps: combo(2,1,-1), combo(1,2,8/6). Lead variables x1, x2

and free variables x3, x4. Rank = 2, nullity = 2.

4.

∣∣∣∣ x1 + x2 + 4x3 + 11x4 = 0
2x2 − 2x3 + 4x4 = 0

∣∣∣∣
Nullspace
Solve using variable order y, z, u, v. Report the values of the nullity and rank
in the equation nullity+rank=4.

5.

∣∣∣∣∣∣
y + z + 4u + 8v = 0

2z − u + v = 0
2y − u + 5v = 0

∣∣∣∣∣∣
Solution: y = −3t, z = −t, u = −t, v = t, nullity=1, rank=3.
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# Maple answer check Ex 5

with(LinearAlgebra):

A:=Matrix([[1,1,4,8],[0,2,-1,1],[2,0,-1,5]]);

B:=Vector([0,0,0]);

LinearSolve(A,B);

n:=ColumnDimension(A);Rank(A); n-Rank(A);

# ans: [-3*t, -t, -t, t]

# n=4, rank=3, nullity=1

6.

∣∣∣∣∣∣
y + z + 4u + 8v = 0

2z − 2u + 2v = 0
y + 3z + 2u + 5v = 0

∣∣∣∣∣∣
7.

∣∣∣∣∣∣
y + z + 4u + 8v = 0

2z − 2u + 4v = 0
y + 3z + 2u + 6v = 0

∣∣∣∣∣∣
Solution: y = −5t, z = t, u = t, v = 0, nullity=1, rank=3.

8.

∣∣∣∣∣∣
y + 3z + 4u + 8v = 0

2z − 2u + 4v = 0
y + 3z + 2u + 6v = 0

∣∣∣∣∣∣
9.

∣∣∣∣ y + 3z + 4u + 8v = 0
2z − 2u + 4v = 0

∣∣∣∣
Solution: y = −7t− 2s, z = t− 2s, u = t, v = s, nullity=2, rank=2.

10.

∣∣∣∣ y + z + 4u + 9v = 0
2z − 2u + 4v = 0

∣∣∣∣
11.

∣∣∣∣ y + z + 4u + 9v = 0
3y + 4z + 2u + 5v = 0

∣∣∣∣
Solution: y = −14t− 31s, z = 10t+ 22s, u = t, v = s, nullity=2, rank=2.

12.

∣∣∣∣ y + 2z + 4u + 9v = 0
y + 8z + 2u + 7v = 0

∣∣∣∣
13.

∣∣∣∣ y + z + 4u + 11v = 0
2z − 2u + 4v = 0

∣∣∣∣
Solution: y = −5t− 9s, z = t− 2s, u = t, v = s, nullity=2, rank=2.

14.

∣∣∣∣ y + z + 5u + 11v = 0
2z − 2u + 6v = 0

∣∣∣∣
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Dimension of the nullspace
In the homogeneous systems, assume variable order x, y, z, u, v.

(a) Display an equivalent set of equations in reduced echelon form.

(b) Solve for the general solution and check the answer.

(c) Report the dimension of the nullspace.

15.

∣∣∣∣∣∣
x + y + z + 4u + 8v = 0

−x + 2z − 2u + 2v = 0
y − z + 6u + 6v = 0

∣∣∣∣∣∣
Solution:∣∣∣∣∣∣
x = 0

y + 5u + 7v = 0
z − u + v = 0

∣∣∣∣∣∣ (a) RREF

(b) x = 0, y = −5t− 7s, z = t− s, u = t, v = s

(c) Nullity=2.

# Maple answer check Ex 15

with(LinearAlgebra):

A:=Matrix([[1,1,1,4,8],[-1,0,2,-2,2],[0,1,-1,6,6]]):

B:=Vector([0,0,0]):

LinearSolve(A,B);

# [0, -5*t1-7*t2, t1-t2, t1, t2]

ReF:=ReducedRowEchelonForm(<A|B>);

ReF.<x,y,z,u,v,-1>;# equations for RREF

# [x, y+5*u+7*v, z-u+v]

16.

∣∣∣∣∣∣
x + y + z + 4u + 8v = 0

− 2z − u + v = 0
2y − u + 5v = 0

∣∣∣∣∣∣
17.

∣∣∣∣∣∣
y + z + 4u + 8v = 0

x + 2z − 2u + 4v = 0
2x + y + 3z + 2u + 6v = 0

∣∣∣∣∣∣
Solution:
(a) x− 6v = 0, y + 5u+ 3v = 0, z − u+ 5v = 0

(b) x = 6s, y = −5t− 3s, z = t− 5s, u = t, v = s

(c) Nullity=2.

18.

∣∣∣∣∣∣
x + y + 3z + 4u + 8v = 0
2x + 2z − 2u + 4v = 0
x − y + 3z + 2u + 12v = 0

∣∣∣∣∣∣
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19.

∣∣∣∣∣∣
y + 3z + 4u + 20v = 0
+ 2z − 2u + 10v = 0

− y + 3z + 2u + 30v = 0

∣∣∣∣∣∣
Solution:
(a) y = 0, z + 8v = 0, u+ 3v = 0

(b) x = t, y = 0, z = −8s, u = −3s, v = s

(c) Nullity=2.

20.

∣∣∣∣∣∣
y + 4u + 20v = 0

− 2u + 10v = 0
− y + 2u + 30v = 0

∣∣∣∣∣∣
21.

∣∣∣∣∣∣
x + y + z + 4u = 0

− 2z − u = 0
2y − u+ = 0

∣∣∣∣∣∣
Solution:
(a) x+ 4u = 0, y − u/2 = 0, z + u/2 = 0

(b) x = 8t, y = −t, z = t, u = −2t, v = s

(c) Nullity=2.

22.

∣∣∣∣∣∣
+ z + 12u + 8v = 0

x + 2z − 6u + 4v = 0
2x + 3z + 6u + 6v = 0

∣∣∣∣∣∣
23.

∣∣∣∣∣∣
y + z + 4u = 0

2z − 2u = 0
y − z + 6u = 0

∣∣∣∣∣∣
Solution:
(a) x+ 4u = 0, y − u/2 = 0, z + u/2 = 0

(b) x = t1, y = −5t2, z = t2, u = t2, v = t3

(c) Nullity=3.

24.

∣∣∣∣∣∣
x + z + 8v = 0

− 2z + v = 0
5v = 0

∣∣∣∣∣∣
Three possibilities with symbols
Assume variables x, y, z. Determine the values of the constants (a, b, c, k, etc)
such that the system has (1) No solution, (2) A unique solution or (3) Infinitely
many solutions.
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25.

∣∣∣∣ x + ky = 0
x + 2ky = 0

∣∣∣∣
Solution: Use combo(1,2,-1), combo(2,1,-1) to arrive at system x = 0,
ky = 0. If k = 0, then nullity=1 and there are infinitely many solutions.
Otherwise k ̸= 0, then nullity=0 with unique solution x = 0, y = 0.

26.

∣∣∣∣ kx + ky = 0
x + 2ky = 0

∣∣∣∣
27.

∣∣∣∣ ax + by = 0
x + 2by = 0

∣∣∣∣
Solution: Answer: Infinitely many solutions for b = 0, unique solution for
b ̸= 0. A homogeneous system always has a solution x = y = 0, so no
solution cannot happen.

If a = 0, then the system is by = 0, x + 2by = 0 which is equivalent to
by = 0, x = 0. If b = 0, then the system reduces to 0 = 0, x = 0 which
has infinitely many solutions x = 0, y = t1. If b ̸= 0, then the system is
equivalent to y = 0, x = 0, a unique solution.

If a ̸= 0, then the system is equivalent to x = 0, by = 0. Then a ̸= 0,
b = 0 makes infinitely many solutions, while a ̸= 0, b ̸= 0 makes for unique
solution x = 0, y = 0.

28.

∣∣∣∣ bx + ay = 0
x + 2y = 0

∣∣∣∣
29.

∣∣∣∣ bx + ay = c
x + 2y = b− c

∣∣∣∣
Solution: Answer: (1) No solution if a = 2b, b ̸= 0 and c/b ̸= c + 2b. (2)
Unique solution for 2b−a ̸= 0. (3) Infinitely many solutions if a = b = c = 0
or a = 2b, b ̸= 0 and c/b = c+ 2b.

Cramer’s rule from college algebra detects the unique solution case: deter-

minant

∣∣∣∣ b a
1 2

∣∣∣∣ = 2b − a ̸= 0. Then 2b − a = 0 is required for either no

solution or infinitely many solutions. It can be false that all three possibili-
ties occur.

If 2b − a = 0, then symbol a is replaced by 2b is give system bx + 2by = c,
x+ 2y = c+ 2b.

If b ̸= 0, then system bx+2by = c, x+2y = c+2b is equivalent to x+2y = c/b,
x+ 2y = c+ 2b. This system has no solution if c/b ̸= c+ 2b (parallel lines)
and infinitely many solutions if c/b = c+ 2b (equal lines).

If b = 0, then system bx + 2by = c, x + 2y = c + 2b is equivalent to 0 = c,
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3.4 Basis, Dimension, Nullity and Rank

x + 2y = c, in turn equivalent to the single equation x + 2y = 0 which has
infinitely many solutions.

30.

∣∣∣∣ bx + ay = 2c
x + 2y = c+ a

∣∣∣∣
31.

∣∣∣∣∣∣
bx + ay + z = 0
2bx + ay + 2z = 0
x + 2y + 2z = c

∣∣∣∣∣∣
Solution: Case (1): No solution for a ̸= 0 and −2b + 1 = 0 and c ̸= 0.
Case (2): Unique solution for a ̸= 0 and b ̸= 1/2. Case (3): Infinitely many
solutions for a ̸= 0 and −2b+ 1 = 0 and c = 0, or a = 0 and any values for
b and c.

The unique solution case (2) is determined by a nonzero determinant of
coefficients, evaluated using college methods:∣∣∣∣∣∣

b a 1
2b a 2
1 2 2

∣∣∣∣∣∣ = a(−2b+ 1)

The no solution case (1) and infinitely many solution case (3) must assume
a(−2b+ 1) = 0. Steps applied:∣∣∣∣∣∣

bx + ay + z = 0
2bx + ay + 2z = 0
x + 2y + 2z = c

∣∣∣∣∣∣ Frame 1

∣∣∣∣∣∣
bx + z = 0

− ay = 0
x + 2y + 2z = c

∣∣∣∣∣∣ Frame 2: combo(1,2-2)

∣∣∣∣∣∣
− 2by + (1− 2b)z = −bc

− ay = 0
x + 2y + 2z = c

∣∣∣∣∣∣ Frame 3: combo(3,1,-b)

∣∣∣∣∣∣
x + 2y + 2z = c

2by + (2b− 1)z = −bc
− ay = 0

∣∣∣∣∣∣ Frame 6.

Details Frames 4, 5, 6: mult(1,-1), swap(2,3), swap(1,2).

The unique solution case (2) has 3 lead variables. No solution case (1) is
decided by a signal equation. Infinite many solutions case (3) has either 1
or 2 lead variables and no signal equation.

Assume case (1) or case (3) holds, meaning a(−2b + 1) = 0. We examine
Frame 6 for lead variables, free variables and signal equations. Variable x is
a lead variable. The other lead variable can be y or z, for a total of 2 lead
variables:
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3.4 Basis, Dimension, Nullity and Rank

1. a ̸= 0 allows division by a to get y = 0. Then x, y are
lead variables and z is a free variable (signal equation ignored).
Substitute y = 0 and (−2b + 1) = 0 into Frame 6 equations:
x+ 2z = c, 0 = −bc, y = 0. Then:

1a. Case (1) occurs for a ̸= 0, −2b + 1 = 0, c ̸= 0 due
to signal equation ”0 = −bc.”
1b. Case (3) occurs for a ̸= 0, −2b+ 1 = 0 and c = 0.

2. a = 0 and b ̸= 0 implies y is a lead variable. Frame 6 after
substitution of a = 0 and division by b becomes x+2y+2z = c,
2y + (2 − 1/b)z = −c, 0 = 0. Eliminate to get x + (1/b)z = 2c,
2y+(2−1/b)z = −c, 0 = 0. Consistent system, one free variable,
no signal equation, case (3) infinitely many solutions.

3. a = 0 and b = 0 implies Frame 6 becomes x + 2y + 2z = c,
−z = 0, 0 = 0. Then z is a lead variable, y is a free variable,
consistent system, no signal equation, case (3) infinitely many
solutions.

32.

∣∣∣∣∣∣
bx + ay + z = 0
3bx + 2ay + 2z = 2c,
x + 2y + 2z = c

∣∣∣∣∣∣
33.

∣∣∣∣∣∣
3x + ay + z = b
2bx + ay + 2z = 0
x + 2y + 2z = c

∣∣∣∣∣∣
Solution: Swap equations to put the right hand sides in order c, b, 0. Then
do operations combo(1,2,-3), combo(1,3,-2b) to get equations

x+ 2y + 2z = c,
(a− 6)y − 5z = b− 3c,
(a− 4b)y + (2− 4b)z = −2bc

Case : a− 6 ̸= 0

Then x, y, z are lead variables and the result is case (2): unique solution.

Case: a− 6 = 0
Replace a = 6 in the preceding equations. Then do operations
combo(1,2,-3), combo(1,3,-2b) to get equations

x+ 2y = (2b− c)z/5,
(6− 4b)y = (2bc+ 2b− 6c− 4b2)/5,
z = (3c− b)/5

If 6− 4b ̸= 0, then there is a unique solution. If 6− 4b = 0, then y is a free
variable subject to consistency equation 0 = 2bc+2b−6c−4b2. If6−4b = 0
and 0 = 2bc + 2b − 6c − 4b2 then case (3) holds: infinitely many solutions.
If 6− 4b = 0 and 0 ̸= 2bc+ 2b− 6c− 4b2 then case (1) holds: no solution.
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3.4 Basis, Dimension, Nullity and Rank

34.

∣∣∣∣∣∣
x + ay + z = 2b

3bx + 2ay + 2z = 2c
x + 2y + 2z = c

∣∣∣∣∣∣
Three Possibilities
Answer the following questions by using equivalents for the three possibilities
in terms of lead and free variables, signal equations, rank and nullity.

35. Does there exist a homogeneous 3× 2 system with a unique solution? Give
an example or else prove that no such system exists.

Solution: The variable list has 2 unknowns. Let’s use x, y. An example:
x = 0, y = 0, 0 = 0.

36. Does there exist a homogeneous 2×3 system with a unique solution? Either
give an example or else prove that no such system exists.

Solution: No such system exists. Proof expected.

37. In a homogeneous 10× 10 system, two equations are identical. Prove that
the system has a nonzero solution.

Solution: Operation combo(s,t,c) applies to replace one of the two equa-
tions by 0 = 0. Therefore, the number of lead variables is at most 9 and
there is at least one free variable. A homogenous system always has the zero
solution: the no solution case never happens. A unique solution is detected
by 10 lead variables. Infinitely many solutions is detected by less than 10
lead variables, or equivalently, at least one free variable. There are infinitely
many solutions, hence at least one nonzero solution.

38. In a homogeneous 5×5 system, each equation has a leading variable. Prove
that the system has only the zero solution.

39. Suppose given two homogeneous systems A and B, with A having a unique
solution and B having infinitely many solutions. Explain why B cannot be
obtained from A by a sequence of swap, multiply and combination operations
on the equations.

Solution: If B is so obtained from A, then systems A and B must have
exactly the same set of solutions. They must both fall into the same classi-
fication for the Three Possibilities.

40. A 2 × 3 system cannot have a unique solution. Cite a theorem or explain
why.
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3.4 Basis, Dimension, Nullity and Rank

41. If a 3 × 3 homogeneous system contains no variables, then what is the
general solution?

Solution: All variables that fail to appear are free variables. If the variable
list is x, y, z then the general solution is x = t1, y = t2, z = t3 in terms of
invented symbols t1, t2, t3.

42. If a 3 × 3 non-homogeneous solution has a unique solution, then what is
the nullity of the homogeneous system?

43. A 7×7 homogeneous system is missing two variables. What is the maximum
rank of the system? Give examples for all possible ranks.

Solution: Assume variable list x1 to x7. If two are missing then they are
free variables so the nullity is at least 2 and the rank is at most 5 (rank
+ nullity = 7). Examples are systems with 1 to 5 equations of the form
x1 = 0, . . . , xk = 0 with k = 1, 2, 3, 4, 5.

44. Suppose an n×n system of equations (homogeneous or non-homogeneous)
has two solutions. Prove that it has infinitely many solutions.

45. What is the nullity and rank of an n×n system of homogeneous equations
if the system has a unique solution?

Solution: No free variables implies the nullity is zero, the count of the num-
ber of free variables. Then rank+nullity=n implies the rank is n.

46. What is the nullity and rank of an n×n system of non-homogeneous equa-
tions if the system has a unique solution?

47. Prove or else disprove by counter-example: A 4×3 nonhomogeneous system
cannot have a unique solution.

Solution: Counter-example: x1 = 1, x2 = 2, x3 = 3, 0 = 0.

48. Prove or disprove (by example): A 4 × 3 homogeneous system always has
infinitely many solutions.
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Parametric solutions

1. Is there a 2× 3 homogeneous system with general solution having 2 param-
eters t1, t2?

Solution: Yes: with variable list x, y, z an example system is x = 0, 0 = 0,
0 = 0 with general solution x = 0, y = t1, z = t2.

2. Is there a 3× 3 homogeneous system with general solution having 3 param-
eters t1, t2, t3?

3. Give an example of a 4×3 homogeneous system with general solution having
zero parameters, that is, x = y = z = 0 is the only solution.

Solution: Example: x = 0, y = 0, z = 0, 0 = 0.

4. Give an example of a 4×3 homogeneous system with general solution having
exactly one parameter t1.

5. Give an example of a 4×3 homogeneous system with general solution having
exactly two parameters t1, t2.

Solution: Example: x = 0, y = 0, 0 = 0, 0 = 0 with general solution x = 0,
y = t1, z = t2.

6. Give an example of a 4×3 homogeneous system with general solution having
exactly three parameters t1, t2, t3.

7. Consider an n × n homogeneous system with parametric solution having
parameters t1 to tk. What are the possible values of k?

Solution: The question implies k ≥ 1. The number of parameters in the
nullity and nullity+rank=n. Answer: 1 ≤ k ≤ n. The case k = n is
special: the system has n free variables, which implies zero lead variables:
the equations have no variables, which means each equation must be 0 = 0!

8. Consider an n × m homogeneous system with parametric solution having
parameters t1 to tk. What are the possible values of k?

Answer Checks
Assume variable list x, y, z and parameter t1. (a) Display the answer check
details. (b) Find the rank. (c) Report whether the given solution is a general
solution.
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9.

∣∣∣∣ y = 1
2z = 2

∣∣∣∣
x = t1, y = 1, z = 1.

Solution:
(a) Substitute x = t1, y = 1, z = 1 formally into the equations∣∣∣∣ y = 1

2z = 2

∣∣∣∣∣∣∣∣ (1) = 1
2(1) = 2

∣∣∣∣
The equations are satisfied: x = t1, y = 1, z = 1 is a solution.

(b) Rank=2 because y, z are lead variables.

(c) Perhaps useful is the maple code below used to find the exact solution
by computer algebra. Expected is a paper and pencil solution with steps
using combo, swap, mult steps and the last frame algorithm.∣∣∣∣ y = 1

2z = 2

∣∣∣∣ Frame 1∣∣∣∣ y = 1
z = 1

∣∣∣∣ Frame 2: mult(2,1/2)

Last frame algorithm:

x = t1,
y = 1,
z = 1

No further steps needed, variables are in list order and the right sides involve
only constants and invented symbols. This is the general solution, which
matches the supplied solution.

with(LinearAlgebra):

A:=Matrix([[0,1,0],[0,0,2],[0,0,0]]):

B:=Vector([1,2,0]):

LinearSolve(A,B);

# x = t, y = 1, z = 1

10.

∣∣∣∣ x = 1
2z = 2

∣∣∣∣
x = 1, y = t1, z = 1.

11.

∣∣∣∣∣∣
y + z = 1

2x + 2z = 2
x + z = 1

∣∣∣∣∣∣
x = 0, y = 0, z = 1.

Solution:
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(a) The steps for verifying a solution:∣∣∣∣∣∣
y + z = 1

2x + 2z = 2
x + z = 1

∣∣∣∣∣∣ Given system

∣∣∣∣∣∣
0 + 1 = 1

2(0) + 2(1) = 2
0 + 1 = 1

∣∣∣∣∣∣ Substitute x = 0, y = 0, z = 1

The three equations are valid, so x = 0, y = 0, z = 1 is a solution.

(b) Rank=2, lead variables x, y.

(c) Not the general solution. Combo, swap, mult steps find general solution
x = 1− t1, y = 1− t1, z = t1. The solution from maple is the same.

12.

∣∣∣∣∣∣
2x + y + z = 1
x + 2z = 2
x + y − z = −1

∣∣∣∣∣∣
x = 2, y = −3, z = 0.

13.

∣∣∣∣∣∣
x + y + z = 1
2x + 2z = 2
x + z = 1

∣∣∣∣∣∣
x = 1− t1, y = 0, z = t1.

Solution:
(a) Substitute x = 1− t1, y = 0, z = t1:∣∣∣∣∣∣

(1− t1) + 0 + t1 = 1
2(1− t1) + 2t1 = 2

1− t1 + t1 = 1

∣∣∣∣∣∣
The three equations are valid, so x = 1− t1, y = 0, z = t1 is a solution.

(b) Rank=2, lead variables x, y.

(c) Yes, it is the general solution. Checked in maple.

14.

∣∣∣∣∣∣
x + y + z = 1
2x + 2z = 2
3x + y + 3z = 3

∣∣∣∣∣∣
x = 1− t1, y = 0, z = t1.

Failure of Answer Checks
Find the unique solution for ϵ > 0. Discuss how a machine might translate the
system to obtain infinitely many solutions.

15. x+ ϵy = 1, x− ϵy = 1
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Solution: Answer: x = 2, y = 1/ϵ. If ϵ translates to zero on the machine,
then both equations are x = 1 and y is absent, a free variable, then there
are infinitely many solutions x = 1, y = t1.

16. x+ y = 1, x+ (1 + ϵ)y = 1 + ϵ

17. x+ ϵy = 10ϵ, x− ϵy = 10ϵ

Solution: Answer: x = 20ϵ, y = 10. If ϵ translates to zero on the machine,
then both equations are x = 0 and y is absent, a free variable, then there
are infinitely many solutions x = 0, y = t1. Machine answer checks using
floating point engines may fail on this example, whereas computer algebra
systems will not make an error.

18. x+ y = 1 + ϵ, x+ (1 + ϵ)y = 1 + 11ϵ

Minimal Parametric Solutions
For each given system, determine if the expression is a minimal general solution.

19.

∣∣∣∣∣∣
y + z + 4u + 8v = 0

2z − u + v = 0
2y − u + 5v = 0

∣∣∣∣∣∣
y = −3t1, z = −t1,
u = −t1, v = t1.

Solution: The answer given is checked as a solution, computer algebra sys-
tem expected. The given solution is minimal because the rank is 3 and the
nullity is 1. It would not be minimal if the number of parameters differed
from the number of free variables. The nullity equals the number of free
variables and the rank equals the number of lead variables.

20.

∣∣∣∣∣∣
y + z + 4u + 8v = 0

2z − 2u + 2v = 0
y − z + 6u + 6v = 0

∣∣∣∣∣∣
y = −5t1 − 7t2, z = t1 − t2,
u = t1, v = t2.

21.

∣∣∣∣∣∣
y + z + 4u + 8v = 0

2z − 2u + 4v = 0
y + 3z + 2u + 6v = 0

∣∣∣∣∣∣
y = −5t1 + 5t2, z = t1 − t2,
u = t1 − t2, v = 0.

Solution: First, check the expression:∣∣∣∣∣∣
(−5t1 + 5t2) + (t1 − t2) + 4(t1 − t2) + 8(0) = 0

2(t1 − t2) − 2(t1 − t2) + 4(0) = 0
(−5t1 + 5t2) + 3(t1 − t2) + 2(t1 − t2) + 6(0) = 0

∣∣∣∣∣∣
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The three equations are valid, so the given expression y = −5t1 + 5t2, z =
t1 − t2, u = t1 − t2, v = 0. is a solution for all values of symbols t1, t2.
A computer algebra system like maple reports the rank is 3, nullity 1 with
solution

y = −5t1, z = t1, u = t1, v = 0.

The expression is not a minimal solution, because it has one extra parameter.

22.

∣∣∣∣∣∣
y + 3z + 4u + 8v = 0

2z − 2u + 4v = 0
y + 3z + 2u + 12v = 0

∣∣∣∣∣∣
y = 5t1 + 4t2, z = −3t1 − 6t2,
u = −t1 − 2t2, v = t1 + 2t2.
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Chapter 4

Numerical Methods with
Applications

Contents

4.1 Solving y′ = F (x) Numerically . . . . . . . 209
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4.1 Solving y′ = F (x) Numerically

Connect-the-Dots
Make a numerical table of 6 rows and a connect-the-dots graphic for exercises
1-10.

1. y = 2x+ 5, x = 0 to x = 1
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4.1 Solving y′ = F (x) Numerically

Solution:
x y
0.0 5.0
0.1 5.8
0.2 6.2
0.3 6.6
0.4 7.0
0.5 7.4

# Maple: compute table values

f:=x->2*x+5;N:=6;a:=0;b:=1.0;h:=(b-a)/(N-1);

vals:=seq(f(a+h*k),k=0..N-1);evalf(vals,2);

# 5.0, 5.4, 5.8, 6.2, 6.6, 7.0, 7.4

# Maple: connect-the-dots graphic

Dots:=[seq([a+h*k,f(a+h*k)],k=0..N-1)];

plot(Dots,style=pointline);

2. y = 3x+ 5, x = 0 to x = 2

3. y = 2x2 + 5, x = 0 to x = 1

Solution:

x y
0.0 5.0
0.1 5.12
0.2 5.48
0.3 6.08
0.4 6.92
0.5 8.00
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4. y = 3x2 + 5, x = 0 to x = 2

5. y = sinx, x = 0 to x = π/2

Solution:

x y
0.0 0.000
0.1 0.309
0.2 0.588
0.3 0.809
0.4 0.952
0.5 1.00

6. y = sin 2x, x = 0 to x = π/4

7. y = x ln |1 + x|, x = 0 to x = 2

Solution:
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x y
0.0 0.000
0.1 0.134
0.2 0.470
0.3 0.946
0.4 1.530
0.5 2.20

8. y = x ln |1 + 2x|, x = 0 to x = 1

9. y = xex, x = 0 to x = 1

Solution:

x y
0.0 0.000
0.1 0.244
0.2 0.597
0.3 1.093
0.4 1.781
0.5 2.718
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10. y = x2ex, x = 0 to x = 1/2

Rectangular Rule
Apply the rectangular rule to make an xy-table for y(x) with 11 rows, h = 0.1.
Graph the approximate solution and the exact solution. Follow example 4.1.

11. y′ = 2x, y(0) = 5.

Solution: Let F (x) = 2x. The exact solution of Y ′ = F (x), Y (0) = 5 is
Y (x) = x2 + 5 by the method of quadrature.

x y-RECT y-EXACT
0.0 5.00 5.00
0.1 5.00 5.01
0.2 5.02 5.04
0.3 5.06 5.09
0.4 5.12 5.16
0.5 5.20 5.25
0.6 5.30 5.36
0.7 5.42 5.49
0.8 5.56 5.64
0.9 5.72 5.81
1.0 5.90 6.00

The y-RECT value is found from y(x+ h) = y(x) +
∫ x+h

x
F (u)du ≈ y(x) +

hF (x). Then y(0.1) = y(0)+
∫ 0.1

0
F (u)du ≈ 5+0.1F (0). Values for the first

row of the table :

x = 0, y-RECT = 5, y-EXACT = 5

The second row values:
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4.1 Solving y′ = F (x) Numerically

x = 0.1, y-RECT = 5 + 0.1F (0) = 5, y-EXACT = Y (0.1) = 5.01

The third row values:

x = 0.2, y-RECT = 5 + 0.1F (0.1) = 5.02, y-EXACT = Y (0.2) = 5.04

The fourth row values:

x = 0.3, y-RECT = 5.02+0.1F (0.2) = 5.06, y-EXACT = Y (0.3) = 5.09

The fifth and later row values follow the same pattern:

y-RECT = (previous row y-RECT value) + 0.1F (this row x-
value).

# Maple: Exact solution

x:=’x’;y:=’y’; X:=’X’;Y:=’Y’;

F:=x->2*x;de:=diff(y(x),x)=F(x);y0:=5;x0:=0;

ans:=dsolve([de,y(0)=y0],y(x));

EY:=unapply(rhs(ans),x);# Y(x)=x^2+5

# Maple: table rectangular rule and exact solution

N:=11;a:=0;b:=1.0;h:=0.1;

rect:=x -> h*F(x-h);# rectangular rule

DotsRECT:=[x0,y0];DotsEXACT:=[x0,y0];Y:=y0;

for k from 1 to N-1 do

X:= x0 + h*k; Y:= Y+rect(X);

DotsRECT:=DotsRECT,[X,Y];

DotsEXACT:=DotsEXACT,[X,EY(X)];

od:

DotsRECT;DotsEXACT;# table values

# Maple: Two connect-the-dots curves on 1 graphic

opts:=style=pointline,font=[courier,18,bold],

symbol=diamond,symbolsize=24,thickness=3;

plot([[DotsRECT],[DotsEXACT]],opts,

color=[red,blue],legend=["Rect","Exact"]);

12. y′ = 3x2, y(0) = 5.

13. y′ = 3x2 + 2x, y(0) = 4.

Solution: Let F (x) = 3x2 + 2x. The exact solution of Y ′ = F (x), Y (0) = 4
is Y (x) = x3 + x2 + 4 by the method of quadrature.
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x y − RECT y − EXACT
0.0 4.000 4.000
0.1 4.000 4.011
0.2 4.023 4.048
0.3 4.075 4.117
0.4 4.162 4.224
0.5 4.290 4.375
0.6 4.465 4.576
0.7 4.693 4.833
0.8 4.980 5.152
0.9 5.332 5.539
1 5.755 6.000

14. y′ = 3x2 + 4x3, y(0) = 4.

15. y′ = sinx, y(0) = 1.

Solution: Let F (x) = sin(x). The exact solution of Y ′ = F (x), Y (0) = 1 is
Y (x) = 2− cos(x) by the method of quadrature.
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x y − RECT y − EXACT
0 1 1
0.1 1.00000 1.00500
0.2 1.00998 1.01993
0.3 1.02985 1.04466
0.4 1.0594 1.07894
0.5 1.09834 1.12242
0.6 1.14629 1.17466
0.7 1.20275 1.23516
0.8 1.26717 1.30329
0.9 1.33891 1.37839
1 1.41724 1.45970

16. y′ = 2 sin 2x, y(0) = 1.

17. y′ = ln(1 + x), y(0) = 1. Exact (1 + x) ln |1 + x|+ 1− x.

Solution: Let F (x) = ln(1+x). The exact solution of Y ′ = F (x), Y (0) = 1
is Y (x) = (1x) ln(1 + x)− x+ 1 by the method of quadrature.
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x y − RECT y − EXACT
0 1 1
0.1 1 1.00484
0.2 1.00953 1.01879
0.3 1.02776 1.04107
0.4 1.054 1.07106
0.5 1.08765 1.1082
0.6 1.12819 1.15201
0.7 1.17519 1.20207
0.8 1.22826 1.25802
0.9 1.28704 1.31952
1 1.35122 1.38629

18. y′ = 2 ln(1 + 2x), y(0) = 1. Exact (1 + 2x) ln |1 + 2x|+ 1− 2x.

19. y′ = xex, y(0) = 1. Exact xex − ex + 2.

Solution:

Let F (x) = x ex. The exact solution of Y ′ = F (x), Y (0) = 1 is Y (x) =
xex − ex + 21 by the method of quadrature. The details require integration
by parts.

217



4.1 Solving y′ = F (x) Numerically

x y − RECT y − EXACT
0 1 1
0.1 1 1.00535
0.2 1.01105 1.02288
0.3 1.03548 1.0551
0.4 1.07598 1.10491
0.5 1.13565 1.17564
0.6 1.21808 1.27115
0.7 1.32741 1.39587
0.8 1.46837 1.55489
0.9 1.64642 1.75404
1 1.86778 2

20. y′ = 2x2e2x, y(0) = 4. Exact 2x2ex − 4xex + 4 ex.

Trapezoidal Rule
Apply the trapezoidal rule to make an xy-table for y(x) with 6 rows and step
size h = 0.2. Graph the approximate solution and the exact solution. Follow
example 4.2.

21. y′ = 2x, y(0) = 1.

Solution: Let F (x) = 2x. The exact solution of Y ′ = F (x), Y (0) = 1 is
Y (x) = x2 + 1 by the method of quadrature.
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x y-TRAP y-EXACT
0 1 1
0.2 1.04 1.04
0.4 1.16 1.16
0.6 1.36 1.36
0.8 1.64 1.64
1 2 2

The graphic shows only the blue curve because the red and blue curves are
identical.

The y-TRAP value is found from y(x+ h) = y(x) +
∫ x+h

x
F (u)du ≈ y(x) +

0.5h(F (x) +F (x+ h)). Then y(0.1) = y(0) +
∫ 0.1

0
F (u)du ≈ 1 + 0.1(F (0) +

F (0.1))/2. Values for the first row of the table :

x = 0, y-TRAP = 1, y-EXACT = 1

The second row values:

x = 0.1, y-TRAP = 1+0.1(F (0)+F (0.1))/2 = 1.01, y-EXACT = 1.01

The third row values:

x = 0.2, y-TRAP = 1.01+0.1(F (0.1)+F (0.2))/2 = 1.04, y-EXACT =
1.04

The fourth and later row values follow the same pattern:

y-TRAP = (previous row y-TRAP value) +

0.1 (F (this row x-value) + F (h+ (this row x-value)) /2.
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# Maple: Exact solution

x:=’x’;y:=’y’; X:=’X’;Y:=’Y’;

F:=x->2*x;de:=diff(y(x),x)=F(x);y0:=1;x0:=0;

ans:=dsolve([de,y(0)=y0],y(x));

EY:=unapply(rhs(ans),x);# Y(x)=x^2+1

# Maple: table trapzoidal rule and exact solution

N:=6;a:=0;b:=1.0;h:=0.2;

trap:=x -> 0.5*h*(F(x-h)+F(x));# trapezoidal rule

DotsTRAP:=[x0,y0];DotsEXACT:=[x0,y0];Y:=y0;

for k from 1 to N-1 do

X:= x0 + h*k; Y:= Y+trap(X);

DotsTRAP:=DotsTRAP,[X,Y];

DotsEXACT:=DotsEXACT,[X,EY(X)];

od:

DotsTRAP;DotsEXACT; # table values are the same

# Maple: Two connect-the-dots curves on 1 graphic

opts:=style=pointline,font=[courier,18,bold],

symbol=diamond,symbolsize=24,thickness=3;

plot([[DotsTRAP],[DotsEXACT]],opts,

color=[red,blue],legend=["Trap","Exact"]);

# only the blue plot is visible: duplicate data

22. y′ = 3x2, y(0) = 1.

23. y′ = 3x2 + 2x, y(0) = 2.

Solution: Let F (x) = 3x2 + 2x. The exact solution of Y ′ = F (x), Y (0) = 2
is Y (x) = x3 + x2 + 2 by the method of quadrature.

x y-TRAP y-EXACT
0 2 2
0.2 2.052 2.048
0.4 2.232 2.224
0.6 2.588 2.576
0.8 3.168 3.152
1 4.02 4

The graphic shows a limited range because the red and blue curves are
nearly identical.

220



4.1 Solving y′ = F (x) Numerically

24. y′ = 3x2 + 4x3, y(0) = 2.

25. y′ = sinx, y(0) = 4.

Solution: Let F (x) = 3x2 + 2x. The exact solution of Y ′ = F (x), Y (0) = 2
is Y (x) = x3 + x2 + 2 by the method of quadrature.

x y-TRAP y-EXACT
0 4 4
0.2 4.01987 4.01993
0.4 4.07868 4.07894
0.6 4.17408 4.17466
0.8 4.30228 4.30329
1 4.45816 4.4597

The graphic shows a limited range because the red and blue curves are
nearly identical.
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26. y′ = 2 sin 2x, y(0) = 4.

27. y′ = ln(1 + x), y(0) = 1. Exact (1 + x) ln |1 + x|+ 1− x.

Solution: Let F (x) = ln(1 + x). The exact solution of Y ′ = F (x), Y (0) = 2
is Y (x) = (1 + x) ln |1 + x| + 1 − x by the method of quadrature, using
integration by parts.

x y-TRAP y-EXACT
0 1 1
0.2 1.01823 1.01879
0.4 1.07011 1.07106
0.6 1.15076 1.15201
0.8 1.25654 1.25802
1 1.38463 1.38629

The graphic shows a limited range because the red and blue curves are
nearly identical.
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28. y′ = 2 ln(1 + 2x), y(0) = 1. Exact (1 + 2x) ln |1 + 2x|+ 1− 2x.

29. y′ = xex, y(0) = 1. Exact xex − ex + 2.

Solution: Let F (x) = xex. The exact solution of Y ′ = F (x), Y (0) = 2 is
Y (x) = xex − ex + 2 by the method of quadrature, using integration by
parts.

x y-TRAP y-EXACT
0 1 1
0.2 1.02443 1.02288
0.4 1.10853 1.10491
0.6 1.27753 1.27115
0.8 1.5649 1.55489
1 2.01477 2

The graphic shows a limited range because the red and blue curves are
nearly identical.
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30. y′ = 2x2e2x, y(0) = 4. Exact 2x2ex − 4xex + 4 ex.

Simpson Rule
Apply Simpson’s rule to make an xy-table for y(x) with 6 rows and step size
h = 0.2. Graph the approximate solution and the exact solution. Follow
example 4.3.

31. y′ = 2x, y(0) = 2.

Solution: Let F (x) = 2x. The exact solution of Y ′ = F (x), Y (0) = 2 is
Y (x) = x2 + 2 by the method of quadrature.

x y-SIMP y-EXACT
0 2 2
0.2 2.04 2.04
0.4 2.16 2.16
0.6 2.36 2.36
0.8 2.64 2.64
1 3 3

The graphic shows only the blue curve because the red and blue curves are
identical.
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The y-SIMP value is found from y(x + h) = y(x) +
∫ x+h

x
F (u)du ≈ y(x) +

h(F (x) + 4F (x+ h/2) + F (x+ h))/6. Then y(0.2) = y(0) +
∫ 0.2

0
F (u)du ≈

2 + 0.2(F (0) + 4F (0.1) + F (0.2))/6. Values for the first row of the table :

x = 0, y-SIMP = 2, y-EXACT = 2

The second row values:

x = 0.2, y-SIMP = 2+0.2(F (0)+4F (0.1)+F (0.2))/6 = 2.04, y-EXACT
= 2.04

The third row values:

x = 0.4, y-SIMP = 2.04+ 0.2(F (0.2)+ 4F (0.3)+F (0.4))/6 = 2.168, y-
EXACT = 2.168

The fourth and later row values follow the same pattern:

y-SIMP = (previous row y-SIMP value) +

0.2(F (current x-value− 0.2) + 4F ((current x-value− 0.1)+

F (current x-value))/6.

The values obtained for the Simpson’s rule solution and the exact solution
are identical. This is no accident: it is known that Simpson’s rule is exact
for F (x) equal to a polynomial of degree 3 or less.
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# Maple: Exact solution

x:=’x’;y:=’y’; X:=’X’;Y:=’Y’;

F:=x->2*x;de:=diff(y(x),x)=F(x);y0:=2;x0:=0;

ans:=dsolve([de,y(0)=y0],y(x));

EY:=unapply(rhs(ans),x);# Y(x)=x^2+1

# Maple: Simpson rule solution

N:=6;a:=0;b:=1.0;h:=0.2;

simp:=x -> h*(F(x-h)+4*F(x-h/2)+F(x))/6;# Simpson rule

DotsSIMP:=[x0,y0];DotsEXACT:=[x0,y0];Y:=y0;

for k from 1 to N-1 do

X:= x0 + h*k; Y:= Y+simp(X);

DotsSIMP:=DotsSIMP,[X,Y];

DotsEXACT:=DotsEXACT,[X,EY(X)];

od:

DotsSIMP;DotsEXACT; # table values

# Maple: Two connect-the-dots curves on 1 graphic

opts:=style=pointline,font=[courier,18,bold],

symbol=diamond,symbolsize=24,thickness=3;

plot([[DotsSIMP],[DotsEXACT]],opts,

color=[red,blue],legend=["Simp","Exact"]);

# only the blue plot is visible: duplicate data

32. y′ = 3x2, y(0) = 2.

33. y′ = 3x2 + 2x, y(0) = 3.

Solution: Let F (x) = 2x. The exact solution of Y ′ = F (x), Y (0) = 2 is
Y (x) = x3 + x2 + 3 by the method of quadrature.

x y-SIMP y-EXACT
0 3 3
0.2 3.048 3.048
0.4 3.224 3.224
0.6 3.576 3.576
0.8 4.152 4.152
1 5 5

The graphic shows only the blue curve because the red and blue curves are
identical.
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34. y′ = 3x2 + 4x3, y(0) = 3.

35. y′ = sinx, y(0) = 5.

Solution: Let F (x) = sin(x). The exact solution of Y ′ = F (x), Y (0) = 5 is
Y (x) = 6− cos(x) by the method of quadrature.

x y-SIMP y-EXACT
0 5 5
0.2 5.01993 5.01993
0.4 5.07894 5.07894
0.6 5.17466 5.17466
0.8 5.30329 5.30329
1 5.4597 5.4597

The graphic shows only the blue curve because the red and blue curves are
identical.
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36. y′ = 2 sin 2x, y(0) = 5.

37. y′ = ln(1 + x), y(0) = 1. Exact (1 + x) ln |1 + x|+ 1− x.

Solution: Let F (x) = ln(1+x). The exact solution of Y ′ = F (x), Y (0) = 1
is (1 + x) ln |1 + x|+ 1− x by the method of quadrature, using integration
by parts.

x y-SIMP y-EXACT
0 1 1
0.2 1.01879 1.01879
0.4 1.07106 1.07106
0.6 1.152 1.15201
0.8 1.25802 1.25802
1 1.38629 1.38629

The graphic shows only the blue curve because the red and blue curves are
essentially identical.
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38. y′ = 2 ln(1 + 2x), y(0) = 1. Exact (1 + 2x) ln |1 + 2x|+ 1− 2x.

39. y′ = xex, y(0) = 1. Exact xex − ex + 2.

Solution: Let F (x) = ln(1+x). The exact solution of Y ′ = F (x), Y (0) = 1
is xex − ex + 2 by the method of quadrature, using integration by parts.

x y-SIMP y-EXACT
0 1 1
0.2 1.02288 1.02288
0.4 1.10491 1.10491
0.6 1.27115 1.27115
0.8 1.55489 1.55489
1 2 2

The graphic shows only the blue curve because the red and blue curves are
identical.
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40. y′ = 2x2e2x, y(0) = 4. Exact 2x2ex − 4xex + 4 ex.

Simpson’s Rule
The following exercises use formulas and techniques found in the proof on page
234 � and in Example 4.4, page 233 �.

41. Verify with Simpson’s rule (5) for cubic polynomials the equality
∫ 2

1
(x3 +

16x2 + 4)dx = 541/12.

Solution: Simpson’s rule is exact for Q(x) a polynomial of degree 3 or less:∫ b

a
Q(x)dx = (b−a)(Q(a)+4Q((a+b)/2)+Q(b))/6. LetQ(x) = x3+16x2+4,

a = 1, b = 2 and evaluate (b− a)(Q(a)+ 4Q((a+ b)/2)+Q(b))/6 = 541/12.

# Maple: Simpson’s Rule

a:=’a’;b:=’b’;x:=’x’;

SimpRule:=(a,b,Q)->(b-a)*(Q(a)+4*Q((a+b)/2)+Q(b))/6;

QQ:=x->x^3+16*x^2+4;

SimpRule(1,2,QQ);# 541/12

int(QQ(x),x=1..2); # answer check

42. Verify with Simpson’s rule (5) for cubic polynomials the equality
∫ 2

1
(x3 +

x+ 14)dx = 77/4.

43. Let f(x) satisfy f(0) = 1, f(1/2) = 6/5, f(1) = 3/4. Apply Simpson’s rule

with one division to verify that
∫ 1

0
f(x)dx ≈ 131/120.

Solution: Let a = 0, b = 1. Evaluate:

(b− a)(f(a) + 4f(a+ b)/2) + f(b))/6 = 131/120
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4.1 Solving y′ = F (x) Numerically

# Maple: Simpson’s Rule data version

a:=’a’;b:=’b’;

SimpRuleData:=(a,b,f1,f2,f3)->(b-a)*(f1+4*f2+f3)/6;

SimpRuleData(0,1,1,6/5,3/4); # 131/120

44. Let f(x) satisfy f(0) = −1, f(1/2) = 1, f(1) = 2. Apply Simpson’s rule

with one division to verify that
∫ 1

0
f(x)dx ≈ 5/6.

45. Verify Simpson’s equality (5), assuming Q(x) = 1 and Q(x) = x.

Solution: Part I. Verify for Q(x) = 1:

LHS =
∫ b

a
Q(x)dx =

∫ b

a
1dx = b− a,

RHS = (b−a)(Q(a)+4A((a+b)/2)+Q(b))/6 = (b−a)(1+4+1)/6 = b−a.
Then LHS = RHS, identity verified.

Part II. Verify for Q(x) = x:

LHS =
∫ b

a
Q(x)dx =

∫ b

a
xdx = b2/2− a2/2,

RHS = (b− a)(Q(a) + 4A((a+ b)/2) +Q(b))/6 =
(b− a)(a+ 4(b+ a)/2 + b)/6 = (b− a)(3a+ 3b)/6 = b2/2− a2/2.

Then LHS = RHS, identity verified.

46. Verify Simpson’s equality (5), assuming Q(x) = x2. Use college algebra
identity u3 − v3 = (u− v)(u2 + uv + v2).

Quadratic Interpolation
The following exercises use formulas and techniques from the proof on page
234 �.

47. Verify directly that the quadratic polynomial y = x(7 − 4x) goes through
the points (0, 0), (1, 3), (2,−2).

Solution: Details:

y(0) = x(7− 4x)|x=0 = 0(7− 0) = 0 (0, 0) verified
y(1) = x(7− 4x)|x=1 = 1(7− 4(1)) = 3 (1, 3) verified
y(2) = x(7− 4x)|x=2 = 2(7− 4(2)) = −2 (2,−2) verified

48. Verify directly that the quadratic polynomial y = x(8 − 5x) goes through
the points (0, 0), (1, 3), (2,−4).

49. Compute the quadratic interpolation polynomial Q(x) which goes through
the points (0, 1), (0.5, 1.2), (1, 0.75).

Solution: Details:
Let Q(x) = a+bx+cx2. Plan: determine a, b, c by linear algebra. Equations:

a+ bx+ cx2
∣∣
x=0

= 1

a+ bx+ cx2
∣∣
x=0.5

= 1.2
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a+ bx+ cx2
∣∣
x=1

= 0.75

a+ 0 + 0 = 1
a+ b/2 + c/4 = 1.2
a+ b+ c = 0.75

Solve by computer: a = 1, b = 1.05, c = −1.3.

# Maple: Solve system of equations

eqs:={a+0+0 = 1, a+b/2+c/4= 1.2, a+b+c = 0.75};

# braces { ... } needed!

solve(eqs,[a,b,c]);# brackets preserve order a,b,c

# {a = 1., b = 1.05, c = -1.3}

# Maple: Answer check

Y := X->1 + (1.05)*X + (-1.3)*X^2;

Y(0),Y(0.5),Y(1); # 1., 1.2, .75

50. Compute the quadratic interpolation polynomial Q(x) which goes through
the points (0,−1), (0.5, 1), (1, 2).

51. Verify the remaining cases in Lemma 4.1, page 235 �.

Solution: Given Y0, Y1 and Y2, define y1 = Y1 − Y0, y2 = 1
2 (Y2 − Y0),

A = y2−y1, B = 2y1−y2 and x = 2(X−a)/(b−a). Formula y = x(Ax+B)
will be tested to go through the given data points (0, 0), (1, y1). The details:

x(AX +B)|x=0 = 0(A(0) +B) = 0 Verified (0, 0).
x(AX +B)|x=1 = 1(A(1) +B) = y2 − y1 + 2y1 − y2 = y1 Verified (1, y1).
■

52. Verify the remaining cases in Lemma 4.2, page 235 �.
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4.2 Solving y′ = f(x, y) Numerically

Euler’s Method
Apply Euler’s method to make an xy-table for y(x) with 11 rows and step
size h = 0.1. Graph the approximate solution and the exact solution. Follow
Example 4.5.

1. y′ = 2 + y, y(0) = 5. Exact y(x) = −2 + 7ex.

Solution: The exact answer for y′ = 2+y, y(0) = 5 is y(x) = −2+7ex, found
by the linear integrating factor method. The constant coefficient shortcut
applies: y = yp + yh, yp = −2 = equilibrium solution, yh = c/W , W =
integrating factor = e−x.
x y-EULER y-EXACT
0 5 5
0.1 5.7 5.7362
0.2 6.47 6.54982
0.3 7.317 7.44901
0.4 8.2487 8.44277
0.5 9.27357 9.54105
0.6 10.4009 10.7548
0.7 11.641 12.0963
0.8 13.0051 13.5788
0.9 14.5056 15.2172
1 16.1562 17.028

Let F (x, y) = 2 + y. The y-EULER value is found from y(x + h) =

y(x) +
∫ x+h

x
F (u, y(u))du ≈ y(x) + hF (x, y(x)). Then y(0.1) = y(0) +∫ 0.1

0
F (u)du ≈ 5 + 0.1F (0, y(0)) = 5 + 0.1(2 + 5) = 5.7. Values for the first
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row of the table :

x = 0, y-EULER = 5, y-EXACT = 5

The second row values:

x = 0.1, y-EULER = 5 + 0.1F (0, 5) = 5 + 0.1(2 + 5) = 5.7, y-EXACT
= Y (0.1) = 5.7362

The third row values:

x = 0.2, y-EULER = 5.7 + 0.1F (0.1, 5.7) ≈ 6.47, y-EXACT =
Y (0.2) = 6.54982

The fourth row values:

x = 0.3, y-EULER = 6.47 + 0.1F (0.2, 6.47) ≈ 7.317, y-EXACT =
Y (0.3) = 7.449019

The fifth and later row values follow the same pattern:

y-EULER = (previous row y-EULER value) +

0.1F (previous row x-value, previous row y-EULER value).

An online check in WolframAlpha: use input
y’=2+y, y(0)=5 by Euler’s method h=0.1 t=0 to 1.

# Maple: Exact solution

F:=(x,y)->2+y;de:=diff(y(x),x)=F(x,y(x));y0:=5;x0:=0;

ans:=dsolve([de,y(x0)=y0],y(x));

EY:=unapply(rhs(ans),x);# EY(x)=-2+7*exp(x)

# Maple: Euler’s method

N:=11;h:=0.1;

EULER:=(x,y) -> h*F(x,y);# Euler algorithm

DotsEULER:=[x0,y0];DotsEXACT:=[x0,y0];Y:=y0;

for k from 1 to N-1 do

X:= x0 + h*k; Y:= Y+EULER(X-h,Y);

DotsEULER:=DotsEULER,[X,Y];

DotsEXACT:=DotsEXACT,[X,EY(X)];

od:

DotsEULER;DotsEXACT;# answers

# Maple: Two connect-the-dots curves on 1 graphic

opts:=style=pointline,font=[courier,18,bold],

symbol=diamond,symbolsize=24,thickness=3;

plot([[DotsEULER],[DotsEXACT]],opts,

color=[red,blue],legend=["EULER","Exact"]);

2. y′ = 3 + y, y(0) = 5. Exact y(x) = −3 + 8ex.

3. y′ = e−x + y, y(0) = 4. Exact y(x) = − 1
2e

−x + 9
2e

x.
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4.2 Solving y′ = f(x, y) Numerically

Solution: The exact answer for y′ = e−x+y, y(0) = 5 is y(x) = − 1
2e

−x+ 9
2e

x,
found by the linear integrating factor method. No shortcut applies.

x y-EULER y-EXACT
0 4 4
0.1 4.5 4.52085
0.2 5.04048 5.08695
0.3 5.62641 5.70396
0.4 6.26313 6.37805
0.5 6.95647 7.11598
0.6 7.71277 7.92513
0.7 8.53893 8.81359
0.8 9.44248 9.79027
0.9 10.4317 10.8649
1 11.5155 12.0483

4. y′ = 3e−2x + y, y(0) = 4. Exact y(x) = −e−2x + 5ex.

5. y′ = y sinx, y(0) = 1. Exact y(x) = e1−cos x.

Solution: The exact answer for y′ = y sin(x), y(0) = 1 is y(x) = e1−cos x,
found by the variables separable method.
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4.2 Solving y′ = f(x, y) Numerically

x y-EULER y-EXACT
0 1 1
0.1 1 1.00501
0.2 1.00998 1.02013
0.3 1.03005 1.04568
0.4 1.06049 1.08214
0.5 1.10179 1.13023
0.6 1.15461 1.19085
0.7 1.2198 1.26511
0.8 1.29838 1.35431
0.9 1.39152 1.45993
1 1.50053 1.5836

6. y′ = 2y sin 2x, y(0) = 1. Exact y(x) = e1−cos 2x.

7. y′ = y/(1 + x), y(0) = 1. Exact y(x) = 1 + x.

Solution: The exact answer for y′ = y/(1 + x), y(0) = 1 is y(x) = 1 + x,
found by the variables separable method.
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4.2 Solving y′ = f(x, y) Numerically

x y-EULER y-EXACT
0 1.000000 1.000000
0.1 1.100000 1.100000
0.2 1.200000 1.200000
0.3 1.300000 1.300000
0.4 1.400000 1.400000
0.5 1.500000 1.500000
0.6 1.600000 1.600000
0.7 1.700000 1.700000
0.8 1.800000 1.800000
0.9 1.900000 1.900000
1 2.000000 2.000000

The graphic shows only the exact solution (blue) because the two data sets
are identical.

8. y′ = y(x)/(1 + 2x), y(0) = 1. Exact y(x) =
√
1 + 2x.

9. y′ = yxex, y(0) = 1. Exact y(x) = eu(x), u(x) = 1 + (x− 1)ex.

Solution: The exact answer for y′ = xyex, y(0) = 1 is y(x) = e1+(x−1)ex ,
found by the variables separable method, using integration by parts for∫
xexdx.
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4.2 Solving y′ = f(x, y) Numerically

x y-EULER y-EXACT
0 1.000000 1.000000
0.1 1.000000 1.005360
0.2 1.011052 1.023141
0.3 1.035750 1.056645
0.4 1.077693 1.110605
0.5 1.142002 1.192008
0.6 1.236145 1.311475
0.7 1.371289 1.485682
0.8 1.564589 1.741753
0.9 1.843154 2.125569
1 2.251162 2.718282

The graphic shows significant errors, caused by the exponential factor.

10. y′ = 2y(x2 + x)e2x, y(0) = 1. Exact y(x) = eu(x), u(x) = x2e2x.

Heun’s Method
Apply Heun’s method to make an xy-table for y(x) with 6 rows and step size
h = 0.2. Graph the approximate solution and the exact solution. Follow
Example 4.6.

11. y′ = 2 + y, y(0) = 5. Exact y(x) = −2 + 7ex.

Solution: The exact answer for y′ = 2+y, y(0) = 5 is y(x) = −2+7ex, found
by the linear integrating factor method. The constant coefficient shortcut
applies: y = yp + yh, yp = −2 = equilibrium solution, yh = c/W , W =
integrating factor = e−x.
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4.2 Solving y′ = f(x, y) Numerically

x y-HEUN y-EXACT
0 5.000000 5.000000
0.2 6.540000 6.549819
0.4 8.418800 8.442773
0.6 10.710936 10.754832
0.8 13.507342 13.578786
1 16.918957 17.027973

The graphic below was zoomed to show detail, because the table values are
close.

Let F (x, y) = 2 + y. The y-HEUN value is found from y(x + h) = y(x) +∫ x+h

x
F (u, y(u))du ≈ y(x) + h(F (x, y(x)) + F (x+ h, y(x+ h))/2, using the

Trapezoidal Rule. Value y(x+ h) ≈ y(x) + hF (x, y(x)) by Euler’s Method.
For instance, y(0.2) ≈ y(0)+ 0.2F (0, y(0)) = 5+ 0.2(2+ 5) = 6.4 by Euler’s

method. Then y(0.2) = y(0) +
∫ 0.2

0
F (u, y(u))du ≈ y(0) + 0.2(F (0, y(0)) +

F (0.2, y(0.2))/2 = 5 + 0.2((2 + 5) + (2 + 6.4))/2 = 6.54.

Values for the first row of the table :

x = 0, y-HEUN = 5, y-EXACT = 5

The second row values:

x = 0.2, y1 = 5 + 0.2F (0, 5) = 6.4, y-HEUN = 5 + 0.2(F (0, 5) +
F (0.2, y1))/2 = 6.54, y-EXACT = Y (0.2) = 6.549819306

The third row values:

x = 0.4, y1 = 6.54 + 0.2F (0, 6.54) = 8.248, y-HEUN = 6.54 +
0.2(F (0.2, 6.54) + F (0.4, 8.248))/2 = 8.4188, y-EXACT = Y (0.2) =
8.44277289

The fourth and later row values follow the same pattern, described precisely
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4.2 Solving y′ = f(x, y) Numerically

in the maple code below. An online check in WolframAlpha: use input
y’=2+y, y(0)=5 by Heun’s method h=0.2 t=0 to 1.

# Maple: Exact solution

F:=(x,y)->2+y;de:=diff(y(x),x)=F(x,y(x));y0:=5;x0:=0;

ans:=dsolve([de,y(x0)=y0],y(x));

EY:=unapply(rhs(ans),x);# EY(x)=-2+7*exp(x)

# Maple: Heun’s method

HEUN:=proc(x,y)

local y1,y2;

y1:=y+h*F(x,y);

y2:=0.5*h*(F(x,y)+F(x+h,y1));

RETURN (y2);

end proc;

DotsHEUN:=[x0,y0];DotsEXACT:=[x0,y0];Y:=y0;

for k from 1 to N-1 do

X:= x0 + h*k; Y:= Y+HEUN(X-h,Y);

DotsHEUN:=DotsHEUN,[X,Y];

DotsEXACT:=DotsEXACT,[X,EY(X)];

od:

DotsHEUN;DotsEXACT; # answers

# Maple: Two connect-the-dots curves on 1 graphic

opts:=style=pointline,font=[courier,18,bold],

symbol=diamond,symbolsize=24,thickness=3;

plot([[DotsHEUN],[DotsEXACT]],opts,

color=[red,blue],legend=["Heun","Exact"]);

12. y′ = 3 + y, y(0) = 5. Exact y(x) = −3 + 8ex.

13. y′ = e−x + y, y(0) = 4. Exact y(x) = − 1
2e

−x + 9
2e

x.

Solution: The exact answer for y′ = e−x+y, y(0) = 5 is y(x) = − 1
2e

−x+ 9
2e

x,
found by the linear integrating factor method. No shortcut applies.

x y-HEUN y-EXACT
0 4.000000 4.000000
0.2 5.081873 5.086947
0.4 6.365165 6.378051
0.6 7.900821 7.925129
0.8 9.749792 9.790270
1 11.985453 12.048328

The graphic below was zoomed to show detail.
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4.2 Solving y′ = f(x, y) Numerically

14. y′ = 3e−2x + y, y(0) = 4. Exact y(x) = −e−2x + 5ex.

15. y′ = y sinx, y(0) = 1. Exact y(x) = e1−cos x.

Solution: The exact answer for y′ = y sin(x), y(0) = 1 is y(x) = e1−cos x,
found by the variables separable method.

x y-HEUN y-EXACT
0 1.000000 1.000000
0.2 1.019867 1.020133
0.4 1.081422 1.082138
0.6 1.189352 1.190846
0.8 1.351462 1.354312
1 1.578447 1.583595

The graphic below was zoomed to show detail.
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4.2 Solving y′ = f(x, y) Numerically

16. y′ = 2y sin 2x, y(0) = 1. Exact y(x) = e1−cos 2x.

17. y′ = y/(1 + x), y(0) = 1. Exact y(x) = 1 + x.

Solution: The exact answer for y′ = y/(1 + x), y(0) = 1 is y(x) = 1 + x,
found by the variables separable method.

x y-HEUN y-EXACT
0 1.000000 1.000000
0.2 1.200000 1.200000
0.4 1.400000 1.400000
0.6 1.600000 1.600000
0.8 1.800000 1.800000
1 2.000000 2.000000

The graphic shows only the exact solution (blue) because the two data sets
match to 6 digits.
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4.2 Solving y′ = f(x, y) Numerically

18. y′ = y(x)/(1 + 2x), y(0) = 1. Exact y(x) =
√
1 + 2x.

19. y′ = yxex, y(0) = 1. Exact y(x) = eu(x), u(x) = 1 + (x− 1)ex.

Solution: The exact answer for y′ = xyex, y(0) = 1 is y(x) = e1+(x−1)ex ,
found by the variables separable method, using integration by parts on∫
xexdx.

x y-HEUN y-EXACT
0 1.000000 1.000000
0.2 1.024428 1.023141
0.4 1.113570 1.110605
0.6 1.316293 1.311475
0.8 1.745800 1.741753
1 2.700169 2.718282

The graphic was zoomed to show detail.

243



4.2 Solving y′ = f(x, y) Numerically

20. y′ = 2y(x2 + x)e2x, y(0) = 1. Exact y(x) = eu(x), u(x) = x2e2x.

RK4 Method
Apply the Runge-Kutta method (RK4) to make an xy-table for y(x) with 6
rows and step size h = 0.2. Graph the approximate solution and the exact
solution. Follow Example 4.7.

21. y′ = 2 + y, y(0) = 5. Exact y(x) = −2 + 7ex.

Solution: The exact answer for y′ = 2+y, y(0) = 5 is y(x) = −2+7ex, found
by the linear integrating factor method. The constant coefficient shortcut
applies: y = yp+yh, yp = −2 = equilibrium solution, yh = c/W , integrating
factor W = e−x.

x y-RK4 y-EXACT
0 5.000000 5.000000
0.2 6.549800 6.549819
0.4 8.442726 8.442773
0.6 10.754745 10.754832
0.8 13.578646 13.578786
1 17.027758 17.027973

The graphic shows only the exact curve (blue) because the two data sets
agree to 3-digit accuracy.
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4.2 Solving y′ = f(x, y) Numerically

Let F (x, y) = 2 + y. The y-RK4 value is found from the 5-line algorithm

k1 = hF (x, y);
k2 = hF (x+ h/2, y + k1/2);
k3 = hF (x+ h/2, y + k2/2);
k4 = hF (x+ h, y + k3);
y(x+ h) = y(x) + (k1 + 2k2 + 2k3 + k4)/6;

The computation by hand calculator is lengthy. Some check points are
supplied:

Values for the first row of the table :

x = 0, y-RK4 = 5, y-EXACT = 5

The second row values:

x = 0.2, k1 = 1.4, k2 = 1.54, k3 = 1.554, k4 = 1.7108, y-RK4 = 6.5498,
y-EXACT = Y (0.2) = 6.549819306

The third row values:

x = 0.4, k1 = 1.709960, k2 = 1.880956, k3 = 1.898056, k4 = 2.089571,
y-RK4 = 8.442726, y-EXACT = Y (0.4) = 8.44277289

The fourth and later row values follow the same pattern, each row depending
only on the answer from the previous row.

An online check in WolframAlpha: use input
y’=2+y, y(0)=5 by runge kutta method h=0.2 t=0 to 1.

WolframAlpha numerical answers disagreed on date 9.2021 with online
RK4 calculators. The WolframAlpha algorithm below computes values in
agreement with the table above:
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4.2 Solving y′ = f(x, y) Numerically

# Maple: Exact solution

F:=(x,y)->2+y;de:=diff(y(x),x)=F(x,y(x));y0:=5;x0:=0;

ans:=dsolve([de,y(x0)=y0],y(x));

EY:=unapply(rhs(ans),x);# EY(x)=-2+7*exp(x)

# Maple: RK4 method

RK4:=proc(x,y)

local k1,k2,k3,k4,Z;

k1:=h*F(x,y);

k2:=h*F(x+h/2,y+k1/2);

k3:=h*F(x+h/2,y+k2/2);

k4:=h*F(x+h,y+k3);

Z:=(k1+2*k2+2*k3+k4)/6;

RETURN (Z);

end proc;

DotsRK4:=[x0,y0];DotsEXACT:=[x0,y0];Y:=y0;

for k from 1 to N-1 do

X:= x0 + h*k; Y:= Y+RK4(X-h,Y);

DotsRK4:=DotsRK4,[X,Y];

DotsEXACT:=DotsEXACT,[X,EY(X)];

od:

DotsRK4;DotsEXACT; # answers

# Maple: Two connect-the-dots curves on 1 graphic

opts:=style=pointline,font=[courier,18,bold],

symbol=diamond,symbolsize=24,thickness=3;

plot([[DotsRK4],[DotsEXACT]],opts,

color=[red,blue],legend=["RK4","Exact"]);
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4.2 Solving y′ = f(x, y) Numerically

22. y′ = 3 + y, y(0) = 5. Exact y(x) = −3 + 8ex.

23. y′ = e−x + y, y(0) = 4. Exact y(x) = − 1
2e

−x + 9
2e

x.

Solution: The exact answer for y′ = e−x+y, y(0) = 5 is y(x) = − 1
2e

−x+ 9
2e

x,
found by the linear integrating factor method. No shortcut applies.

x y-RK4 y-EXACT
0 4.000000 4.000000
0.2 5.086937 5.086947
0.4 6.378026 6.378051
0.6 7.925081 7.925129
0.8 9.790190 9.790270
1 12.048205 12.048328

The graphic shows only the exact (blue) curve, because the table values
agree to 4 digits.

24. y′ = 3e−2x + y, y(0) = 4. Exact y(x) = −e−2x + 5ex.

25. y′ = y sinx, y(0) = 1. Exact y(x) = e1−cos x.

Solution: The exact answer for y′ = y sin(x), y(0) = 1 is y(x) = e1−cos x,
found by the variables separable method.

x y-RK4 y-EXACT
0 1.000000 1.000000
0.2 1.020133 1.020133
0.4 1.082138 1.082138
0.6 1.190846 1.190846
0.8 1.354311 1.354312
1 1.583593 1.583595

The graphic shows exact (blue) only because

the data matches to 4 digits.
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4.2 Solving y′ = f(x, y) Numerically

26. y′ = 2y sin 2x, y(0) = 1. Exact y(x) = e1−cos 2x.

27. y′ = y/(1 + x), y(0) = 1. Exact y(x) = 1 + x.

Solution: The exact answer for y′ = y/(1 + x), y(0) = 1 is y(x) = 1 + x,
found by the variables separable method.

x y-RK4 y-EXACT
0 1.000000 1.000000
0.2 1.200000 1.200000
0.4 1.400000 1.400000
0.6 1.600000 1.600000
0.8 1.800000 1.800000
1 2.000000 2.000000

The graphic shows only the exact solution (blue) because the two data sets
match to 4-digit accuracy.
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4.2 Solving y′ = f(x, y) Numerically

28. y′ = y(x)/(1 + 2x), y(0) = 1. Exact y(x) =
√
1 + 2x.

29. y′ = yxex, y(0) = 1. Exact y(x) = eu(x), u(x) = 1 + (x− 1)ex.

Solution: The exact answer for y′ = xyex, y(0) = 1 is y(x) = e1+(x−1)ex ,
found by the variables separable method, using integration by parts on∫
xexdx.

x y-RK4 y-EXACT
0 1.000000 1.000000
0.2 1.023142 1.023141
0.4 1.110605 1.110605
0.6 1.311471 1.311475
0.8 1.741709 1.741753
1 2.717842 2.718282

The graphic shows only the exact solution (blue) because the two data sets
match to 4-digit accuracy.
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4.2 Solving y′ = f(x, y) Numerically

30. y′ = 2y(x2 + x)e2x, y(0) = 1. Exact y(x) = eu(x), u(x) = x2e2x.

Euler and RK4 Methods
Apply the Euler method and the Runge-Kutta method (RK4) to make a table
with 6 rows and step size h = 0.1. The table columns are x, y1, y2, y where
y1 is the Euler approximation, y2 is the RK4 approximation and y is the exact
solution. Graph y1, y2, y.

31. y′ = 1
2 (y − 2)2, y(0) = 3. Exact y(x) =

2x− 6

x− 2
.

Solution: The exact answer for y′ = 1
2 (y − 2)2, y(0) = 3 is y(x) = 2

x− 3

x− 2
,

found by the variables separable method.

The graphic shows only Euler (green) and the exact solution (blue) because
RK4 and EXACT data sets match to 4-digit accuracy.
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4.2 Solving y′ = f(x, y) Numerically

x y-EULER y-RK4 y-EXACT
0.0 3.0000000000 3.0000000000 3.0000000000
0.1 3.0500000000 3.0526315630 3.0526315780
0.2 3.1051250000 3.1111110710 3.1111111120
0.3 3.1661900630 3.1764705130 3.1764705880
0.4 3.2341900260 3.2499998710 3.2500000000
0.5 3.3103512770 3.3333331230 3.3333333340

# Maple: Exact solution

F:=(x,y)->(y-2)^2/2;de:=diff(y(x),x)=F(x,y(x));

y0:=3;x0:=0;

ans:=dsolve([de,y(x0)=y0],y(x));

EY:=unapply(rhs(ans),x);# EY(x)=(2*x-6)/(x-2)

# Maple: Euler’s method and RK4 method

N:=6;h:=0.1;

EULER:=(x,y) -> h*F(x,y);# Euler algorithm

RK4:=proc(x,y)# RK4 algorithm

local k1,k2,k3,k4,Z;

k1:=h*F(x,y);

k2:=h*F(x+h/2,y+k1/2);

k3:=h*F(x+h/2,y+k2/2);

k4:=h*F(x+h,y+k3);

Z:=(k1+2*k2+2*k3+k4)/6;

RETURN (Z);

end proc;

DotsEULER:=[x0,y0];DotsRK4:=[x0,y0];DotsEXACT:=[x0,y0];

Z:=y0;Y:=y0;

for k from 1 to N-1 do

X:= x0 + h*k;Z:=Z+EULER(X-h,Z);Y:= Y+RK4(X-h,Y);

DotsEULER:=DotsEULER,[X,Z];

DotsRK4:=DotsRK4,[X,Y];

DotsEXACT:=DotsEXACT,[X,EY(X)];

od:

DotsEULER;DotsRK4;DotsEXACT; # answers

# Maple: Three connect-the-dots curves on 1 graphic

opts:=style=pointline,font=[courier,18,bold],

symbol=diamond,symbolsize=24,thickness=3;

plot([[DotsEULER],[DotsRK4],[DotsEXACT]],opts,

color=[green,red,blue],legend=["Euler","RK4","Exact"]);

32. y′ = 1
2 (y − 3)2, y(0) = 4. Exact y(x) =

3x− 8

x− 2
.

33. y′ = x3/y2, y(2) = 3. Exact y(x) = 1
2

3
√
6x4 + 120.
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4.2 Solving y′ = f(x, y) Numerically

Solution: The exact answer for y′ = x3/y2, y(2) = 3 is y(x) =
1
2 (6x

4 + 120)1/3, found by the variables separable method.

The graphic shows only Euler (green) and the exact solution (blue) because
RK4 and EXACT data sets match to 4-digit accuracy.

x y-EULER y-RK4 y-EXACT
2.0 3.0000000000 3.0000000000 3.0000000000
2.1 3.0888888890 3.0928756410 3.0928755920
2.2 3.1859518000 3.1935156080 3.1935155140
2.3 3.2908552180 3.3015627530 3.3015626210
2.4 3.4032033760 3.4166200600 3.4166198950
2.5 3.5225631310 3.5382706770 3.5382704850

34. y′ = x5/y2, y(2) = 3. Exact y(x) = 1
2

3
√
4x6 − 40.

35. y′ = 2x(1 + y2), y(0) = 1. Exact y(x) = tan(x2 + π/4).

Solution: The exact answer for y′ = x3/y2, y(0) = 1 is y(x) = tan(x2+π/4),
found by the variables separable method.

The graphic shows only Euler (green) and the exact solution (blue) because
RK4 and EXACT data sets match to 4-digit accuracy.
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4.2 Solving y′ = f(x, y) Numerically

x y-EULER y-RK4 y-EXACT
0 1.0000000000 1.0000000000 1.0000000000
0.1 1.0000000000 1.0202030340 1.0202027010
0.2 1.0400000000 1.0833811120 1.0833796610
0.3 1.1232640000 1.1983950950 1.1983911490
0.4 1.2589673210 1.3848782010 1.3848688490
0.5 1.4657672180 1.6858165600 1.6857964190

36. y′ = 3y2/3, y(0) = 1. Exact y(x) = (x+ 1)3.

37. y′ = 1 + y2, y(0) = 0. Exact y(x) = tanx.

Solution: The exact answer for y′ = 1 + y2, y(0) = 0 is y(x) = tan(x),
found by the variables separable method.

The graphic shows only Euler (green) and the exact solution (blue) because
RK4 and EXACT data sets match to 4-digit accuracy. The graphic has
been zoomed to show detail.
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4.2 Solving y′ = f(x, y) Numerically

x y-EULER y-RK4 y-EXACT
0 1.0000000000 1.0000000000 1.0000000000
0.1 1.0000000000 1.0202030340 1.0202027010
0.2 1.0400000000 1.0833811120 1.0833796610
0.3 1.1232640000 1.1983950950 1.1983911490
0.4 1.2589673210 1.3848782010 1.3848688490
0.5 1.4657672180 1.6858165600 1.6857964190

38. y′ = 1 + y2, y(0) = 1. Exact y(x) = tan(x+ π/4).
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4.3 Error in Numerical Methods

Cumulative Error
Make a table of 6 lines which has four columns x, y1, y, E. Symbols y1 and y
are the approximate and exact solutions while E = |y − y1| is the cumulative
error. Find y1 using Euler’s method in steps h = 0.1.

1. y′ = 2 + y, y(0) = 5. Exact solution y(x) = −2 + 7ex.

Solution: The exact answer for y′ = 2+y, y(2) = 5 is y(x) = −2+7ex, found
by the linear integrating factor shortcut for constant-coefficient equations.

The first graphic shows Euler (green), exact solution (blue). The second
graphic is a bar chart for the cumulative error.

255



4.3 Error in Numerical Methods

x y-EULER y-EXACT y-Cumulative Error
0 5.0000000000 5.0000000000 0.0000000000
0.1 5.7000000000 5.7361964260 0.0361964260
0.2 6.4700000000 6.5498193060 0.0798193060
0.3 7.3170000000 7.4490116560 0.1320116560
0.4 8.2487000000 8.4427728900 0.1940728900
0.5 9.2735700000 9.5410489000 0.2674789000

The cumulative error is |EULER - EXACT|. On calculators without abso-
lute value, remove the sign of the answer in column 4.

# Cumulative Error Exercise 1

# Maple: Exact solution

F:=(x,y)->2+y;de:=diff(y(x),x)=F(x,y(x));y0:=5;x0:=0;

ans:=dsolve([de,y(x0)=y0],y(x));

EY:=unapply(rhs(ans),x);# EY(x)=-2+7*exp(x)

# Numerical solution

N:=6;h:=0.1;# 6 rows and stepsize

EULER:=(x,y) -> h*F(x,y);# Euler algorithm

DotsEULER:=[x0,y0];DotsEXACT:=[x0,y0];Z:=y0;

for k from 1 to N-1 do

X:= x0 + h*k;Z:=Z+EULER(X-h,Z);

DotsEULER:=DotsEULER,[X,Z];

DotsEXACT:=DotsEXACT,[X,EY(X)];

od:

DotsEULER;DotsEXACT; # answers

# Compute cumulative error = |EULER-EXACT|

cErr:=k->abs(DotsEULER[k][2]-DotsEXACT[k][2]);

cumulativeError:=seq(cErr(k),k=1..N);

# Maple: Two connect-the-dots curves on 1 graphic

opts:=style=pointline,font=[courier,18,bold],

symbol=diamond,symbolsize=24,thickness=3;

plot([[DotsEULER],[DotsEXACT]],

opts,color=[green,blue,red],

legend=["Euler","Exact"]);

# Maple: Bar chart cumulative error

Statistics[ColumnGraph](<cumulativeError>,

color=violet,legend=["Cumulative Error"]);

2. y′ = 3 + y, y(0) = 5. Exact solution y(x) = −3 + 8ex.

3. y′ = e−x + y, y(0) = 4. Exact solution y(x) = − 1
2e

−x + 9
2e

x.

Solution: The exact answer for y′ = e−x + y, y(0) = 4 is y(x) = − 1
2e

−x +
9
2e

x, found by the linear integrating factor method.

The first graphic shows Euler (green) and the exact solution (blue). The
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second graphic is a bar chart for cumulative error.

x y-EULER y-EXACT y-Cumulative Error
0 4.0000000000 4.0000000000 0.0000000000
0.1 4.5000000000 4.5208504220 0.0208504220
0.2 5.0404837420 5.0869470350 0.0464632930
0.3 5.6264051920 5.7039555260 0.0775503340
0.4 6.2631275330 6.3780511180 0.1149235850
0.5 6.9564722910 7.1159803890 0.1595080980

4. y′ = 3e−2x + y, y(0) = 4. Exact solution y(x) = −e−2x + 5ex.

Local Error
Make a table of 4 lines which has four columns x, y1, y, E. Symbols y1 and
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y are the approximate and exact solutions while E is the local error. Find y1
using Euler’s method in steps h = 0.1. The general solution in each exercise is
the solution for y(0) = c.

5. y′ = 2 + y, y(0) = 5. General solution y(x) = −2 + (2 + c)ex.

Solution: The exact answer for y′ = 2+y, y(2) = 5 is y(x) = −2+7ex, found
by the linear integrating factor shortcut for constant-coefficient equations.

The first graphic shows Euler (green) and exact (blue) solutions. The second
graphic is a bar chart for local error at x-values 0, 01., 0.2, 0.3.
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x y-EULER y-EXACT y-Local Error
0 5.0000000000 5.0000000000 0.0000000000
0.1 5.7000000000 5.7361964260 0.0361964260
0.2 6.4700000000 6.5498193060 0.0398160690
0.3 7.3170000000 7.4490116560 0.0437976770

# Local Error Exercise 5

# Maple: Exact solution

F:=(x,y)->2+y;de:=diff(y(x),x)=F(x,y(x));y0:=5;x0:=0;

ans:=dsolve([de,y(x0)=y0],y(x));

EY:=unapply(rhs(ans),x);# EY(x)=-2+7*exp(x)

# Numerical solution

N:=4;h:=0.1;# 4 rows and stepsize

EULER:=(x,y) -> h*F(x,y);# Euler algorithm

DotsEULER:=[x0,y0];DotsEXACT:=[x0,y0];Z:=y0;

for k from 1 to N-1 do

X:= x0 + h*k;Z:=Z+EULER(X-h,Z);

DotsEULER:=DotsEULER,[X,Z];

DotsEXACT:=DotsEXACT,[X,EY(X)];

od:

DotsEULER;DotsEXACT; # answers

# Compute IVP solutions at 0.1 to 0.3

for k from 1 to N-1 do #

X:=DotsEULER[k][1];# x

Y:=DotsEULER[k][2];# y-EULER

ansLocal:=dsolve([de,y(X)=Y],y(x)):

ELocal:=unapply(rhs(ansLocal),x);

Ivp[k]:=evalf(ELocal(X+h));# y-value for next node

od:

# Compute local error = |EULER-(IVP-value)|

lErr:=k->abs(DotsEULER[k][2]-Ivp[k-1]);

localError:=0,seq(lErr(k),k=2..N);

# Maple: Two connect-the-dots curves on 1 graphic

opts:=style=pointline,font=[courier,18,bold],

symbol=diamond,symbolsize=24,thickness=3;

plot([[DotsEULER],[DotsEXACT]],opts,

color=[green,blue],legend=["Euler","Exact"]);

# Maple: Bar Chart local error

Statistics[ColumnGraph](<localError>,color=red,

legend=["Local Error"]);

6. y′ = 3 + y, y(0) = 5. General solution y(x) = −3 + (3 + c)ex.

7. y′ = 2e−x + y, y(0) = 4. General solution y(x) = −e−x + (1 + c)ex.
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Solution: The exact answer for y′ = 2e−x+y, y(0) = 4 is y(x) = −e−x+5ex,
found by the linear integrating factor method.

The first graphic shows Euler (green) and exact (blue) solutions. The second
graphic is a bar chart for local error at x-values 0, 01., 0.2, 0.3.

x y-EULER y-EXACT y-Local Error
0 4.0000000000 4.0000000000 0.0000000000
0.1 4.6000000000 4.6210171720 0.0210171720
0.2 5.2409674840 5.2882830370 0.0240879850
0.3 5.9288103830 6.0084758190 0.0273736610

8. y′ = 3e−2x + y, y(0) = 4. General solution y(x) = −e−2x + (1 + c)ex.
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Roundoff Error
Compute the roundoff error for y = 5a+ 4b.

9. Assume 3-digit precision. Let a = 0.0001 and b = 0.0003.

Solution: In 3-digit precision: â = 0.000, b̂ = 0.000. Then y = 5a + 4b =
0.0005 + 0.0012 = 0.0017 while ŷ = 5â + 4b̂ = 0.000. The roundoff error
is y − ŷ = 0.0017 − 0.000 = 0.0017. Roundoff error can be a positive or
negative number, or zero. Some key examples and rounding methods can
be found at

https://en.wikipedia.org/wiki/Round-off error

# Roundoff, Exercise 9

Round:=(x,n)->evalf( round(x*10^(n))/10.0^n );

a:=0.0001;b:=0.0003;

ahat:=Round(a,3);bhat:=Round(b,3);

y:=5*a+4*b;yhat:=5*ahat+4*bhat;

rErr:=y-yhat;# Roundoff error 0.0017

10. Assume 3-digit precision. Let a = 0.0002 and b = 0.0001.

11. Assume 5-digit precision. Let a = 0.000007 and b = 0.000003.

Solution: In 5-digit precision: â = 0.00001, b̂ = 0.00000. Then y = 5a+4b =
0.000035 + 0.000012 = 0.000047 while ŷ = 5â+ 4b̂ = 0.00005. The roundoff
error is y − ŷ = 0.000047− 0.00005 = −0.000003.

12. Assume 5-digit precision. Let a = 0.000005 and b = 0.000001.

Truncation Error
Find the truncation error.

13. Truncate x = 1.123456789 to 3 digits right of the decimal point.

14. Truncate x = 1.123456789 to 4 digits right of the decimal point.

Solution: Answer: 1.1234

# Truncation, Exercise 13

Truncate:=(x,n)->evalf( trunc(x*10^(n))/10.0^n );

X:=1.123456789;

Xtrunc:=Truncate(X,4);# Xtrunc = 1.1234

15. Truncate x = 1.017171717 to 7 digits right of the decimal point.

Solution: Answer: 1.0171717

16. Truncate x = 1.03939393939 to 9 digits right of the decimal point.
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Guessing the Step Size
Do a numerical experiment using the given method to estimate the number of
steps needed to generate a numerical solution with 2-digit accuracy on 0 ≤ x ≤
1. The number reported, if increased, should not change the 2-digit accuracy.

17. y′ = 2 + y, y(0) = 5. Exact solution y(x) = −2 + 7ex. Euler’s method.

Solution: The answer: about 5800 data points gives 2-digit accuracy. This
numerical project requires a CAS or Numerical Workbench.
A practical experiment is to evaluate Euler estimates at x-values x0 = 0,
x1, . . . , xM = 1, then compare Euler values to the Exact solution values for
2-digit agreement. Once a step size h is found that appears to work, then
increase the step size and repeat the experiment. There is no precise answer
possible for M , only an estimate.

# Guessing the stepsize, Exercise 17

# Maple: Exact solution

F:=(x,y)->2+y;de:=diff(y(x),x)=F(x,y(x));y0:=5;x0:=0;

ans:=dsolve([de,y(x0)=y0],y(x));

EY:=unapply(rhs(ans),x);# EY(x)=-2+7*exp(x)

M:=5800;# M steps

h:=1.0/M; # step size.

N:=M+1; # table rows

EULER:=(x,y) -> h*F(x,y);# Euler algorithm

approx:=EULER;# or HEUN, RK4

vals:=y0: Z:=y0;

for k from 1 to N-1 do

X:= x0 + h*k;Z:=Z+approx(X-h,Z);

vals:=vals,Z;

od:

maxERR:=0;W:=vals:

for k from 1 to N do

X:= x0 + h*k;

Z:=abs(W[k]-EY(X));# cumulative error

maxERR:=max(maxERR,Z);

od:# colon=no echo

printf("MaxERR=%10f, h =%10f\n",maxERR,h);

# MaxERR= 0.004921, h = 0.000172

18. y′ = 3 + y, y(0) = 5. Exact solution y(x) = −3 + 8ex. Euler’s method

19. y′ = e−x + y, y(0) = 4. Exact solution y(x) = − 1
2e

−x + 9
2e

x. Euler’s
method

Solution: The answer: about 3700 data points gives 2-digit accuracy.
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20. y′ = 3e−2x + y, y(0) = 4. Exact solution y(x) = −e−2x + 5ex. Euler’s
method.

21. y′ = y/(1 + x), y(0) = 1. Exact solution y(x) = 1 + x. Euler’s method.

Solution: The answer: about 201 data points gives 2-digit accuracy.

22. y′ = y(x)/(1 + 2x), y(0) = 1. Exact solution y(x) =
√
1 + 2x. Euler’s

method.

23. y′ = 2 + y, y(0) = 5. Exact solution y(x) = −2 + 7ex. Heun’s method.

Solution: The answer: about 3810 data points gives 2-digit accuracy.

24. y′ = 3 + y, y(0) = 5. Exact solution y(x) = −3 + 8ex. Heun’s method

25. y′ = e−x + y, y(0) = 4. Exact solution y(x) = − 1
2e

−x + 9
2e

x. Heun’s
method

Solution: The answer: about 2485 data points gives 2-digit accuracy.

26. y′ = 3e−2x + y, y(0) = 4. Exact solution y(x) = −e−2x + 5ex. Heun’s
method.

27. y′ = y/(1 + x), y(0) = 1. Exact solution y(x) = 1 + x. Heun’s method.

Solution: The answer: about 201 data points gives 2-digit accuracy.

28. y′ = y(x)/(1 + 2x), y(0) = 1. Exact solution y(x) =
√
1 + 2x. Heun’s

method.

29. y′ = 2 + y, y(0) = 5. Exact solution y(x) = −2 + 7ex. RK4 method.

Solution: The answer: about 3810 data points gives 2-digit accuracy.

30. y′ = 3 + y, y(0) = 5. Exact solution y(x) = −3 + 8ex. RK4 method

31. y′ = e−x + y, y(0) = 4. Exact solution y(x) = − 1
2e

−x + 9
2e

x. RK4 method

Solution: The answer: about 2485 data points gives 2-digit accuracy.

32. y′ = 3e−2x+y, y(0) = 4. Exact solution y(x) = −e−2x+5ex. RK4 method.

33. y′ = y/(1 + x), y(0) = 1. Exact solution y(x) = 1 + x. RK4 method.

Solution: The answer: about 201 data points gives 2-digit accuracy.

34. y′ = y(x)/(1+2x), y(0) = 1. Exact solution y(x) =
√
1 + 2x. RK4 method.
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4.4 Computing π, ln 2 and e

Computing π
Compute π = y(1) from the initial value problem y′ = 4/(1 + x2), y(0) = 0,
using the given method. Number 3.14159 with 3-digit precision is the rounded
number 3.142.

1. Use the Rectangular integration rule. Determine the number of steps for
3-digit precision.

Solution: About 1102 steps, h = 1/1102.

# RECT 3-digit precision, Exercise 1

F:=x->4/(1+x^2);x0:=0;y0:=0;

precision:=3;EXACT:=Pi; # Default is 10 digits

Round:=(x,n)->evalf( round(x*10^(n))/10.0^n ):

RECT:=x -> h*F(x);# Rectangular rule algorithm

M:=1102;h:=1.0/M;N:=M+1; # N rows, stepsize h

approx:=y0;Z:=y0; ALGORITHM:=RECT:

for k from 1 to N-1 do

X:= x0 + h*k;Z:=Z+ALGORITHM(X-h);

approx:=approx,Z;

od:

PiApprox:=Round(approx[N],precision);

PiExact:=Round(EXACT,precision);

ERR:=abs(PiExact-PiApprox);

printf("ERR=%10f, 3-digit Pi=%10f, h=1/%a\n",ERR,PiApprox,M);

# ERR= 0.000000, 3-digit Pi= 3.142000, h=1/1102

2. Use the Rectangular integration rule. Determine the number of steps for
4-digit precision.

Solution: More than 2180 steps.

3. Use the Trapezoidal integration rule. Determine the number of steps for
3-digit precision.

Solution: About 43 steps, h = 1/43 = 0.02325581395.
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# TRAP 3-digit precision, Exercise 3

F:=x->4/(1+x^2);x0:=0;y0:=0;

precision:=3;EXACT:=Pi; # Default is 10 digits

Round:=(x,n)->evalf( round(x*10^(n))/10.0^n ):

RECT:=x -> h*F(x);# Rectangular rule algorithm

TRAP:=x->h*(F(x)+F(x+h))/2;

M:=43;h:=1.0/M;N:=M+1; # N rows, stepsize h

approx:=y0;Z:=y0; ALGORITHM:=TRAP:

for k from 1 to N-1 do

X:= x0 + h*k;Z:=Z+ALGORITHM(X-h);

approx:=approx,Z;

od:

PiApprox:=Round(approx[N],precision);

PiExact:=Round(EXACT,precision);

ERR:=abs(PiExact-PiApprox);

printf("ERR=%10f, PiApprox=%10f, h=1/%a\n",ERR,PiApprox,M);

# ERR= 0.000000, PiApprox= 3.142000, h=1/43

4. Use the Trapezoidal integration rule. Determine the number of steps for
4-digit precision.

5. Use Simpson’s rule. Determine the number of steps for 5-digit precision.

Solution: About 3 steps, h = 1/3 = 0.3333333333.

# SIMP 5-digit precision, Exercise 5

F:=x->4/(1+x^2);x0:=0;y0:=0;

precision:=5;EXACT:=Pi; # Default is 10 digits

Round:=(x,n)->evalf( round(x*10^(n))/10.0^n ):

RECT:=x -> h*F(x);# Rectangular rule algorithm

TRAP:=x->h*(F(x)+F(x+h))/2;

SIMP:=x ->( h*(F(x)+4*F(x+h/2)+F(x+h))/6 );

M:=3;h:=1.0/M;N:=M+1; # N rows, stepsize h

approx:=y0;Z:=y0; ALGORITHM:=SIMP:

for k from 1 to N-1 do

X:= x0 + h*k;Z:=Z+ALGORITHM(X-h);

approx:=approx,Z;

od:

PiApprox:=Round(approx[N],precision);

PiExact:=Round(EXACT,precision);

ERR:=abs(PiExact-PiApprox);

printf("ERR=%10f, PiApprox=%10f, h=1/%a\n",ERR,PiApprox,M);

# ERR= 0.000000, PiApprox= 3.141590, h=1/3

6. Use Simpson’s rule. Determine the number of steps for 6-digit precision.
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7. Use a computer algebra system library routine for RK4. Report the step
size used and the number of steps for 5-digit precision.

Solution: WolframAlpha:
Number of steps: 26. Step size: 1/26 = 0.03846153846.

URL: https://www.wolframalpha.com/

Input:

Runge-Kutta method, dy/dx = 4/(1+x^2),

y(0) = 0, from 0 to 1, h = 1/26

8. Use a numerical workbench library routine for RK4. Report the step size
used and the number of steps for 5-digit precision.

Solution: MATLAB:
No online input, like WolframAlpha. Write your own code.

URL of code source for RK4:

https://www.mathworks.com/matlabcentral/

answers/460395-runge-kutta-4th-order-method

Computing ln(2)
Compute ln(2) = y(1) from the initial value problem y′ = 1/(1 + x), y(0) = 0,
using the given method.

9. Use the Rectangular integration rule. Determine the number of steps for
3-digit precision.

Solution: About 709 steps, h = 1/709 = 0.001410437236.

# RECT 3-digit precision, Exercise 9

F:=x->1/(1+x);x0:=0;y0:=0;

precision:=3;EXACT:=ln(2); # Default is 10 digits

Round:=(x,n)->evalf( round(x*10^n)/10.0^n ):

RECT:=x -> h*F(x);# Rectangular rule algorithm

M:=709;h:=1.0/M;N:=M+1; # N rows, stepsize h

approx:=y0;Z:=y0; ALGORITHM:=RECT:

for k from 1 to N-1 do

X:= x0 + h*k;Z:=Z+ALGORITHM(X-h);

approx:=approx,Z;

od:

ln2Approx:=Round(approx[N],precision);

ln2Exact:=Round(EXACT,precision);

ERR:=abs(ln2Exact-ln2Approx);

printf("ERR=%10f, %a-digit ln(2)=%10f, h=1/%a\n",

ERR,precision,ln2Approx,M);

# ERR= 0.000000, 3-digit ln(2)= 0.693000, h=1/709
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10. Use the Rectangular integration rule. Determine the number of steps for
4-digit precision.

11. Use the Trapezoidal integration rule. Determine the number of steps for
5-digit precision.

Solution: About 90 steps, h = 1/90 = 0.01111111111.

# TRAP 5-digit precision, Exercise 11

F:=x->1/(1+x);x0:=0;y0:=0;

precision:=5;EXACT:=ln(2); # Default is 10 digits

Round:=(x,n)->evalf( round(x*10^n)/10.0^n ):

TRAP:=x->h*(F(x)+F(x+h))/2;

M:=90;h:=1.0/M;N:=M+1; # N rows, stepsize h

approx:=y0;Z:=y0; ALGORITHM:=TRAP:

for k from 1 to N-1 do

X:= x0 + h*k;Z:=Z+ALGORITHM(X-h);

approx:=approx,Z;

od:

ln2Approx:=Round(approx[N],precision);

ln2Exact:=Round(EXACT,precision);

ERR:=abs(ln2Exact-ln2Approx);

printf("ERR=%10f, %a-digit ln(2)=%10f, h=1/%a\n",

ERR,precision,ln2Approx,M);

# ERR= 0.000000, 5-digit ln(2)= 0.693150, h=1/90

12. Use the Trapezoidal integration rule. Determine the number of steps for
6-digit precision.

13. Use Simpson’s rule. Determine the number of steps for 5-digit precision.

Solution: About 4 steps, h = 1/4 = 0.25.
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# SIMP 5-digit precision, Exercise 13

F:=x->1/(1+x);x0:=0;y0:=0;

precision:=5;EXACT:=ln(2); # Default is 10 digits

Round:=(x,n)->evalf( round(x*10^n)/10.0^n ):

TRAP:=x->h*(F(x)+F(x+h))/2;

SIMP:=x ->( h*(F(x)+4*F(x+h/2)+F(x+h))/6 );

M:=4;h:=1.0/M;N:=M+1; # N rows, stepsize h

approx:=y0;Z:=y0; ALGORITHM:=SIMP:

for k from 1 to N-1 do

X:= x0 + h*k;Z:=Z+ALGORITHM(X-h);

approx:=approx,Z;

od:

ln2Approx:=Round(approx[N],precision);

ln2Exact:=Round(EXACT,precision);

ERR:=abs(ln2Exact-ln2Approx);

printf("ERR=%10f, %a-digit ln(2)=%10f, h=1/%a\n",

ERR,precision,ln2Approx,M);

# ERR= 0.000000, 5-digit ln(2)= 0.693150, h=1/4

14. Use Simpson’s rule. Determine the number of steps for 6-digit precision.

15. Use a computer algebra system library routine for RK4. Report the step
size used and the number of steps for 5-digit precision.

Solution: MAPLE:
Estimate: ln(2) ≈ 0.693147180561166, error 0.0. The default step size for
this problem is 0.005. The engine dsolve is used with options found from
maple help: ?dsolve,classical from the HELP Menu. The Runge-Kutta
4 method is called rk4 in maple but the method is called classical[rk4].
MATHEMATICA:
Number of steps: 13. Step size: 1/13 = 0.07692307692.

# MAPLE, Exercise 15

F:=(x,y)->1/(1+x);x0:=0;y0:=0;

EXACT:=ln(2); # Default is 10 digits

sys:=[diff(y(x),x)=F(x,y(x)),y(x0)=y0]:

ans:=dsolve(sys,numeric,method=classical[rk4]);

ln2Approx:=rhs(ans(1)[2]); # ln2Approx = 0.693147180561166,

ERR:=abs(evalf(ln2Approx-EXACT,14));

# ERR = 1.21591625656947*10^(-12)

# MATHEMATICA

URL: https://www.wolframalpha.com/

Input:

Runge-Kutta method, dy/dx = 1/(1+x),

y(0) = 0, from 0 to 1, h = 1/13
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16. Use a numerical workbench library routine for RK4. Report the step size
used and the number of steps for 5-digit precision.

Solution: MATLAB:
No online input, like WolframAlpha. Write your own code using the cited
Mathworks download. To use Matlab in 2021, a license is required for the
desktop app or a 30-day free trial for the online Matlab workbench.

URL of Matlab code source for RK4:

https://www.mathworks.com/matlabcentral/

fileexchange/29851-runge-kutta-4th-order-ode

# MAPLE: Numeric, RK4 method

F:=(x,y) -> y; x0:=0;y0:=1;

EXACT:=exp(1); # Default is 10 digits

sys:=[diff(y(x),x)=F(x,y(x)),y(x0)=y0]:

ans:=dsolve(sys,numeric,method=classical[rk4]);

eApprox:=rhs(ans(1)[2]); # eApprox = 2.71827054469638,

ERR:=abs(evalf(eApprox-EXACT,14));

# ERR = 0.000112837626158324

Computing e
Compute e = y(1) from the initial value problem y′ = y, y(0) = 1, using the
given computer library routines. Report the approximate number of digits of
precision attained with a computer algebra system or numerical workbench.

17. Improved Euler method, also known as Heun’s method.

Solution:
MAPLE:
Estimate: e ≈ 2.71827054469638, error 0.0001128, default step size 0.005.
The engine dsolve is used with options. The options can be found from
the maple help menu: ?dsolve,classical. The Improved Euler method is
called heun in maple but method = classical[heunform] or equivalently,
method = classical[rk2].

MATHEMATICA:
Number of steps: 10. Step size: 1/10. Estimate: e ≈ 2.71408, error
0.0040098.
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# MAPLE: Numeric, Heun’s method, Exercise 17

F:=(x,y) -> y; x0:=0;y0:=1;

EXACT:=exp(1); # Default is 10 digits

sys:=[diff(y(x),x)=F(x,y(x)),y(x0)=y0]:

ans:=dsolve(sys,numeric,method=classical[heunform]);

eApprox:=rhs(ans(1)[2]); # eApprox = 2.71827054469638,

ERR:=abs(evalf(eApprox-EXACT,14)); # ERR = 0.0001128

# MATHEMATICA

URL: https://www.wolframalpha.com/

Input:

Heun method, dy/dx = y, y(0) = 1, from 0 to 1

18. RK4 method.

19. RKF45 method.

Solution:
MAPLE:
Number of steps: adaptive. Step size: adaptive. Estimate:
e ≈ 2.71828133411964, error 0.000000494.

MATHEMATICA:
Number of steps: 11. Step size: 1/11. Estimate: e ≈ 2.71828, error
0.000000198.

# Runge-Kutta-Fehlberg RKF45, Exercise 19

# MAPLE

F:=(x,y) -> y; x0:=0;y0:=1;

EXACT:=exp(1); # Default is 10 digits

sys:=[diff(y(x),x)=F(x,y(x)),y(x0)=y0]:

ans:=dsolve(sys,numeric,method=rkf45);

eApprox:=rhs(ans(1)[2]);

ERR:=abs(evalf(eApprox-EXACT,14)); # ERR = 0.000000494

# MATHEMATICA

URL: https://www.wolframalpha.com/

Input:

runge-kutta-fehlberg method, dy/dx = y, y(0) = 1, from 0 to 1

20. Adams-Moulton method.

Solution: The maple method is called abmoulton, using modified code
from exercise 17. Literature citations might use the Adams-Bashforth-
Moulton method. See also

https://en.wikipedia.org/wiki/Linear multistep method

Stiff Differential Equation
The flame propagation equation y′ = y2(1 − y) is known to be stiff for small
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initial conditions y(0) > 0. Use classical rk4, then Runge-Kutta-Fehlberg rkf45
and finally a stiff solver to compute and plot the solution y(t) in each case.
Expect rk4 to fail, no matter the step size. Both rkf45 and a stiff solver will
produce about the same plot, but at different speeds. Reference: matlab author
Cleve Moler, blogs.mathworks.com 2014.

21. y(0) = 0.01

Solution: Classical RK4 does not improve the plot by using a smaller step-
size. The other two plots are nearly identical: an increasing curve which at
x = 100 quickly rises to y = 1 and stays there. All plots use a large number
of data points (diamonds).
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# MAPLE: Numeric, RK4 method, Exercise 21

y0:=0.01;x0:=0;F:=(x,y) -> (1-y)*y^2;

de:=diff(y(t),t)=F(t,y(t));

sys:=[diff(y(x),x)=F(x,y(x)),y(x0)=y0]:

ansRK4:=dsolve(sys,numeric,

method=classical[rk4],stepsize=1/10);

yRK4:=x -> rhs(ansRK4(x)[2]); # Runge-Kutta 4

ansRKF45:=dsolve(sys,numeric,method=rkf45);

yRKF45:=x -> rhs(ansRKF45(x)[2]); # Runge-Kutta-Fehlberg 45

ansSTIFF:=dsolve(sys,numeric,stiff=true);

yStiff:=x -> rhs(ansSTIFF(x)[2]); # Default stiff solver

opts:=style=pointline,font=[courier,12,bold],

symbol=diamond,symbolsize=24,thickness=2;

plot(yRK4,x0..x0+2/y0,opts,legend=["RK4"]);

plot(yRKF45,x0..x0+2/y0,opts,legend=["RKF45"]);

plot(yStiff,x0..x0+2/y0,opts,legend=["STIFF"]);

22. y(0) = 0.005

23. y(0) = 0.001

Solution: Classical RK4 improves the plot with stepsize = 1/2; increasing
the stepsize eventually fails. The other two plots are nearly identical: an
increasing curve which at x = 1000 quickly rises to y = 1 and stays there.
Plots not shown because they are no different in shape from those in Exercise
21.

24. y(0) = 0.0001

Solution: Classical RK4 fails. The other two plots are nearly identical: an
increasing curve which at x = 10000 quickly rises to y = 1 and stays there.
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4.5 Earth to the Moon

Critical Altitude r∗

The symbol r∗ is the altitude r(t) at which gravitational effects of the moon
take over, causing the projectile to fall to the moon.

1. Justify from the differential equation that r′′(t) = 0 at r∗ = r(t) implies the
first relation in (2):

Gm2

(R2 − R1 − r∗)2
−

Gm1

(R1 + r∗)2
= 0.

Solution: Insert r′′(t) = 0 and r∗ = r(t) into the Jules Verne differential
equation, then:

0 = − Gm1

(R1 + r∗)2
+

Gm2

(R2 −R1 − r∗)2

Re-arrange:
Gm2

(R2 −R1 − r∗)2
− Gm1

(R1 + r∗)2
= 0

2. Solve symbolically the relation of the previous exercise for r∗, to obtain the
second equation of (2):

r∗ =
R2

1 +
√
m2/m1

−R1.

Solution: The solution r∗ is obtained by conversion to a quadratic equation,
then solve by the quadratic formula. The trick: use a2 − b2 = (a− b)(a+ b)
where a2 = m1, b

2 = m2. Expected details omitted.

# MAPLE: Answer check Exercise 2

R1:=’R1’:R2:=’R2’:m1:=’m1’:m2:=’m2’:G:=’G’:

w:=r -> G*m2/(R2-R1-r)^2 - G*m1/(R1+r)^2;

rStar:=R2/( 1+sqrt(m2/m1) )-R1;

"w(rStar)" = simplify(w(rStar)); # w(rStar) = 0

3. Use the previous exercise and values for the constants R1, R2, m1, m2 to
obtain the approximation

r∗ = 339, 649, 780 meters.

Solution: Assume: maple values

G:=6.6726e-11: m1:=5.975e24: m2:=7.36e22:

R1:=6.378e6: R2:=3.844e8:
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r∗ =
R2

1 +
√
m2/m1

−R1

=
384400000

1 +
√
(7.36)1022/((5.975)1024)

− 6378000

≈ 339, 620, 820 meters

4. Determine the effect on r∗ for a one percent error in measurement m2.
Replace m2 by 0.99m2 and 1.01m2 in the formula for r∗ and report the two
estimated critical altitudes.

Escape Velocity v∗0
The symbol v∗0 is the velocity r′(0) such that limt→∞ r(t) = ∞, but smaller
launch velocities will cause the projectile to fall back to the earth. Throughout,
define

F (r) =
Gm1

R1 + r
+

Gm2

R2 −R1 − r
.

5. Let v0 = r′(0), r∗ = r(t0). Derive the formula

1

2
(r′(t0))

2 = F (r∗)− F (0) +
1

2
v20

which appears in the proof details.

Solution: Following the technical details, multiply differential equation
r′′(t) = − Gm1

(R1+r(t))2 + Gm2

(R2−R1−r(t))2 by r′(t) and integrate:∫ t0

0

r′(t)r′′(t)dt = −
∫ t0

0

Gm1r
′(t)dt

(R1 + r(t))2
+

∫ t0

0

Gm2r
′(t)dt

(R2 −R1 − r(t))2

Then LHS = (r′(t0))
2/2− (r′(0))2/2 = r′(t0)

2/2− v20/2 because r′(0) = v0.
Similarly

RHS =
Gm1

R1 + r(t)
+

Gm2

R2 −R1 − r(t)

∣∣∣∣t=t0

t=0

simplifies to
RHS = F (r∗)− F (0)

Then LHS = RHS becomes

r′(t0)
2/2− v20/2 = F (r∗)− F (0)

which is the claimed identity. ■
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6. Verify using the previous exercise that r′(t0) = 0 implies

v∗0 =
√

2(F (0)− F (r∗)).

7. Verify by hand calculation that v∗0 ≈ 11067.31016 meters per second.

Solution: Let F (r) =
Gm1

R1 + r
+

Gm2

R2 −R1 − r
. Use Exercise 6:

v∗0 =
√
2(F (0)− F (r∗))

=

√
2

(
Gm1

R1
+

Gm2

R2 −R1
− Gm1

R1 + r∗
− Gm2

R2 −R1 − r∗

)
The constants are

G:=6.6726e-11: m1:=5.975e24: m2:=7.36e22:

R1:=6.378e6: R2:=3.844e8: rstar:=339620820

and then by calculator v∗0 ≈ 11067.32755 meters per second.

8. Argue by mathematical proof that F (r) is not minimized at the endpoints
of the interval 0 ≤ r ≤ R.

Numerical Experiments
Assume values given in the text for physical constants. Perform the given
experiment with numerical software on initial value problem (1), page 260 �.
The cases when v0 > v∗0 escape the earth, while the others fall back to earth.

9. RKF45 solver, v0 = 11068, T = 515000. Plot the solution on 0 ≤ t ≤ T .

Solution: Code results:

v0=11068, T=515000.00

Moon at distance R=376282000.00 (blue)

Acceleration=0 at r=rstar (green)
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# MAPLE: Numeric, RKF45 method, Exercise 9

G:=6.6726e-11: m1:=5.975e24: m2:=7.36e22:

R1:=6.378e6: R2:=3.844e8: R3:=1.74e6:

R:=R2-R1-R3:

ans:=[solve(-G*m1/(r+R1)^2 + G*m2/(R2-R1-r)^2=0,r)]:

rstar:=ans[1];

FF:=r->G*m1/(R1+r)+G*m2/(R2-R1-r):

v0star:=sqrt(2*(FF(0)-FF(rstar)));# v0star=11067.31016

report:=proc() #rMAX,tMAX) # print maximum + time

printf("v0=%a, T=%.2f\n",v0,T);

printf("Moon at distance R=%.2f (blue)\n",R);

printf("Acceleration=0 at r=rstar (green)\n");

end proc;

makePlot:=proc() local opt;global T,Y,R,rstar;

opt:=legend=["r(t)","R","rstar"],

color=[red,blue,green],title=sprintf("v0=%f",v0);

plot([Y(t),R,rstar],t=0..T,opt);

end proc:

v0:=11068;T:=515000;

ic:=r(0)=0,D(r)(0)=v0:

de:=diff(r(t),t,t)=-G*m1/(r(t)+R1)^2+G*m2/(R2-R1-r(t))^2:

NS:=numeric,method=rkf45,output=listprocedure:

p:=dsolve([de,ic],r(t),NS):Y:=eval(r(t),p):

DY:=eval(diff(r(t),t),p):

makePlot();report();

10. Stiff solver, v0 = 11068, T = 515000. Plot the solution on 0 ≤ t ≤ T .
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11. RKF45 solver, v0 = 11067.2, T = 800000. Plot the solution on 0 ≤ t ≤ T .

Solution: Results:

v0=11067.2, T=800000.00

Moon at distance R=376282000.00 (blue)

Acceleration=0 at r=rstar (green)

12. Stiff solver, v0 = 11067.2, T = 800000. Plot the solution on 0 ≤ t ≤ T .

13. RKF45 solver, v0 = 11067, T = 1000000. Plot the solution on 0 ≤ t ≤ T .

Solution: Results:

v0=11067.2, T=1000000.00

Moon at distance R=376282000.00 (blue)

Acceleration=0 at r=rstar (green)
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14. Stiff solver, v0 = 11067, T = 1000000. Plot the solution on 0 ≤ t ≤ T .

15. RKF45 solver, v0 = 11066, T = 800000. Plot the solution on 0 ≤ t ≤ T .

Solution: Results:

v0=11066, T=800000.00

Moon at distance R=376282000.00 (blue)

Acceleration=0 at r=rstar (green)
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16. Stiff solver, v0 = 11066, T = 800000. Plot the solution on 0 ≤ t ≤ T .

17. RKF45 solver, v0 = 11065. Find a suitable value T which shows that the
projectile falls back to earth, then plot the solution on 0 ≤ t ≤ T .

Solution: Results:

v0=11065, T=800000.00

Moon at distance R=376282000.00 (blue)

Acceleration=0 at r=rstar (green)

18. Stiff solver, v0 = 11065. Find a suitable value T which shows that the
projectile falls back to earth, then plot the solution on 0 ≤ t ≤ T .

19. RKF45 solver, v0 = 11070. Find a suitable value T which shows that the
projectile falls to the moon, then plot the solution on 0 ≤ t ≤ T .

Solution: Results:

v0=11070, T=430000

Moon at distance R=376282000.00 (blue)

Acceleration=0 at r=rstar (green)
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4.5 Earth to the Moon

20. Stiff solver, v0 = 11070. Find a suitable value T which shows that the
projectile falls to the moon, then plot the solution on 0 ≤ t ≤ T .
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4.6 Skydiving

Terminal Velocity
Assume force F (v) = av + bv2 + cv3 and g = 32, m = 160/g. Using com-
puter assist, find the terminal velocity v∞ from the velocity model v′ = g −
1
mF (v), v(0) = 0.

1. a = 0, b = 0 and c = 0.0002.

Solution: The equilibrium solution is v = 92.83177667.

# MAPLE: Terminal velocity, Exercise 1

F:=v->a*v+b*v^2+c*v^3;

H:=v->subs(m=160/g,g=32,a=0,b=0,c=0.0002,G(v));

solve(H(v)=0,v);

# 92.83, -46.42+80.3*I, -46.42-80.39*I

2. a = 0, b = 0 and c = 0.00015.

3. a = 0, b = 0.0007 and c = 0.00009.

Solution: v = 118.6034740.

4. a = 0, b = 0.0007 and c = 0.000095.

5. a = 0.009, b = 0.0008 and c = 0.00015.

Solution: v = 100.2350541.

6. a = 0.009, b = 0.00075 and c = 0.00015.

7. a = 0.009, b = 0.0007 and c = 0.00009.

Solution: v = 118.3342112.

8. a = 0.009, b = 0.00077 and c = 0.00009.

9. a = 0.009, b = 0.0007 and c = 0.

Solution: v = 471.7060907 because v′(0) = g > 0.

# MAPLE: Terminal velocity, Exercise 9

F:=v->a*v+b*v^2+c*v^3;

H:=v->subs(m=160/g,g=32,a=0.009,b=0.0007,c=0.0,G(v));

solve(H(v)=0,v);

# -484.5632335, 471.7060907

p:=dsolve([diff(v(t),t)=H(v(t)),v(0)=0],v(t));

limit(rhs(p),t=infinity);

# 45/7+(5/7)*sqrt(448081) = 471.7060907
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10. a = 0.009, b = 0.00077 and c = 0.

Numerical Experiment
Let F (v) = av+ bv2+ cv3 and g = 32. Consider the skydiver problem mv′(t) =
mg−F (v) and constantsm, a, b, c supplied below. Using computer assist, apply
a numerical method to produce a table for the elapsed time t, the velocity
v(t) and the distance x(t). The table must end at x(t) ≈ 10000 feet, which
determines the flight time.

11. m = 160/g, a = 0, b = 0 and c = 0.0002.

Solution: A possible table:

t X(t) V(t)
0.00 0.00 0.00
0.50 4.00 15.98
1.00 15.94 31.68
1.50 35.52 46.43
2.00 62.07 59.39
2.50 94.50 69.90
3.00 131.52 77.76
3.50 171.86 83.24
4.00 214.46 86.87
4.50 258.52 89.19
5.00 303.50 90.62
5.50 349.05 91.50
6.00 394.94 92.03
6.50 441.05 92.35
7.00 487.28 92.55
7.50 533.58 92.66
8.00 579.93 92.73
8.50 626.31 92.77
9.00 672.70 92.80
9.50 719.10 92.81
10.00 765.51 92.82
10.50 811.92 92.82
11.00 858.33 92.83
11.50 904.75 92.83
12.00 951.16 92.83
12.50 997.58 92.83
13.00 1043.99 92.83
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# Maple: Numerical experiment, skydiving Exercise 11

dive:=proc(w,a,b,c,n)

global f,X,V,p,inc;

local de1,de2,ic,fmt,opts;

f:=unapply(32 - (32/w)*(a*v+b*v^2+c*v^3),v);

de1:=diff(x(t),t)=v(t); de2:=diff(v(t),t)=f(v(t));

ic:=x(0)=0,v(0)=0;opts:=numeric,output=listprocedure:

p:=dsolve({de1,de2,ic},[x(t),v(t)],opts);

X:=eval(x(t),p); V:=eval(v(t),p);

fmt:="%10.2f %10.2f %10.2f\n";

seq(printf(fmt,inc*t,X(inc*t),V(inc*t)),t=0..n);

end proc:

inc:=0.5;dive(160,0.0,0.0,0.0002,26);

12. m = 160/g, a = 0, b = 0 and c = 0.00015.

13. m = 130/g, a = 0, b = 0.0007 and c = 0.00009.

Solution: Code:

inc:=0.4;dive(130,0.0,0.0007,0.00009,28);

Last line of the table:

11.20 1005.21 110.47

14. m = 130/g, a = 0, b = 0.0007 and c = 0.000095.

15. m = 180/g, a = 0.009, b = 0.0008 and c = 0.00015.

Solution: Code:

inc:=0.4;dive(180,0.009,0.0008,0.00015,29);

Last line of the table:

11.60 1003.08 104.32

16. m = 180/g, a = 0.009, b = 0.00075 and c = 0.00015.

17. m = 170/g, a = 0.009, b = 0.0007 and c = 0.00009.

Solution: Code:

inc:=0.4;dive(170,0.009,0.00077,0.00009,27);

Last line of the table:

10.80 1024.89 120.45

18. m = 170/g, a = 0.009, b = 0.00077 and c = 0.00009.
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19. m = 200/g, a = 0.009, b = 0.0007 and c = 0.

Solution: Code:

inc:=0.4;dive(200,0.009,0.0007,0.0,21);

Last line of the table:

8.40 1080.24 246.84

20. m = 200/g, a = 0.009, b = 0.00077 and c = 0.

Flight Time
Let F (v) = av+ bv2+ cv3 and g = 32. Consider the skydiver problem mv′(t) =
mg − F (v) with constants m, a, b, c supplied below. Using computer assist,
apply a numerical method to find accurate values for the flight time to 10,000
feet and the time required to reach terminal velocity.

21. mg = 160, a = 0.0095, b = 0.0007 and c = 0.000092.

Solution: Reaches 10,000 feet in 85.4 seconds. Terminal velocity = 117.5
ft/sec.

# Maple: Flight time, Exercise 21

skydiveIvp:=proc(w,a,b,c)

global f,X,V,p;

local de1,de2,ic,fmt,opts;

f:=unapply(32 - (32/w)*(a*v+b*v^2+c*v^3),v);

de1:=diff(x(t),t)=v(t); de2:=diff(v(t),t)=f(v(t));

ic:=x(0)=0,v(0)=0;opts:=numeric,output=listprocedure:

p:=dsolve({de1,de2,ic},[x(t),v(t)],opts);

X:=eval(x(t),p); V:=eval(v(t),p);

end proc:

skydiveIvp(160,0.0095,0.0007,0.000092);# define X,V,f

plot(X,0..100);# Locate approx root = 80

x1:=fsolve(X(t)=10000,t=80);# 87.35197951

v1:=fsolve(f(v)=0,v);# 117.4934273

22. mg = 160, a = 0.0097, b = 0.00075 and c = 0.000095.

23. mg = 240, a = 0.0092, b = 0.0007 and c = 0.

Solution: Reaches 10,000 feet in 29.2 seconds. Terminal velocity = 579
ft/sec.

# Maple: Flight time, Exercise 23

skydiveIvp(240,0.0092,0.0007,0.0);# define X,V,f

plot(X,0..100);# Locate approx root = 30

x1:=fsolve(X(t)=10000,t=30);# 29.15860533

v1:=fsolve(f(v)=0,v);# 579.0054891
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24. mg = 240, a = 0.0095, b = 0.00075 and c = 0.

Ejected Baggage
Baggage of 45 pounds is dropped from a hovercraft at 15, 000 feet. Assume air
resistance force F (v) = av + bv2 + cv3, g = 32 and mg = 45. Using computer
assist, find accurate values for the flight time to the ground and the terminal
velocity. Estimate the time required to reach 99.95% of terminal velocity.

25. a = 0.0095, b = 0.0007, c = 0.00009

Solution: Flight time to ground: 197.7 seconds. Terminal velocity: 76.4
ft/sec. Time to reach 99.95% of terminal velocity: 7.5 seconds.

# Maple: Ejected Baggage, Exercise 25

skydiveIvp:=proc(w,a,b,c)

global f,X,V,p;

local de1,de2,ic,opts;

f:=unapply(32 - (32/w)*(a*v+b*v^2+c*v^3),v);

de1:=diff(x(t),t)=v(t); de2:=diff(v(t),t)=f(v(t));

ic:=x(0)=0,v(0)=0;opts:=numeric,output=listprocedure:

p:=dsolve({de1,de2,ic},[x(t),v(t)],opts);

X:=eval(x(t),p); V:=eval(v(t),p);

end proc:

skydiveIvp(45,0.0095,0.0007,0.00009);# define X,V,f

plot(X(t),t=0..250);# Locate approx root = 180

x1:=fsolve(X(t)=15000,t=180);# 197.7216521

v1:=fsolve(f(v)=0,v);# 76.43153427

plot(V(t),t=0..20);# Locate approx root = 10

fsolve(V(t)=99.95*v1/100,t=10);# 7.455104385

26. a = 0.0097, b = 0.00075, c = 0.00009

27. a = 0.0099, b = 0.0007, c = 0.00009

Solution: Flight time to ground: 197.8 seconds. Terminal velocity: 76.4
ft/sec. Time to reach 99.95% of terminal velocity: 7.5 seconds.

# Maple: Ejected Baggage, Exercise 27

skydiveIvp(45,0.0099,0.0007,0.00009);# define X,V,f

plot(X(t),t=0..250);# Locate approx root = 180

x1:=fsolve(X(t)=15000,t=200);# 197.7679961

v1:=fsolve(f(v)=0,v);# 76.41348454

plot(V(t),t=0..20);# Locate approx root = 8

fsolve(V(t)=99.95*v1/100,t=8);# 7.456210409

28. a = 0.0099, b = 0.00075, c = 0.00009
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4.7 Lunar Lander

Lunar Lander Constant Field
Find the retrorocket activation time T and the activation height x(T ). Assume
the constant gravitational field model. Units are miles/hour and miles/hour
per hour.

1. v0 = 1210, A = 30020.

Solution: T = 2.418387742 min, x(T ) = 24.38540973 miles

# Maple: Constant field, Exercise 1

v0:=1210; A:=30020.0;

X:=t->-A*t^2/2+v0*t;

T:=(v0/A): (T*60.0).’min’,X(T).’miles’;

# 2.418387742 min, 24.38540973 miles

A1:=A*2.54*12*5280/100/3600/3600; # mks units

v1:=v0*12*2.54*5280/100/3600; # mks units

evalf(convert(X(T),units,miles,meters));

# 39244.51283 meters

2. v0 = 1200, A = 30100.

3. v0 = 1300, A = 32000.

Solution: T = 2.437500000 min, x(T ) = 26.40625000 miles

4. v0 = 1350, A = 32000.

5. v0 = 1500, A = 45000.

Solution: T = 2 min, x(T ) = 25 miles

6. v0 = 1550, A = 45000.

7. v0 = 1600, A = 53000.

Solution: T = 1.811320755 min, x(T ) = 24.15094340 miles

8. v0 = 1650, A = 53000.

9. v0 = 1400, A = 40000.

Solution: T = 2.1 min, x(T ) = 24.5 miles

10. v0 = 1450, A = 40000.
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Lunar Lander Variable Field
Find the retrorocket activation time T and the activation height x(T ). Assume
the variable gravitational field model and mks units.

11. v0 = 540.92, g1 = 5.277.

Solution: Activation height = 24.61 miles, activation time = 2.449 minutes

# Maple: Variable field, Exercise 11

v0:=540.92; g0:=G*M/R^2: g1:=5.277;

M:=7.35* 10^(22);R:=1.74* 10^6;G:=6.6726* 10^(-11);

eq:= -(v0^2/2) + g1*H + G*M/(R+H) - G*M/R=0:

HH:=[solve(eq,H)][1]; # HH := 39612.87725 meters

de:=diff(x(t),t,t) = -g1 + M*G/(R+HH-x(t))^2;

ic:= x(0)=0, D(x)(0)=v0;

p:=dsolve({de,ic},x(t),numeric):

X:=t->evalf(rhs(p(t)[2])):

V:=t-> evalf(rhs(p(t)[3])):

plot(’V(t)’,t=0..300);# Locate zero of x’ approx t=145

TT1:=fsolve(’V(t)’=0,t=145): TT:=TT1/60:

TT1.’seconds’, TT.’minutes’;

# 146.9421397 seconds, 2.449035662 minutes

X(TT1).’meters’, ((X(TT1)*100/2.54)/12/5280).’miles’;

# 39612.8828293276 meters, 24.6143042301382 miles

12. v0 = 536.45, g1 = 5.288.

13. v0 = 581.15, g1 = 5.517.

Solution: Activation height = 26.66 miles, activation time = 2.47 minutes

14. v0 = 603.504, g1 = 5.5115.

15. v0 = 625.86, g1 = 5.59.

Solution: Activation height = 30.32 miles, activation time = 2.61 minutes

16. v0 = 603.504, g1 = 5.59.

17. v0 = 581.15, g1 = 5.59.

Solution: Activation height = 26.18 miles, activation time = 2.42 minutes

18. v0 = 670.56, g1 = 6.59.

19. v0 = 670.56, g1 = 6.83.

Solution: Activation height = 26.61 miles, activation time = 2.13 minutes
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20. v0 = 715.26, g1 = 7.83.

Distinguishing Models
The constant field model (1) page 272 � and the variable field model (2)
page 273 � are verified here to be distinct, by example. Find the retrorocket
activation times T1, T2 and the activation heights x1(T1), x2(T2) for the two
models (1), (2). Relations A = g1 − g0 and g0 = GM/R2 apply to compute g1
for the variable field model.

21. v0 = 1200 mph, A = 10000 mph/h. Answer: 72, 66.91 miles.

Solution:
Constant field: 7.2 minutes, 72 miles.
Variable field: 6.85 minutes, 66.91 miles.

# Maple: Constant field, book example

v0_CFM:=1200: A_CFM:=10000: # Constant field model values

X:=t->-A_CFM*t^2/2+v0_CFM*t;

T:=(v0_CFM/A_CFM): (T*60.0).’minutes’,X(T).’miles’;

# 7.2 minutes, 72 miles

# Maple: Variable field, Exercise 21

v0_CFM:=1200: A_CFM:=10000:

cf:=1*5280*12*2.54/100/3600; # mi/h to m/s

v0:=v0_CFM*cf; A:=A_CFM*cf/3600;

g0:=G*M/R^2: g1:=A+g0;

eq:= -(v0^2/2) + g1*H + G*M/(R+H) - G*M/R=0:

HH:=[solve(eq,H)][1];# 107685.7059

de:=diff(x(t),t,t) = -g1 + M*G/(R+HH-x(t))^2;

ic:= x(0)=0, D(x)(0)=v0;

p:=dsolve({de,ic},x(t),numeric):

X:=t->evalf(rhs(p(t)[2])):

V:=t-> evalf(rhs(p(t)[3])):

plot(’V(t)’,t=0..500);# Locate zero of x’ approx t=410

TT1:=fsolve(’V(t)’=0,t=410): TT:=TT1/60:

TT1.’seconds’, TT.’minutes’;

X(TT1).’meters’, ((X(TT1)*100/2.54)/12/5280).’miles’;

# 6.85 min, 66.91 miles

22. v0 = 1200 mph, A = 12000 mph/h. Answer: 60, 56.9 miles.

23. v0 = 1300 mph, A = 10000 mph/h. Answer: 84.5, 74.23 miles.

Solution:
Constant field: 7.8 minutes, 84.5 miles.
Variable field: 5.79 minutes, 74.23 miles.

24. v0 = 1300 mph, A = 12000 mph/h. Answer: 76.82, 71.55 miles.
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4.8 Comets

Eccentric Anomaly for the Planets
Make a plot of the eccentric anomaly E(M) on 0 ≤ M ≤ 2π.

1. Mercury, e = 0.2056

Solution:

# Eccentric anomoly Mercury, Exercise 1

e:=0.2056:de:=diff(y(x),x)=1/(1-e*cos(y(x))); ic:=y(0)=0;

p:=dsolve({de,ic},numeric,output=listprocedure);

EE := eval(y(x),p):

plot(EE,0..2*Pi);

2. Venus, e = 0.0068

3. Earth, e = 0.0167

Solution:

289



4.8 Comets

4. Mars, e = 0.0934

5. Jupiter, e = 0.0483

Solution:

6. Saturn, e = 0.0560

7. Uranus, e = 0.0461

Solution:
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8. Neptune, e = 0.0097

Elliptic Path of the Planets
Make a plot of the elliptic path of each planet, using constrained scaling with
the given major semi-axis A (in astronomical units AU). The equations:

x(M) = A cos(E(M)),

y(M) = A
√
1− e2 sin(E(M))

9. Mercury, e = 0.2056, A = 0.39

Solution:
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# Elliptic Path of the Planets, Exercise 9

e:=0.2056:A:=0.39:EE := unapply(RootOf(_Z-M-e*sin(_Z)),M);

Ex:=A*cos(EE(M)):Ey:=A*sqrt(1-e^2)*sin(EE(M)):

opt:=font=[courier,bold,16],thickness=3,tickmarks=[2,2],

scaling=constrained;

plot([Ex,Ey,M=0..2*Pi],opt);

10. Venus, e = 0.0068, A = 0.72

11. Earth, e = 0.0167, A = 1

Solution:

12. Mars, e = 0.0934, A = 1.52

13. Jupiter, e = 0.0483, A = 5.20

Solution:
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14. Saturn, e = 0.0560, A = 9.54

15. Uranus, e = 0.0461, A = 19.18

Solution:

16. Neptune e = 0.0097, A = 30.06

Planet Positions
Make a plot with at least 8 planet positions displayed. Use constrained scaling
with major semi-axis A in the plot. Display the given major semi-axis A and
period T in the legend.

17. Mercury, e = 0.2056, A = 0.39 AU, T = 0.24 earth-years

Solution:
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# Planet Positions, Exercise 17

e:=0.2056:A:=0.39:T:=0.24:planet:="Mercury":

de:=diff(y(x),x)=1/(1-e*cos(y(x))); ic:=y(0)=0;

p:=dsolve({de,ic},numeric,output=listprocedure);

EE := eval(y(x),p):

Ex:=unapply(A*cos(EE(M)),M):

Ey:=unapply(A*sqrt(1-e^2)*sin(EE(M)),M):

opts:=font=[courier,bold,16],thickness=3,

tickmarks=[2,2],scaling=constrained,axes=boxed,

symbol=solidcircle,style=point,symbolsize=22,

legend=sprintf("%s: A=%f, T=%f",planet,A,T);;

snapshots:=seq([Ex(2*n*Pi/12),Ey(2*n*Pi/12)],n=0..12):

plot([snapshots],opts);

18. Venus, e = 0.0068, A = 0.72 AU, T = 0.62 earth-years

19. Earth, e = 0.0167, A = 1 AU, T = 1 earth-years

Solution:

20. Mars, e = 0.0934, A = 1.52 AU, T = 1.88 earth-years

21. Jupiter, e = 0.0483, A = 5.20 AU, T = 11.86 earth-years

Solution:
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22. Saturn, e = 0.0560, A = 9.54 AU, T = 29.46 earth-years

23. Uranus, e = 0.0461, A = 19.18 AU, T = 84.01 earth-years

Solution:

24. Neptune e = 0.0097, A = 30.06 AU, T = 164.8 earth-years

Comet Positions
Make a plot with at least 8 comet positions displayed. Use constrained scaling

295



4.8 Comets

with major-semiaxis 1 in the plot. Display the given eccentricity e and period
T in the legend.

25. Churyumov-Gerasimenko orbits the sun every 6.57 earth-years. Discovered
in 1969. Eccentricity e = 0.632.

Solution:

# Comet Positions, Exercise 25

e:=0.632:T:=6.57:comet:="Churyumov-Gerasimenko":

de:=diff(y(x),x)=1/(1-e*cos(y(x))); ic:=y(0)=0;

p:=dsolve({de,ic},numeric,output=listprocedure);

EE := eval(y(x),p):

Ex:=unapply(cos(EE(M)),M):

Ey:=unapply(sqrt(1-e^2)*sin(EE(M)),M):

opts:=font=[courier,bold,16],thickness=3,tickmarks=[2,2],

scaling=constrained,axes=boxed,symbol=solidcircle,

style=point,symbolsize=22,

legend=sprintf("%s: e=%f, T=%f",comet,e,T);;

snapshots:=seq([Ex(2*n*Pi/12),Ey(2*n*Pi/12)],n=0..12):

plot([snapshots],opts);

26. Comet Wirtanen was the original target of the Rosetta space mission. This
comet was discovered in 1948. The comet orbits the sun once every 5.46
earth-years. Eccentricity e = 0.652.

27. Comet Wild 2 was discovered in 1978. The comet orbits the sun once every
6.39 earth-years. Eccentricity e = 0.540.

Solution:
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28. Comet Biela was discovered in 1772. It orbits the sun every 6.62 earth-
years. Eccentricity e = 0.756.

29. Comet Encke was discovered in 1786. It orbits the sun each 3.31 earth-
years. Eccentricity e = 0.846.

Solution:

30. Comet Giacobini-Zinner, discovered in 1900, orbits the sun each 6.59 earth-
years. Eccentricity e = 0.708.
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31. Comet Schwassmann-Wachmann, discovered in 1930, orbits the sun every
5.36 earth-years. Eccentricity e = 0.694.

Solution:

32. Comet Swift-Tuttle was discovered in 1862. It orbits the sun each 120
earth-years. Eccentricity e = 0.960.

Comet Animations
Make an animation plot of comet positions. Use constrained scaling with major-
semiaxis 1 in the plot. Display the given period T and eccentricity e in the
legend.

33. Comet Churyumov-Gerasimenko
T = 6.57, e = 0.632.

Solution:
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# Comet animation, Exercise 33

e:=0.632:T:=6.57:comet:="Churyumov-Gerasimenko":

de:=diff(y(x),x)=1/(1-e*cos(y(x))): ic:=y(0)=0:

p:=dsolve({de,ic},numeric,output=listprocedure):

EE := eval(y(x),p):

xt:=cos(EE(M)):yt:=sqrt(1-e^2)*sin(EE(M)):

opts:=view=[-1..1,-0.9..0.9],frames=2,axes=none,

scaling=constrained,axes=boxed,style=point,

symbolsize=22,symbol=circle,thickness=3,

legend=sprintf("%s: \n e=%f, T=%f",comet,e,T);

plots[animatecurve]([xt,yt,M=0..2*Pi],opts);

34. Comet Wirtanen
T = 5.46, e = 0.652.

35. Comet Wild 2
T = 6.39, e = 0.540.

Solution:
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36. Comet Biela
T = 6.62, e = 0.756.

37. Comet Encke
T = 3.31, e = 0.846.

Solution:

38. Comet Giacobini-Zinner
T = 6.59, e = 0.708.
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39. Comet Schwassmann-Wachmann
T = 5.36, e = 0.694.

Solution:

40. Comet Swift-Tuttle
T = 120, e = 0.960.
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Constant Logistic Harvesting
The model

x′(t) = kx(t)(M − x(t))− h

can be converted to the logistic model

y′(t) = (a− by(t))y(t)

by a change of variables. Find the change of variables y = x+c for the following
pairs of equations.

1. x′ = −3x2 + 8x− 5,
y′ = (2− 3y)y

Solution: A way to find y = x−1 is to factor −3x2+8x−5 = (−3x+5)(x−1)
and then choose y = x − 1. After enough experience with finding changes
of variables, this will become the preferred method.

A general technique for finding the change of variables is to substitute x =
y − c into the differential equation. Then

y′ = x′ + 0
= −3x2 + 8x− 5
= −3(y − c)2 + 11(y − c)− 14
= −3y2 + (6c+ 8)y + (−3c2 − 11c− 14).

Equation y′ = (2− 3y)y holds provided:

6c+ 8 = 2,
−3c2 − 11c− 14 = 0.

Equation 6c+ 8 = 2 gives c = −1. Equation −3c2 − 11c− 14 = 0 holds for
c = −1. Conclusion: y = x+ c = x− 1.

2. x′ = −2x2 + 11x− 14,
y′ = (3− 2y)y

3. x′ = −5x2 − 19x− 18,
y′ = (1− 5y)y

Solution: Factor −5x2 − 19x− 18 = −(5x+9)(x+2), then let y = x+2 to
get y′ = x′ = −(5x+ 9)y = −(5y − 10 + 9)y = (1− 5y)y.

4. x′ = −x2 + 3x+ 4,
y′ = (5− y)y
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Periodic Logistic Harvesting
The periodic harvesting model

x′(t) = 0.8x(t)

(
1− x(t)

780500

)
−H(t)

is considered with H defined by

H(t) =


0 0 < t < 5,

H0 5 < t < 6,
0 6 < t < 17,

H0 17 < t < 18,
0 18 < t < 24.

This project makes as computer graph of the solution on 0 < t < 24 for various
values of H0 and x(0). See Figures 17 and 18 and the corresponding examples.

5. H0 = 156100, P (0) = 300000

Solution:

# Periodic Logistic Harvesting, Exercise 5

de:=diff(x(t),t)=r*(1-x(t)/M)*x(t)-H(t);

r:=0.8:M:=780500:H0:=156100:x0:=300000:

H:=t->H0*piecewise(t<5,0,t<6,1,t<12+5,0,t<12+6,1,0);

with(DEtools):DEplot(de,x(t),t=0..24,x=0..M,

[[x(0)=x0]],arrows=smalltwo,color=green,

dirfield=[20,10],linecolor=blue,font=[courier,bold,16],

title="Periodic Piecewise Harvesting",tickmarks=[6,6]);
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6. H0 = 156100, P (0) = 800000

7. H0 = 800100, P (0) = 90000

Solution:

8. H0 = 800100, P (0) = 100000

von Bertalanffy Equation
Karl Ludwig von Bertalanffy (1901-1972) derived in 1938 the equation

dL

dt
=rB(L∞−L(t))

from simple physiological arguments. It is a widely used growth curve, espe-
cially important in fisheries studies. The symbols:

t time,
L(t) length,
rB growth rate,
L∞ expected length for zero

growth.

9. Solve dL
dt = 2(10−L), L(0) = 0. The answer is the length in inches of a fish

over time, with final adult size 10 inches.

Solution:

Model: x′ + px = q with p, q constant has shortcut solution x = xp + xh

where xp is the equilibrium solution and xh = c/W , W = integrating factor.

Then L = 10 + c/W , W = e
∫
2dt = e2t. Solve for c: 0 = L(0) = 10 + c/e0.
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Answer: L(t) = 10 − 10/e2t. Symbol L∞ = 10 = equilibrium solution.
Symbol rB = 2 = growth rate.

10. Solve von Bertalanffy’s equation to obtain the algebraic model

L(t) = L∞

(
1− e−rB(t−t0)

)
.

11. Assume von Bertalanffy’s model. Suppose field data L(0) = 0, L(1) = 5,
L(2) = 7. Display details using Exercise 10 to arrive for t0 = 0 at values
L∞ = 25/3 and rB = ln(5/2).

Solution:

Model: L(t) = L∞ (1− e−rB t) because t0 = 0.
Then L(0) = 0 holds. To satisfy the other two data items L(1) = 5, L(2) = 7
requires values for L∞, rB satisfying the nonlinear system of equations

L∞
(
1− e−rB (1)

)
= 5,

L∞
(
1− e−rB (2)

)
= 7.

A computer algebra system is a reliable tool to solve these equations, giving
L∞ = 25/3 and rB = ln(5/2). Rule ln(1/u) = − ln(u) converts the maple

answer.

# Maple: Bertalanffy’s model with field data

eq1:=L * (1-exp(-r_B) ) = 5;

eq2:=L *(1-exp(-2*r_B)) = 7;

solve([eq1,eq2],[L,r_B]); # L = 25/3, r_B = -ln(2/5)

12. Assume von Bertalanffy’s model with field data L(0) = 0, L(1) = 10,
L(2) = 13. Find the expected length L∞ of the fish.
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Chapter 5

Linear Algebra

Contents

5.1 Vectors and Matrices . . . . . . . . . . . . 306

5.2 Matrix Equations . . . . . . . . . . . . . . 326

5.3 Determinants and Cramer’s Rule . . . . . 339

5.4 Vector Spaces, Independence, Basis . . . 360

5.5 Basis, Dimension and Rank . . . . . . . . 380

5.1 Vectors and Matrices

Fixed vectors
Perform the indicated operation(s).

1.

(
1

−1

)
+

(
−2
1

)
Solution:

(
−1
0

)

2.

(
2

−2

)
−
(

1
−3

)

3.

 1
−1
2

+

 −2
1

−1


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Solution:

 −1
0
1



4.

 2
−2
9

−

 1
−3
7


5. 2

(
1

−1

)
+ 3

(
−2
1

)
Solution:

(
−4
1

)

6. 3

(
2

−2

)
− 2

(
1

−3

)

7. 5

 1
−1
2

+ 3

 −2
1

−1


Solution:

 −1
−2
7



8. 3

 2
−2
9

− 5

 1
−3
7



9.

 1
−1
2

+

 −2
1

−1

−

 1
2

−3


Solution:

 −2
−2
1



10.

 2
−2
4

−

 1
−3
5

−

 1
3

−2


Parallelogram Rule
Determine the resultant vector in two ways: (a) the parallelogram rule, and (b)
fixed vector addition.
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11.

(
2

−2

)
+

(
1

−3

)
Solution:

(
3

−5

)

# Maple: Parallelogram rule

with(VectorCalculus):opts:=font=[courier,bold,16];

A:=<2,-2>;B:=<1,-3>;

PlotVector([A,B,A+B], color = [red, blue,green],opts);

12. (2⃗ı− 2ȷ⃗) + (⃗ı− 3ȷ⃗)

13.

 2
2
0

+

 3
3
0


Solution:

 5
5
0


14. (2⃗ı− 2ȷ⃗+ 3k⃗) + (⃗ı− 3ȷ⃗− k⃗)

Toolkit
Let V be the data set of all fixed 2-vectors, V = R2. Define addition and
scalar multiplication componentwise. Verify the following toolkit rules by direct
computation.
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15. (Commutative)

X⃗ + Y⃗ = Y⃗ + X⃗

Solution:

X⃗ + Y⃗ =

(
x1

x2

)
+

(
y1
y2

)
=

(
x1 + y1
x2 + y2

)
Y⃗ + X⃗ =

(
y1
y2

)
+

(
x1

x2

)
=

(
y1 + x1

y2 + x2

)
Commutativity of addition of real numbers implies the result. ■

16. (Associative)

X⃗ + (Y⃗ + Z⃗) = (Y⃗ + X⃗) + Z⃗

17. (Zero)

Vector 0⃗ is defined and 0⃗ + X⃗ = X⃗

Solution: Define 0⃗ =

(
0
0

)
. Then:

0⃗ + X⃗ =

(
0
0

)
+

(
x1

x2

)
=

(
0 + x1

0 + x2

)
= X⃗ ■

18. (Negative)

Vector −X⃗ is defined and
X⃗ + (−X⃗) = 0⃗

19. (Distributive I)

k(X⃗ + Y⃗ ) = kX⃗ + kY⃗

Solution: The plan: expand both LHS and RHS of the identity and show
they are equal.

LHS = k(X⃗ + Y⃗ )

= k

((
x1

x2

)
+

(
y1
y2

))
= k

(
x1 + y1
x2 + y2

)
=

(
kx1 + ky1
kx2 + ky2

)
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RHS = kX⃗ + kY⃗

= k

(
x1

x2

)
+ k

(
y1
y2

)
=

(
kx1

kx2

)
+

(
ky1
ky2

)
=

(
kx1 + ky1
kx2 + ky2

)
Therefore, LHS = RHS by the definition of vector equality: components are
equal. ■

20. (Distributive II)

(k1 + k2)X⃗ = k1X⃗ + k2X⃗

21. (Distributive III)

k1(k2X⃗) = (k1k2)X⃗

Solution: Plan: expand both LHS and RHS of the identity and show they
are equal.

LHS = k1

(
k2X⃗

)
= k1

(
k2

(
x1

x2

))
= k1

(
k2x1

k2x2

)
=

(
k1k2x1

k1k2x2

)
RHS = (k1k2)X⃗

= (k1k2)

(
x1

x2

)
=

(
k1k2x1

k1k2x2

)
Therefore, LHS = RHS by the definition of vector equality: components are
equal. ■

22. (Identity)

1X⃗ = X⃗

Subspaces
Verify that the given restriction equation defines a subspace S of V = R3. Use
Theorem 5.2, page 300 �.

23. z = 0
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Solution: The equation z = 0 is a homogeneous linear equation. The Theo-
rem applies: S is a subspace of V .

24. y = 0

25. x+ z = 0

Solution: The equation x + z = 0 is a homogeneous linear equation. The
Theorem applies: S is a subspace of V .

26. 2x+ y + z = 0

27. x = 2y + 3z

Solution: The equation x = 2y + 3z is a homogeneous linear equation x −
2y − 3z = 0. The Theorem applies: S is a subspace of V .

28. x = 0, z = x

29. z = 0, x+ y = 0

Solution: Equations z = 0, x + y = 0 are homogeneous linear equations.
The Theorem applies: S is a subspace of V .

30. x = 3z − y, 2x = z

31. x+ y + z = 0, x+ y = 0

Solution: Equations x + y + z = 0, x + y = 0 are homogeneous linear
equations. The Theorem applies: S is a subspace of V .

32. x+ y − z = 0, x− z = y

Test S Not a Subspace
Test the following restriction equations for V = R3 and show that the corre-
sponding subset S is not a subspace of V . Use Theorem 5.4 page 301 �.

33. x = 1

Solution: Vector 0⃗ is given by the equations x = 0, y = 0, z = 0. If 0⃗ is in
S, then equation x = 1 allows substitution of x = 0, resulting in the false
equation 0 = 1. Therefore, 0⃗ is not in S. Theorem 5.4 applies: S is not a
subspace of V . ■

34. x+ z = 1
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35. xz = 2

Solution: Vector 0⃗ is given by the equations x = 0, y = 0, z = 0. If 0⃗ is in
S, then equation xz = 2 allows substitution of x = 0, resulting in the false
equation 0 = 2. Therefore, 0⃗ is not in S. Theorem 5.4 applies: S is not a
subspace of V . ■

36. xz + y = 1

37. xz + y = 0

Solution: Equation xz + y = 0 is nonlinear but homogeneous, therefore (1)
of Theorem 5.4 does not apply. Both (2) or (3) in Theorem 5.4 will be tested
instead of (1). Both (2) and (3) hold, but only one of them is required. Let’s

verify (2) by selecting a vector A⃗ in S for which −A⃗ violates the equation
xz + y = 0.

Choose A⃗ =

 1
1

−1

. Then xz + y = (1)(−1) + 1 = 0 and A⃗ is verified to

belong to S. Vector −A⃗ =

 −1
−1
1

 fails to belong to S because xz + y =

(−1)(−1) + 1 = 2 ̸= 0. Then (2) in Theorem 5.4 holds. Conclusion: S is
not a subspace. ■

38. xyz = 0

39. z ≥ 0

Solution: The violation is from (2) in Theorem 5.4. Choose A =

 0
0
1

 in

S. Then −A =

 0
0

−1

 fails z ≥ 0 because z = −1. ■

40. x ≥ 0 and y ≥ 0

41. Octant I

Solution: Octant 1 is defined by x ≥ 0. The proof parallels Exercise 39. ■

42. The interior of the unit sphere

Dot Product
Find the dot product of a⃗ and b⃗ .
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43. a⃗ =

(
1

−1

)
and b⃗ =

(
0

−2

)
.

Solution: a⃗ · b⃗ = 2

44. a⃗ =

(
1
2

)
and b⃗ =

(
1

−2

)
.

45. a⃗ =

 1
−1
0

 and b⃗ =

 0
−2
1

.

Solution: a⃗ · b⃗ = 2

46. a⃗ =

 1
2
1

 and b⃗ =

 1
−2
0

.

47. a⃗ and b⃗ are in R169, a⃗ has all 169 components 1 and b⃗ has all components
−1, except four, which all equal 5.

Solution: a⃗ · b⃗ = 169− 4 + (5)(4) = 185

48. a⃗ and b⃗ are inR200, a⃗ has all 200 components−1 and b⃗ has all components
−1 except three, which are zero.

Length of a Vector
Find the length of the vector v⃗ .

49. v⃗ =

(
1

−1

)
.

Solution:
√
12 + (−1)2 =

√
2

50. v⃗ =

(
2

−1

)
.

51. v⃗ =

 1
−1
2

.

Solution:
√

12 + (−1)2 + 22 =
√
6

52. v⃗ =

 2
0
2

.

313



5.1 Vectors and Matrices

Shadow Projection
Find the shadow projection d = a⃗ · b⃗/|b⃗ |.

53. a⃗ =

(
1

−1

)
and b⃗ =

(
0

−2

)
.

Solution: d = 1

54. a⃗ =

(
1
2

)
and b⃗ =

(
1

−2

)
.

55. a⃗ =

 1
−1
0

 and b⃗ =

 0
−2
1

.

Solution: d = 2/
√
5

56. a⃗ =

 1
2
1

 and b⃗ =

 1
−2
0

.

Projections and Reflections
Let L denote a line through the origin with unit direction u⃗ .

The projection of vector x⃗ onto L is P (x⃗ ) = du⃗ , where d = x⃗ · u⃗ is the
shadow projection.

The reflection of vector x⃗ across L is R(x⃗ ) = 2du⃗ − x⃗ (a generalized complex
conjugate).

57. Let u⃗ be the direction of the x-axis in the plane. Establish that P (x⃗ ) and
R(x⃗ ) are sides of a right triangle and P duplicates the complex conjugate
operation z → z. Include a figure.

Solution: A right triangle with sides a⃗ , b⃗ has third side b⃗ − a⃗ . The right
angle condition is verified by the Pythagorean identity |⃗a |2+|b⃗ |2 = |b⃗−a⃗ |2.
a⃗ · b⃗ = 0, which is equivalent to a⃗ · b⃗ = 0. Let a⃗ = P (x⃗ ) = du⃗ and

b⃗ = R(x⃗ )− P (x⃗ ) = du⃗ − x⃗ . Then:

a⃗ · b⃗ = du⃗ · (du⃗ − x⃗ )
= d2(u⃗ · u⃗ )− du⃗ · x⃗
= d2 − d2 = 0.

This proves that P (x⃗ ) and R(x⃗ ) are sides of a right triangle.

Complex conjugation is duplicated by the reflection R(x⃗ ) provided u⃗ is
along the x-axis, which means u⃗ = ı⃗ . Then for x⃗ = x1⃗ı + x2ȷ⃗ :

R(x⃗ ) = 2du⃗ − x⃗
= 2(x⃗ · u⃗ )⃗ı − x⃗
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= 2x1.ı− x1⃗ı − x2ȷ⃗
= x1.ı− x2ȷ⃗

Let z = x1 + x2i, i =
√
−1. Then z = x1 − x2i is the complex conjugate

of z. Complex numbers correspond to vectors by the mapping x1 + x2i 7→(
x1

x2

)
. Therefore, z 7→ R(x⃗ ), showing that reflections duplicate complex

conjugation in the special case when L is the x-axis. ■

58. Let u⃗ be any direction in the plane. Establish that P (x⃗ ) and R(x⃗ ) are
sides of a right triangle. Draw a suitable figure, which includes x⃗ .

59. Let u⃗ be the direction of 2⃗ı+ ȷ⃗. Define x⃗ = 4⃗ı+ 3ȷ⃗. Compute the vectors
P (x⃗ ) and R(x⃗ ).

Solution: Let’s use fixed vectors for the computations:

x⃗ =

(
4
3

)
and u⃗ = c

(
2
1

)
where c = 1√

5

Then:

d = x⃗ · u⃗
= c

(
2
1

)
·
(
4
3

)
= 11c

dc = 11c2 = 11/5

P (x⃗ ) = du⃗ = dc

(
2
1

)
=

(
22/5
11/5

)
R(x⃗ ) = 2du⃗ − x⃗ = 2dc

(
2
1

)
−
(
4
3

)
=

(
4dc− 4
2dc− 3

)
=

(
44/5− 4
22/5− 3

)
=

(
24/5
7/5

)
# Projections and refections, Exercise 59

X:=<4,3>;u:=c*<2,1>;c:=1/sqrt(5);

d:=X.u; P:=d*u; R:=2*d*u-X;

# P = [22/5, 11/5], R = [24/5, 7/5]

60. Let u⃗ be the direction of ı⃗+ 2ȷ⃗. Define x⃗ = 3⃗ı+ 5ȷ⃗. Compute the vectors
P (x⃗ ) and R(x⃗ ).
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Angle
Find the angle θ between the given vectors.

61. a⃗ =

(
1

−1

)
and b⃗ =

(
0

−2

)
.

Solution: We will use identity cos(θ) = a⃗ · b⃗/∥a⃗∥ ∥b⃗∥

∥a⃗∥ =
√
2, ∥b⃗∥ =

√
4 = 2, a⃗ · b⃗ = 2, cos(θ) = 1/

√
2 = cos(π/4). Then

θ = π/4 is the acute angle between a⃗ and b⃗ .

62. a⃗ =

(
1
2

)
and b⃗ =

(
1

−2

)
.

63. a⃗ =

 1
−1
0

 and b⃗ =

 0
−2
1

.

Solution: ∥a⃗∥ =
√
2, ∥b⃗∥ =

√
5, a⃗ · b⃗ = −3, cos(θ) = −3/

√
10. Then

θ = cos−1(−3/
√
10) = 2.819842099 radians is the acute angle between a⃗

and b⃗ .

64. a⃗ =

 1
2
1

 and b⃗ =

 1
−2
0

.

65. a⃗ =


1

−1
0
0

 and b⃗ =


0

−2
1
1

.

Solution: ∥a⃗∥ =
√
2, ∥b⃗∥ =

√
6, a⃗ · b⃗ = 2, cos(θ) = 2/

√
12 = 1/

√
3. Then

θ = cos−1(2/
√
12) = 0.9553166184 radians is the acute angle between a⃗ and

b⃗ .

66. a⃗ =


1
2
1
0

 and b⃗ =


1

−2
0
0

.

67. a⃗ =

 1
−1
2

 and b⃗ =

 2
−2
1

.

Solution: ∥a⃗∥ =
√
6, ∥b⃗∥ =

√
4 + 4 + 1 = 3, a⃗ · b⃗ = 6, cos(θ) = 6/

√
54.

Then θ = cos−1(6/
√
54) = 0.6154797085 radians is the acute angle between

a⃗ and b⃗ .

316



5.1 Vectors and Matrices

68. a⃗ =

 2
2
1

 and b⃗ =

 1
−2
2

.

Matrix Multiply
Find the given matrix product or else explain why it does not exist.

69.

(
1 1
1 −1

)(
1

−2

)
Solution:

(
−1
3

)

70.

(
1 −1
1 0

)(
1

−2

)

71.

(
1 1
1 2

)(
1

−1

)
Solution:

(
0

−1

)

72.

(
1 2
3 1

)(
2

−1

)

73.

 1 1 1
1 −1 1
1 0 0

 1
−2
0


Solution:

−1
3
1



74.

 1 0 1
1 −1 0
1 1 0

 1
2
0



75.

 1 1 1
1 0 2
1 2 0

 1
3
1


Solution:

5
3
7


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76.

 1 2 1
1 −2 0
1 1 −1

 1
2
1



77.

 1 1 1
1 −1 1
1 0 0

 1 0 0
0 −1 0
0 0 1


Solution:

 1 −1 1
1 1 1
1 0 0


# Maple: Answer check Exercise 77

A:=Matrix([[1 , 1 , 1],[1 ,-1 ,1],[1 , 0 , 0]]);

B:=Matrix([[1 , 0 , 0],[0 ,-1 ,0],[0 , 0 , 1]]);

A.B; # Matrix([[1, -1, 1], [1, 1, 1], [1, 0, 0]])

78.

 1 1 1
1 −1 1
1 0 0

 1 1 0
0 −1 0
0 0 1


79.

(
1 1

−1 1

)(
1 0
1 2

)
Solution:

(
2 2
0 2

)

80.

(
1 1

−1 1

) 1 1 1
1 0 2
1 2 0



81.

 1 1
1 0
1 2

( 1 1
−1 1

)

Solution:

 0 2
1 1

−1 3



82.

(
1 1 1
1 0 1

) 1 1 1
1 0 2
1 2 0


Matrix Classification
Classify as square, non-square, upper triangular, lower triangular, scalar, diag-
onal, symmetric, non-symmetric. Cite as many terms as apply.
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83.

(
1 0
0 2

)
Solution: square, upper triangular, lower triangular, diagonal, symmetric

84.

(
1 3
0 2

)

85.

(
1 3
4 2

)
Solution: square, non-symmetric

86.

(
1 3
3 2

)

87.

 1 3 4
5 0 0
0 0 0


Solution: square, non-symmetric

88.

 1 0 4
0 2 0
0 0 3



89.

 1 3 4
3 2 0
4 0 3


Solution: square, symmetric

90.

 2 0 0
0 2 0
0 0 2


91.

(
i 0
0 2i

)
Solution: square, upper triangular, lower triangular, diagonal, symmetric

92.

(
i 3
3 2i

)
Digital Photographs
Assume integer 24-bit color encoding x = r + (256)g + (65536)b, which means
r units red, g units green and b units blue. Given matrix X = R + 256G +
65536B, find the red, green and blue color separation matrices R, G, B. Com-
puter assist expected.
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93. X =

(
514 3

131843 197125

)
Solution: R =

[
2 3

3 5

]
, G =

[
2 0

3 2

]
, B =

[
0 0

2 3

]
# Digital Photographs, Exercise 93

with(LinearAlgebra:-Modular):

X := Matrix([[514, 3], [131843, 197125]]);

R1:=Mod(2^16,X,integer);

R:=Mod(2^8,R1,integer);# R:=Matrix([[2,3],[3,5]]);

G:=(R1-R)/2^8;# G:=Matrix([[2,0],[3,2]]);

B:=(X-R-G*2^8)/2^16;# B:=Matrix([[0,0],[2,3]]);

ZERO:=R+256*G+65536*B-X;# ZERO:=Matrix([[0,0],[0,0]]);

94. X =

(
514 3

131331 66049

)

95. X =

(
513 7

131333 66057

)
Solution:

# Digital Photographs, Exercise 95

with(LinearAlgebra:-Modular):

X := Matrix([[513, 7], [131333, 66057]]);

R1:=Mod(2^16,X,integer);

R:=Mod(2^8,R1,integer);# R:=Matrix([[1,7],[5,9]]);

G:=(R1-R)/2^8;# G:=Matrix([[2,0],[1,2]]);

B:=(X-R-G*2^8)/2^16;# B:=Matrix([[0,0],[2,1]]);

ZERO:=R+256*G+65536*B-X;# ZERO:=Matrix([[0,0],[0,0]]);

96. X =

(
257 7

131101 66057

)

97. X =

(
257 17

131101 265

)
Solution:

# Digital Photographs, Exercise 95

with(LinearAlgebra:-Modular):

X := Matrix([[257, 17], [131101, 265]]);

R1:=Mod(2^16,X,integer);

R:=Mod(2^8,R1,integer);# R:=Matrix([[1,17],[29,9]]);

G:=(R1-R)/2^8;# G:=Matrix([[1,0],[0,1]]);

B:=(X-R-G*2^8)/2^16;# B:=Matrix([[0,0],[2,0]]);

ZERO:=R+256*G+65536*B-X;# ZERO:=Matrix([[0,0],[0,0]]);
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98. X =

(
65537 269
65829 261

)

99. X =

(
65538 65803
65833 7

)
Solution:

# Digital Photographs, Exercise 95

with(LinearAlgebra:-Modular):

X := Matrix([[65538, 65803], [65833, 7]]);

R1:=Mod(2^16,X,integer);

R:=Mod(2^8,R1,integer);# R:=Matrix([[2,11],[41,7]]);

G:=(R1-R)/2^8;# G:=Matrix([[0,1],[1,0]]);

B:=(X-R-G*2^8)/2^16;# B:=Matrix([[1,1],[1,0]]);

ZERO:=R+256*G+65536*B-X;# ZERO:=Matrix([[0,0],[0,0]]);

100. X =

(
259 65805
299 5

)
Matrix Properties
Verify the result.

101. Let C be an m × n matrix. Let X⃗ be column i of the n × n identity I.
Define Y⃗ = CX⃗. Verify that Y⃗ is column i of C.

Solution: To prove: the entries of Y⃗ are c1i, . . . , cni. Matrix multiply defines
the entries of CX⃗ to be

∑n
j=1 c1jxj , . . . ,

∑n
j=1 cnjxj . Because xj = 0 except

for xi = 1, then the entries of CX⃗ are c1i, . . . , cni, which matches the entries
of column i of matrix C. ■

102. Let A and C be an m × n matrices such that AC = 0. Verify that each
column Y⃗ of C satisfies AY⃗ = 0⃗.

103. Let A be a 2 × 3 matrix and let Y⃗1, Y⃗2, Y⃗3 be column vectors packaged
into a 3× 3 matrix C. Assume each column vector Y⃗i satisfies the equation
AY⃗i = 0⃗, 1 ≤ i ≤ 3. Show that AC = 0.

Solution: Let matrix A = (aij) be 2× 3. Let matrix C = (cij) be 3× 3. To

prove: AC = 0 provided the columns Y⃗ of C satisfy AY⃗ = 0⃗ .

Exercise 101 implies that ACX⃗ is column i of AC, provided X⃗ is column
i of the 3 × 3 identity matrix. The same result implies CX⃗ = Y⃗ . then:
ACX⃗ = AY⃗ = 0⃗ . The result: the columns of AC are the zero vector. ■

104. Let A be an m×n matrix and let Y⃗1, . . . , Y⃗n be column vectors packaged
into an n×n matrix C. Assume each column vector Y⃗i satisfies the equation
AY⃗i = 0⃗, 1 ≤ i ≤ n. Show that AC = 0.
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Triangular Matrices
Verify the result.

105. The product of two upper triangular 2× 2 matrices is upper triangular.

Solution: Let A =

(
a b
0 c

)
, B =

(
d e
0 f

)
. Then:

AB =

(
a b
0 c

)(
d e
0 f

)
=

(
ad ac+ bf
0 cf

)
, which is upper triangular. ■

106. The product of two upper triangular n× n matrices is upper triangular.

107. The product of two triangular 2×2 matrices is not necessarily triangular.

Solution: An example is required. Let A =

(
1 1
0 1

)
, B =

(
1 0
1 1

)
. Then:

AB =

(
1 1
0 1

)(
1 0
1 1

)
=

(
2 1
1 1

)
, which is not triangular. ■

108. The product of two lower triangular n× n matrices is upper triangular.

109. The product of two lower triangular 2× 2 matrices is lower triangular.

Solution: Let A =

(
a 0
b c

)
, B =

(
d 0
e f

)
. Then:

AB =

(
a 0
b c

)(
d 0
e f

)
=

(
ad ac+ bf
0 cf

)
, which is lower triangular. ■

An alternative proof uses transposes: (AB)T = BTAT is the product of
upper triangular matrices, therefore AB)T is upper triangular by Exercise
105. Because the transpose swaps rows and columns then AB is lower
triangular. ■

110. The only 3 × 3 matrices which are both upper and lower triangular are
the 3× 3 diagonal matrices.

Matrix Multiply Properties
Verify the result.

111. The associative law A(BC) = (AB)C holds for matrix multiplication.
Sketch: Expand L = A(BC) entry Lij according to matrix multiply rules. Ex-

pand R = (AB)C entry Rij the same way. Show Lij = Rij .

Solution: Let A = (aij), B = (bjk), C = (ckm). Then

BC = (djm) where djm =
∑

k bjkckm
AB = (eik) where eik =

∑
j aijbjk
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Then

A(BC) = (fim) where

fim =
∑

j aijdjm
=
∑

j aij
∑

k bjkckm
=
∑

j

∑
k aijbjkckm

and

(AB)C = (gim) where

gim =
∑

k eikckm
=
∑

k

∑
j aijbjkckm

=
∑

j

∑
k aijbjkckm

The last equality holds by changing the order of summation. Then A(BC) =
(AB)C by equality of matrices. ■

112. The distributive law A(B + C) = AB +AC holds for matrices.
Sketch: Expand L = A(B + C) entry Lij according to matrix multiply rules.

Expand R = AB +AC entry Rij the same way. Show Lij =
∑n

k=1 aik(bkj + ckj)

and Rij =
∑n

k=1 aikbkj + aikckj . Then Lij = Rij .

113. For any matrix A the transpose formula (AT )T = A holds.
Sketch: Expand L = (AT )T entry Lij according to matrix transpose rules. Then

Lij = aij .

Solution: Let L = (AT )T = (Lij), A = (aij) and AT = (bij). Then bij =
aji. Because L = BT , then Lij = bji = aij . Equality of matrices implies
L = A. ■

114. For matrices A, B the transpose formula (A+B)T = AT +BT holds.
Sketch: Expand L = (A + B)T entry Lij according to matrix transpose rules.

Repeat for entry Rij of R = AT +BT . Show Lij = Rij .

115. For matrices A, B the transpose formula (AB)T = BTAT holds.
Sketch: Expand L = (AB)T entry Lij according to matrix multiply and trans-

pose rules. Repeat for entry Rij of R = BTAT . Show Lij = Rij .

Solution: Let L = (AB)T = (Lij) and R = BTAT = (Rij). To prove:
L = R. The proof is completed by proving that Lij = Rij . Let A = (aij),
B = (bij), C = BT = (bji), D = AT = (aji). Then:

AB = (eij) where eij =
∑

k aikbkj
BTAT = (fij) where fij =

∑
k cikdkj

Compare:

eij =
∑

k aikbkj
=
∑

k dkicjk

323



5.1 Vectors and Matrices

=
∑

k cjkdki
= fji

Therefore,

(AB)T = (eij)
T = (fij) = BTAT . ■

116. For a matrix A and constant k, the transpose formula (kA)T = kAT holds.

Invertible Matrices
Verify the result.

117. There are infinitely many 2× 2 matrices A, B such that AB = 0

Solution: Let A =

(
0 a
0 0

)
and B =

(
b 0
0 0

)
for all possible values of a, b.

Then

AB =

(
0 a
0 0

)(
b 0
0 0

)
=

(
0 0
0 0

)
■

118. The zero matrix is not invertible.

119. The matrix A =

(
1 2
0 0

)
is not invertible.

Solution: Assume A has an inverse a matrix B: AB = BA = I. Then

B =

(
a b
c d

)
for some constants a, b, c, d and

I = AB

=

(
1 2
0 0

)(
a b
c d

)
=

(
a+ 2c b+ 2d

0 0

)
Matrix equality implies entries match. Then a+ 2c = 0, b+ 2d = 0, 0 = 0,
1 = 0. The false equation 0 = 1 is a contradiction to the assumption that
A has an inverse. ■

120. The matrix A =

(
1 2
0 1

)
is invertible.

121. The matrices A =

(
a b
c d

)
and B =

(
d −b

−c a

)
satisfy

AB = BA = (ad− bc)I.
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Solution:

AB =

(
a b
c d

)(
d −b

−c a

)
=

(
ad− bc −ab+ ab
dc− cd ad− bc

)
=

(
ad− bc 0

0 ad− bc

)
= (ad− bc)

(
1 0
0 1

)
= (ad− bc)I

Let a1 = d, b1 = −b, c1 = −c, d1 = a (case sensitive) and apply the results
above:

BA =

(
a1 b1
c1 d1

)(
d1 −b1

−c1 a1

)
= (a1d1 − b1c1)I
= (ad− bc)I

Then: AB = BA = (ad− bc)I. ■

122. If AB = 0, then one of A or B is not invertible.

Symmetric Matrices
Verify the result.

123. The product of two symmetric n× n matrices A, B such that AB = BA
is symmetric.

Solution: (AB)T = BTAT = BA = AB. ■

124. The product of two symmetric 2× 2 matrices may not be symmetric.

125. If A is symmetric, then so is A−1.
Sketch: Let B = A−1. Compute BT using transpose rules.

Solution: Assume A has inverse B = A−1. Then AB = BA = I and
AT = A. To prove: BT = B.

First I = IT = (AB)T = BTAT = BTA. Similarly, ABT = I. Then
BTA = ABT = I and BT is the (unique) inverse of A, i.e., BT = A−1 =
B. ■

126. If B is an m× n matrix and A = BTB, then A is n× n symmetric.
Sketch: Compute AT using transpose rules.
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Identify RREF
Mark the matrices which pass the RREF Test, page 324 �. Explain the failures.

1.

 0 1 2 0 1
0 0 0 1 0
0 0 0 0 0


Solution: RREF. Each nonzero row has a leading one. Above and below a
leading one are zeros. Variable list =x1, x2, x3, x4, x5. The lead variables are
x2, x4. Nonzero rows appear in lead variable order x2, x4 Zero rows appear
last.

2.

 0 1 0 0 0
0 0 1 0 3
0 0 0 1 2



3.

 1 0 0 0
0 0 1 0
0 1 0 1


Solution: FAIL: not an RREF. The issue is row 3. It is an RREF after
swapping rows 2 and 3. Lead variables are x1, x2.x3. The rows violate lead
variable order: x1, x3, x2.

4.

 1 1 4 1
0 0 1 0
0 0 0 0


Lead and Free Variables
For each matrix A, assume a homogeneous system AX⃗ = 0⃗ with variable list
x1, . . . , xn. List the lead and free variables. Then report the rank and nullity
of matrix A.

5.

 0 1 3 0 0
0 0 0 1 0
0 0 0 0 0


Solution: Lead: x2, x4. Free: x1, x3, x5. Rank = 2 = number of lead vari-
ables. Nullity = 3 = number of free variables.

6.

 0 1 0 0 0
0 0 1 0 3
0 0 0 1 2


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7.

 0 1 3 0
0 0 0 1
0 0 0 0


Solution: Lead: x2, x4. Free: x1, x3. Rank = 2 = number of lead variables.
Nullity = 2 = number of free variables.

8.

 1 2 3 0
0 0 0 1
0 0 0 0



9.


1 2 3
0 0 0
0 0 0
0 0 0


Solution: Lead: x1. Free: x2, x3. Rank = 1 = number of lead variables.
Nullity = 2 = number of free variables.

10.

 1 1 0
0 0 1
0 0 0



11.

 1 1 3 5 0
0 0 0 0 1
0 0 0 0 0


Solution: Lead: x1, x5. Free: x2, x3, x4. Rank = 2 = number of lead vari-
ables. Nullity = 3 = number of free variables.

12.

 1 2 0 3 4
0 0 1 1 1
0 0 0 0 0



13.


0 0 1 2 0
0 0 0 0 1
0 0 0 0 0
0 0 0 0 0


Solution: Lead: x3, x5. Free: x1, x2, x4. Rank = 2 = number of lead vari-
ables. Nullity = 3 = number of free variables.

14.


0 0 0 1 1
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0


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15.


0 1 0 5 0
0 0 1 2 0
0 0 0 0 1
0 0 0 0 0


Solution: Lead: x2, x3, x5. Free: x1, x4. Rank = 3 = number of lead vari-
ables. Nullity = 2 = number of free variables.

16.


1 0 3 0 0
0 1 0 1 0
0 0 0 0 1
0 0 0 0 0


Elementary Matrices
Write the 3×3 elementary matrix E and its inverse E−1 for each of the following
operations, defined on page 323 �.

17. combo(1,3,-1)

Solution:

I =

(
1 0 0
0 1 0
0 0 1

)
, apply combo(1,3,-1)

E =

(
1 0 0
0 1 0

−1 0 1

)

E−1 =

(
1 0 0
0 1 0
1 0 1

)
, change entry 3,1 to additive inverse −(−1) = 1

Inverse rule for combo(s,t,c): replace entry t, s by −c.

18. combo(2,3,-5)

19. combo(3,2,4)

Solution:

I =

(
1 0 0
0 1 0
0 0 1

)
, apply combo(3,2,4)

E =

(
1 0 0
0 1 4
0 0 1

)

E−1 =

(
1 0 0
0 1 −4
1 0 1

)
, change entry 2,3 to additive inverse −(4) = −4

20. combo(2,1,4)
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21. combo(1,2,-1)

Solution:

I =

(
1 0 0
0 1 0
0 0 1

)
, apply combo(1,2-1)

E =

(
1 0 0

−1 1 0
0 0 1

)

E−1 =

(
1 0 0
1 1 0
1 0 1

)
, change entry 2,1 to additive inverse −(−1) = 1

22. combo(1,2,-e2)

23. mult(1,5)

Solution:

I =

(
1 0 0
0 1 0
0 0 1

)
, apply mult(1,5)

E =

(
5 0 0
0 1 0
0 0 1

)

E−1 =

(
1/5 0 0
0 1 0
1 0 1

)
, multiply I row 1 by 1/5

24. mult(1,-3)

25. mult(2,5)

Solution:

I =

(
1 0 0
0 1 0
0 0 1

)
, apply mult(2,5)

E =

(
1 0 0
0 5 0
0 0 1

)

E−1 =

(
1 0 0
0 1/5 0
1 0 1

)
, multiply I row 2 by 1/5

26. mult(2,-2)

27. mult(3,4)

Solution:
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I =

(
1 0 0
0 1 0
0 0 1

)
, apply mult(3,4)

E =

(
1 0 0
0 1 0
0 0 4

)

E−1 =

(
1 0 0
0 1 0
1 0 1/4

)
, multiply I row 3 by 1/4

28. mult(3,5)

29. mult(2,-π)

Solution:

I =

(
1 0 0
0 1 0
0 0 1

)
, apply mult(2,-π)

E =

(
1 0 0
0 −π 0
0 0 1

)

E−1 =

(
1 0 0
0 −1/π 0
1 0 1

)
, multiply I row 2 by −1/π

30. mult(1,e2)

31. swap(1,3)

Solution:

I =

(
1 0 0
0 1 0
0 0 1

)
, apply swap(1,3)

E =

(
0 1 0
0 0 1
1 0 0

)

E−1 = E =

(
0 1 0
1 0 1
1 0 0

)
, a swap is its own inverse

32. swap(1,2)

33. swap(2,3)

Solution:

I =

(
1 0 0
0 1 0
0 0 1

)
, apply swap(2,3)
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E =

(
1 0 0
0 0 1
0 1 0

)

E−1 = E =

(
1 0 0
0 0 1
0 1 0

)
, a swap is its own inverse

34. swap(2,1)

35. swap(3,2)

Solution:

I =

(
1 0 0
0 1 0
0 0 1

)
, apply swap(3,2)

E =

(
1 0 0
0 0 1
0 1 0

)

E−1 = E =

(
1 0 0
0 0 1
0 1 0

)
, a swap is its own inverse

36. swap(3,1)

Elementary Matrix Multiply
For each given matrix B1, perform the toolkit operation (combo, swap, mult)
to obtain the result B2. Then compute the elementary matrix E for the identical
toolkit operation. Finally, verify the matrix multiply equation B2 = EB1.

37.

(
1 1
0 3

)
, mult(2,1/3).

Solution:

B1 =

(
1 1
0 3

)
,

B2 =

(
1 1
0 1

)
after mult(2,1/3)

E =

(
1 0
0 1/3

)
which is I after mult(2,1/3)

EB1 =

(
1 0
0 1/3

)(
1 1
0 3

)
=

(
1 1
0 1

)
which equals B2

38.

 1 1 2
0 1 3
0 0 0

, mult(1,3).
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39.

 1 1 2
0 1 1
0 0 1

, combo(3,2,-1).

Solution:

B1 =

 1 1 2
0 1 1
0 0 1

,

B2 =

 1 1 2
0 1 0
0 0 1

 after combo(3,2,-1)

E =

 1 0 0
0 1 0
0 0 1

 after combo(3,2,-1)

=

 1 0 0
0 1 −1
0 0 1



40.

(
1 3
0 1

)
, combo(2,1,-3).

41.

 1 1 2
0 1 3
0 0 1

, swap(2,3).

Solution:

B1 =

 1 1 2
0 1 3
0 0 1


B2 =

 1 1 2
0 0 1
0 1 3

 after swap(2,3)

E =

 1 0 0
0 1 0
0 0 1

 after swap(2,3)

=

 1 0 0
0 0 1
0 1 0



42.

(
1 3
0 1

)
, swap(1,2).

Inverse Row Operations
Given the final frame B of a sequence starting with matrix A, and the given
operations, find matrix A. Do not use matrix multiply.
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43. B =

 1 1 0
0 1 2
0 0 0

, operations

combo(1,2,-1), combo(2,3,-3), mult(1,-2), swap(2,3).

Solution: The inverse operations in reverse order are:

swap(2,3), mult(1,-1/2), combo(2,3,3), combo(1,2,1) 1 1 0
0 1 2
0 0 0

, given frame B 1 1 0
0 0 0
0 1 2

, after swap(2,3) −1/2 −1/2 0
0 0 0
0 1 2

, after mult(1,-1/2) −1/2 −1/2 0
0 0 0
0 1 2

, after combo(2,3,3) −1/2 −1/2 0
−1/2 −1/2 0
0 1 2

, after combo(1,2,1)

This is matrix A.

44. B =

 1 1 0
0 1 2
0 0 0

, operations

combo(1,2,-1), combo(2,3,3), mult(1,2), swap(3,2).

45. B =

 1 1 2
0 1 3
0 0 0

, operations

combo(1,2,-1), combo(2,3,3), mult(1,4), swap(1,3).

Solution: The inverse operations in reverse order are:

swap(1,3), mult(1,1/4), combo(2,3,-3), combo(1,2,1) 1 1 2
0 1 3
0 0 0

, given frame B 0 0 0
0 1 3
1 1 2

, after swap(1,3) 0 0 0
0 1 3
1 1 2

, after mult(1,1/4)
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 0 0 0
0 1 3
1 −2 −7

, after combo(2,3,-3) 0 0 0
0 1 3
1 −2 −7

, after combo(1,2,1)

This is matrix A.

46. B =

 1 1 2
0 1 3
0 0 0

, operations

combo(1,2,-1), combo(2,3,4), mult(1,3), swap(3,2).

Elementary Matrix Products
Given the first frame B1 of a sequence and elementary matrix operations E1,

E2, E3, find matrices F = E3E2E1 and B4 = FB1. Hint: Compute ⟨B4|F⟩
from toolkit operations on ⟨B1|I⟩.

47. B1 =

 1 1 0
0 1 2
0 0 0

, operations

combo(1,2,-1), combo(2,3,-3), mult(1,-2).

Solution:

⟨B1|I⟩ =

 1 1 0 1 0 0
0 1 2 0 1 0
0 0 0 0 0 1


=

 1 1 0 1 0 0
−1 0 2 −1 1 0
0 0 0 0 0 1

 after combo(1,2,-1)

=

 1 1 0 1 0 0
−1 0 2 −1 1 0
3 0 −6 3 −3 1

 after combo(2,3,-3)

=

 −2 −2 0 −2 0 0
−1 0 2 −1 1 0
3 0 −6 3 −3 1

 after mult(1,-2)

Then:

B4 =

 −2 −2 0
−1 0 2
3 0 −6

, F =

 −2 0 0
−1 1 0
3 −3 1



48. B1 =

 1 1 0
0 1 2
0 0 0

, operations
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combo(1,2,-1), combo(2,3,3), swap(3,2).

49. B1 =

 1 1 2
0 1 3
0 0 0

, operations

combo(1,2,-1), mult(1,4), swap(1,3).

Solution:

B4 =

 0 0 0
−1 0 1
4 4 8

, F =

 0 0 1
−1 1 0
4 0 0



50. B1 =

 1 1 2
0 1 3
0 0 0

, operations

combo(1,2,-1), combo(2,3,4), mult(1,3).

Miscellany

51. Justify with English sentences why all possible 2 × 2 matrices in reduced
row-echelon form must look like(

0 0
0 0

)
,

(
1 ∗
0 0

)
,(

0 1
0 0

)
,

(
1 0
0 1

)
,

where ∗ denotes an arbitrary number.

Solution: (1) If there are no leading ones then all rows are zeros.
(2) If there is one leading one then it occurs in column 1 or column 2,
resulting in the second and third forms.
(3) If there are two leading ones then one is in column 1 and the other is in
column 2. The order of variables is preserved, so the leading one in column
one must be in row one. All other entries in a column with a leading one
must be zero.

52. Display all possible 3 × 3 matrices in reduced row-echelon form. Besides
the zero matrix and the identity matrix, please report five other forms, most
containing symbol ∗ representing an arbitrary number.

53. Determine all possible 4× 4 matrices in reduced row-echelon form.

Solution: No leading ones:

0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0


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One leading one:

1 ∗ ∗ ∗
0 0 0 0
0 0 0 0
0 0 0 0

,

0 1 ∗ ∗
0 0 0 0
0 0 0 0
0 0 0 0

,

0 0 1 ∗
0 0 0 0
0 0 0 0
0 0 0 0

,

0 0 0 1
0 0 0 0
0 0 0 0
0 0 0 0


Two leading ones:

1 0 ∗ ∗
0 1 ∗ ∗
0 0 0 0
0 0 0 0

,

1 ∗ 0 ∗
0 0 1 ∗
0 0 0 0
0 0 0 0

,

1 ∗ ∗ 0
0 ∗ ∗ 1
0 0 0 0
0 0 0 0

,

0 1 0 ∗
0 0 1 ∗
0 0 0 0
0 0 0 0

,

0 1 ∗ 0
0 0 ∗ 1
0 0 0 0
0 0 0 0

,

0 0 1 0
0 0 0 1
0 0 0 0
0 0 0 0

,

Three leading ones:

1 0 0 ∗
0 1 0 ∗
0 0 1 ∗
0 0 0 0

,

1 ∗ 0 0
0 0 1 0
0 0 0 1
0 0 0 0

,

0 1 0 0
0 0 1 0
0 0 0 1
0 0 0 0

,

Four leading ones:

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1


54. Display a 6 × 6 matrix in reduced row-echelon form with rank 4 and only

entries of zero and one.

55. Display a 5 × 5 matrix in reduced row-echelon form with nullity 2 having
entries of zero, one and two, but no other entries.

Solution:


1 0 0 0 0
0 1 0 0 0
0 0 1 2 0
0 0 0 0 0
0 0 0 0 0


56. Display the rank and nullity of any n× n elementary matrix.

57. Let F = ⟨C|D⟩ and let E be a square matrix with row dimension matching
F . Display the details for the equality

EF = ⟨EC|ED⟩.

Solution: Matrix multiply of k × n matrix M against n × m matrix N is
defined by the identity

MN = ⟨M col(N, 1)| · · · |M col(N,n)⟩
Assume C is k × n, D is n×m, F is k × (n+m). Then:

EF = ⟨E col(F, 1)| · · · |E col(F, n+m)⟩
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EF = ⟨E col(C, 1)| · · · |E col(C, n)|E col(D, 1)| · · · |E col(D,m)⟩
EF = ⟨EC|ED⟩. ■

58. Let F = ⟨C|D⟩ and let E1, E2 be n× n matrices with n equal to the row
dimension of F . Display the details for the equality

E2E1F = ⟨E2E1C|E2E1D⟩.

59. Assume matrix A is invertible. Display details explaining why rref(⟨A|I⟩)
equals the matrix ⟨R|E⟩, where matrix R = rref(A) and matrix E =
Ek · · ·E1. Symbols Ei are elementary matrices in toolkit steps taking matrix
A into reduced row-echelon form. Suggestion: Use the preceding exercises.

Solution: Write R = rref(A) = En · · ·E1A with elementary matrices
E1, . . . , En representing the combo, swap, mult steps. Apply Exercise 57
to obtain

b ≡ En · · ·E1⟨A|I⟩ = ⟨En · · ·E1A|En · · ·E1I⟩ = ⟨R|B⟩
It remains to explain why matrix B equals rref(⟨A|I⟩).
Because A is square k×k, thenB = ⟨R|E⟩ where E = En · · ·E1 is invertible
k×k. Leading ones of B occur in the first k columns. Above and below the
leading ones are zeros. Each leading one is in a column of the k× k identity
I and these columns appear in natural order of I. There are no other rows

to consider, so B is in reduced echelon form: B = rref(⟨A|I⟩). ■

60. Assume E1, E2 are elementary matrices in toolkit steps taking A into re-
duced row-echelon form. Prove that A−1 = E2E1. In words, A−1 is found
by doing the same toolkit steps to the identity matrix.

61. Assume matrix A is invertible and E1, . . . , Ek are elementary matrices in
toolkit steps taking A into reduced row-echelon form. Prove that A−1 =
Ek · · ·E1.

Solution: Let E = Ek · · ·E1, an invertible matrix. Equation Ek · · ·E1A =
rref(A) means EA = I. By basic invertibility theorems, E is the inverse of
A.

62. Assume A,B are 2×2 matrices. Assume A is invertible and rref(⟨A|B⟩) =
⟨I|D⟩. Explain why the first column x⃗ ofD is the unique solution of Ax⃗ = b⃗,

where b⃗ is the first column of B.

63. Assume A,B are n × n matrices with A invertible. Explain how to solve
the matrix equation AX = B for matrix X using the augmented matrix of
A,B.

337



5.2 Matrix Equations

Solution: Multiply AX = B by the inverse of A. Then X = A−1B. Exercise
61 provides A−1 = En · · ·E1 in terms of elementary matrices E1. . . . , En.
Exercises 57 and 59 apply:

E⟨A|B⟩ = ⟨ rref(A)|EB⟩ = rref(⟨A|B⟩)
Because X = A−1B = EB, then row-reduction of the augmented matrix of
A and B has X in the last n columns.
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5.3 Determinants and Cramer’s Rule

Determinant Notation
Write formulae for x and y as quotients of 2× 2 determinants. Do not evaluate
the determinants!

1.

(
1 −1
2 6

)(
x
y

)
=

(
−10

3

)

Solution: x =

∣∣∣∣ −10 −1
3 6

∣∣∣∣∣∣∣∣ 1 −1
2 6

∣∣∣∣ , y =

∣∣∣∣ 1 −10
2 3

∣∣∣∣∣∣∣∣ 1 −1
2 6

∣∣∣∣
2.

(
1 2
3 6

)(
x
y

)
=

(
10
−6

)

3.

(
0 −1
2 5

)(
x
y

)
=

(
−1
10

)

Solution: x =

∣∣∣∣ −1 −1
10 5

∣∣∣∣∣∣∣∣ 0 −1
2 5

∣∣∣∣ , y =

∣∣∣∣ 0 −1
2 10

∣∣∣∣∣∣∣∣ 0 −1
2 5

∣∣∣∣
4.

(
0 −3
3 10

)(
x
y

)
=

(
−1
2

)
Sarrus’ 2× 2 rule
Evaluate det(A).

5. A =

(
2 1
1 2

)
Solution: det(A) = 3

6. A =

(
−2 1
1 −2

)

7. A =

(
2 −1
3 2

)
Solution: det(A) = 7

8. A =

(
5a 1
−1 2a

)
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Sarrus’ rule 3× 3
Evaluate det(A).

9. A =

0 0 1
0 1 0
1 1 0


Solution: det(A) = −1

10. A =

0 0 1
0 1 0
1 0 0



11. A =

0 0 1
1 2 1
1 1 1


Solution: det(A) = −1

12. A =

0 0 −1
1 2 −1
1 1 −1


Inverse of a 2× 2 Matrix
Define matrix A and its adjugate C:

A =

(
a b
c d

)
, C =

(
d −b

−c a

)
.

13. Verify AC = |A|
(
1 0
0 1

)
.

Solution:

AC =

(
a b
c d

)(
d −b

−c a

)
=

(
ad− bc −ab+ ba
cd− dc −cb+ da

)
=

(
|A| 0
0 |A|

)
= |A|

(
1 0
0 1

)

14. Display the details of the argument that |A| ̸= 0 implies A−1 exists and

A−1 =
C

|A|
.
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15. Show that A−1 exists implies |A| ̸= 0. Suggestion: Assume not, then
AB = BA = I for some matrix B and also |A| = 0. Find a contradiction
using AC = |A|I from Exercise 13.

Solution: Assume A−1 exists but |A| = 0. Then Exercise 13 gives AC =

|A|I =

(
0 0
0 0

)
. Multiply by A−1:

(
d −b

−c a

)
= C =

(
0 0
0 0

)
. Then a =

b = c = d = 0 and A =

(
a b
c d

)
=

(
0 0
0 0

)
. The definition of inverse gives

AA−1 = I which implies

(
0 0
0 0

)
=

(
1 0
0 1

)
, a contradiction. ■

16. Calculate the inverse of

(
1 2

−2 3

)
using the formula developed in these ex-

ercises.

Unique Solution of a 2× 2 System
Solve AX⃗ = b⃗ for X⃗ using Cramer’s rule for 2× 2 systems.

17. A =

(
0 1
1 2

)
, b⃗ =

(
−1
1

)

Solution: x =

∣∣∣∣ −1 1
1 2

∣∣∣∣∣∣∣∣ 0 1
1 2

∣∣∣∣ = 2, y =

∣∣∣∣ 0 −1
1 1

∣∣∣∣∣∣∣∣ 0 1
1 2

∣∣∣∣ = −1

18. A =

(
0 1
1 2

)
, b⃗ =

(
5

−5

)

19. A =

(
2 0
1 2

)
, b⃗ =

(
−4
4

)

Solution: x =

∣∣∣∣ −4 0
4 2

∣∣∣∣∣∣∣∣ 2 0
1 2

∣∣∣∣ = −8/4 = −2, y =

∣∣∣∣ 2 −4
1 4

∣∣∣∣∣∣∣∣ 2 0
1 2

∣∣∣∣ = 12/4 = 3

20. A =

(
2 1
0 2

)
, b⃗ =

(
−10
10

)
Definition of Determinant

21. Let A be 3 × 3 with zero first row. Use the college algebra definition of
determinant to show that det(A) = 0.
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22. Let A be 3 × 3 with equal first and second row. Use the college algebra
definition of determinant to show that det(A) = 0.

23. Let A =

(
a b
c d

)
. Use the college algebra definition of determinant to

verify that |A| = ad− bc.

Solution: The college algebra definition of |A| for a 2×2 matrix A involves
two permutations: Σ1 = (1, 2) and Σ2 = (2, 1). Then parity(Σ1) = 0,
parity(Σ2) = 1 by counting the swaps needed to rearrange the permutation
in natural order (1, 2). By the college algebra definition:

|A| = (−1)parity(Σ1)a11a22 + (−1)parity(Σ2)a12a21
= a11a22 − a12a21

Substitute a11 = a, a12 = b, a21 = c, a22 = d. Then

|A| =
∣∣∣∣ a b
c d

∣∣∣∣ = ∣∣∣∣ a11 a12
a21 a22

∣∣∣∣
= a11a22 − a12a21
= ad− bc

The college algebra definition reduces to Sarrus’ 2×2 rule |A| =
∣∣∣∣ a b
c d

∣∣∣∣ =
ad− bc. ■

24. Let A =

(
a11 a12 a13
a21 a22 a23
a31 a32 a33

)
. Use the college algebra definition of determinant

to verify that the determinant of A equals

a11a22a33 + a21a32a13
+a31a12a23 − a11a32a23
−a21a12a33 − a31a22a13

Four Properties
Evaluate det(A) using the four properties for determinants, page 345 �.

25. A =

0 0 1
1 2 1
1 1 1


Solution: |A| = −1

|A| =

∣∣∣∣∣∣
0 0 1
1 2 1
1 1 1

∣∣∣∣∣∣
|A| =

∣∣∣∣∣∣
0 0 1
1 2 1
0 −1 0

∣∣∣∣∣∣ Combination Rule: combo(2,3,-1)
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|A| = (−1)

∣∣∣∣∣∣
1 2 1
0 0 1
0 −1 0

∣∣∣∣∣∣ Swap Rule: swap(1,2)

|A| = (−1)(−1)

∣∣∣∣∣∣
1 2 1
0 −1 0
0 0 1

∣∣∣∣∣∣ Swap Rule: swap(2,3)

|A| = (−1)(−1)(1)(−1)(1) Triangular Rule
|A| = −1

26. A =

0 0 1
3 2 1
1 1 1



27. A =

1 0 0
1 2 1
1 1 1


Solution: |A| = 1

|A| =

∣∣∣∣∣∣
1 0 0
1 2 1
1 1 1

∣∣∣∣∣∣
|A| =

∣∣∣∣∣∣
1 0 0
0 2 1
1 1 1

∣∣∣∣∣∣ Combination Rule: combo(1,2,-1)

|A| =

∣∣∣∣∣∣
1 0 0
0 2 1
0 1 1

∣∣∣∣∣∣ Combination Rule: combo(1,3,-1)

|A| = (−1)

∣∣∣∣∣∣
1 0 0
0 1 1
0 2 1

∣∣∣∣∣∣ Swap Rule: swap(2,3)

|A| = (−1)

∣∣∣∣∣∣
1 0 0
0 1 1
0 0 −1

∣∣∣∣∣∣ Combination Rule: combo(2,3,-2)

|A| = (−1)(1)(1)(−1) Triangular Rule
|A| = 1

28. A =

2 4 2
1 2 1
1 1 1



29. A =


0 0 1 0
1 2 1 0
1 1 1 1
2 1 1 2


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Solution: |A| = 1

|A| =

∣∣∣∣∣∣∣∣
0 0 1 0
1 2 1 0
1 1 1 1
2 1 1 2

∣∣∣∣∣∣∣∣
|A| = (−1)

∣∣∣∣∣∣∣∣
1 2 1 0
0 0 1 0
1 1 1 1
2 1 1 2

∣∣∣∣∣∣∣∣ Swap Rule: swap(1,2)

|A| = (−1)

∣∣∣∣∣∣∣∣
1 2 1 0
0 0 1 0
0 −1 0 1
2 1 1 2

∣∣∣∣∣∣∣∣ Combination Rule: combo(1,3,-1)

|A| = (−1)

∣∣∣∣∣∣∣∣
1 2 1 0
0 0 1 0
0 −1 0 1
0 −3 −1 2

∣∣∣∣∣∣∣∣ Combination Rule: combo(1,4,-2)

|A| = (−1)(−1)

∣∣∣∣∣∣∣∣
1 2 1 0
0 −1 0 1
0 0 1 0
0 −3 −1 2

∣∣∣∣∣∣∣∣ Swap Rule: swap(2,3)

|A| = (−1)(−1)

∣∣∣∣∣∣∣∣
1 2 1 0
0 −1 0 1
0 0 1 0
0 0 −1 −1

∣∣∣∣∣∣∣∣ Combination Rule: combo(2,4,-3)

|A| = (−1)(−1)

∣∣∣∣∣∣∣∣
1 2 1 0
0 −1 0 1
0 0 1 0
0 0 0 −1

∣∣∣∣∣∣∣∣ Combination Rule: combo(3,4,1)

|A| = (−1)(−1)(1)(−1)(1)(−1) Triangular Rule
|A| = 1

30. A =


1 2 1 0
0 1 2 1
0 0 1 2
0 0 0 1



31. A =


2 1 0 0
1 2 1 0
0 1 2 1
0 0 1 2


Solution: |A| = 5
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|A| =

∣∣∣∣∣∣∣∣
2 1 0 0
1 2 1 0
0 1 2 1
0 0 1 2

∣∣∣∣∣∣∣∣
|A| = (−1)

∣∣∣∣∣∣∣∣
1 2 1 0
2 1 0 0
0 1 2 1
0 0 1 2

∣∣∣∣∣∣∣∣ Swap Rule: swap(1,2)

|A| = (−1)(−1)

∣∣∣∣∣∣∣∣
1 2 1 0
0 1 2 1
0 −3 −2 0
0 0 1 2

∣∣∣∣∣∣∣∣ Swap Rule: swap(2,3)

|A| = (−1)(−1)

∣∣∣∣∣∣∣∣
1 2 1 0
0 1 2 1
0 0 4 3
0 0 1 2

∣∣∣∣∣∣∣∣ Combination Rule: combo(2,3,3)

|A| = (−1)(−1)(−1)

∣∣∣∣∣∣∣∣
1 2 1 0
0 1 2 1
0 0 1 2
0 0 4 3

∣∣∣∣∣∣∣∣ Swap Rule: swap(3,4)

|A| = (−1)(−1)(−1)

∣∣∣∣∣∣∣∣
1 2 1 0
0 1 2 1
0 0 1 2
0 0 0 −5

∣∣∣∣∣∣∣∣ Combination Rule: combo(3,4,-4)

|A| = (−1)(−1)(−1)(1)(1)(1)(−5) Triangular Rule
|A| = 5

32. A =


4 1 0 0
1 4 1 0
0 1 4 1
0 0 1 4


Elementary Matrices and the Four Rules
Find det(A).

33. A is 3× 3 and obtained from the identity matrix I by three row swaps.

Solution: |A| = −1

34. A is 7× 7, obtained from I by swapping rows 1 and 2, then rows 4 and 1,
then rows 1 and 3.

35. A is obtained from the matrix

1 0 0
1 2 1
1 1 1

 by swapping rows 1 and 3, then

two row combinations.
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Solution: |A| = (−1)

∣∣∣∣∣∣
1 0 0
1 2 1
1 1 1

∣∣∣∣∣∣ = (−1)(1) = −1

36. A is obtained from the matrix

1 0 0
1 2 1
1 1 1

 by two row combinations, then

multiply row 2 by −5.

More Determinant Rules
Cite the determinant rule that verifies det(A) = 0. Never expand det(A)! See
page 347 �.

37. A =

−1 5 1
2 −4 −4
1 1 −3


Solution: Dependent rows. Add rows 1 and 2 to get row 3.

38. A =

0 0 0
2 −4 −4
1 1 −3



39. A =

4 −8 −8
2 −4 −4
1 1 −3


Solution: Common factor. Row 2 times 2 equals row 1.

40. A =

−1 5 0
2 −4 0
1 1 0



41. A =

−1 5 3
2 −4 0
1 1 3


Solution: Dependent rows. Row 1 plus row 2 equals row 3.

42. A =

−1 5 4
2 −4 −2
1 1 2


Cofactor Expansion and College Algebra
Evaluate the determinant with an efficient cofactor expansion.
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43.

∣∣∣∣∣∣
2 5 1
2 0 −4
1 0 0

∣∣∣∣∣∣
Solution: Expand along row 3: |A| = (+1)(1)

∣∣∣∣ 5 1
0 −4

∣∣∣∣ = −20

44.

∣∣∣∣∣∣
2 5 1
2 0 −4
1 0 1

∣∣∣∣∣∣
45.

∣∣∣∣∣∣∣∣
2 5 0 0
2 1 4 0
1 1 1 1
1 0 0 0

∣∣∣∣∣∣∣∣
Solution: Expand along row 4:

|A| = (−1)(1)

∣∣∣∣∣∣
5 0 0
1 4 0
1 1 1

∣∣∣∣∣∣
Expand the 3× 3 determinant along row 1:

|A| = (−1)(1)(+1)(5)

∣∣∣∣ 4 0
1 1

∣∣∣∣ = (−1)(1)(+1)(5)(4) = −20

46.

∣∣∣∣∣∣∣∣
0 2 0 1
2 3 2 0
1 1 1 0
1 2 1 1

∣∣∣∣∣∣∣∣

47.

∣∣∣∣∣∣∣∣∣∣
2 5 1 −1 1
0 −1 −4 1 −1
1 2 3 0 0
1 0 3 0 0
1 2 0 0 1

∣∣∣∣∣∣∣∣∣∣
Solution: |A| = 18
Column 4 has the most zeros. Expand along it:

|A| = (−1)(−1)D1 + (+1)(1)D2 where

D1 =

∣∣∣∣∣∣∣∣
0 −1 −4 −1
1 2 3 0
1 0 3 0
1 2 0 1

∣∣∣∣∣∣∣∣ , D2 =

∣∣∣∣∣∣∣∣
2 5 1 1
1 2 3 0
1 0 3 0
1 2 0 1

∣∣∣∣∣∣∣∣
The two 4 × 4 cross-out determinants D1, D2 each have the most zeros in
column 4. Expand each along column 4:
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D1 = (−1)(−1)

∣∣∣∣∣∣
1 2 3
1 0 3
1 2 0

∣∣∣∣∣∣+ (+1)(1)

∣∣∣∣∣∣
0 −1 −4
1 2 3
1 0 3

∣∣∣∣∣∣
D1 = (−1)(−1)(6) + (+1)(1)(8) = 14

D2 = (−1)(1)

∣∣∣∣∣∣
1 2 3
1 0 3
1 2 0

∣∣∣∣∣∣+ (+1)(1)

∣∣∣∣∣∣
2 5 1
1 2 3
1 0 3

∣∣∣∣∣∣
D2 = (−1)(1)(6) + (+1)(1)(10) = 4
Then
|A| = (−1)(−1)D1 + (+1)(1)D2 = 14 + 4 = 18

48.

∣∣∣∣∣∣∣∣∣∣
2 0 1 −1 1
0 −1 −4 1 −1
1 2 3 0 0
1 0 3 0 0
1 2 0 1 1

∣∣∣∣∣∣∣∣∣∣
Minors and Cofactors
Write out and then evaluate the minor and cofactor of each element cited for

the matrix A =

 2 5 y
x −1 −4
1 2 z


49. Row 1 and column 3.

Solution: Let A =

 2 5 y
x −1 −4
1 2 z

. Then minor(A, 1, 3) = cross-

out determinant of a13 =

∣∣∣∣ x −1
1 2

∣∣∣∣ = 2x + 1 and cof(A, 1, 3) =

(−1)1+3 minor(A, 1, 3) = 2x+ 1.

# Minors and cofactors: Exercise 49

with(LinearAlgebra):

A:=Matrix([[2,5,y],[x,-1,-4],[1,2,z]]);

Minor(A,1,3);Minor(A,3,2);

# 2x+1, -8-xy

50. Row 2 and column 1.

51. Row 3 and column 2.

Solution: Then minor(A, 3, 2) = cross-out determinant of a3,2 =∣∣∣∣ 2 y
x −4

∣∣∣∣ = −8− xy and cof(A, 3, 2) = (−1)3+2 minor(A, 3, 2) = 8 + xy.
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52. Row 3 and column 1.

Cofactor Expansion
Use cofactors to evaluate the determinant.

53.

∣∣∣∣∣∣
2 7 1

−1 0 −4
1 0 3

∣∣∣∣∣∣
Solution: Expand along column 2, which has the most zeros. Then

|A| = (−1)(7)

∣∣∣∣ −1 −4
1 3

∣∣∣∣ = −7

54.

∣∣∣∣∣∣
2 7 7

−1 1 0
1 2 0

∣∣∣∣∣∣
55.

∣∣∣∣∣∣∣∣
0 2 7 7
0 −1 1 0
3 1 2 0
0 −1 1 0

∣∣∣∣∣∣∣∣
Solution: |A| = 0. Expand along column 4. Then

|A| = (−1)(7)

∣∣∣∣∣∣
0 −1 1
3 1 2
0 −1 1

∣∣∣∣∣∣ = (−1)(7)(−1)(3)

∣∣∣∣ −1 1
−1 1

∣∣∣∣ = 0.

Alternatively, |A| = 0 due to equal rows 2 and 4.

56.

∣∣∣∣∣∣∣∣
0 2 7 7
0 −1 y 0
x 1 2 0
0 −1 1 0

∣∣∣∣∣∣∣∣

57.

∣∣∣∣∣∣∣∣∣∣
0 2 7 7 3
0 −1 0 0 1
x 1 2 0 −1
0 −1 1 0 0
0 −1 1 0 1

∣∣∣∣∣∣∣∣∣∣
Solution: |A| = −7x. Expand along column 4. Then

|A| = (−1)(7)minor(A, 1, 4) = (−1)(7)|A1| where

A1 =


0 −1 0 1
x 1 2 −1
0 −1 1 0
0 −1 1 1


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Expand |A1| along row 1:
|A1| = (−1)(−1)minor(A1, 1, 2) + (−1)(1)minor(A1, 1, 4)

|A1| =

∣∣∣∣∣∣
x 2 −1
0 1 0
0 1 1

∣∣∣∣∣∣+ (−1)

∣∣∣∣∣∣
x 1 2
0 −1 1
0 −1 1

∣∣∣∣∣∣
|A1| = x because the second determinant has identical rows 2, 3.
|A| = (−1)(7)|A1| = −7x

58.

∣∣∣∣∣∣∣∣∣∣
0 2 7 7 3
0 −1 2 0 1
x 1 2 0 −1
0 −1 1 0 0
0 −1 1 0 1

∣∣∣∣∣∣∣∣∣∣
Adjugate and Inverse Matrix
Find the adjugate of A and the inverse B of A. Check the answers via the
formulas A adj(A) = det(A)I and AB = I.

59. A =

(
2 7

−1 0

)
Solution: adj(A) =

(
0 −7
1 2

)
, |A| = 7, B = A−1 =

(
0 −1
1
7

2
7

)
# Adjugate and inverse, Exercise 59

A:=Matrix([[2,7],[-1,0]]);

B:=1/A;

Determinant(A); Adjoint(A);

(A . Adjoint(A)) - Determinant(A);# Expect the zero matrix

# Maple auto-inserts Matrix([[1,0],[0,1]])

60. A =

(
1 0

−1 2

)

61. A =

5 1 1
0 0 2
1 0 3


Solution: adj(A) =

 0 −3 2
2 14 −10
0 1 0

, |A| = 2,

B = A−1 =

 0 −3/2 1
1 7 −5
0 1/2 , 0


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62. A =

5 1 2
2 0 0
1 0 3



63. A =


1 0 1 0
0 1 0 0
0 1 0 1
1 0 2 2



Solution: adj(A) =


−2 2 −2 1
0 −1 0 0
1 −2 2 −1
0 1 −1 0

, |A| = −1,

B = A−1


2 −2 2 −1
0 1 0 0

−1 2 −2 1
0 −1 1 0



64. A =


1 0 1 0
0 1 0 0
0 1 0 1
1 1 2 1


Transpose and Inverse

65. Verify that A = 1√
2

(
1 1

−1 1

)
satisfies AT = A−1.

Solution: A−1 =

(
1/2

√
2 −1/2

√
2

1/2
√
2 1/2

√
2

)
# Transpose and Inverse, Exercise 65

A:=(1/sqrt(2))*Matrix([[1,1],[-1,1]]);

B:=1/A;

C:=A^+;

B-C;# Expect a zero matrix

66. Find all 2×2 matrices A =

(
a b
c d

)
such that det(A) = 1 and AT = A−1.

67. Find all 3× 3 diagonal matrices A such that AT = A−1.

Solution: Let A = diag(a, b, c). Then A−1 = diag(1/a, 1/b, 1/c) if and only
if |A| = abc ̸= 0. Because AT = A, then AT = A−1 holds if and only if
diag(a, b, c) = diag(1/a, 1/b, 1/c) or equivalently a2 = b2 = c2 = 1. The
matrices are
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diag(1, 1, 1), diag(1, 1,−1), diag(1,−1, 1), diag(1,−1,−1),

diag(−1, 1, 1), diag(−1,−1, 1), diag(−1, 1,−1), diag(−1,−1,−1)

68. Find all 3× 3 upper triangular matrices A such that AT = A−1.

69. Find all n× n diagonal matrices A such that AT = A−1.

Solution: See Exercise 67 for n = 3. The matrices are diag(a1, . . . , an) for
all possible choices of ai = ±1, 1 ≤ i ≤ n.

70. Determine the n × n triangular matrices A such that det(A) = 1 and
AT = adj(A).

Elementary Matrices
Find the determinant of A from the given equation.

71. Let A = 5E2E1 be 3× 3, where E1 multiplies row 3 of the identity by −7
and E2 swaps rows 3 and 1 of the identity. Hint: A = (5I)E2E1.

Solution: |A| = 875.

Apply the determinant product rule: |A| = |5I||E2||E1|. Row operations
mult(3,-7) and swap(3,1) applied to the identity matrix imply |E1| = −7,
|E2| = −1. Then |A| = |5I||E2||E1| = 53(−7)(−1) = 875.

72. Let A = 2E2E1 be 5× 5, where E1 multiplies row 3 of the identity by −2
and E2 swaps rows 3 and 5 of the identity.

73. Let A = E2E1B be 4 × 4, where E1 multiplies row 2 of the identity by 3
and E2 is a combination. Find |A| in terms of |B|.
Solution: |A| = |E2||E1||B| = (3)(1)|B| = 3|B|

74. Let A = 3E2E1B be 3× 3, where E1 multiplies row 2 of the identity by 3
and E2 is a combination. Find |A| in terms of |B|.

75. Let A = 4E2E1B be 3× 3, where E1 multiplies row 1 of the identity by 2,
E2 is a combination and |B| = −1.

Solution: |A| = |4I||E2||E1||B| = 43(1)(−1) = −64

76. Let A = 2E3E2E1B
3 be 3 × 3, where E1 multiplies row 2 of the identity

by −1, E2 and E3 are swaps and |B| = −2.

Determinants and the Toolkit
Display the toolkit steps for rref(A). Using only the steps, report:
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• The determinant of the elementary matrix E for each step.

• The determinant of A.

77. A =

2 3 1
0 0 2
1 0 4


Solution:

A =

 2 3 1
0 0 2
1 0 4


A1 =

 1 0 4
0 0 2
2 3 1

 swap(1,3), |E1| = −1

A2 =

 1 0 4
0 0 2
0 3 −3

 combo(1,3-2), |E2| = 1

A3 =

 1 0 4
0 3 −3
0 0 2

 swap(2,3), |E3| = −1

|A3| = 6 Triangular Rule
Result: E1A = A1, E2A1 = A2, E3A2 = A3. Summary: E3E2E1A = A3.
Then |E3||E2||E1||A| = |A3|. Insert values: (−1)(1)(−1)|A| = 6 or |A| = 6.

# Determinants and the Toolkit, Exercise 77

A:=Matrix([[2,3,1],[0,0,2],[1,0,4]]);

Determinant(A);

78. A =

2 3 1
0 3 0
1 0 2



79. A =


2 3 1 0
0 3 0 0
0 3 0 2
1 0 2 1


Solution: |A| = −18

80. A =


2 3 1 2
0 3 0 0
2 6 1 2
1 0 2 1


Determinant Product Rule
Apply the product rule det(AB) = det(A) det(B).
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81. Let det(A) = 5 and det(B) = −2. Find det(A2B3).

Solution: |A2B3| = |AABBB| = |A|2|B|3 = 52(−2)3 = −200

82. Let det(A) = 4 and A(B − 2A) = 0. Find det(B).

Solution: Hint: AB = (2I)A2

83. Let A = E1E2E3 where E1, E2 are elementary swap matrices and E3 is an
elementary combination matrix. Find det(A).

Solution: A| = |E1||E2||E3| = (−1)(−1)(1) = 1

84. Assume det(AB +A) = 0 and det(A) ̸= 0. Show that det(B + I) = 0.

Solution: Hint: AB +A = A(B + I)

Cramer’s 2× 2 Rule
Assume (

a b
c d

)(
x
y

)
=

(
e
f

)
.

85. Derive the formula (
a b
c d

)(
x 0
y 1

)
=

(
e b
f d

)
.

Solution: The given matrix identity provides equations ax+by = e, cx+dy =
f . Then(
a b
c d

)(
x 0
y 1

)
=

(
ax+ by 0a+ 1b
cx+ dy 0c+ 1d

)
=

(
ax+ by b
cx+ dy d

)
=

(
e b
f d

)

86. Derive the formula (
a b
c d

)(
1 x
0 y

)
=

(
a e
c f

)
.

87. Use the determinant product rule to derive the Cramer’s Rule formula

x =

∣∣∣∣ e b
f d

∣∣∣∣∣∣∣∣ a b
c d

∣∣∣∣ .
Solution: The plan: use Exercise 85 and the determinant product rule.∣∣∣∣ a b
c d

∣∣∣∣ ∣∣∣∣ x 0
y 1

∣∣∣∣ = ∣∣∣∣ e b
f d

∣∣∣∣
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∣∣∣∣ a b
c d

∣∣∣∣ x =

∣∣∣∣ e b
f d

∣∣∣∣
x =

∣∣∣∣ e b
f d

∣∣∣∣∣∣∣∣ a b
c d

∣∣∣∣
88. Derive, using the determinant product rule, the Cramer’s Rule formula

y =

∣∣∣∣ a e
c f

∣∣∣∣∣∣∣∣ a b
c d

∣∣∣∣ .

Cramer’s 3× 3 Rule
Let A be the coefficient matrix in the equation(

a11 a12 a13
a21 a22 a23
a31 a32 a33

)x1

x2

x3

 =

b1
b2
b3

 .

89. Derive the formula

A

(
x1 0 0
x2 1 0
x3 0 1

)
=

(
b1 a12 a13
b2 a22 a23
b3 a32 a33

)

Solution: Definition A =

(
a11 a12 a13
a21 a22 a23
a31 a32 a33

)
and the given identity provide:

a11x1 + a12x2 + a13x3 = b1,
a21x1 + a22x2 + a23x3 = b2,
a31x1 + a32x2 + a33x3 = b3

Let LHS and RHS denote the two sides of the claimed formula. Matrix
multiply:

LHS = A

(
x1 0 0
x2 1 0
x3 0 1

)

LHS =

(
a11 a12 a13
a21 a22 a23
a31 a32 a33

)(
x1 0 0
x2 1 0
x3 0 1

)

LHS =

(
a11x1 + a12x2 + a13x3, a12 a13
a21x1 + a22x2 + a23x3, a22 a23
a31x1 + a32x2 + a33x3, a32 a33

)
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LHS =

(
b1 a12 a13
b2 a22 a23
b3 a32 a33

)
by the three equations above

LHS = RHS ■

90. Derive the formula

A

(
1 0 x1
0 1 x2
0 0 x3

)
=

(
a11 a12 b1
a21 a22 b2
a31 a32 b3

)

91. Derive, using the determinant product rule, the Cramer’s Rule formula

x1 =

∣∣∣∣∣∣
b1 a12 a13
b2 a22 a23
b3 a32 a33

∣∣∣∣∣∣∣∣∣∣∣∣
a11 a12 a13
a21 a22 a23
a31 a32 a33

∣∣∣∣∣∣
.

Solution: Use Exercise 89 and the determinant product rule:

|A|

∣∣∣∣∣∣
x1 0 0
x2 1 0
x3 0 1

∣∣∣∣∣∣ =
∣∣∣∣∣∣
b1 a12 a13
b2 a22 a23
b3 a32 a33

∣∣∣∣∣∣
Then:

|A|x1 =

∣∣∣∣∣∣
b1 a12 a13
b2 a22 a23
b3 a32 a33

∣∣∣∣∣∣

x1 =

∣∣∣∣∣∣
b1 a12 a13
b2 a22 a23
b3 a32 a33

∣∣∣∣∣∣
|A|

92. Use the determinant product rule to derive the Cramer’s Rule formula

x3 =

∣∣∣∣∣∣
a11 a12 b1
a21 a22 b2
a31 a32 b3

∣∣∣∣∣∣∣∣∣∣∣∣
a11 a12 a13
a21 a22 a23
a31 a32 a33

∣∣∣∣∣∣
.

Cayley-Hamilton Theorem
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93. Let A =

(
1 −1
2 3

)
. Expand |A−rI| to compute the characteristic polynomial

of A. Answer: r2 − 4r + 5.

Solution: |A− rI| =
∣∣∣∣ 1− r −1

2 3− r

∣∣∣∣ = (1− r)(3− r) + 2 = r2 − 4r + 5

94. Let A =

(
1 −1
2 3

)
. Apply the Cayley-Hamiltion theorem to justify the

equation

A2 − 4A+ 5

(
1 0
0 1

)
=

(
0 0
0 0

)
.

95. Let A =

(
a b
c d

)
. Expand |A− rI| by Sarrus’ Rule to obtain r2 − (a+ b)r+

(ad− bc).

Solution: |A− rI| =
∣∣∣∣ a− r b

c d− r

∣∣∣∣ = (a− r)(d− r)− bc = r2− (a+ b)r+

(ad− bc)

96. The result of the previous exercise is often written as (−r)2 +
trace(A)(−r) + |A| where trace(A) = a + d = sum of the diagonal ele-
ments. Display the details.

97. Let λ2 − 2λ + 1 = 0 be the characteristic equation of a matrix A. Find a
formula for A2 in terms of A and I.

Solution: Cayley-Hamilton provides equation A2 − 2A +

(
1 0
0 1

)
=

(
0 0
0 0

)
.

Solve for A2: A2 = 2A− I.

98. Let A be an n × n triangular matrix with all diagonal entries zero. Prove
that An = 0.

99. Find all 2× 2 matrices A such that A2 =

(
0 0
0 0

)
, discovered from values of

trace(A) and |A|.
Solution: Exercise 96 reports the characteristic equation in the form |A −
rI| = (−r)2 + trace(A)(−r) + |A|. Cayley-Hamilton provides the iden-
tity (−A)2 + trace(A)(−A) + |A|I = 0. If A2 is the zero matrix, then

trace(A)(−A) + |A|I = 0. Then trace(A)A = |A|I. Let A =

(
a b
c d

)
. Then

the requirement becomes: (a + d)

(
a b
c d

)
=

(
ad− bc 0

0 ad− bc

)
which is the

set of equations
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a(a+ d) = ad− bc,
b(a+ d) = 0,
c(a+ d) = 0,
d(a+ d) = ad− bc

The solution:

c = −a2/b, d = −a for all a and b ̸= 0,
a = b = c = d = 0

# Cayley-Hamilton Theorem, Exercise 99

eqs:=a*(a+d) = a*d-b*c,b*(a+d) = 0,

c*(a+d) = 0,d*(a+d) = a*d-b*c;

solve({eqs},{a,b,c,d});

100. Find four 2× 2 matrices A such that A2 =

(
1 0
0 1

)
.

Applied Definition of Determinant
Miscellany for permutation matrices and the sampled product page 358 �

A.P=(A1 · P1)(A2 · P2) · · · (An · Pn)
=a1σ1

· · · anσn
.

101. Compute the sampled product of

5 3 1
0 5 7
1 9 4

 and

1 0 0
0 0 1
0 1 0

 .

Solution: A1.P1 = (5, 3, 1) · (1, 0, 0) = 5, A2 · P2 = 7, A3 · P3 = 9. Then
A.P = (5)(7)(9) = 315.

102. Compute the sampled product of

5 3 3
0 2 7
1 9 0

 and

0 0 1
0 1 0
1 0 0

 .

103. Determine the permutation matrices P required to evaluate det(A) when
A is 2× 2.

Solution:

(
1 0
0 1

)
and

(
0 1
1 0

)

104. Determine the permutation matrices P required to evaluate det(A) when
A is 4× 4.

Three Properties
Reference: Page 359 �, three properties that define a determinant

358
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105. Assume n = 3. Prove that the three properties imply D = 0 when two
rows are identical.

Solution: Swap the identical rows to obtain determinant F . Then D = −F
by the swap property. Since the rows are unchanged, then F = D. Then
D = −F = −D and finally D = 0.

106. Assume n = 3. Prove that the three properties imply D = 0 when a row
is zero.
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5.4 Vector Spaces, Independence, Basis

Scalar and Vector General Solution
Given the scalar general solution of Ax⃗ = 0⃗, find the vector general solution

x⃗ = t1u⃗1 + t2u⃗2 + · · ·

where symbols t1, t2, . . . denote arbitrary constants and u⃗1, u⃗2, . . . are fixed
vectors.

1. x1 = 2t1, x2 = t1 − t2, x3 = t2

Solution: Let x⃗ =

 x1

x2

x3

 =

 2t1
t1 − t2

t2

. Compute the partial deriva-

tives of x⃗ on symbols t1, t2:

∂x⃗/∂t1 =

 2
1
0

 , ∂x⃗/∂t2 =

 0
−1
1

.

Let u⃗1 =

 2
1
0

 , u⃗2 =

 0
−1
1

.

Then the vector general solution is

x⃗ = t1u⃗1 + t2u⃗2 = t1

 2
1
0

+ t2

 0
−1
1


The vector partial derivatives create vectors u⃗1, u⃗2, which are called
Strang’s Special Solutions. ■

2. x1 = t1 + 3t2, x2 = t1, x3 = 4t2, x4 = t2

3. x1 = t1, x2 = t2, x3 = 2t1 + 3t2

Solution:

x⃗ = t1

 1
0
2

+ t2

 0
1
3

 ■

4. x1 = 2t1 + 3t2 + t3, x2 = t1, x3 = t2, x4 = t3

Vector General Solution
Find the vector general solution x⃗ of Ax⃗ = 0⃗.
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5. A =

(
1 2
2 4

)
Solution:

A =

(
1 2
2 4

)
Shortcut: augmented matrix ⟨A|⃗0⟩ not used.

A1 =

(
1 2
0 0

)
combo(1,2,-2), found rref(A).

Lead variable: x1. Free variable: x2

Assign symbols to free variables: x2 = t1 (invented symbol t1)
Scalar Equations with isolated lead variables:
x1 = −2x2,
0 = 0
Substitute symbols and list variables in order:
x1 = −2t1,
x2 = t1

Let x⃗ =

(
x1

x2

)
=

(
−2t1

t1

)
. There is only one partial derivative to find:

u⃗1 = ∂x⃗/∂t1 =

(
−2
1

)
.

The vector general solution is

x⃗ = t1u⃗1 = t1

(
−2
1

)
.

There is no known efficient shortcut which finds the vector general solution
without also finding the scalar general solution. The paper and pencil so-
lution should be learned by a few examples. An answer check is done by
computer as shown below. Computer answers often look different than pa-
per and pencil answers. It can be nontrivial to see that both answers are
correct!

# Vector General Solution: Exercise 5

with(LinearAlgebra):

A:=Matrix([[1,2],[2,4]]);

X:=LinearSolve(A,<0,0>,free=’t’);

u1:=map(x->diff(x,t[1]),X);

# u1 = <-2,1>

6. A =

(
1 −1

−1 1

)

7. A =

 1 2 0
2 4 0
0 0 0


Solution: x⃗ = t1u⃗1 + t2u⃗2 = t1

 −2
1
0

+ t2

 0
0
1

. ■
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8. A =

 1 1 −1
1 1 0
0 0 1



9. A =


1 1 −1 0
1 1 0 0
0 0 1 0
2 2 −1 0



Solution: x⃗ = t1u⃗1 + t2u⃗2 = t1


−1
1
0
0

+ t2


0
0
0
1

. ■

10. A =


1 1 0 0
2 2 0 0
0 0 1 1
0 0 2 2


Dimension

11. Give four examples in R3 of S = span(v⃗1, v⃗2, v⃗3) (3 vectors required) which
have respectively dimensions 0, 1, 2, 3.

Solution: Let w⃗1, w⃗2, w⃗3 be the columns in order of the 3×3 identity matrix.
Define
S0 = {⃗0, 0⃗, 0⃗}, S1 = {⃗0, 0⃗, w⃗1}, S2 = {⃗0, w⃗1, w⃗2}, S3 = {w⃗1, w⃗2, w⃗3}.
The dim(Si) = i, 0 ≤ i ≤ 3. ■

12. Give an example in R3 of 2-dimensional subspaces S1, S2 with only the
zero vector in common.

13. Let S = span(v⃗1, v⃗2) in abstract vector space V . Explain why dim(S) ≤ 2.

Solution: The dimension k of S is the number of vectors in a basis for S.
Vectors v⃗1, v⃗2 already span S because of the equation S = span(v⃗1, v⃗2). If
v⃗1, v⃗2 are independent then they form a basis for S and dim(S) = 2. If
v⃗1, v⃗2 are dependent and nonzero then one of them is a basis for S and
dim(S) = 1. If v⃗1 = v⃗2 = 0⃗ then S is the span of the zero vector and
dim(S) = 0. ■

14. Let S = span(v⃗1, . . . , v⃗k) in abstract vector space V . Explain why
dim(S) ≤ k.

15. Let S be a subspace of R3 with basis v⃗1, v⃗2. Define v⃗3 to be the cross
product of v⃗1, v⃗2. What is dim(span(v⃗2, v⃗3))?

Solution: dim(span(v⃗2, v⃗3)) = 2 because it is known that the cross product
is orthogonal to both v⃗1 and v⃗2, hence independent of both vectors. ■
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16. Let S1, S2 be subspaces of R4 such that dim(S1) = dim(S2) = 2. As-
sume S1, S2 have only the zero vector in common. Prove or give a counter-
example: the span of the union of S1, S2 equals R4.

Independence in Abstract Spaces

17. Assume linear combinations of vectors v⃗1, v⃗2 are uniquely determined, that
is, a1v⃗1 + a2v⃗2 = b1v⃗1 + b2v⃗2 implies a1 = b1, a2 = b2. Prove this result: If
c1v⃗1 + c2v⃗2 = 0⃗, then c1 = c2 = 0.

Solution: Let d1 = d2 = 0. Write the hypothesis c1v⃗1+ c2v⃗2 = 0⃗ in the form
c1v⃗1+c2v⃗2 = d1v⃗1+d2v⃗2 and apply the uniqueness assumption: c1 = d1 = 0,
c2 = d2 = 0. ■

18. Assume the zero linear combination of vectors v⃗1, v⃗2 is uniquely determined,
that is, c1v⃗1 + c2v⃗2 = 0⃗ implies c1 = c2 = 0. Prove this result: If a1v⃗1 +
a2v⃗2 = b1v⃗1 + b2v⃗2, then a1 = b1, a2 = b2.

19. Prove that two nonzero vectors v⃗1, v⃗2 in an abstract vector space V are
independent if and only if each of v⃗1, v⃗2 is not a constant multiple of the
other.

Solution: Organize the proof as A <==> B where A is the independence
statement and B is the constant multiple statement.

Proof A => B: Assume A: the vectors are independent. If B fails then
v⃗1 = cv⃗2 or v⃗2 = cv⃗1 for some constant c. Both possibilities lead to an
equation c1v⃗1 + c2v⃗2 = 0⃗ with one of c1, c2 equal to 1, implying dependence
of the vectors, a violation to assumption A. Therefore, A => B.

Proof B => A: Assume B: neither of v⃗1, v⃗2 is a constant multiple of the
other. To prove: independence of the vectors (conclusion A). Independence
test: assume for some constants c1, c2 the equation c1v⃗1 + c2v⃗2 = 0⃗ holds.
We show c1 = c2 = 0. Let’s assume c1 = c2 = 0 is false. Renumbering
allows the assumption c1 ̸= 0. Divide: v⃗1 + (c2/c1)v⃗2 = 0⃗. Rearrange to
equation v⃗1 = cv⃗2 where c = −c2/c1 is a constant. Equation v⃗1 = cv⃗2
violates hypothesis B, contradiction. ■

20. Let v⃗1 be a vector in an abstract vector space V . Prove that the one-element
set v⃗1 is independent if and only if v⃗1 is not the zero vector.

21. Let V be an abstract vector space and assume v⃗1, v⃗2 are independent vectors
in V . Define u⃗1 = v⃗1+ v⃗2, u⃗2 = v⃗1+2v⃗2. Prove that u⃗1, u⃗2 are independent
in V .
Advice: Fixed vectors not assumed! Bursting the vector packages is impossible,

there are no components.
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Solution: The details are to use only the definition of vector space. A
common error is to assume that the vectors have components, e.g., the
vectors are fixed vectors from some Rn. The error is the assumption that
V = Rn, which was never assumed.

The proof is organized as A => B where A is independence of v⃗1, v⃗2 and B
is independence of u⃗1, u⃗2.

Assume A: Vectors v⃗1, v⃗2 are independent in V and u⃗1 = v⃗1 + v⃗2, u⃗2 =
v⃗1 + 2v⃗2.
To prove B: Vectors u⃗1, u⃗2 are independent in V .

Independence test: Assume c1u⃗1 + c2u⃗2 = 0⃗ and prove c1 = c2 = 0.
Expand the equation c1u⃗1 + c2u⃗2 = 0⃗ using the definitions of u⃗1, u⃗2:

c1u⃗1 + c2u⃗2 = 0⃗ hypothesis of the independence test
c1(v⃗1 + v⃗2) + c2(v⃗1 + 2v⃗2) = 0⃗ use definitions of u⃗1, u⃗2

(c1 + c2)v⃗1 + (c1 + 2c2)v⃗2 = 0⃗ use the vector space toolkit
d1v⃗1 + d2v⃗2 = 0⃗ where d1 = c1 + c2, d2 = c1 + 2d2

Independence of v⃗1, v⃗2 is applied to conclude d1 = 0, d2 = 0, which is the
system of equations

c1 + c2 = 0, c1 + 2c2 = 0 or

(
1 1
1 2

)(
c1
c2

)
=

(
0
0

)
The 2× 2 matrix has an inverse, therefore c1 = c2 = 0, as was to be proved.

The proof of A => B is complete. ■

22. Let V be an abstract vector space and assume v⃗1, v⃗2, v⃗3 are independent
vectors in V . Define u⃗1 = v⃗1 + v⃗2, u⃗2 = v⃗1 + 4v⃗2, u⃗3 = v⃗3 − v⃗1. Prove that
u⃗1, u⃗2, u⃗3 are independent in V .

23. Let S be a finite set of independent vectors in an abstract vector space V .
Prove that none of the vectors can be the zero vector.

Solution: Let the vectors be listed as v⃗1, . . . , v⃗k. The contrapositive state-
ment A => B will be proved where A is the statement that one of the vectors
is the zero vector and B is the statement that the vectors are dependent.

Assume A. By renumbering if necessary, assume v⃗1 = 0⃗. Then

1v⃗1 +

k∑
i=2

0v⃗i = 0⃗

By definition, the vectors are dependent. Hence B. ■

24. Let S be a finite set of independent vectors in an abstract vector space V .
Prove that no vector in the list can be a linear combination of the other
vectors.
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The Spaces Rn

25. (Scalar Multiply) Let x⃗ =

x1

x2

x3

 have components measured in centime-

ters. Report constants c1, c2, c3 for re-scaled data c1x⃗, c2x⃗, c3x⃗ in units of
kilometers, meters and millimeters.

Solution: One meter = 100 cm = 1000 millimeters. One kilometer = 1000
meters.
Then c1 = (1/100)/1000 kilometers, c2 = 1/100 meters, c3 =
(1/100)(1000) = 1/10 millimeters

26. (Matrix Multiply) Let u⃗ =
(
x1, x2, x3, p1, p2, p3

)T
have position x-units

in kilometers and momentum p-units in kilogram-centimeters per millisec-
ond. Determine a matrix M such that the vector y⃗ = Mu⃗ has SI units of
meters and kilogram-meters per second.

27. Let v⃗1, v⃗2 be two independent vectors in Rn. Assume c1v⃗1 + c2v⃗2 lies
strictly interior to the parallelogram determined by v⃗1, v⃗2. Give geometric
details explaining why 0 < c1 < 1 and 0 < c2 < 1.

Solution: If the two vectors are specialized to ı⃗ and ȷ⃗, then the parallelogram
is a square with vertices (0, 0), (1, 0), (1, 1), (0, 1). A vector c1⃗ı + c2ȷ⃗ has
tail at (0, 0) and head at (c1, c2). To be strictly inside the square means the
head (c1, c2) is strictly inside the square. This happens exactly when the
projections c1, c2 onto the axes satisfy 0 < c1 < 1 and 0 < c2 < 1.

A parallelogram maps to the unit square by matrix A chosen by the two
requirements Av⃗1 = ı⃗, Av⃗2 = ȷ⃗. The inside of the parallelogram maps to the
inside of the unit square (intuitively so, a rigorous proof was not expected).
So if c1v⃗1 + c2v⃗2 is strictly inside the parallelogram then A(c1v⃗1 + c2v⃗2) =
c1⃗ı+ c2ȷ⃗ is strictly inside the unit square, hence 0 < c1 < 1 and 0 < c2 < 1.

Why is A invertible? Because A⟨v⃗1|v⃗2⟩ = I. The definition of A as the

inverse of ⟨v⃗1|v⃗2⟩ is possible because the two vectors are independent. ■

28. Prove the 4 scalar multiply toolkit properties for fixed vectors in R3.

29. Define

0⃗ =

0
0
0

 ,−v⃗ =

−v1
−v2
−v3

 .

Prove the 4 addition toolkit properties for fixed vectors in R3.

Solution: The four rules are:
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Addition X⃗ + Y⃗ = Y⃗ + X⃗ commutative
X⃗ + (Y⃗ + Z⃗) = (X⃗ + Y⃗ ) + Z⃗ associative

Vector 0⃗ is defined and 0⃗ + X⃗ = X⃗ zero
Vector −X⃗ is defined and X⃗ + (−X⃗) = 0⃗ negative

Let X⃗ =

−x1

−x2

−x3

 and similar notation for Y⃗ and Z⃗.

Commutative
LHS = X⃗ + Y⃗

LHS =

x1

x2

x3

+

y1
y2
y3


LHS =

x1 + y1
x2 + y2
x3 + y3


RHS = Y⃗ + X⃗

RHS =

y1
y2
y3

+

x1

x2

x3


RHS =

y1 + x1

y2 + x2

y3 + x3


Then LHS = RHS.

Associative
LHS = X⃗ + (Y⃗ + Z⃗)

LHS =

x1

x2

x3

+

y1
y2
y3

+

z1
z2
z3


LHS =

x1

x2

x3

+

y1 + z1
y2 + z2
y3 + z3


LHS =

x1 + y1 + z1
x2 + y2 + z2
x3 + y3 + z3


RHS = (X⃗ + Y⃗ ) + Z⃗

RHS =

x1

x2

x3

+

y1
y2
y3

+

z1
z2
z3


RHS =

x1 + y1
x2 + y2
x3 + y3

+

z1
z2
z3


366



5.4 Vector Spaces, Independence, Basis

RHS =

x1 + y1 + z1
x2 + y2 + z2
x3 + y3 + z3


Then LHS = RHS.

Zero
LHS = 0⃗ + X⃗

LHS =

0
0
0

+

x1

x2

x3


LHS =

0 + x1

0 + x2

0 + x3


LHS = X⃗
LHS = RHS

Negative
LHS = X⃗ + (−X⃗)

LHS =

x1

x2

x3

+

−x1

−x2

−x3


LHS =

x1 − x1

x2 − x2

x3 − x3


LHS =

0
0
0


LHS = 0⃗
LHS = RHS ■

30. Use the 8 property toolkit in R3 to prove that zero times a vector is the
zero vector.

31. Let A be an invertible 3× 3 matrix. Let v⃗1, v⃗2, v⃗3 be a basis for R3. Prove
that Av⃗1, Av⃗2, Av⃗3 is a basis for R3.

Solution: To prove: (1) Av⃗1, Av⃗2, Av⃗3 is an independent set.
Let c1Av⃗1 + c2Av⃗2 + c3Av⃗3 = 0⃗. Multiply my A−1 to obtain the equation
c1v⃗1 + c2v⃗2 + c3v⃗3 = 0⃗. Because v⃗1, v⃗2, v⃗3 are given to be independent
(they are a basis), then c1 = c2 = c3 = 0. This proves Av⃗1, Av⃗2, Av⃗3 are
independent.

To prove: (2) Vectors Av⃗1, Av⃗2, Av⃗3 span R3. Let y⃗ be any vector in R3.
Constants c1, c2, c3 must be found such that c1Av⃗1 + c2Av⃗2 + c3Av⃗3 = y⃗.
Multiply by A−1 to obtain the new equation c1v⃗1 + c2v⃗2 + c3v⃗3 = A−1y⃗.
Hypothesis R3 = span(v⃗1, v⃗2, v⃗3) implies c1, c2, c3 exist. ■
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32. Let A be an invertible 3 × 3 matrix. Let v⃗1, v⃗2, v⃗3 be dependent in R3.
Prove that Av⃗1, Av⃗2, Av⃗3 is a dependent set in R3.

Digital Photographs
Let V be the vector space of all 2 × 3 matrices. A matrix in V is a 6-pixel
digital photo, a sub-section of a larger photo.

Let B1 =

(
1 0 0
0 0 0

)
, . . . , B6 =

(
0 0 0
0 0 1

)
. Each Bj lights up one pixel in the

2× 3 sub-photo.

33. Prove that B1, . . . , B6 are independent and span V : they are a basis for
V .

Solution: Because
∑6

j=1 cjBj =

(
c1 c2 c3
c4 c5 c6

)
then

∑6
j=1 cjBj is the zero ma-

trix if and only if c1 to c6 are zero. This proves independence and also the
span condition span(B1, . . . , B6) = V . ■

34. Let A = 2

(
1 0 0
0 0 0

)
+ 4

(
0 0 0
0 1 0

)
. Assume a black and white image and 0

means black. Describe photo A, from the checkerboard analogy.

Digital RGB Photos
Define red, green and blue monochrome matrices R,G,B by(

2 0 0
0 1 1
5 8 1

)
,

(
3 0 0
0 4 0
0 1 0

)
,

(
5 0 0
0 3 0
1 0 5

)
.

35. Define base x = 16. Compute A = R+ xG+ x2B.

Solution: A =

 1330 0 0
0 833 1

261 24 1281


According to the checkerboard analogy, the board has 9 checkers. Number
1330 is an encoded checker count at pixel location (1, 1), representing 2 red,
3 green and 5 blue.

# Digital RGB Photos, Exercise 35

R:=Matrix([[2,0,0],[0,1,1],[5,8,1]]);

G:=Matrix([[3,0,0],[0,4,0],[0,1,0]]);

B:=Matrix([[5,0,0],[0,3,0],[1,0,5]]);

A:=R+x*G+x^2*B; subs(x=16,A);

# [[1330, 0, 0], [0, 833, 1], [261, 24, 1281]]

36. Define base x = 32. Compute A = R+ xG+ x2B.
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Polynomial Spaces
Let V be the vector space of all cubic or less polynomials p(x) = c0 + c1x +
c2x

2 + c3x
3.

37. Find a subspace S of V , dim(S) = 2, which contains the vector 1 + x.

Solution: Let S = span(1+x, 1). Set S is a subspace by the span theorem.
Then 1 + x is in S. Because 1, 1 + x are independent then dim(S) = 2. ■

38. Let S be the subset of V spanned by x, x2 and x3. Prove that S is a
subspace of V which does not contain the polynomial 1 + x.

39. Define set S by the conditions p(0) = 0, p(1) = 0. Find a basis for S.

Solution: The conditions on p(x) = c0+ c1x+ c2x
2+ c3x

3 are 0 = p(0) = c0
and 0 = p(1) = c1+c2+c3. Select initially basis elements x, x2 which satisfy
p(0) = 0 and then add c1x+ c2x

2 + c3x
3 with c1 + c2 + c3 = 0 by choosing

c3 = 2, c1 = c2 = −1. Then S = span(x, x2, 2x3 − x2 − x). Independence
is proved by the Wronskian Test:∣∣∣∣∣∣
x x2 2x3 − x2 − x
1 2x 6x2 − 2x− 1
0 2x 12x− 2

∣∣∣∣∣∣
∣∣∣∣∣∣
x=1

=

∣∣∣∣∣∣
1 1 0
1 0 −1
0 0 −2

∣∣∣∣∣∣ = 2

40. Define set S by the condition p(0) =
∫ 1

0
p(x)dx. Find a basis for S.

The Space C(E)
Define f⃗ to be the vector package with domain E = {x : − 2 ≤ x ≤ 2} and
equation y = |x|. Similarly, g⃗ is defined by equation y = x.

41. Show independence of f⃗ , g⃗.

Solution: Because f is not differentiable then the Wronskian test does
not apply. We’ll try to use the sampling test. Select samples x1 = 1 and
x2 = −1. Then the sample matrix is

S =

(
f(x1) g(x1)
f(x2) g(x2)

)
=

(
1 1
1 −1

)
Because |S| = −2, then f and g are independent functions on E, meaning

f⃗ and g⃗ are independent vectors in C(E). ■

42. Find the dimension of span(f⃗ , g⃗).

43. Let h(x) = 0 on −1 ≤ x ≤ 0, h(x) = −x on 0 ≤ x ≤ 1. Show that h⃗ is in
C(E).

Solution: The issue is continuity of h at x = 0. The left and right hand
limits at x = 0 are both equal to 0, therefore h is continuous a t x = 0. ■
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44. Let h(x) = −1 on −2 ≤ x ≤ 0, h(x) = 1 on 0 ≤ x ≤ 2. Show that h⃗ is not
in C(E).

45. Let h(x) = 0 on −2 ≤ x ≤ 0, h(x) = −x on 0 ≤ x ≤ 2. Show that h⃗ is in

span(f⃗ , g⃗).

Solution: Assume h⃗ is in span(f⃗ , g⃗). Let h⃗ = c1f⃗ + c2g⃗. Then c1|x|+ c2x =
h(x) at x = −1 implies equation c1−c2 = 0 while at x = 1 it implies equation
c1 + c2 = 0. Then c1 = c2 = 0 and h(x) = 0 for all x, a contradiction to the
definition of h. ■

46. Let h(x) = tan(πx/2) on −2 < x < 2, h(2) = h(−2) = 0. Explain why h⃗ is
not in C(E)

The Space C1(E)
Define f⃗ to be the vector package with domain E = {x : − 1 ≤ x ≤ 1} and
equation y = x|x|. Similarly, g⃗ is defined by equation y = x2.

47. Verify that f⃗ is in C1(E), but its derivative is not.

Solution: For y = x|x| the derivative is: y′ = 2x for x > 0, y′ = −2x for
x < 0, y′ = 0 at x = 0. Simplified: y′ = 2|x|. This function is continuous

but not continuously differentiable, therefore f⃗ is in C1(E) but f⃗ ′ is not in
C1(E). ■

48. Show that f⃗ , g⃗ are independent in C1(E).

The Space Ck(E)

49. Compute the first three derivatives of y(x) = e−x2

at x = 0.

Solution: Expand as a power series: y(x) =
∑∞

n=0(−x2)n/n!. Then y(x) =
1−x2 +x4/2− · · · which produces the answers y(0) = 0, y′(0) = 0, y′′(0) =
−2, y′′′(0) = 0.

50. Justify that y(x) = e−x2

belongs to Ck(0, 1) for all k ≥ 1.

51. Prove that the span of a finite list of distinct Euler solution atoms (page
386 �) is a subspace of Ck(E) for any interval E.

Solution: Euler atoms are in Ck(E). The span of a finite set of vectors is a
subspace.

52. Prove that y(x) = |x| is in Ck(0, 1) but not in C1(−1, 1).
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Solution Space
A differential equations solver finds general solution y = c1+c2x+c3e

x+c4e
−x.

Use vector space V = C4(E) where E is the whole real line.

53. Write the solution set S as the span of four vectors in V .

Solution: The technique to discover a basis is to formally differentiate the
general solution on the symbols c1 to c4. Then basis elements might be 1,
x, ex, e−x. At least S is the span of the four vectors just found. Because
distinct Euler solution atoms are independent, then indeed the four vectors
are a basis for S.

54. Find a basis for the solution space S of the differential equation. Verify
independence using the sampling test or Wronskian test.

55. Find a differential equation y′′ + a1y
′ + a0y = 0 which has solution y =

c1 + c2x.

Solution: Substitute y = c1 + c2x into y′′ + a1y
′ + a0y = 0 to arrive at

a1c2 + a0(c1 + c2x) = 0. Because 1, x are independent then a1c2 + a0c1 = 0
and a0c2 = 0. The equations are valid for all c1, c2 provided a0 = a1 = 0.
The required differential equation is y′′ = 0.

56. Find a differential equation y′′′′ + a3y
′′′ + a2y

′′ + a1y
′ + a0y = 0 which has

solution y = c1 + c2x+ c3e
x + c4e

−x.

Algebraic Independence Test for Two Vectors
Solve for c1, c2 in the independence test for two vectors, showing all details.

57. v⃗1 =

(
1
2

)
, v⃗2 =

(
1

−1

)
Solution:

c1v⃗1 + c2v⃗2 = 0⃗

c1

(
1
2

)
+ c2

(
1

−1

)
=

(
0
0

)
(

1 1
2 −1

)(
c1
c2

)
=

(
0
0

)
c1 = c2 = 0 because the determinant of coefficients is nonzero.

58. v⃗1 =

 1
−1
0

 , v⃗2 =

1
1
0


Dependence of two vectors
Solve for c1, c2 not both zero in the independence test for two vectors, showing
all details for dependency of the two vectors.
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59. v⃗1 =

(
1
2

)
, v⃗2 =

(
2
4

)
Solution:

c1v⃗1 + c2v⃗2 = 0⃗

c1

(
1
2

)
+ c2

(
2
4

)
=

(
0
0

)
(

1 2
2 4

)(
c1
c2

)
=

(
0
0

)
c1 + 2c2 = 0 or c1 = −2t1, c2 = t1 (infinitely many solutions case).
Then for any value of t1 this dependency relation holds:

−2t1v⃗1 + t1v⃗2 = 0⃗

60. v⃗1 =

 1
−1
0

 , v⃗2 =

−2
2
0


Independence Test for Three Vectors
Solve for the constants c1, c2, c3 in the relation c1v⃗1 + c2v⃗2 + c3v⃗3 = 0⃗. Report
dependent of independent vectors. If dependent, then display a dependency
relation.

61.

 1
−1
0

,

−1
2
0

,

0
2
0


Solution: Exercise 57 has the method, which produces the matrix equation 1 −1 0

−1 2 2
0 0 0

 c1
c2
c3

 =

 0
0
0


The coefficient matrix A has rank 2, hence there are infinitely many so-

lutions. Reduce matrix A to rref(A) =

(
1 0 2
0 1 2
0 0 0

)
. Conclude c1 = −2t1,

c2 = −2t1, c3 = t1. The dependency relation is

−2t1

 1
−1
0

− 2t1

−1
2
0

+ t1

0
2
0

 =

0
0
0



62.

 1
−1
0

,

−1
2
0

,

0
1
1


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Independence in an Abstract Vector Space
In vector space V , report independence or a dependency relation for the given
vectors.

63. Space V = C(−∞,∞), v⃗1 = 1 + x, v⃗2 = 2 + x, v⃗3 = 3 + x2.

Solution: The independence test:

c1v⃗1 + c2v⃗2 + c3v⃗3 = 0⃗
c1(1 + x) + c2(2 + x) + c3(3 + x2) = 0
c1 + 2c2 + 3c3 + (c1 + c2)x+ c3x

2 = 0
Independence of 1, x, x2 (distinct Euler solution atoms) implies the equa-
tions

c1 + 2c2 + 3c3 = 0, c1 + c2 = 0, c3 = 0 1 2 3
1 2 0
0 0 1

 c1
c2
c3

 =

 0
0
0


Then c1 = c2 = c3 = 0 because the determinant of coefficients is nonzero.
The vectors are independent.

64. Space V = C(−∞,∞), v⃗1 = x3/5, v⃗2 = x2, v⃗3 = 2x2 + 3x3/5

65. Space V is all 3× 3 matrices. Let

v⃗1 =

(
1 1 0
0 1 1
0 0 1

)
, v⃗2 =

(
0 1 0
0 0 1
0 1 1

)
, v⃗3 =

(
2 5 0
0 2 5
0 3 5

)
.

Solution: Dependent because 2v⃗1 + 3v⃗2 = v⃗3. The independence test gives
rise to 9 equations in 3 unknowns c1, c2, c3. It helps to think of the matrices
as column vectors of length 9.

66. Space V is all 2× 2 matrices. Let

v⃗1 =

(
1 1
0 1

)
, v⃗2 =

(
−1 1
1 1

)
,

v⃗3 =

(
0 2
1 2

)
.

Rank Test
Compute the rank of the augmented matrix to determine independence or de-
pendence of the given vectors.

67.


1

−1
0
0

,


−1
2
0
0

,


0
2
0
0


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Solution: Let A =


1 −2 0

−1 2 2
0 0 0
0 0 0

. The rank is 2, dependent.

68.


0
1

−1
0

,


0

−1
2
0

,


0
0
1
1


Determinant Test
Evaluate the determinant of the augmented matrix to determine independence
or dependence of the given vectors.

69.

−1
3
0

,

2
1
0

,

3
5
0


Solution: Let A =

 −1 2 3
3 1 5
0 0 0

. Then |A| = 0 because A has a row of

zeros. Dependent.

70.

 0
1

−1

,

 0
−1
2

,

1
0
0


Sampling Test for Functions
Invent samples to verify independence.

71. cosh(x), sinh(x)

Solution: Choose samples x1 = 0, x2 = 1. Then the sampling matrix is

A =

(
cosh(x1) sinh(x1)
cosh(x2) sinh(x2)

)
=

(
cosh(0) sinh(0)
cosh(1) sinh(1)

)
Then |A| = sinh(1) ̸= 0 which implies independence.

72. x7/3, x sin(x)

73. 1, x, sin(x)

Solution: Choose samples x1 = 0, x2 = π, x3 = π/2. Then the sampling
matrix is

A =

 1 x1 sin(x1)
1 x2 sin(x2)
1 x3 sin(x3)

 =

 1 0 0
1 π 0
1 π/2 1


Then |A| = π ̸= 0 which implies independence.
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74. 1, cos2(x), sin(x)

Sampling Test and Dependence
For three functions f1, f2, f3 to be dependent, constants c1, c2, c3 must be found
such that

c1f1(x) + c2f2(x) + c3f3(x) = 0.

The trick is that c1, c2, c3 are not all zero and the relation holds for all x. The
sampling test method can discover the constants, but it is unable to prove
dependence!

75. Functions 1, x, 1 + x are dependent. Insert x = 1, 2,−1 and solve for
c1, c2, c3, to discover a dependency relation.

Solution: The relation is

c1 + c2x+ c3(1 + x) = 0

Insert samples x = 0, 1, 2:

c1 + c2 + 2c3 = 0 for x = 1
c1 + 2c2 + 3c3 = 0 for x = 2
c1 − c2 = 0 for x = −1

Then arrange as a system of equations: 1 1 2
1 2 3
1 −1 0

 c1
c2
c3

 =

 0
0
0


The reduced echelon form of is 1 0 1

0 1 1
0 0 0

 c1
c2
c3

 =

 0
0
0


giving solution c1 = −t1, c2 = −t1, c3 = t1 and the possible dependency
relation

−t1 + (−t1)x+ t1(1x) = 0

Cancel t1 to get −1 + x+ (1 + x) = 0, which is true for all x, proving that
the three vectors are dependent. ■
The samples x = 0, 1, 2 are unsuccessful in this adventure, showing that
this discovery method might fail for one set of samples and succeed for a
different set of samples.

76. Functions 1, cos2(x), sin2(x) are dependent. Cleverly choose 3 values of x,
insert them, then solve for c1, c2, c3, to discover a dependency relation.

Vandermonde Determinant
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77. Let V =

(
1 x1
1 x2

)
. Verify by direct computation the formula

|V | = x2 − x1.

Solution: |V | =
∣∣∣∣1 x1
1 x2

∣∣∣∣ = 1(x2)− (x1)(1) = x2 − x1.

78. Let V =

(
1 x1 x

2
1

1 x2 x
2
2

1 x3 x
2
3

)
. Verify by direct computation the formula

|V | = (x3 − x2)(x3 − x1)(x2 − x1).

Wronskian Test for Functions
Apply the Wronskian Test to verify independence.

79. cos(x), sin(x).

Solution: Choose x = 0, then the Wronskian is

∣∣∣∣ cos(0) sin(0)
− sin(0) cos(0)

∣∣∣∣ =∣∣∣∣ 1 0
0 1

∣∣∣∣ = 1.

80. cos(x), sin(x), sin(2x).

81. x, x5/3.

Solution: Choose x = 1, then the Wronskian is

∣∣∣∣ 1 1
1 5/3

∣∣∣∣ = 2/3.

82. cosh(x), sinh(x).

Wronskian Test: Theory

83. The functions x2 and x|x| are continuously differentiable and have zero
Wronskian. Verify that they fail to be dependent on −1 < x < 1.

Solution: Function y(x) = x|x| has derivative y′ = 2|x|. The Wronskian

of x2 and x|x| is
∣∣∣∣ x2 x|x|
2x 2|x|

∣∣∣∣ = x|x|
∣∣∣∣ x x
2 2

∣∣∣∣ = 0. Independence holds on

−1 < x < 1 because c1x
2 + c2x|x| = 0 can be solved for c1 = c2 = 0 by

using the sampling test with samples x1 = −1/2, x2 = 1/2.

84. The Wronskian Test can verify the independence of the powers 1, x, . . . , xk.
Show the determinant details.
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Extracting a Basis
Given a list of vectors in space V = R4, extract a largest independent subset.

85.


1

−1
0
0

,


−1
2
0
0

,


0
2
0
0

,


0

−1
1
0

,


−1
1
1
0


Solution: Let A be the augmented matrix of the vectors:

A =


1 −1 0 0 −1

−1 2 2 −1 1
0 0 0 1 1
0 0 0 0 0


The reduced row-echelon form of A is

rref(A) =


1 0 2 0 0
0 1 2 0 1
0 0 0 1 1
0 0 0 0 0


The reduced form tells us this: the first two vectors are independent, by
the rank test, because if A was the augmentation of the first two vectors,
then the reduced form would be the first two columns of rref(A). Similarly,
adding columns 3, 5 to A has a reduced form with rank 2, so the added
columns cannot be independent of the first two columns. Adding column
4 increases the rank, so column 4 is independent of the first two columns.
Adding column 5 does not increase the rank, so column 5 cannot be inde-
pendent of the preceding columns.
Collecting, a largest independent subset of the vectors is

1
−1
0
0

,


−1
2
0
0

,


0

−1
1
0


# Extracting a Basis, Exercise 85

A:=Matrix([[1,-1,0,0,-1],[-1,2,2,-1,1],

[0,0,0,1,1],[0,0,0,0,0]]);

ReducedRowEchelonForm(A);

# rref=[[1, 0, 2, 0, 0], [0, 1, 2, 0, 1],

# [0, 0, 0, 1, 1], [0, 0, 0, 0, 0]]
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86.


0

−1
1
0

,


0
1
1
0

,


0
2
3
0

,


1

−1
0
1

,


1
0
1
1


Extracting a Basis
Given a list of vectors in space V = C(−∞,∞), extract a largest independent
subset.

87. x, x cos2(x), x sin2(x), ex, x+ ex

Solution: Convert the square terms by trig identities cos2(x) + sin2(x) = 1,
cos(2x) = 2 cos2(x)− 1, cos(2x) = 1− 2 sin2(x). Then the list becomes

x,
x

2
+

x

2
cos(2x)),

x

2
− x

2
cos(2x), ex, x+ ex

The idea is to change the spanning set without changing the span. First
fact: Multiplying a spanning vector by a constant c ̸= 0 does change the
span. The replacement set gets rid of the 1

2 appearing four times:

x, x+ x cos(2x)), x− x cos(2x), ex, x+ ex

Second fact: Vectors f⃗ and g⃗ are independent if and only if f⃗ and g⃗ − f⃗
are independent. The proof depends on two vectors being independent if
and only if each vector is not a scalar multiple of the other vector. The
replacement set gets rid of three occurrences of x:

x, x cos(2x)), −x cos(2x), ex, ex

The first fact applies to remove the single minus sign for replacement set

x, x cos(2x)), x cos(2x), ex, ex

The first four functions are distinct Euler solution atoms, therefore they
are independent. The fifth function is a duplicate. So the first four are
independent. In the original set, a largest list of independent spanning
vectors is the first four:

x, x cos2(x), x sin2(x), ex

88. 1, 2 + x, x
1+x2 ,

x2

1+x2
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Euler Solution Atom
Identify the Euler solution atoms in the given list. Strictly apply the definition:
ex is an atom but 2ex is not.

89. 1, 2 + x, e2.15x, ex
2

, x
1+x2

Solution: x, ex

90. 2, x3, ex/π, e2x+1, ln |1 + x|

Euler Solution Atom Test
Establish independence of set S1.
Suggestion: First establish an identity span(S1) = span(S2), where S2 is an
invented list of distinct atoms. The Test implies S2 is independent. Extract a
largest independent subset of S1, using independence of S2.

91. Set S1 is the list 2, 1 + x2, 4 + 5ex, πe2x+π, 10x cos(x).

Solution: Two facts will be used, discussed above in the solution to Exercise
87.

Fact 1: Multiplying a spanning vector by a constant c ̸= 0 does change the
span.
Fact 2: Vectors f⃗ and g⃗ are independent if and only if f⃗ and g⃗ − f⃗ are
independent.

Using both facts, span(S1) = span(S2) where

S2 = {1, x2, ex, e2x, x cos(x)}

Specifically used is exponential identity πe2x+π = ce2x where c = πeπ. Fact
1 was used to replace S1 by the set

1, 1 + x2, 4 + 5ex, e2x, x cos(x)

Fact 2 was then employed to replace the preceding set by

1, x2, 5ex, e2x, x cos(x)

Fact 1 was used again to replace the above by

1, x2, ex, e2x, x cos(x)

Conclusion: Set S2 is a set of distinct Euler solution atoms, therefore it is
independent. Then the first five in the original list are independent, so S1

itself is a largest independent subset.

92. Set S1 is the list 1 + x2, 1− x2, 2 cos(3x), cos(3x) + sin(3x).

Solution: First, third and fourth make a largest independent subset.
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5.5 Basis, Dimension and Rank

Basis and Dimension
Compute a basis and the report the dimension of the subspace S.

1. In R3, S is the solution space of∣∣∣∣ x1 + x3 = 0,
x2 + x3 = 0.

∣∣∣∣
Solution: Let A =

 1 0 3
0 1 1
0 0 0

, the coefficient matrix for Ax⃗ = 0⃗, x⃗ with

components x1, x2, x3. The extra equation 0 = 0 was appended to create an
equivalent 3× 3 system.
Matrix A equals rref(A). The last frame algorithm applies to find general
scalar solution x1 = −t1, x2 = −t1, x3 = t1 in terms of invented symbol t1.
The vector general solution is then

x⃗ =

 x1

x2

x3

 = t1

 −1
−1
1


The partial derivative ∂x⃗/∂t1 is a basis, equivalent to setting t1 = 1 in the
vector general solution. Then

S = span


 −1

−1
1

 , dim(S) = 1

2. In R4, S is the solution space of∣∣∣∣ x1 + 2x2 + x3 = 0,
x4 = 0.

∣∣∣∣
Solution: Follow Exercise 1, A is 4× 4 and dim(S) = 2.

3. In R2, S = span(v⃗1, v⃗2). Vectors v⃗1, v⃗2 are columns of an invertible matrix.

Solution: A matrix is invertible if and only if it is square and the columns
are independent. Therefore v⃗1, v⃗2 are independent and form a basis for S
with dim(S) = 2.

4. Set S = span(v⃗1, v⃗2), in R4. The vectors are columns in a 4× 4 invertible
matrix.
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5. Set S = span(sin2 x, cos2 x, 1), in the vector space V of continuous func-
tions.

Solution: The first two functions are independent by the sampling test ap-
plied with samples x1 = 0 and x2 = π/2.

Details: the nonsingular sampling matrix is(
sin2(x1) cos2(x1)
sin2(x2) cos2(x2)

)
=

(
sin2(0) cos2(0)

sin2(π/2) cos2(π/2)

)
=

(
0 1
1 0

)
The third function satisfies 1 = cos2(x)+sin2(x) for all x, therefore the three
functions are dependent. A basis is the first two functions. The dimension
of S is two.

6. Set S = span(x, x− 1, x+ 2), in the vector space V of all polynomials.

7. Set S = span(sinx, cosx), the solution space of y′′ + y = 0.

Solution: Distinct Euler solution atoms are independent. Therefore S has
basis sinx, cosx and dim(S) = 2.

8. Set S = span
(
e2x, e3x

)
, the solution space of y′′ − 5y′ + 6y = 0.

Euclidean Spaces

9. Let A be 3× 2. Why is it impossible for the columns of A to be a basis for
R3?

Solution: A basis for R3 has to have 3 independent vectors. To justify this
with fewest support theorems, observe that the three columns of the 3 × 3
identity matrix are a basis for R3 (the standard basis of R3). All bases have
the same number of elements, so R3 cannot have a basis of 2 elements.

10. Let A be m × n. What condition on indices m,n implies it is impossible
for the columns of A to be a basis for Rm?

11. Find a pairwise orthogonal basis for R3 which contains

 1
1

−1

.

Solution: A basis for R3 must have 3 elements. The first will be the given
vector. The other two have to be constructed. A geometrical construction
idea is to think of the given vector v⃗1 as the cross product of two orthogonal
vectors v⃗2, v⃗3. Because the cross product is orthogonal to v⃗2, v⃗3 then v⃗1
is independent of v⃗2, v⃗3. Already v⃗2, v⃗3 are independent because they
are orthogonal (and nonzero). The construction leads to three orthogonal
vectors, known to be independent, and therefore R3 = span{v⃗1, v⃗2, v⃗3} and
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the three vectors are a basis for R3.

Let v⃗1 =

 1
1

−1


v⃗2 =

a
b
c

 and v⃗1 · v⃗2 = a+ b− c = 0 (orthogonality condition)

v⃗2 =

1
0
1

 satisfies a+ b− c = 0

To find v⃗3 requires another solution to a + b − c = 0 with additional
requirement v⃗2 · v⃗3 = a+ c = 0.
Choose a, b, c again:

v⃗3 =

−1
2
1

 satisfies a+ b− c = 0 and a+ c = 0

The three vectors are

v⃗1 =

 1
1

−1

 , v⃗2 =

1
0
1

 , v⃗3 =

−1
2
1


We check the conditions v⃗1 · v⃗2 = 0, v⃗1 · v⃗3 = 0, v⃗2 · v⃗3 = 0 and that all
vectors are nonzero. By the Orthogonal basis theorem they form a basis for
R3.

12. Display a basis for R4 which contains the independent columns of0 1 2 0
0 1 1 0
0 2 1 0
0 0 1 0

.

13. Let S be a subspace of R10 of dimension 5. Insert a basis for S into an
m× n augmented matrix A. What are m and n?

Solution: m = 10 = number of component of a vector in R10. n = 5 =
number of vectors in a basis for S.

14. Suppose A and B are 3×3 matrices and let C = AB. Assume the columns
of A are not a basis for R3. Is there a matrix B so that the columns of C
form a basis for R3?

Solution: No. The determinant product theorem provides |C| = |A||B|.
Independent columns means the determinant is nonzero. Use these hints to
complete the proof.
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15. The term Hyperplane is used for an equation like x4 = 0, which in R4

defines a subspace S of dimension 3. Find a basis for S.

Solution: Choose three columns of the 4 × 4 identity matrix all of which
have last component zero.

16. Find a 3-dimensional subspace S of R4 which has no basis consisting of
columns of the identity matrix.

Solution: Define S by an equation ax1+bx2+cx3+dx4 = 0, which makes S
have dimension 3. Choose a, b, c, d so that no column of the identity matrix
satisfies the equation.

Polynomial Spaces
Symbol V is the vector space of all polynomials p(x). Given subspace S of V ,
find a basis for S and dim(S).

17. The subset S of span(1, x, x2) is defined by dp
dx (1) = 0.

Solution: Let p(x) = a + bx + cx2 and compute the condition 0 = p′(1) to
be 0 = b+ 2cx|x=1 = b + 2c. Then p(x) = a + bx + cx2 = a − 2cx + cx2

depends only on symbols a, c. Differentiate on symbols a, c to identify a
possible basis: ∂p/∂a = 1, ∂p/∂c = −2x + x2. We must prove that S =
span{1,−2x+x2} and that the two vectors 1, −2x+x2 form a basis for S.
Any vector in S has to look like p(x) = a + c(−2x + x2) by the preceding
analysis. So the two vectors span S, meaning S = span{1,−2x + x2}. It
remains to prove they are independent vectors. Let’s appeal to a general
vector space result: two vectors are independent if and only if each is not a
multiple of the other. Geometry finishes the proof: y = 1 is a line of slope
0 while y = −2x+ x2 has nonzero slope. ■

18. The subset S of span(1, x, x2, x3) is defined by p(0) = dp
dx (1) = 0.

19. The subset S of span(1, x, x2) is defined by
∫ 1

0
p(x)dx = 0.

Solution: Let p(x) = a+ bx+ cx2. Then

0 =
∫ 1

0
p(x)dx = ax+ bx2/2 + cx3/3

∣∣x=1

x=0
= a+ b/2 + c/3

which can be written as the equation 6a + 3b + 2c = 0. This equation
defines a plane in R3 with vector components a, b, c. The scalar general
solution of the equation is a = −b/2 − c/3, b = b, c = c without inventing
symbols, because b, c can be used for the usual symbols t1, t2. Independent
R3 solutions are a = −1, b = 2, c = 0 and a = −1, b = 0, c = 3. These
correspond to polynomials p1(x) = −1 + 2x and p2(x) = −1 + 3x2. One
polynomial is linear, the other is quadratic, so each is not a multiple of the
other: they are independent. Both are in S and S = span{p1, p2} by the
preceding analysis. The basis is p1, p2. ■
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20. The subset S of span(1, x, x2, x3) is defined by
∫ 1

0
xp(x)dx = 0.

Differential Equations
Find a basis for solution subspace S. Assume the general solution of the 4th
order linear differential equation is

y(x) = c1 + c2x+ c3e
x + c4e

−x.

21. Subspace S1 is defined by y(0) = dy
dx (0) = 0.

Solution: Coefficients are determined by the conditions:

y(0) = 0 is equivalent to c1 = 0
y′(0) = 0 is equivalent to c2 + c3 − c4 = 0

There are two linear equations in four unknowns c1 to c4. Lead variables
are c1, c2 and the free variables are c3, c4. The scalar general solution is
c1 = 0, c2 = −t1 + t2, c3 = t1, c4 = t2. In R4 with vector components c1
to c4 there are two independent solutions: c1 = 0, c2 = −1, c3 = 1, c4 = 0
and c1 = 0, c2 = 0, c3 = 1, c4 = 1. These solutions correspond to solutions
y1() = −x + ex, y2(x) = ex + e−x. Geometrically, each of y1, y2 is not a
scalar multiple of the other: they are independent. Then S1 = span{y1, y2}
with basis y1, y2.

22. Subspace S2 is defined by y(1) = 0.

23. Subspace S3 is defined by y(0) =
∫ 1

0
y(x)dx.

Solution: The condition for symbols c1 to c4:

y(0) =
∫ 1

0
y(x)dx

c1 + c3 + c4 = c1x+ c2x
2/2 + c3e

x − c4e
−x
∣∣x=1

x=0

c1 + c3 + c4 = c1 + c2/2 + c3e− c4e
−1 − c3 + c4

(−1/2)c2 + (2− e)c3 + c4e
−1 = 0

This linear equation in variables c1, c2, c3, c4 is a hyperplane in R4 of di-
mension 3. The scalar general solution is c1 = t1, c2 = (4− 2e)c3 +2c4/e =
(4−2e)t2+2t3/e, c3 = t2, c4 = t3. Three independent solutions are obtained
by letting t1, t2, t3 assume the 3 values in each column of the 3× 3 identity
matrix:

c1 = 1, c2 = 0, c3 = 0, c4 = 0 Identity column 1, t1 = 1, t2 = 0, t3 = 0
c1 = 0, c2 = 4− 2e, c3 = 1, c4 = 0 Identity column 2, t1 = 0, t2 = 1, t3 = 0
c1 = 0, c2 = 2/e, c3 = 0, c4 = 1 Identity column 3, t1 = 0, t2 = 0, t3 = 1

Then correspondingly

y1(x) = 1
y2(x) = (4− 2e)x+ ex

y3(x) = 2x/e+ e−x

S3 = span{y1, y2, y3} and y1, y2, y3 is the basis.
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24. Subspace S4 is defined by y(1) = 0,
∫ 1

0
y(x)dx = 0.

Largest Subset of Independent Vectors
Find a largest independent subset of the given vectors.

25. The columns of

0 0 1 1
0 0 1 1
0 1 1 0
0 1 2 1

.

Solution: Let A denote the matrix, then

rref(A) =

0 1 0 −1
0 0 1 1
0 0 0 0
0 0 0 0


Columns 2 and 3 of A are independent.

26. The columns of


3 1 2 0 5
2 1 1 0 4
3 2 1 0 7
1 0 1 0 1
3 2 1 0 7

.

27. The polynomials x, 1 + x, 1− x, x2.

Solution:
First method: 1 − x = c1(1) + c2(1 + x) for c1 = 2, c2 = −1, therefore
the first two are independent and the third depends on the first two. The
last one x2 is not a scalar multiple of either 1 or 1+ x, therefore the largest
independent set is 1, 1 + x, x2.

Second method: The linear map T : a+ bx+ cx2 7→

a
b
c

 is one-to-one

and onto from V = span{1, x, x2} to R3. Then

T (x) =

0
1
0

 , T (1 + x) =

1
1
0

 , T (1− x) =

 1
−1
0

 , T (x2) =

0
0
1


Let

A =

 0 1 1 0
1 1 −1 0
0 0 0 1

 , then rref(A) =

 1 0 −2 0
0 1 1 0
0 0 0 1


Columns 1,2,4 of A are independent. The inverse images of these columns
under T are x, 1 + x, x2, which is a largest independent set.
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28. The continuous functions x, ex, x+ ex, e2x.

Pivot Theorem Method
Extract a largest independent set from the columns of the given matrix A. The
answer is a list of independent columns of A, called the pivot columns of A.

29.

(
1 2 1
1 1 0
2 1 0

)
Solution: Let A be the matrix. Then rref(A) is the identity matrix. The
pivot theorem applies to conclude all three columns of A are independent.

30.

0 1 2 1
0 1 1 0
0 2 1 0
0 0 1 1



31.


0 2 1 0 1
1 5 2 0 3
1 3 1 0 2
0 2 1 0 3
0 2 1 0 1


Solution: Let A be the matrix, then

rref(A) =



1 0 −1/2 0 0

0 1 1/2 0 0

0 0 0 0 1

0 0 0 0 0

0 0 0 0 0


Columns 1,2,5 of A are independent by the pivot theorem.

32.


0 0 2 1 0 1
0 1 5 2 0 3
0 1 3 1 0 2
0 2 4 1 0 3
0 0 2 1 0 1
0 2 4 1 0 3


Row and Column Rank
Justify by direct computation that rank(A) = rank

(
AT
)
, which means that

the row rank equals the column rank.
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33. A =

(
1 0 1
0 1 1
0 0 0

)

Solution: Already A = rref(A) with rank(A) = 2. Let B = AT =

(
1 0 0
0 1 0
1 1 0

)
.

Then rref(B) =

(
1 0 0
0 1 0
0 0 0

)
with rank(B) = 2.

34. A =

1 0 1 0
0 1 1 1
0 0 0 0
0 1 1 1


Nullspace or Kernel
Find a basis for the nullspace of A, which is also called the kernel of A.

35. A =

(
1 0 1
0 1 1
0 0 0

)

Solution: Solve Ax⃗ = 0⃗ for x⃗ = t1

 1
1

−1

 where t1 is the invented symbol

in the last frame algorithm. A basis for the nullspace of A is

 1
1

−1

.

36. A =

1 0 1 0
0 1 1 1
0 0 0 0
0 1 1 1


Row Space
Find a basis for the row space of A. There are two possible answers: (1) The
nonzero rows of rref(A), (2) The pivot columns of AT . Answers (1) and (2)
can differ wildly.

37. A =

(
1 0 1
0 1 1
0 0 0

)
Solution:
(1): Exercise 35 has the same matrix A. Without computation, rref(A) =
A and a basis for the row space is obtained from the nonzero rows of rref(A)

by transposition:

1
0
1

,

0
1
1


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(2): Find the pivot columns of B = AT =

(
1 0 0
0 1 0
1 1 0

)
via rref(B) =

(
1 0 0
0 1 0
0 0 0

)
.

Conclusion: columns 1, 2 of B are independent. A basis is

1
0
1

,

0
1
1

. The

answer happens to duplicate the answer from (1), an unusual event.

38. A =

1 0 1 0
0 1 1 1
0 0 0 0
0 1 1 1


Column Space
Find a basis for the column space of A, in terms of the columns of A. Normally,
we report the pivot columns of A.

39. A =

(
1 0 1
0 1 1
0 0 0

)
Solution: Without computation, rref(A) = A and a basis for the column

space is obtained from columns 1, 2 of A:

1
0
0

,

0
1
0



40. A =

1 0 1 0
0 1 1 1
0 0 0 0
0 1 1 1


Dimension Identities
Let A be an m × n matrix of rank r. Prove the following dimension identities
in Theorem 5.46.

41. dim(nullspace(A)) = n− r

Solution: The rank-nullity theorem in the form lead count + free count
= variable count was used to obtain rank(A) + nullity(A) = n. Be-
cause free count = nullity(A) = dim(nullspace(A)) and lead count
=rank(A) = r, then the result follows. ■

42. dim(colspace(A)) = r

43. dim(rowspace(A)) = r

Solution: Symbol r is the rank of A. The dimension of the row space of
A is the number of independent rows of A, which equals the number of
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nonzero rows of rref(A). An alterative explanation: the row space of A is
the column space of AT and the dimension of the row space is the number
of pivot columns in rref(AT ). Because rank(A) = rank(AT ) then the
dimension of the row space of A equals the rank of A, or using notation,
dim(rowspace(A)) = r. ■

44. The dimensions of nullspace(A) and colspace(A) add to n.

Orthogonal Complement S⊥

Let S be a subspace of vector space V = Rn. Define the Orthogonal com-
plement by

S⊥ = {x⃗ : x⃗T y⃗ = 0, y⃗ in S}.(1)

45. Let V = R3 and let S be the xy-plane. Compute S⊥. Answer: The z-axis.

Solution: Definition: S⊥ = {x⃗ : x⃗ · y⃗ = 0, y⃗ in the xy-plane}.

Let y⃗ =

a
b
0

 where a, b are real numbers, x⃗ =

x1

x2

x3

. Then y⃗ is in S and

x⃗ is in V . For x⃗ to also be in S this requirement is made:

0 = x⃗ · y⃗ = ax1 + bx2

The requirement must hold for all a, b. Quickly we decide that x1 = x2 = 0,

leaving x3 undetermined and x⃗ =

 0
0

x3

 with x3 any real number. So x⃗ is

any vector whose head lies on the z-axis and S is the z-axis. ■

46. Prove that S⊥ is a subspace, using the Subspace Criterion.

47. Prove that the orthogonal complement of S⊥ is S. In symbols,
(
S⊥)⊥ = S.

Solution:
Let W = S⊥ = {w⃗ : w⃗ · s⃗ = 0 for all s in S}.
Let X = W⊥ = {x⃗ : x⃗ · w⃗ = 0 for all w in W}.
Orthonormal basis for V : Let s⃗1, . . . , s⃗k be an orthonormal basis for S.
Extend it to an orthonormal basis for V by Gram-Schmidt, adding vectors
s⃗k+1, . . . , s⃗n. Let x⃗ ∈ X. By basis expansion, x⃗ = s⃗+w⃗ where s⃗ =

∑k
i=1 cis⃗i

and w⃗ =
∑n

j=k+1 cj s⃗j , the constants defined by cm = x⃗ · s⃗m, 1 ≤ m ≤ n.
By construction, for k + 1 ≤ j ≤ n each vector s⃗j is orthogonal to every
vector in S, meaning s⃗j is in W = S⊥. Therefore s⃗ ∈ S and w⃗ ∈ W .

To prove X ⊂ S: Let x⃗ ∈ X, then for k + 1 ≤ j ≤ n equation x⃗ · s⃗j = 0

holds (definition of X). Expand x⃗ =
∑k

i=1 civ⃗i +
∑n

j=k+1 cj v⃗j . Definition
cm = x⃗ · s⃗m and x⃗ · s⃗j = 0 implies cj = 0 for k + 1 ≤ j ≤ n. Then
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x⃗ =
∑k

i=1 civ⃗i is in S.

To prove S ⊂ X: Let s⃗ ∈ S, then s⃗ =
∑k

i=1 civ⃗i for constants ci = s⃗ · s⃗i
(1 ≤ i ≤ k). We must show w⃗ ∈ W implies equation s⃗ · w⃗ = 0, then
s⃗ ∈ X, as to be proved. Any w⃗ ∈ W has expansion

∑n
j=k+1 cj s⃗j , each

vector s⃗j orthogonal to s⃗1, . . . , s⃗k. So w⃗ is orthogonal to s⃗1, . . . , s⃗k, hence w⃗
is orthogonal to s⃗: equation s⃗ · w⃗ = 0 holds. ■

48. Prove that
V = {x⃗+ y⃗ : x⃗ ∈ S, y⃗ ∈ S⊥}.

This relation is called the Direct Sum of S and S⊥.

Fundamental Theorem of Linear Algebra
Let A be an m× n matrix.

49. Write a short proof:
Lemma. Any solution of Ax⃗ = 0⃗ is orthogonal to every row of A.

Solution: Vector x⃗ is orthogonal to each row of A provided

n∑
j=1

aijxj = 0, 1 ≤ i ≤ n

row i =

 ai1
...

ain


T


Let Ax⃗ =

b1
...

bn

 where bi =
∑n

j=1 aijxj (Definition of matrix multiply).

Because Ax⃗ = 0⃗, matrix equality provides equation bi = 0 and in turn

n∑
j=1

aijxj = bi = 0, 1 ≤ i ≤ n

as required to complete the proof.

Alternate Proof: Details in R3 to get rid of all the summations:0
0
0

=Ax⃗=

(
a11 a12 a13
a21 a22 a23
a31 a32 a33

) x1

x2

x3

=

 a11x1 + a12x2 + a13x3

a21x1 + a22x2 + a23x3

a31x1 + a32x2 + a33x3


Then a11x1 + a12x2 + a13x3 = 0

a21x1 + a22x2 + a23x3 = 0
a31x1 + a32x2 + a33x3 = 0

or

 row(A, 1) · x⃗ = 0
row(A, 2) · x⃗ = 0
row(A, 3) · x⃗ = 0

which displays orthogonality of each row of A to vector x⃗. ■
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50. Find the dimension of the kernel and image for both A and AT . The
four answers use symbols m,n, rank(A). The main tool is the rank-nullity
theorem.

51. Prove
kernel(A) = Image

(
AT
)⊥

. Use Exercise 49.

Solution: Let S = kernel(A), the set of solutions to the equation Ax⃗ = 0⃗.
Let W = Image(AT ), the set of all linear combinations of columns of AT ,
that is, all vectors w⃗ =

∑m
i=1 ci col(A

T , i). We will prove S = W⊥.

Show S ⊂ W⊥: Exercise 49 shows that x⃗ ∈ S is orthogonal to each row
of A, which means equation x⃗ · col(AT , i) = 0 holds, 1 ≤ i ≤ m. Then
x⃗ ·
(∑m

i=1 ci col(A
T , i)

)
= 0 or x⃗ · w⃗ = 0 for all w⃗ ∈ W . By definition of

orthogonal complement, x⃗ ∈ W⊥.

Show W⊥ ⊂ S: A vector s⃗ ∈ W⊥ is orthogonal to all vectors w⃗ ∈ W . In
particular, w⃗ = col(AT , i) is allowed, so s⃗ satisfies equation s⃗·col(AT , i) = 0.
Therefore s⃗ is orthogonal to the rows of A, which by Exercise 49 implies
As⃗ = 0⃗. Then s⃗ ∈ S. ■

52. Prove
kernel

(
AT
)
= Image (A)

⊥
.

Fundamental Subspaces
The kernel and image of both A and AT are called The Four Fundamental
Subspaces by Gilbert Strang. Let A denote an n×m matrix.

53. Prove using Exercise 51:
kernel(A) = rowspace(A)⊥

Solution: Exercise 51 gives kernel(A) = Image(AT )⊥. We must prove that
Image(AT ) = rowspace(A).

The row space of A is the set of all linear combinations of the rows of A,
formally the set of all linear combinations of columns of AT . The set of all
linear combinations of the columns of AT is the image of AT . ■

54. Establish these four identities.
kernel(A) = Image

(
AT
)⊥

kernel
(
AT
)
= Image (A)

⊥

Image (A) = kernel(AT )⊥

Image
(
AT
)
= kernel(A)⊥

Notation. kernel is null space, image is column space, symbol ⊥ is orthogonal
complement: see equation (4).

Equivalent Bases
Test the given subspaces for equality.
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55. S1 = span

1
1
0

 ,

1
1
1

,

S2 = span

 3
3

−1

 ,

1
1
1


Solution: Follow the Equivalent Bases example in the text.

Let B =

(
1 1
1 1
0 1

)
, C =

(
3 1
3 1

−1 1

)
.

Let W = ⟨B|C⟩ =

(
1 1 3 1
1 1 3 1
0 1 −1 1

)
.

Compute the rank of each to be 2. Then S1 = S2.

# Subspace equality test, Exercise 55

with(LinearAlgebra):

B:=<1,1,0|1,1,1>;C:=<3,3,-1|1,1,1>;

Rank(<B|C>);Rank(B);Rank(C);

# all equal 2 => S1 = S2

56. S3 = span

1
0
1

 ,

1
2
1

,

S4 = span

1
0
0

 ,

0
1
0



57. S5 = span



1
0
1
1

 ,


1
2
1
1


,

S6 = span



1
0
1
1

 ,


0
1
0
1




Solution: Follow Exercise 55. Compute the ranks: 3, 2, 2. Then S1 ̸= S2.

# Subspace equality test, Exercise 57

with(LinearAlgebra):

B:=<1,0,1,1|1,2,1,1>;C:=<1,0,1,1|0,1,0,1>;

Rank(<B|C>);Rank(B);Rank(C);

# Ranks: 3,2,2 => S1 != S2
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58. S7 = span



2
1
1
1

 ,


1
2
1
1


,

S8 = span




1
−1
0
0

 ,


3
3
2
2



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Chapter 6

Scalar Linear Differential
Equations

Contents

6.1 Linear 2nd Order Constant . . . . . . . . 394

6.2 Continuous Coefficient Theory . . . . . . 402

6.3 Higher Order Linear Constant Equations 407

6.4 Variation of Parameters . . . . . . . . . . 415

6.5 Undetermined Coefficients . . . . . . . . . 419

6.6 Undamped Mechanical Vibrations . . . . 427

6.7 Forced and Damped Vibrations . . . . . . 434

6.8 Resonance . . . . . . . . . . . . . . . . . . . 452

6.1 Linear 2nd Order Constant

General Solution 2nd Order
Solve the constant equation using Theorem 6.1, page 431 �. Report the general
solution using symbols c1, c2. Model the solution after Examples 6.1–6.3, page
434 �.

1. y′′ = 0
Ans: y = c1 + c2x
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6.1 Linear 2nd Order Constant

Solution: Follow Example 6.1 on page 434 �. Characteristic equation r2 =
0 has a double root r = 0, 0. Then y1 = e0x = 1, y2 = xe0x = x and
y = c1y1 + c2y2 = c1 + c2x.

2. 3y′′ = 0

3. y′′ + y′ = 0

Solution: Characteristic equation r2+r = 0 has roots r = 0, r = −1. Then
y1 = e0x = 1, y2 = e−x and y = c1y1 + c2y2 = c1 + c2e

−x.

4. 3y′′ + y′ = 0

5. y′′ + 3y′ + 2y = 0

Solution: Characteristic equation r2+3r+2 = 0 has roots r = −2, r = −1.
Then y1 = e−2x, y2 = e−x and y = c1y1 + c2y2 = c1e

−2x + c2e
−x.

6. y′′ − 3y′ + 2y = 0

7. y′′ − y′ − 2y = 0

Solution: Characteristic equation r2 − r − 2 = 0 has roots r = −1, r = 2.
Then y1 = e−x, y2 = e2x and y = c1y1 + c2y2 = c1e

−x + c2e
2x.

8. y′′ − 2y′ − 3y = 0

9. y′′ + y = 0

Solution: Follow Example 6.3 page 434 �. Characteristic equation r2 +
1 = 0 has roots r = i, r = −i. Then y1 = cos(x), y2 = sin(x) and
y = c1y1 + c2y2 = c1 cos(x) + c2 sin(x).

10. y′′ + 4y = 0

11. y′′ + 16y = 0

Solution: y = c1 cos(4x) + c2 sin(4x).

12. y′′ + 8y = 0

13. y′′ + y′ + y = 0

Solution: Use the quadratic formula to find the roots of the characteristic

equation r2 + r + 1 = 0. Then r = − 1
2 ±

√
−3
2 = − 1

2 ± i
√
3
2 . Let y1 =

e−x/2 cos(
√
3x/2) and y2 = e−x/2 sin(

√
3x/2). The general solution is y =

c1y1 + c2y2 = c1e
−x/2 cos(

√
3x/2) + c2e

−x/2 sin(
√
3x/2).
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14. y′′ + y′ + 2y = 0

15. y′′ + 2y′ + y = 0

Solution: y = c1e
−x + c2xe

−x.

16. y′′ + 4y′ + 4y = 0

17. 3y′′ + y′ + y = 0

Solution: Characteristic equation 3r2 + r + 1 = 0 has roots r = −1/6 ±
(i/6)

√
11. Then y = c1e

−x/6 cos(
√
11x/6) + c2e

−x/6 sin(
√
11x/6).

18. 9y′′ + y′ + y = 0

19. 5y′′ + 25y′ = 0

Solution: y = c1 cos(
√
5x) + c2 sin(

√
5x).

20. 25y′′ + y′ = 0

21. 2y′′ + y′ − y = 0

Solution: Characteristic equation 2r2 + r − 1 = 0 has roots r = −1, 1/2.
Then y = c1e

−x + c2e
x/2.

22. 2y′′ − 3y′ − 2y = 0

23. 2y′′ + 7y′ + 3y = 0

Solution: y = c1e
−3x + c2e

−x/2.

24. 4y′′ + 8y′ + 3y = 0

25. 6y′′ + 7y′ + 2y = 0

Solution: y = c1e
−x/2 + c2e

−2x/3.

26. 6y′′ + y′ − 2y = 0

27. y′′ + 4y′ + 8y = 0

Solution: Roots −2± 2i. Then y = c1e
−2x cos(2x) + c2e

−2x sin(2x).

28. y′′ − 2y′ + 4y = 0

29. y′′ + 2y′ + 4y = 0

Solution: Roots −1± i
√
3. Then y = c1e

−x cos(
√
3x) + c2e

−x sin(
√
3x).
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30. y′′ + 4y′ + 5y = 0

31. 4y′′ − 4y′ + y = 0

Solution: y = c1e
x/2 + c2xe

x/2.

32. 4y′′ + 4y′ + y = 0

33. 9y′′ − 6y′ + y = 0

Solution: y = c1e
x/3 + c2xe

x/3.

34. 9y′′ + 6y′ + y = 0

35. 4y′′ + 12y′ + 9y = 0

Solution: y = c1e
−3x/2 + c2xe

−3x/2.

36. 4y′′ − 12y′ + 9y = 0

Initial Value Problem 2nd Order
Solve the given problem, modeling the solution after Example 6.4.

37. 6y′′ + 7y′ + 2y = 0, y(0) = 0, y′(0) = −1

Solution: y = 6e−2x/3 − 6e−x/2. The general solution is y = c1e
−2x/3 +

c2e
−x/2, found from roots −2/3,−1/2 of 6r2 + 7r + 2 = 0. Substitute into

equations y(0) = 0, y′(0) = −1:

c1 + c2 = 0, −2c1/3− c2/2 = −1

Then solve for c1 = 6, c2 = −6 by Cramer’s rule.

# Exercise 37, answer check

L:=[6,7,2]; A:=0;B:=-1;

solve(L[1]*x^2+L[2]*x+L[3]=0,x);

de:=L[1]*diff(y(x),x,x)+L[2]*diff(y(x),x)+L[3]*y(x)=0;

ic:=y(0)=A,D(y)(0)=B;

dsolve([de,ic],y(x));

# y(x) = 6*exp(-(2/3)*x)-6*exp(-(1/2)*x)

38. 2y′′ + 7y′ + 3y = 0, y(0) = 5, y′(0) = −5

39. y′′ − 2y′ + 4y = 0, y(0) = 1, y′(0) = 1

Solution: y = ex cos(
√
3x)

40. y′′ + 4y′ + 5y = 0, y(0) = 1, y′(0) = 1
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41. 9y′′ − 6y′ + y = 0, y(0) = 3, y′(0) = 1

Solution: y = 3 ex/3

42. 4y′′ + 12y′ + 9y = 0, y(0) = 2, y′(0) = 1

Detecting Euler Solution Atoms
A Euler solution atom is defined in Definition 6.1 page 432 �. Box each list
entry that is precisely an atom. Double-box non-atom list entries that are a
sum of constants times atoms. Follow Example 6.5 page 436 �.

43. 1, ex/5, −1, e1.1x, 2ex

Solution: 1 , ex/5 , −1 (not an atom), e1.1x , 2ex

44. −x cosπx, x2 sin 2x, x3, 2x3

45. e2x, e−x2/2, cos2 2x, sin 1.57x

Solution: e2x , e−x2/2 not an atom, cos2 2x because of a trig double

angle identity, sin 1.57x

46. x7ex cos 3x, x10ex sin 4x

47. x7ex cosh 3x, x10e−x sinh 5x

Solution: Both double-boxed because of definitions cosh(x) = 1
2e

x + 1
2e

−x

and sinh(x) = 1
2e

x − 1
2e

−x.

48. cosh2 x, x(1 + x), x1.5,
√
xe−x

49. x1/2ex/2,
1

x
ex, ex(1 + x2)

Solution: x1/2ex/2 not an atom,
1

x
ex not an atom, ex(1 + x2)

50.
x

1 + x
,
1

x
(1 + x2), ln |x|

Euler Base Atom
An Euler base atom is defined in Definition 6.1 page 432 �. Find the base
atom for each Euler solution atom in the given list.

51. x cosπx, x3, x10e−x sin 5x

Solution: Strip off the power of x: base atoms = cosπx, 1, e−x sin 5x.
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52. x6, x4e2x, x2e−x/π, x7ex cos 1.1x

Inverse Problems
Find the homogeneous 2nd order differential equation, given the supplied infor-
mation. Follow Example 6.6.

53. e−x/5 and 1 are solutions.
Ans: 5y′′ + y′ = 0.

Solution: The roots are obtained from the atoms: r = −1/5, 0. Then (r +
1/5)(r− 0) = 0 is the characteristic equation: r2+ r/5 = 0. The differential
equation is then y′′+(1/5)y′ = 0. A common error is to report y′′+(1/5)y =
0, caused by reading r/5 as the constant term (it is not).

54. e−x and 1 are solutions.

55. ex + e−x and ex − e−x are solutions.

Solution: Identify atoms ex and e−x, then roots r = 1,−1 to create charac-
teristic polynomial (r− 1)(r+1) = r2 − 1. Then the differential equation is
y′′ − y = 0.

56. e2x + xe2x and xe2x are solutions.

57. x and 2 + x are solutions.

Solution: Identify atoms 1, x and then roots r = 0, 0 (double root) to find
characteristic equation r2 = 0. The differential equation is y′′ = 0.

58. 4ex and 3e2x are solutions.

59. The characteristic equation is r2 + 2r + 1 = 0.

Solution: y′′ + 2y′ + y = 0

60. The characteristic equation is 4r2 + 4r + 1 = 0.

61. The characteristic equation has roots r = −2, 3.

Solution: The characteristic polynomial is (r + 2)(r − 3) = r2 − r − 6. The
differential equation is y′′ − y′ + 6y = 0.

62. The characteristic equation has roots r = 2/3, 3/5.

63. The characteristic equation has roots r = 0, 0.

Solution: y′′ = 0
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64. The characteristic equation has roots r = −4,−4.

65. The characteristic equation has complex roots r = 1± 2i.

Solution: The characteristic polynomial is (r − 1 − 2i)(r − 1 + 2i) = (r −
1)2 + 4 = r2 − 2r + 5. The differential equation is y′′ − 2y′ + 5y = 0.

66. The characteristic equation has complex roots r = −2± 3i.

Details of proofs

67. (Theorem 6.1, Background) Expand the relation Ar2 +Br + C = A(r −
r1)(r− r2) and compare coefficients to obtain the sum and product of roots
relations

B

A
= −(r1 + r2),

C

A
= r1r2.

Solution:

Ar2 +Br + C = A(r − r1)(r − r2)
Ar2 +Br + C = A(r2 − r1r − r2e+ r1r2)

Compare cofficients left and right:

A = A
B == −A(r1 + r2) sum of the roots
C = Ar1r2

Then:

B/A = −(r1 + r2) = negative of the sum of the roots
C/S = r1r2 = product of the roots

68. (Theorem 6.1, Background)

Let r1, r2 be the two roots of Ar2 + Br + C = 0. The discriminant is
D = B2 − 4AC. Use the quadratic formula to derive these relations for
D > 0, D = 0, D < 0, respectively:

r1 = −B+
√
D

2A , r2 = −B−
√
D

2A ,

r1 = r2 =
√
D

2A .

r1 = −B+i
√
−D

2A , r2 = −B−i
√
−D

2A .

69. (Theorem 6.1, Case 1)

Let y1 = er1x, y2 = er2x. Assume
Ar2 + Br + C = A(r − r1)(r − r2). Show that y1, y2 are solutions of
Ay′′ +By′ + Cy = 0.

Solution:
Ay′′ +By′ + Cy|y=y1

= A(er1x)′′ +B(er1x)′ + Cer1x
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= Ar1r1e
r1x +Br1e

r1x + Cer1x

= (Ar1r1 +Br1 + C)er1x

= A(r1 − r1)(r1 − r2)e
r1x

= 0

Except for indexing the proof is the same for er2x. ■

70. (Theorem 6.1, Case 2)

Let y1 = er1x, y2 = x er1x. Assume
Ar2 +Br + C=A(r − r1)(r − r1).
Show that y1, y2 are solutions of Ay′′ +By′ + Cy = 0.

71. (Theorem 6.1, Case 3)

Let a, b be real, b > 0. Let y1 = eax cos bx, y2 = eax sin bx. Assume
factorization
Ar2+Br+C=A(r−a−ib)(r−a+ib)
then show that y1, y2 are solutions of Ay′′ +By′ + Cy = 0.

Solution:
Let r1 = a + ib, r2 = a − ib, the two complex roots. Let z = a + ib.
Let y = ezx = y1 + iy2. Then Az2 + Bz + C = 0 and y is a solution of
Ay′′ +By′ + Cy = 0 by these steps:

Az2 +Bz + C = 0 because z is a root of the characteristic equation
Az2y +Bzy + Cy = 0 multiply by y
Ay′′ +By′ + Cy = 0 because y = ezx, y′ = zezx = zy, y′′ = z2ezx = z2y

Then y = y1 + iy2 implies:

A(y′′1 + iy′′2 ) +B(y′1 + iy′2) + C(y1 + iy2) = 0
Ay′′1 +By′1 + Cy1 + i(Ay′′2 +By′2 + Cy2) = 0

The left side is a complex number X + iY equal to zero on the right side,
therefore the real and imaginary parts X, Y of the complex number are
zero:

X = Ay′′1 +By′1 + Cy1 = 0
Y = Ay′′2 +By′2 + Cy2 = 0

The result: both y1 and y2 are solutions of Ay′′ +By′ + Cy = 0. ■
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6.2 Continuous Coefficient Theory

Continuous Coefficients
Determine all intervals J of existence of y(x), according to Picard’s theorem.

1. y′′ + y = ln |x|
Solution: Let f(x, y) = −y + ln |X|. The domain D is x ̸= 0 and all y.
Both f and fy = −1 are continuous on D. According to Picard’s theorem,
there is a locally unique solution to each initial value problem y′ = f(x, y),
y(x0) = y0 for any y0 and any x0 ̸= 0.

2. y′′ = ln |x− 1|

3. y′′ + (1/x)y = 0

Solution: All y and all x ̸= 0.

4. y′′ + 1
1+xy

′ + 1
xy = 0

5. x2y′′ + y = sinx

Solution: All y and all x ̸= 0.

6. x2y′′ + xy′ = 0

Superposition
Verify that y = c1y1 + c2y2 is a solution.

7. y′′ = 0, y1(x) = 1, y2(x) = x

Solution: y′′ = c1y
′′
1 + c2y

′′
2 = c1(0) + c2(0) = 0

8. y′′ = 0, y1(x) = 1 + x, y2(x) = 1− x

9. y′′′ = 0, y1(x) = x, y2(x) = x2

Solution: y′′′ = c1y
′′′
1 + c2y

′′′
2 = c1(0) + c2(0) = 0

10. y′′′ = 0, y1(x) = 1 + x, y2(x) = x+ x2

Structure
Verify that y = yh + yp is a solution.

11. y′′ + y = 2, yh(x) = c1 cosx+ c2 sinx, yp(x) = 2

Solution: y′′+ y = (yh+ yp)
′′+ yh+ yp = −c1 cosx− c2 sinx+0+ c1 cosx+

c2 sinx+ 2 = 2
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12. y′′ + 4y = 4, yh(x) = c1 cos 2x+ c2 sin 2x, yp(x) = 1

13. y′′ + y′ = 5, yh(x) = c1 + c2e
−x, yp(x) = 5x

Solution: y′′ + y′ = (c1 + c2e
−x + 5x)′′ + (c1 + c2e

−x + 5x)′ = 0 + c2e
−x +

0 + (0− c2e
−x + 5) = 5

14. y′′ + 3y′ = 5, yh(x) = c1 + c2e
−3x, yp(x) = 5x/3

15. y′′ + y′ = 2x, yh(x) = c1 + c2e
−x, yp(x) = x2 − 2x

Solution: y′′ + y′ = (c1 + c2e
−x + x2 − 2x)′′ + (c1 + c2e

−x + x2 − 2x)′ =
0 + c2e

−x + 2− 0 + (0− c2e
−x + 2x− 2 = 2x

16. y′′ + 2y′ = 4x, yh(x) = c1 + c2e
−2x, yp(x) = x2 − x

Initial Value Problems
Solve for constants c1, c2 in the general solution yh = c1y1 + c2y2.

17. y′′ = 0, y1 = 1, y2 = x, y(0) = 1, y′(0) = 2

Solution:
y = c1y1 + c2y2
= c1 + c2x

Translate equations y(0) = 1, y′(0) = 2:

c1 + c2(0) = 1, c2 = 2

Solve: c1 = 1, c2 = 2. Then y = 1 + 2x.

18. y′′ = 0, y1 = 1 + x, y2 = 1− x, y(0) = 1, y′(0) = 2

19. y′′ + y = 0, y1 = cosx, y2 = sinx, y(0) = 1, y′(0) = −1

Solution:
y = c1y1 + c2y2
= c1 cosx+ c2 sinx

Translate equations y(0) = 1, y′(0) = −1:

c1(1) + c2(0) = 1, −c1(0) + c2(1) = −1

Solve: c1 = 1, c2 = −1. Then y = cosx− sinx.

20. y′′ + y = 0, y1 = sinx, y2 = cosx, y(0) = 1, y′(0) = −1

21. y′′ + 4y = 0, y1 = cos 2x, y2 = sin 2x, y(0) = 1, y′(0) = −1

Solution:
y = c1y1 + c2y2
= c1 cos 2x+ c2 sin 2x
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Translate equations y(0) = 1, y′(0) = −1:

c1(1) + c2(0) = 1, −2c1(0) + 2c2(1) = −1

Solve: c1 = 1, c2 = −1/2. Then y = cos 2x− (1/2) sin 2x.

22. y′′ + 4y = 0, y1 = sin 2x, y2 = cos 2x, y(0) = 1, y′(0) = −1

23. y′′ + y′ = 0, y1 = 1, y2 = e−x, y(0) = 1, y′(0) = −1

Solution:
y = c1y1 + c2y2
= c1 + c2e

−x

Translate equations y(0) = 1, y′(0) = −1:

c1(1) + c2(1) = 1, 0− c2(1) = −1

Solve: c1 = 0, c2 = 1. Then y = e−x.

24. y′′ + y′ = 0, y1 = 1, y2 = e−x, y(0) = 2, y′(0) = −3

25. y′′ + 3y′ = 0, y1 = 1, y2 = e−3x, y(0) = 1, y′(0) = −1

Solution:
y = c1y1 + c2y2
= c1 + c2e

−3x

Translate equations y(0) = 1, y′(0) = −1:

c1 + c2(1) = 1, 0− 3c2(1) = −1

Solve: c1 = 2/3, c2 = 1/3. Then y = 2/3 + (1/3)e−3x.

26. y′′ + 5y′ = 0, y1 = 1, y2 = e−5x, y(0) = 1, y′(0) = −1

Recognizing yh
Extract from the given solution y a particular solution yp with fewest terms.

27. y′′ + y = x,
y = c1 cosx+ c2 sinx+ x

Solution: The Euler solution atoms for the homogeneous equation y′′+y = 0
are cosx, sinx. Then c1 cosx + c2 sinx is a solution of the homogeneous
equation, making yp = x a particular solution.

28. y′′ + y = x,
y = cosx+ x

29. y′′ + y′ = x,
y = c1 + c2e

−x + x2/2− x

Solution: yp = x2/2− x
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30. y′′ + y′ = x,
y = e−x − x+ 1 + x2/2

31. y′′ + 2y′ + y = 1 + x,
y = (c1 + c2x)e

−x + x− 1

Solution: yp = x− 1

32. y′′ + 2y′ + y = 1 + x,
y = e−x + x+ xe−x − 1

Reduction of Order
Given solution y1, find an independent solution y2 by reduction of order.

33. y′′ + 2y′ = 0, y1(x) = 1

Solution: Let x0 = 0. Let a = 1, b = 2. Then∫ t

x0
(b/a)dr =

∫ t

0
2dr = 2t

y2(x) = y1(x)
∫ x

x0

e
−
∫ t
x0

(b/a)dr

y21(t)
dt =

∫ x

0
e−2t

12 dt

= (1− e−2x)/2

Answer check:

y′′ +2y′ = (1/2)(1− e−2x)′′ +2(1/2)(1− e−2x)′ = (1/2)(4)e−2x − 2e−2x = 0

34. y′′ + 2y′ = 0, y1(x) = e−2x

35. 2y′′ + 3y′ + y = 0, y1(x) = e−x

Solution: Let x0 = 0. Let a = 2, b = 3. Then∫ t

x0
(b/a)dr =

∫ t

0
(3/2)dr = 3t/2

y2(x) = y1(x)
∫ x

x0

e
−
∫ t
x0

(b/a)dr

y21(t)
dt = e−x

∫ x

0
e−3t/2

e−2t dt

= 2(−e−x + e−x/2)

Answer check:

2y′′ + 3y′ + y
= 2(−2e−x + 2e−x/2)′′ + 3(−2e−x + 2e−x/2)′ + (−2e−x + 2e−x/2)
= −4e−x + e−x/2 + 6e−x − 3e−x/2 − 2e−x + 2e−x/2

= (−4 + 6− 2)e−x + (1− 3 + 2)e−x/2 = 0

36. 2y′′ − y′ − y = 0, y1(x) = ex

Equilibrium Method
Apply the equilibrium method to find yp, then find the general solution y =
yh + yp.
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37. 2y′′ = 3

Solution: yh = c1 + c2x, yp = 3x2/4.

The equilibrium method applies because the coefficients are constant. Solve
2y′′ = 3 by quadrature, all integration constants zero. Then y′ = 3x/2,
y = 3x2/4.

38. y′′ + 4y′ = 5

39. y′′ + 3y′ + 2y = 3

Solution: yh = c1e
−2x + c2e

−x, yp = 3/2.

Factor r2 + 3r + 2 = (r + 1)(r + 2), then roots are r = −1, r = −2 and
yh = c1e

−2x+c2e
−x. Drop all but the lowest order term in the DE to obtain

2y = 3, then solve for y (no quadrature required): y = 3/2.

40. y′′ − y′ − 2y = 2

41. y′′ + y = 1

Solution: yh = c1 cosx+ c2 sinx, yp = 1

42. 3y′′ + y′ + y = 7

43. 6y′′ + 7y′ + 2y = 5

Solution: yh = c1e
−2x/3 + c2e

−x/2, yp = 5/2

44. y′′ − 2y′ + 4y = 8

45. 4y′′ − 4y′ + y = 8

Solution: yh = c1e
x/2 + c2x e

x/2, yp = 8

46. 4y′′ − 12y′ + 9y = 18
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Constant Coefficients
Solve for y(x). Proceed as in Examples 6.13–6.20.

1. 3y′ − 2y = 0

Solution: y = c e2x/3.

The characteristic equation is 3r − 2 = 0 with root r = 2/3. There is one
Euler solution atom e2x/3. Then y is a linear combination of the atoms.

2. 2y′ + 7y = 0

3. y′′ − y′ = 0

Solution: y = c1 + c2e
x.

The characteristic equation is r2− r = 0 with roots r = 0, r = 1. The Euler
solution atoms are e0x and ex. Then y is a linear combination of the atoms.

4. y′′ + 2y′ = 0

5. y′′ − y = 0

Solution: y = c1e
x + c2e

−x

6. y′′ − 4y = 0

7. y′′ + 2y′ + y = 0

Solution: y = c1e
−x + c2xe

−x

8. y′′ + 4y′ + 4y = 0

9. y′′ + 3y′ + 2y = 0

Solution: y = c1e
−x + c2e

−2x

10. y′′ − 3y′ + 2y = 0

11. y′′ + y = 0

Solution: y = c1 cosx+ c2 sinx.

The characteristic equation r2 + 1 = 0 has complex roots ±i, with Euler
solution atoms cosx, sinx. Then y is a linear combination of the atoms.

12. y′′ + 4y = 0
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13. y′′ + y′ + y = 0

Solution: y = c1e
−x/2 cos

√
3x/2 + c2e

−x/2 sin
√
3x/2

14. y′′ + 2y′ + 2y = 0

15. y′′ = 0

Solution: y = c1 + c2x

16. y′′′ = 0

17. d4y
dx4 = 0

Solution: y = c1 + c2x+ c2x
2 + c4x

3.

The characteristic equation r4 = 0 has roots r = 0, 0, 0, 0 counted accord-
ing to multiplicity. The Euler atoms are 1, x, x2, x3 by Euler’s multiplicity
theorem. Then y is a linear combination of the atoms.

18. d5y
dx5 = 0

19. y′′′ + 2y′′ = 0

Solution: y = c1 + c2x+ c3e
−2x

The characteristic equation r3 + 2r2 = 0 has roots r = 0, 0,−2 and Euler
atoms e0x, xe0x, e−2x. Then y is a linear combination of the atoms.

20. y′′′ + 4y′ = 0

21. d4y
dx4 + y′′ = 0

Solution: y = c1 + c2x+ c3 cosx+ c4 sinx.

The characteristic equation r4 + r2 = 0 has roots r = 0, 0, i,−i and Euler
solution atoms 1, x, cosx, sinx. Then y is a linear combination of the atoms.

22. d5y
dx5 + y′′′ = 0

Detecting Atoms
Decompose each atom into a base atom times a power of x. If the expression
fails to be an atom, then explain the failure.

23. −x

Solution: Not an atom. Euler solution atoms have coefficient 1.

24. x
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25. x2 cosπx

Solution: Base atom = cosπx, power = x2.

26. x3/2 cosx

27. x1000e−2x

Solution: Base atom = e−2x, power = x1000.

28. x+ x2

29.
x

1 + x2

Solution: Not an Euler solution atom. Most fractions fail.

30. ln |xe2x|

31. sinx

Solution: Base atom = sinx, power = x0.

32. sinx− cosx

Solution: A linear combination of Euler solution atoms is not an atom.

Higher Order
A homogeneous linear constant-coefficient differential equation can be defined
by (1) coefficients, (2) the characteristic equation, (3) roots of the characteristic
equation. In each case, solve the differential equation.

33. y′′′ + 2y′′ + y′ = 0

Solution: y = c1 + c2e
−x + c3xe

−x

34. y′′′ − 3y′′ + 2y′ = 0

35. y(4) + 4y′′ = 0

Solution: y = c1 + c2x+ c3 cos 2x+ c4 sin 2x

36. y(4) + 4y′′′ + 4y′′ = 0

37. Order 5, r2(r − 1)3 = 0

Solution: y = c1 + c2x+ c3e
x + c4xe

x + c5x
2ex

38. Order 5, (r3 − r2)(r2 + 1) = 0.
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39. Order 6, r2(r2 + 2r + 2)2 = 0.

Solution: y = c1+c2x+c3e
−x cosx+c4xe

−x cosx+c5e
−x sinx+c6xe

−x sinx

Factor r2 + 2r + 2 = (r + 1)2 + 1 with roots −1πi. Then the six roots are
r = 0, 0,−1πi,−1πi and the Euler solution atoms are 1, x and e−x cosx,
xe−x cosx, e−x sinx, xe−x sinx. Then y is a linear combination of the atoms.

40. Order 6, (r2 − r)(r2 + 4r + 5)2 = 0.

41. Order 10, (r4 + r3)(r2 − 1)2(r2 + 1) = 0.

Solution: Solution y has ten terms as a linear combination of ten atoms
1, x, x2, ex, xex, e−x, xe−x, x2e−x. cosx, sinx.

Factor as r3(r + 1)(r − 1)2(r + 1)2(r2 + 1) = 0 and then collect factors:

r3(r − 1)2(r + 1)3(r2 + 1) = 0

The ten roots are r = 0, 0, 0, r = 1, 1, r = −1,−1,−1, r = ±i. The ten
atoms are 1, x, x2, ex, xex, e−x, xe−x, x2e−x. cosx, sinx. Then y is a linear
combination of the atoms.

42. Order 10, (r3 + r2)(r − 1)3(r2 + 1)2 = 0.

43. Order 5, roots r = 0, 0, 1, 1, 1.

Solution: y = c1 + c2x+ c3e
x + c4xe

x + c5x
2ex

44. Order 5, roots r = 0, 0, 1, i,−i.

45. Order 6, roots r = 0, 0, i,−i, i,−i.

Solution: y = c1 + c2x+ c3 cosx+ c4x cosx+ c5 sinx+ c6x sinx

46. Order 6, roots r = 0,−1, 1 + i, 1− i, 2i,−2i.

47. Order 10, roots r = 0, 0, 0, 1, 1,−1,−1,−1, i,−i.

Solution: y is a linear combination of the ten atoms 1, x, x2, ex, xex,
e−x, xe−x, x2e−x, cosx, sinx.

48. Order 10, roots r = 0, 0, 1, 1, 1,−1, i,−i, i,−i.

Initial Value Problems
Given in each case is a set of independent solutions of the differential equation.
Solve for the coefficients c1, c2, . . . in the general solution, using the given initial
conditions.
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49. ex, e−x, y(0) = 0, y′(0) = 1

Solution: Let y = c1e
x + c2e

−x. Relations y(0) = 0, y′(0) = 1 translate to
c1 + c2 = 0, c1 − c2 = 1. Elimination gives c1 = 1/2, c2 = −1/2.

50. xex, ex, y(0) = 1, y′(0) = −1

51. cosx, sinx, y(0) = −1, y′(0) = 1

Solution: Let y = c1 cosx+ c2 sinx. Relations y(0) = 0, y′(0) = 1 translate
to c1 cos 0+c2 sin 0 = 0, −c1 sin 0+c2 cos 0 = 1. Because cos 0 = 1, sin 0 = 0,
then c1 = 0, c2 = 1.

52. cos 2x, sin 2x, y(0) = 1, y′(0) = 0

53. ex, cosx, sinx, y(0) = −1, y′(0) = 1, y′′(0) = 0

Solution: Let y = c1 cosx+ c2 sinx+ c3e
x. Relations y(0) = −1, y′(0) = 1,

y′′(0) = 0 translate to c1 + c3 = −1, c2 + c3 = 1, −c1 + c3 = 0. Add the
first and third equation to get c3 = −1/2. Then c1 = −1/2, c2 = 3/2,
c3 = −1/2.

# Exercise 53 answer check

u:=x->-1/2*cos(x)+3/2*sin(x)-1/2*exp(x);

u(0);D(u)(0);D(D(u))(0);

# -1, 1, 0

54. 1, cosx, sinx, y(0) = −1, y′(0) = 1, y′′(0) = 0

55. ex, xex, cosx, sinx, y(0) = −1, y′(0) = 1, y′′(0) = 0, y′′′(0) = 0

Solution: Let y = c1 cosx + c2 sinx + c3e
x + c4xe

x. Relations y(0) = −1,
y′(0) = 1, y′′(0) = 0, y′′′(0) = 0 translate to c1 + c3 = −1, c2 + c3 + c4 = 1,
−c1+c3+2c4 = 0, −c2+c3+3c4 = 0. Use computer assist to find c1 = 1/2,
c2 = 3/2, c3 = −3/2, c4 = 1.

# Exercise 55, solve and answer check

sys:=[c1+c3=-1, c2+c3+c4=1, -c1+c3+2*c4=0, -c2+c3+3*c4=0];

solve(sys,{c1,c2,c3,c_});

# {c1 = 1/2, c2 = 3/2, c3 = -3/2, c4 = 1}

u:=x->1/2*cos(x)+3/2*sin(x)-3/2*exp(x)+x*exp(x);

u(0);D(u)(0);D(D(u))(0);D(D(D(u)))(0);

# -1, 1, 0, 0

56. 1, x, cosx, sinx, y(0) = 1, y′(0) = −1, y′′(0) = 0, y′′′(0) = 0

57. 1, x, x2, x3, x4, y(0) = 1, y′(0) = 2, y′′(0) = 1, y′′′(0) = 3, y(4)(0) = 0
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Solution: Let y = c1 + c2x + c3x
2 + c4x

3 + c5x
4. Relations y(0) = 1,

y′(0) = 2, y′′(0) = 1, y′′′(0) = 3, y(4)(0) = 0 translate to c1 = 1, c2 = 2,
2c3 = 1, 6c4 = 3, 24c5 = 0. Then y = 1 + 2x + x2/2 + x3/2 and c1 = 1,
c2 = 2, c3 = 1/2, c4 = 1/2. c5 = 0.

58. ex, xex, x2ex, 1, x, y(0) = 1, y′(0) = 0, y′′(0) = 1, y′′′(0) = 0, y(4)(0) = 0

Inverse Problem
Find a linear constant-coefficient homogeneous differential equation from the
given information. Follow Example 6.21.

59. The characteristic equation is (r + 1)3(r2 + 4) = 0.

Solution: Expand to r5 + 3r4 + 7r3 + 13r2 + 12r + 4 = 0. Then the DE is
y(5) + 3y(4) + 7y′′′ + 13y′′ + 12y′ + 4y = 0

60. The general solution is a linear combination of the Euler solution atoms
ex, e2x, e3x, cosx, sinx.

Solution: The atoms ex, e2x, e3x, cosx, sinx correspond to roots 1, 2, 3,±i.
The characteristic polynomial is then (r−1)(r−2)(r−3)(r2+1) = r5−6r4+
12r3−12r2+11r−6. Then the DE is y(5)−6y(4)+12y′′′−12y′′+11y′−6y = 0.

61. The roots of the characteristic polynomial are 0, 0, 2 + 3i, 2− 3i.

Solution: The roots imply characteristic polynomial (r−0)(r−0)((r−2)2+
9) = r4 − 4r3 + 13r2. Then the DE is y(4) − 4y′′′ + 13y′′ = 0.

62. The equation has order 4. Known solutions are ex + 4 sin 2x, xex.

63. The equation has order 10. Known solutions are sin 2x, x7ex.

Solution: Derivatives of solutions are also solutions which amasses a longer
list of ten atoms sin 2x, cos 2x, ex, xex, x2ex, x3ex, x4ex, x5ex, x6ex, x7ex.
Then the characteristic polynomial is (r2 + 4)(r− 1)8 = r10− 8r9 + 32r8 −
88r7 + 182r6 − 280r5 + 308r4 − 232r3 + 113r2 − 32r + 4. Then the DE is
y(10)−8y(9)+32y(8)−88y(7)+182y(6)−280y(5)+308y(4)−232y′′′+113y′′−
32y′ + 4y = 0.

64. The equation is my′′+cy′+ky = 0 with m = 1 and c, k positive. A solution
is y(x) = e−x/5 cos(2x− θ) for some angle θ.

Independence of Euler Atoms
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65. Apply the independence test page 378 � to atoms 1 and x: form equation
0 = c1 + c2x, then solve for c1 = 0, c2 = 0. This proves Euler atoms 1, x are
independent.

Solution: Equation 0 = c1 + c2x holds for all x. Set x = 0 to conclude
c1 = 0. Then 0 + c2x = 0 for all x. Set x = 1 to conclude c2 = 0. By the
independence test, 1 and x are independent on −∞ < x < ∞.

66. Show that Euler atoms 1, x, x2 are independent using the independence test
page 378 �,

67. A Taylor series is zero if and only if its coefficients are zero. Use this result
to give a complete proof that the list 1, . . . , xk is independent. Hint: a
polynomial is a Taylor series.

Solution: Let y(x) =
∑k

n=0 cnx
n. Apply the independence test: let y(x) = 0

for all x and solve for c0 to ck. By the theory of Taylor series, y(x) = 0 means
all Taylor coefficients are zero, because cn = y(n)(0)/n!. Therefore, c0 to ck
are all zero, proving the powers 1 to xk are independent on −∞ < x < ∞.

68. Show that Euler atoms ex, xex, x2ex are independent using the indepen-
dence test page 378 �.

Solution: Hint: reduce the problem to Exercise 67 by canceling ex from the
independence test equation.

Wronskian Test
Establish independence of the given lists of functions by using the Wronskian
test page 385 �:

Functions f1, f2, . . . , fn are independent if W (x0) ̸= 0 for some x0, where W (x)
is the n× n determinant∣∣∣∣∣∣∣

f1(x) · · · fn(x)
...

f
(n−1)
1 (x) · · · f

(n−1)
n (x)

∣∣∣∣∣∣∣
69. 1, x, ex

Solution: Because W (x) =

∣∣∣∣∣∣
1 x x2

0 1 2x
0 0 2

∣∣∣∣∣∣ = 2, then the Wronskian test

applies and 1, x, x2 are independent on −∞ < x < ∞.

70. 1, x, x2, ex
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71. cosx, sinx, ex

Solution: Let W (x) =

∣∣∣∣∣∣
cosx sinx ex

− sinx cosx ex

− cosx − sinx ex

∣∣∣∣∣∣. Then W (0) =∣∣∣∣∣∣
1 0 1
0 1 1

−1 0 1

∣∣∣∣∣∣ = 2. The Wronskian test applies. proving the three func-

tions are independent on −∞ < x < ∞.

72. cosx, sinx, sin 2x

Kümmer’s Lemma

73. Compute the characteristic polynomials p(r) and q(r) for

y′′ + 3y′ + 2y = 0 and
z′′ + z′ = 0.

Verify the equations are related by y = e−xz and p(r − 1) = q(r).

Solution: The characteristic polynomials are p(r) = r2+3r+2 = (r+1)(r+2)
and q(r) = r2 + r. Then p(u − 1) = (u − 1 + 1)(u − 1 + 2) = u(u + 1) =
u2 + u = q(u). Compute:

y′ = d
dx (e

−x z) = −e−xz + e−xz′

y′′ = e−xz − 2e−xz′ + e−xz′′

y′′ + 3y′ + 2y = e−x(z − 2z′ + z′′)− 3e−xz + 3e−xz′ + 2e−xz
= e−x(z − 2z′ + z′′ − 3z + 3z′ + 2z)
= e−x(z′′ + z′)

Then y′′ + 3y′ + 2y = 0 if and only if z′′ + z′ = 0.

74. Compute the characteristic polynomials p(r) and q(r) for

ay′′ + by′ + cy = 0 and
az′′ + (2ar0 + b)z′+

(ar20 + br0 + c)z = 0.

Verify the equations are related by y = er0xz and p(r + r0) = q(r).
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6.4 Variation of Parameters

Independence: Constant Equation
Find solutions y1, y2 of the given homogeneous differential equation using The-
orem 6.1 page 431 �. Then apply the Wronskian test page 464 � to prove
independence, following Example 6.22.

1. y′′ − y = 0

Solution: Characteristic equation r2 − 4 = 0 has roots r = 2,−2. Euler
solution atoms are e2x, e−2x. The Wronskian of the two atoms is W =∣∣∣∣ e2x e−2x

2e2x −2e−2x

∣∣∣∣ = −4. The Wronskian test applies: the two atoms are

independent.

2. y′′ − 4y = 0

3. y′′ + y = 0

Solution: W =

∣∣∣∣ cosx sinx
− sinx cosx

∣∣∣∣ = cos2 x+ sin2 x = 1.

4. y′′ + 4y = 0

5. 4y′′ = 0

Solution: Atoms are 1, x and W = 1.

6. y′′ = 0

7. 4y′′ + y′ = 0

Solution: Atoms are 1, e−x/4. Then W =

∣∣∣∣ 1 e−x/4

0 −e−x/4/4

∣∣∣∣ = −1
4 e−x/4.

8. y′′ + y′ = 0

9. y′′ + y′ + y = 0

Solution: The roots of r2 + r + 1 = 0 are −1/2 ± i
√
3/2. Atoms are

e−x/2 cos
√
3x/2, e−x/2 sin

√
3x/2. Let W =

∣∣∣∣ eax cos bx eax sin bx
(eax cos bx)′ (eax sin bx)′

∣∣∣∣.
Then W = be2ax because cos2(bx) + sin2(bx) = 1. Substitute a = −1/2,

b =
√
3/2. Then W =

√
3

2
e−x. The Wronskian test applies to prove the two

atoms are independent.

10. y′′ − y′ + y = 0
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11. y′′ + 8y′ + 2y = 0

Solution: The roots of r2 + 8r + 2 = 0 are −4 ±
√
14. Let W =∣∣∣∣ eax ebx

aeax bebx

∣∣∣∣ = (b − a)(eax+bx. Then W ̸= 0 if a ̸= b. Substitute

a, b = −4 ±
√
14 and apply the Wronskian test to prove the atoms are

independent.

12. y′′ + 16y′ + 4y = 0

Independence for Euler’s Equation
Change variables, x = et, u(t) = y(x) in Ax2y′′(x) + Bxy′(x) + Cy(x) = 0 to

obtain a constant-coefficient equation A

(
d2u

dt2
− du

dt

)
+ B

du

dt
+ Au = 0. Solve

for u(t) and then substitute t = ln |x| to obtain y(x). Find two solutions y1, y2
which are independent by the Wronskian test page 464 �.

13. x2y′′ + y = 0

Solution: The transformed equation is u′′ − u′ + u = 0 where ′ = d/dt,
t = ln |x|, u(t) = y(x). The roots and atoms are 1/2±i

√
3/2, ex/2 cos

√
3x/2,

ex/2 sin
√
3x/2. The calculation of Exercise 9 proves independence of the

atoms.

14. x2y′′ + 4y = 0

15. x2y′′ + 2xy′ + y = 0

Solution: The transformed equation is u′′ − u′ + 2u′ + u = 0 where
′ = d/dt, t = ln |x|, u(t) = y(x). The roots and atoms are −1/2 ± i

√
3/2,

e−x/2 cos
√
3x/2, e−x/2 sin

√
3x/2. The calculation of Exercise 9 proves in-

dependence of the atoms.

16. x2y′′ + 8xy′ + 4y = 0

Wronskian
Compute the Wronskian, up a constant multiple, without solving the differential
equation: Example 6.23 page 466 �.

17. y′′ + y′ − xy = 0

Solution: Abel’s identity W (x) = W (x0)e
−
∫ x
x0

b(t)
a(t)

dt
applies to a(x)y′′ +

b(x)y′+ c(x)y = 0. Translate y′′+y′−xy = 0 to a = b = 1, c = −1. Choose
x0 = 0. Then

W (x) = W (0)e−
∫ x
0

dt = W (0)e−x

The Wronskian W (x) = e−x up to a constant multiple.
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18. y′′ − y′ + xy = 0

19. 2y′′ + y′ + sin(x)y = 0

Solution: W (x) = e−x/2 up to a constant.

20. 4y′′ − y′ + cos(x)y = 0

21. x2y′′ + xy′ − y = 0

Solution: The integral in Abel’s identity is
∫ x

1
(−t/t2)dt = − ln |x| + ln |1|.

Abel’s identity is W (x) = W (1)e− ln |x| = c/x for some constant c.

22. x2y′′ − 2xy′ + y = 0

Variation of Parameters
Find the general solution yh+yp by applying a variation of parameters formula:
Example 6.24 page 466 �.

23. y′′ = x2

Solution: Because yh = c1 + c2x, let y1 = 1 and y2 = x. Compute W =∣∣∣∣ 1 x
0 1

∣∣∣∣ = 1. Follow Example 6.24 page 466 �:

yp = −y1(x)
∫
y2(x)x

2dx+ y2(x)
∫
y1(x)x

2dx
= −

∫
x3dx+ x

∫
x2dx

= −x4/4 + x4/3 + c3 + c4x
= x4/12 by taking integration constants c3 = c4 = 0.

Then y = yh + yp = c1 + c2x+ x4/12.

Answer check: y′′ = (c1 + c2x+ x4/12)′′ = (c2 + 4x3/12)′ = x2.

24. y′′ = x3

25. y′′ + y = sinx

Solution: Let y1 = cosx, y2 = sinx, which are Euler atoms for r2 + 1 = 0.
Then W = 1 and

yp = −y1(x)
∫
y2(x) sinxdx+ y2(x)

∫
y1(x) sinxdx

= − cosx
∫
sinx sinxdx+ sinx

∫
cosx sinxdx

= − cos(x)(− 1
2 cos(x) sin(x) +

1
2x) +

1
2 sin

3(x) + c3 cosx+ c4 sinx
= 1

2 sinx− 1
2x cosx by taking c3 = c4 = 0.

Then yh = c1 cosx+ c2 sinx, yp = 1
2 sinx− 1

2x cosx

Answer check: y′′ + y = ( 12 sinx− 1
2x cosx)

′′ + ( 12 sinx− 1
2x cosx)

= − 1
2 sinx+ sinx+ 1

2x cosx+ ( 12 sinx− 1
2x cosx)

= sinx.

417

https://math.utah.edu/~gustafso/debook/chapters/6.pdf#page=467
https://math.utah.edu/~gustafso/debook/chapters/6.pdf#page=467


6.4 Variation of Parameters

# Exercise 25, Variation of Parameters

Y1:=cos(x);Y2:=sin(x);

YP:=-Y1*int(Y2*sin(x),x) + Y2*int(Y1*sin(x),x);

simplify(YP);

# (1/2)*sin(x)-(1/2)*cos(x)*x

dsolve(D(D(y))(x) + y(x)=sin(x),y(x));# double-check answer

26. y′′ + y = cosx

27. y′′ + y′ = ex

Solution: y1 = 1, y2 = e−x, W = −e−x, yp = 1
2e

x.

28. y′′ + y′ = −ex

29. y′′ + 2y′ + y = e−x

Solution: y1 = e−x, y2 = xe−x, W = −e−2x, yp = 1
2x

2e−x.

30. y′′ − 2y′ + y = ex
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6.5 Undetermined Coefficients

Polynomial Solutions
Determine a polynomial solution yp for the given differential equation.

1. y′′ = x

Solution: Quadrature equation, yp = x3/6.

2. y′′ = x− 1

3. y′′ = x2 − x

Solution: Quadrature equation, yp = x4/12− x3/6.

4. y′′ = x2 + x− 1

5. y′′ − y′ = 1

Solution: Trial solution y = d1 + d2x or guess by experience yp = −x.

6. y′′ − 5y′ = 10

7. y′′ − y′ = x

Solution: Trial solution y = d1x + d2x
2. Calculate 2d2 − d1 − 2d2x = x

and then linear algebraic equations −d1 + 2d2 = 0, −2d2 = 1. Solution
d2 = −1/2 and d1 = −1 gives particular solution yp = −x− x2/2.

8. y′′ − y′ = x− 1

9. y′′ − y′ + y = 1

Solution: No roots of characteristic equation r2 − r + 1 = 0 match root=0
of RHS atom 1. Then y = d1 is the trial solution. Substitution gives d1 = 1
and yp = 1. A shortcut is provided by theorems: cancel all higher order
terms and deduce y = 1.

10. y′′ − y′ + y = −2

11. y′′ + y = 1− x

Solution: No shortcut available. Trial solution y = d1 + d2x obtained from
the RHS has roots 0, 0, which do not conflict with the roots ±i of the
characteristic equation r2+1 = 0. The first trial solution is also the corrected
trial solution. Substitute to obtain d1 + d2x = 1− x, then yp = 1− x. The
shortcut of canceling higher derivatives does not apply, however the answer
provided is correct. Guessing the answer and then checking the answer is
always a valid technique.
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12. y′′ + y = 2 + x

13. y′′ − y = x2

Solution: No shortcut available. Trial solution y = d1+d2x+d3x
2 obtained

from the RHS has roots 0, 0, 0, which do not conflict with the roots ±1 of
the characteristic equation r2 − 1 = 0. The first trial solution is also the
corrected trial solution. Substitute to obtain 2d3 − d1 − d2x − d3x

2 = x2,
then match coefficients left and right. The linear algebraic equations are
d3 = −1, −d1 + 2d3 = 0, d2 = 0. Then yp = −2 − x2. The shortcut of
canceling higher derivatives does not apply and the answer from this false
method is incorrect.

14. y′′ − y = x3

Polynomial-Exponential Solutions
Determine a solution yp for the given differential equation.

15. y′′ + y = ex

Solution: yp = 1
2e

x

16. y′′ + y = e−x

17. y′′ = e2x

Solution: yp = d1e
2x, d1 = 1

4 .

18. y′′ = e−2x

19. y′′ − y = (x+ 1)e2x

Solution: yp = d1e
2x + d2xe

2x, d1 = − 1
9 , d2 = 1

3 .

# Exercise 19

de:=diff(y(x),x,x) - y(x) = (x+1)*exp(2*x);

dsolve(de,y(x));

20. y′′ − y = (x− 1)e−2x

21. y′′ − y′ = (x+ 3)e2x

Solution: yp = d1e
2x + d2xe

2x, d1 = 3
4 , d2 = 1

2 .

22. y′′ − y′ = (x− 2)e−2x

23. y′′ − 3y′ + 2y = (x2 + 3)e3x

Solution: yp = d1e
3x + d2xe

3x + d3x
2e3x, d1 = 13

4 , d2 = − 3
2 , d3 = 1

2 .
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24. y′′ − 3y′ + 2y = (x2 − 2)e−3x

Sine and Cosine Solutions
Determine a solution yp for the given differential equation.

25. y′′ = sin(x)

Solution: yp = d1 cos(x) + d2 sin(x), d1 = 0, d2 = −1

26. y′′ = cos(x)

27. y′′ + y = sin(x)

Solution: yp = d1x cos(x) + d2x sin(x), d1 = − 1
2 , d2 = 0

28. y′′ + y = cos(x)

29. y′′ = (x+ 1) sin(x)

Solution: yp = d1 cos(x) + d2 sin(x) + d3x cos(x) + d4x sin(x), d1 = −2,
d2 = −1, d3 = 0, d4 = −1.

30. y′′ = (x+ 1) cos(x)

31. y′′ − y = (x+ 1)ex sin(2x)

Solution: yp = d1e
x cos(2x) + d2e

x sin(2x) + d3xe
x cos(x) + d4xe

x sin(x),
d1 = − 3

16 , d2 = 0, d3 = − 1
8 , d4 = − 1

8 .

32. y′′ − y = (x+ 1)ex cos(2x)

33. y′′ − y′ − y = ex sin(2x)

Solution: yp = d1e
x cos(2x) + d2e

x sin(2x), d1 = 2, d2 = − 5
29 .

34. y′′ − y′ − y = (x2 + x)ex cos(2x)

Undetermined Coefficients
Algorithm
Determine a solution yp for the given differential equation.

35. y′′ = x+ sin(x)

Solution: yp = (d1 + d2x)x
2 + d3 cos(x) + d4 sin(x) =

1
6x

3 − sin(x). Super-
position implies yp = u + v where u′′ = x and v′′ = sin(x). Guess answers
u = x3/6, v = − sin(x) and check.

36. y′′ = 1 + x+ cos(x)
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37. y′′ + y = x+ sin(x)

Solution: yp = d1 + d2x + x(d3 cos(x) + d4 sin(x)) = x − 1
2x cos(x). Super-

position implies yp = u + v where u′′ + u = x and v′′ + v = sin(x). Guess
answers u = x, v = − 1

2x cos(x) and check.

38. y′′ + y = 1 + x+ cos(x)

39. y′′ + y = sin(x) + cos(x)

Solution: yp = x(d1 cos(x) + d2 sin(x)) = − 1
2x cos(x) +

1
2x sin(x)

40. y′′ + y = sin(x)− cos(x)

41. y′′ = x+ xex + sin(x)

Solution: yp = (d1 + d2x)x
2 + d3e

x + d4xe
x + d5 cos(x) + d6 sin(x) =

1
6x

3 −
ex + xex − sin(x).

42. y′′ = x− xex + cos(x)

43. y′′ − y = sinh(x) + cos2(x)

Solution: Write the RHS = 1
2e

x− 1
2e

−x+ 1
2 +

1
2 cos(2x). Then yp = x(d1e

x+
d2e

−x) + d3 + d4 cos(2x) + d5 sin(2x) =
1
4xe

x + 1
4xe

−x − 1
2 − 1

10 cos(2x).

44. y′′ − y = cosh(x) + sin2(x)

45. y′′ + y′ − y = x2ex

Solution: yp = d1e
x + d2xe

x + d3x
2ex = 16ex − 6xex + x2ex.

46. y′′ + y′ − y = xex sin(2x)

Roots and Related Atoms
Euler atoms A and B are said to be related if and only if the derivative lists
A, A′, . . . and B, B′, . . . share a common Euler atom.

47. Find the roots, listed according to multiplicity, for the atoms 1, x, x2, e−x,
cos 2x, sin 3x, x cosπx, e−x sin 3x.

Solution: Roots = 0, 0, 0, −1, ±2i, ±3i, πi, πi, −1± 3i.

48. Find the roots, listed according to multiplicity, for the atoms 1, x3, e2x,
cosx/2, sin 4x, x2 cosx, e3x sin 2x.
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49. Let A = xe−2x and B = x2e−2x. Verify that A and B are related.

Solution: Distinct atoms in derivatives of A = e−2x, xe−2x. Distinct atoms
in derivatives of B = e−2x, xe−2x, x2e−2x. The lists have two atoms in
common.

50. Let A = xe−2x and B = x2e2x. Verify that A and B are not related.

51. Prove that atoms A and B are related if and only if their base atoms have
the same roots.

Solution: An atom can be written as xneax cos(bx) or xneax sin(bx) where
n ≥ 0 is an integer, a = real number, b ≥ 0 is a real number.

If A ad B are related then their derivative lists have an atom in common,
say xneax cos(bx). The base atom strips off the power of x: base atom =
eax cos(bx). Then eax cos(bx) is an atom in common with the two derivative
lists. So both A and B have base atom eax cos(bx) with roots a± bi.

If A and B have the same base atom, say eax cos(bx), then this atom appears
in both derivative lists. Therefore A and B are related. ■

52. Prove that atoms A and B are related if and only if they are in the same
group. See page 474 � for the definition of a group of atoms.

Modify a Trial Solution
Apply Rule II to modify the given Rule I trial solution into the shortest trial
solution.

53. The characteristic equation has factors r3, (r3 +2r2 +2), (r− 1)2, (r+1),
(r2 + 4)3 and the Rule I trial solution is constructed from atoms 1, x, ex,
xex, e−x, cos 2x, sin 2x, cosx, sinx.

Solution: The shortest trial solution is a linear combination of atoms x3, x4,
x2ex, x3ex, xe−x, x3 cos 2x, x3 sin 2x, cosx, sinx.

54. The characteristic equation has factors r2, (r3 +3r2 +2), (r+1), (r2 +4)3

and the Rule I trial solution is constructed from atoms 1, x, ex, xex, e−x,
cos 2x, sin 2x.

Annihilators and Laplace Theory
Laplace theory can construct the annihilator of f(t). The example y′′+4y = t+
2t3 is used to discuss the techniques. Formulas to be justified: p(s) = L(f)/L(y)
and q(s) = denom(L(f(t))).

55. (Transfer Function) Find the characteristic polynomial q(r) for the homo-
geneous equation y′′ + 4y = 0. The transfer function for y′′ + 4y = f(t) is
L(y)/L(f), which equals 1/q(s).
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Solution: q(r) = r2 + 4; the transfer function can be formally obtained by
solving with Laplace’s method for the special solution with zero initial data
and input Dirac impulse function. The details are in the solution of Exercise
56.

56. (Laplace of yp(t))

The Laplace of y(t) for problem
y′′ + 4y = f(t), y(0) = y′(0) = 0 must equal the Laplace of f(t) times the
transfer function. Justify and explain what it has to do with finding yp.

Solution: Laplace details: (s2 + 4)L(y) = L(f). Then y is a particular
solution yp, found by Laplace methods.

57. (Annihilator of f(t))

Let g(t) = t+2t3. Verify that L(g(t)) = s2 + 12

s4
, which is a proper fraction

with denominator s4. Then explain why one annihilator of g(t) has charac-
teristic polynomial r4. The result means that y = g(t) = t+2t3 is a solution
of y′′′′ = 0.

Solution: Laplace tables: L(g) = L(t) + L(2t3) = 1/s2 + 2(6/s4) = (s2 +
12)/s4.

A differential equation H(y) = 0 with one solution being y = g(t) is called
an annihilator of g.

Solution y(t) = t + 2t3 of H(y) = 0 has initial data y(0) = 0, y′(0) = 1.
Formal Laplace methods applied to find L(y) from H(y) = 0 would collect
symbols y(0) and y′(0) on the left side, with L(0) = 0 on the right side.
We always collect q(s)L(y) on the left and move the lower order terms to
the right side. Then divide. Therefore, L(y) = polynomial in s divided by
q(s). Look at fraction L(g) = (s2 + 12)/s4. It has lower order terms in the
numerator. So q(s) = s4 could be the characteristic polynomial.

Check: q(r) = r4 would imply H(y) = 0 is y′′′′ = 0. Test H(g) = 0. It
works.

58. (Laplace Theory finds yp)

Show that the problem y′′ + 4y = t + 2t3, y(0) = y′(0) = 0 has Laplace
transform

L(y) = s2 + 12

(s2 + 4)s4
.

Explain why y(t) must be a solution of the constant-coefficient homogeneous
differential equation having characteristic polynomial w(r) = (r2 + 4)r4.

Annihilator Method Justified
The method of annihilators can be justified by successive differentiation of a
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non-homogeneous differential equation, then forming a linear combination of
the resulting formulas. It is carried out here, for exposition efficiency, for the
non-homogeneous equation y′′+4y = x+2x3. The right side is f(x) = x+2x3

and the homogeneous equation is y′′ + 4y = 0.

59. (Homogeneous equation)

Verify that y′′ + 4y = 0 has characteristic polynomial q(r) = r2 + 4.

Solution: Euler’s substitution y = erx gives r2 + 4 = 0 as characteristic
equation.

60. (Annihilator)

Verify that y(4) = 0 is an annihilator for f(x) = x+2x3, with characteristic
polynomial q(r) = r4.

61. (Composite Equation)

Differentiate four times across the equation y′′ +4y = f(x) to obtain y(6) +
4y(4) = f (4)(x). Argue that f (4)(x) = 0 because y(4) = 0 is an annihilator of
f(x). This proves that yp is a solution of higher order equation y(6)+4y(4) =
0. Then argue that w(r) = r4(r2+4) is the characteristic polynomial of the
equation y(6) + 4y(4) = 0.

Solution: Details are short proofs or calculations. Because yp is a solution
of y′′ + 4y = f(x) then it is legal to differentiate the equation repeatedly to
obtain homogeneous higher order equation y(6) + 4y(4) = f (4)(x) = 0.

62. (General Solution)

Solve the homogeneous composite equation y(6) + 4y(4) = 0 using its char-
acteristic polynomial w(r) = r4(r2 + 4).

Solution: y = d1 cos 2x+ d2 sin 2x+ d3 + d4x+ d5x
2 + d6x

3

63. (Extraneous Atoms)

Argue that the general solution from the previous exercise contains two
terms constructed from atoms derived from roots of the polynomial q(r) =
r2 + 4. Remove these terms to obtain the shortest expression for yp and
explain why it works.

Solution: Remove d1 cos 2x+ d2 sin 2x. Then yp = d3 + d4x+ d5x
2 + d6x

3.
The argument: y = y1 + y2 where y1 = d1 cos 2x + d2 sin 2x and y2 =
d3 + d4x + d5x

2 + d6x
3. Because y′′ + 4y = 0 has general solution yh =

c1 cos 2x + c2 sin 2x then y1 equals yh with specialized coefficients c1 = d1,
c2 = d2. Therefore, y = y1 + y2 has the form yh + yp and we remove y1 to
obtain the shortest particular solution y2, announced as particular solution
yp.

425



6.5 Undetermined Coefficients

64. (Particular Solution)

Report the form of the shortest particular solution of y′′ + 4y = f(x), ac-
cording to the previous exercise.

Solution: yp = d3 + d4x+ d5x
2 + d6x

3
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6.6 Undamped Mechanical Vibrations

Simple Harmonic Motion
Determine the model equation mx′′(t) + kx(t) = 0, the natural frequency ω =√
k/m, the period 2π/ω and the solution x(t) for the following spring–mass

systems.

1. A mass of 4 Kg attached to a spring of Hooke’s constant 20 Newtons per
meter starts from equilibrium plus 0.05 meters with velocity 0.

Solution: Initial data: x(0) = 0.05, x′(0) = 0. Parameters: m = 4, k = 20.
The model is 4x′′ + 20x = 0 with solution x(t) = c1 cos(ωt) + c2 sin(ωt),
ω2 = k/m = 5. Initial data x(0) = 0.05, x′(0) = 0 provides a system of
linear algebraic equations for unknowns c1, c2:

c1 cos(0) + c2 sin(0) = 0.05, −ωc1 sin(0) + ωc2 cos(0) = 0

Solve for c1 = 0.05, c2 = 0. Then x(t) = 0.05 cos(
√
5t).

2. A mass of 2 Kg attached to a spring of Hooke’s constant 20 Newtons per
meter starts from equilibrium plus 0.07 meters with velocity 0.

3. A mass of 2 Kg is attached to a spring that elongates 20 centimeters due to
a force of 10 Newtons. The motion starts at equilibrium with velocity −5
meters per second.

Solution: Initial data: x(0) = 0, x′(0) = −5. Parameters: m = 2 and k =
force/elongation = 10/(20/100) = 50. The model is 2x′′ + 50x = 0 with
solution x(t) = c1 sin(5t) + c2 cos(5t), c1 = 0, c2 = −1.

# Exercise 3 Answer Check

DE:=m*diff(x(t),t,t) + k*x(t)=0;

de:=subs(m=2,k=50,DE);

dsolve(de,x(t));

dsolve([de,x(0)=0,D(x)(0)=-5],x(t));

4. A mass of 4 Kg is attached to a spring that elongates 20 centimeters due to
a force of 12 Newtons. The motion starts at equilibrium with velocity −8
meters per second.

5. A mass of 3 Kg is attached to a coil spring that compresses 2 centimeters
when 1 Kg rests on the top coil. The motion starts at equilibrium plus 3
centimeters with velocity 0.

Solution: Newton’s law: force = mass × acceleration = 3g. Hooke’s law:
3g = force = k(elongation) = k(2/100). Then k = 3g/(2/100) = 150g.
Units are MKS: g = 9.8. Model: 3x′′ + 150gx = 0. Answer: x (t) =

− 1

14
√
10

sin
(
7
√
10 t
)
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6. A mass of 4 Kg is attached to a coil spring that compresses 2 centimeters
when 2 Kg rests on the top coil. The motion starts at equilibrium plus 4
centimeters with velocity 0.

7. A mass of 5 Kg is attached to a coil spring that compresses 1.5 centimeters
when 1 Kg rests on the top coil. The motion starts at equilibrium plus 3
centimeters with velocity −5 meters per second.

Solution: Newton’s law: force = mass × acceleration = 5g. Hooke’s law: 5g
= force = k(elongation) = k(1.5/100). Then k = 5g/(1.5/100) = 1000g/3.
Units are MKS: g = 9.8. Model: 15x′′ + 1000gx = 0. Answer: x (t) =

− 1

28
√
30

sin (ωt) +
3

100
cos (ωt), ω = 14

3

√
30.

8. A mass of 4 Kg is attached to a coil spring that compresses 2.2 centimeters
when 2 Kg rests on the top coil. The motion starts at equilibrium plus 4
centimeters with velocity −8 meters per second.

9. A mass of 5 Kg is attached to a spring that elongates 25 centimeters due
to a force of 10 Newtons. The motion starts at equilibrium with velocity 6
meters per second.

Solution: Model: 5x′′ + 20x = 0, x(0) = 0, x′(0) = 6. Answer: x(t) =
3 sin(2t)

10. A mass of 5 Kg is attached to a spring that elongates 30 centimeters due
to a force of 15 Newtons. The motion starts at equilibrium with velocity 4
meters per second.

Phase–amplitude Form
Solve the given differential equation and report the general solution. Solve for
the constants c1, c2. Report the solution in phase–amplitude form

x(t) = A cos(ωt− α)

with A > 0 and 0 ≤ α < 2π.

11. x′′ + 4x = 0,
x(0) = 1, x′(0) = −1

Solution: General solution: x(t) = c1 cos(ωt)+c2 sin(ωt), ω = 2. Constants:
c1 = 1, c2 = −1/2. Amplitude: A =

√
(c21 + c22) = 1

2

√
5. Phase: α =

arctan(c2/c1) = arctan(−1/2). Because α < 0 then replace it by α + 2π =
− arctan(1/2) + 2π = 5.819537699 radians. Then x(t) = A cos(ωt−α) with
A > 0 and 0 ≤ α < 2π.
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# Exercise 11, Answer Check

DE:=m*diff(x(t),t,t) + k*x(t)=0;

de:=subs(m=1,k=4,DE);dsolve(de,x(t));

q:=dsolve([de,x(0)=1,D(x)(0)=-1],x(t));

# Convert to phase-amplitude form

findAlphaAmplitude:=proc(c1,c2)

local A,alpha;

A:=sqrt(c1^2+c2^2);alpha:=arctan(c2,c1);

if evalf(alpha)>=0 then RETURN([A,alpha,alpha]);

else RETURN([A,alpha+2*Pi,alpha]); fi;

end proc:

c1:=1:c2:=-1/2:

p:=findAlphaAmplitude(c1,c2);

A:=p[1]:ALPHA:=p[2]:

printf("A=%a, ALPHA=%a, %a\n",A,ALPHA,evalf(ALPHA));

printf("c1=%a,c2=%a,tan(alpha)=%a\n",c1,c2,tan(ALPHA));

simplify(expand(A*cos(u-ALPHA)));

12. x′′ + 4x = 0,
x(0) = 1, x′(0) = 1

13. x′′ + 16x = 0,
x(0) = 2, x′(0) = −1

Solution: Solution: x (t) = 1
2 sin (2 t)+ cos (2 t). Values: α = arctan(1/2) =

0.4636476090, c1 = 1, c2 = 1/2, tan(α) = 1/2, A = 1
2

√
5. Then x(t) =

A cos(ωt− α) with A > 0 and 0 ≤ α < 2π.

14. x′′ + 16x = 0,
x(0) = −2, x′(0) = −1

15. 5x′′ + 11x = 0,
x(0) = −4, x′(0) = 1

Solution: Solution: x (t) = 1
11

√
55 sin

(
1
5

√
55t
)
− 4 cos

(
1
5

√
55t
)
. Values:

α = − arctan(
√
55/44)+π = 2.974612139, c1 = −4, c2 =

√
55/11, tan(α) =

−
√
55/11, A =

√
1991/11. Then x(t) = A cos(ωt − α) with A > 0 and

0 ≤ α < 2π.

16. 5x′′ + 11x = 0,
x(0) = −4, x′(0) = −1

17. x′′ + x = 0,
x(0) = 1, x′(0) = −2

Solution: Solution: x (t) = 2 sin (t)−cos (t). Values: α = − arctan(2)+2π =
5.176036590, c1 = 1, c2 = −2, tan(α) = −2, A =

√
5. Then x(t) =

A cos(ωt− α) with A > 0 and 0 ≤ α < 2π.

429



6.6 Undamped Mechanical Vibrations

18. x′′ + x = 0,
x(0) = −1, x′(0) = 2

19. x′′ + 36x = 0,
x(0) = 1, x′(0) = −4

Solution: Solution: x (t) = − 2
3 sin (6 t) + cos (6 t). Values: α =

− arctan(2/3) + 2π = 5.695182704, c1 = 1, c2 = −2/3, tan(α) = −2/3,
A =

√
13/3. Then x(t) = A cos(ωt− α) with A > 0 and 0 ≤ α < 2π.

20. x′′ + 64x = 0,
x(0) = −1, x′(0) = 4

Pendulum
The formula

P1

P2
=

R1

R2

√
L1

L2

is valid for the periods P1, P2 of two pendulums of lengths L1, L2 located at
distances R1, R2 from the center of the earth. The formula implies that a
pendulum can be used to find the radius of the earth at a location. It is also
useful for designing a pendulum clock adjustment screw.

21. Derive the formula, using ω =
√
g/L, period P = 2π/ω and the gravita-

tional relation g = GM/R2.

Solution:
Pendulum 1: ω1 =

√
g/L1, period P1 = 2π/ω1.

Pendulum 2: ω2 =
√
g/L2, period P2 = 2π/ω2.

Divide:
P1

P2
=

ω2

ω1
, now use ω =

√
g/L and g = GM/R2:

=

√
GM/R2

2/L2√
GM/R2

1/L1

=

√
L1√
L2

√
1/R2

2√
1/R2

1

=

√
L1

L2

1/R2

1/R1

=
R1

R2

√
L1

L2

22. A pendulum clock taken on a voyage loses 2 minutes a day compared to its
exact timing at home. Determine the altitude change at the destination.
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23. A pendulum clock with adjustable length L loses 3 minutes per day when
L = 30 inches. What length L adjusts the clock to perfect time?

Solution: Answer: L = 2.4896157952 feet = 29.87538954 inches. Details:
The time lost is 3/60 hours in one day and L1 = 30.0/12 feet is the current
length of the pendulum. We seek L = L2 so that 0 hours are lost. Let
P1 = 24 + 3/60 hours, P2 = 24 hours. The radii are R1 = R2 = radius
of the earth. Then: P1/P2 = 1

√
L1/L2 or L1 = L2(P1/P2)

2. Solve for
L2 = L1(P2/P1)

2 = (30.0/12)(24/(24 + 3/60))2 = 29.88 inches.

24. A pendulum clock with adjustable length L loses 4 minutes per day when
L = 30 inches. What fineness length F is required for a 1/4–turn of the
adjustment screw, in order to have 1/4–turns of the screw set the clock to
perfect time plus or minus one second per day?

Torsional Pendulum
Solve for θ0(t).

25. θ′′0 (t) + θ0(t) = 0

Solution: Answer: θ0(t) = c1 cos t+ c2 sin t

26. θ′′0 (t) + 4θ0(t) = 0

27. θ′′0 (t) + 16θ0(t) = 0

Solution: Answer: θ0(t) = c1 cos 4t+ c2 sin 4t

28. θ′′0 (t) + 36θ0(t) = 0

Shockless Auto
Find the period and frequency of oscillation of the car on four springs. Use
model mx′′(t) + kx(t) = 0.

29. Assume the car plus occupants has mass 1650 Kg. Let each coil spring have
Hooke’s constant k = 20000 Newtons per meter.

Solution: Follow the shockless auto example. Model: mx′′(t) + kx(t) = 0,
x(t) = A cos(ωt − α), m = 1650/4, k = 20000, ω2 = k/m = 1600/33. The
period is 2π/ω = 2π/

√
1600/33 = 2π

√
33/40 = 0.9023537906, frequency =

1/period = 1.108212777.

30. Assume the car plus occupants has mass 1850 Kg. Let each coil spring have
Hooke’s constant k = 20000 Newtons per meter.
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31. Assume the car plus occupants has mass 1350 Kg. Let each coil spring have
Hooke’s constant k = 18000 Newtons per meter.

Solution: Model: mx′′(t)+kx(t) = 0, x(t) = A cos(ωt−α), m = 1350/4, k =
18000, ω2 = k/m = 40/3. The period is 2π/ω = 2π/

√
40/3 = π/

√
10/3 =

1.7207211636, frequency = 1/period = 0.5811516831.

32. Assume the car plus occupants has mass 1350 Kg. Let each coil spring have
Hooke’s constant k = 16000 Newtons per meter.

Rolling Wheel on a Spring
Solve the rolling wheel model mx′′(t) + 2

3 kx(t) = 0 and also the frictionless
model mx′′(t) + kx(t) = 0, each with the given initial conditions. Graph the
two solutions x1(t), x2(t) on one set of axes.

33. m = 1, k = 4,
x(0) = 1, x′(0) = 0

Solution: The two equations are harmonic oscillators with general solutions
x1(t) = c1 cosωt + c2 sinωt, ω

2 = 2k/(3m) = 8/3, and x2(t) = c3 cos 2t +
c4 sin 2t. Evaluate from initial data constants c1 = 1, c2 = 0, c3 = 1, c4 = 0.
Plot cosωt, cos 2t on one set of axes.

# Exercise 33, Rolling wheel graphics

omega:=sqrt(8/3):F:=[cos(omega*t),cos(2*t)];

plot(F,t=0..2*Pi/omega,color=[red,blue],thickness=3);

34. m = 5, k = 18,
x(0) = 1, x′(0) = 0

35. m = 11, k = 18,
x(0) = 0, x′(0) = 1

Solution: The two equations are harmonic oscillators with general solu-
tions x1(t) = c1 cosω1t + c2 sinω1t, ω

2
1 = 2k/(3m) = 36/33 = 12/11, and

x2(t) = c3 cosω2t + c4 sinω2t, ω
2
2 = k/m = 18/11. Evaluate from initial

data constants c1 = 1, c2 = 0, c3 = 1, c4 = 0. Plot cosω1t, cosω2t on one
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set of axes.

# Exercise 35, Rolling wheel graphics

omomega1:=sqrt(12/11):omega2:=sqrt(18/11):

F:=[cos(omega1*t),cos(omega2*t)];

plot(F,t=0..2*Pi/omega1,color=[red,blue],thickness=3);

36. m = 7, k = 18,
x(0) = 0, x′(0) = 1
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6.7 Forced and Damped Vibrations

Forced Undamped Vibration
Solve the given equation.

1. x′′ + 100x = 20 cos(5t)

Solution: Answer: x(t) = xh(t) + xp(t), xh(t) = c1 cos 10t + c2 sin 10t,

xp(t) =
75

20
cos 5t.

The method of undetermined coefficients applies. Trial solution: xp(t) =
d1 cos 5t because of the trig shortcut for 2-termed second order differential
equations (the expected d2 sin 5t upon substitution gives d2 = 0). Sub-
stitute xp and find the linear equation(s): (100 − 25)d1 = 20. Then

xp(t) =
75

20
cos 5t.

2. x′′ + 16x = 100 cos(10t)

3. x′′+ω2
0x = 100 cos(ωt), when the internal frequency ω0 is twice the external

frequency ω.

Solution: Answer: x(t) = xh(t) + xp(t), xh(t) = c1 cosω0t + c2 sinω0t,

xp(t) =
ω2
0 − ω2

200
cosωt. Details follow Exercise 1.

4. x′′ + ω2
0x = 5 cos(ωt), when the internal frequency ω0 is half the external

frequency ω.

Black Box in the Trunk

5. Construct an example x′′ + ω2
0x = F1 cos(ωt) with a solution x(t) having

beats every two seconds.

Solution: Two beats correspond to two consecutive extrema (max-min or
min-max) in the slow;y varying envelope curve. For x(t) = 2 sin(4t) sin(40t)
the slowly varying envelope curves are ±2 sin 4t. Two consecutive extrema
for this example occur in one period, which is 2π/4. We replace 4 by a
larger number A so that 2π/A = 1: choose A = 2π. The example would
have x(t) = 2 sin(2πt) sin(40t) as a solution. Needed was 2π < 40 to keep
the rapidly varying curve x = sin 40t.

It remains to find the differential equation.

Let’s use the equations in the textbook, subsection Black Box in the
Trunk. Required: ω0 > ω. Equations: 1

2 (ω0 − ω) = 2π, 1
2 (ω0 + ω) = 40.

Then ω0 = 40 + 2π and ω = 40− 2π.
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6.7 Forced and Damped Vibrations

The differential equation is found by differentiation of the solution x(t) =
cos(ω0t)− cos(ωt):

x′′(t) + (ω0)
2 x(t) = (ω2 − ω2

0) cos(ωt),
x′′(t) + (40 + 2π)2 x(t) = (ω − ω0)(ω0 + ω) cos(ωt)

= (−4π)(80) cos(ωt)
= −320π cos((40− 2π)t)

# Exercise 5, Answer check, black box in the trunk

omega0:=40+2*Pi:omega:=40-2*Pi;

LHS:=diff(x(t),t,t)+(40+2*Pi)^2 * x(t);

RHS:=-320*Pi*cos((40-2*Pi)*t);

p:=subs(x(t)=cos(omega0*t)-cos(omega*t),LHS);

simplify(p-RHS);#expect zero)

# Check college algebra:

# 2*sin(2*Pi*t)*cos(40*t)=cos(omega0*t)-cos(omega*t)

x3:=expand(cos(a-b)-cos(a+b));subs(a=2*Pi*t,b=40*t,x3);

x4:=cos(a-b)-cos(a+b);subs(a=2*Pi*t,b=40*t,x4);

6. A solution x(t) of x′′+25x = 100 cos(ωt) has beats every two seconds. Find
ω.

Rotating Drum
Solve the given equation.

7. x′′ + 100x = 500ω2 cos(ωt), ω ̸= 10.

Solution: Answers: x = xh + xp, xh = c1]cos10t + c2 sin 10t, xp =
F0/m

ω2
0 − ω2 cos(ωt) = xp =

F0

199− ω2 cos(ωt) where F0 = 500ω2. Equation

(1) in the textbook was used with m = 1.

8. x′′ + ω2
0x = 5ω2 cos(ωt), ω ̸= ω0.

Harmonic Oscillations
Express the general solution as a sum of two harmonic oscillations of different
frequencies, each oscillation written in phase-amplitude form.

9. x′′ + 9x = sin 4t

Solution: Answer: x = xh + xp, xh = c1 cos 3t + c2 sin 3t = A cos(3t − α),

xp = d1 sin 4t =
1

9− 42
sin 4t by the method of undetermined coefficients.

The challenge: write sin 4t = cos(4t− π/2) using trig identity cos(a− b) =
cos(a) cos(b)+ sin(a) sin(b). Then xp = − 1

7 cos(4t−π/2) and x = xh+xp =
A cos(3t − α) − 1

7 cos(4t − π/2) is the sum of two harmonic oscillations of
different frequencies, each harmonic term in phase-amplitude form.
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10. x′′ + 100x = sin 5t

11. x′′ + 4x = cos 4t

Solution: Answer: x(t) = A cos(2t− α)− 1

12
cos(4t)

12. x′′ + 4x = sin t

Beats: Convert and Graph
Write each linear combination as x(t) = C sin at sin bt. Then graph the slowly-
varying envelope curves and the curve x(t).

13. x(t) = cos 4t− cos t

Solution: Let ω0 = 4, ω = 1. Use the textbook formulas from subsection
Black Box in the Trunk to write x(t) = 2 sin((ω − ω0)t/2) sin((ω0 +
ω)t/2) = −2 sin(3t/2) sin(5t/2).

# Exercise 13, Graph envelope curves, Beats

x1:=2*sin(3*t/2);x2:=cos(4*t)-cos(t);

plot([x1,-x1,x2],t=0..4*Pi,color=[red,red,green],thickness=3);

14. x(t) = cos 10t− cos t

15. x(t) = cos 16t− cos 12t

Solution: Let ω0 = 16, ω = 12. Then x(t) = 2 sin(−4t/2) sin(28t/2).
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16. x(t) = cos 25t− cos 23t

Beats: Solve, find Envelopes
Solve each differential equation with x(0) = x′(0) = 0 and determine the slowly-
varying envelope curves.

17. x′′ + x = 99 cos 10t.

Solution: Answer: x(t) = cos(t)−cos(10t) = 2 sin(9t/2) sin(11t/2), envelope
curves ± sin(9t/2).

Details: use superposition x = xh + xp. The homogeneous solutionis xh =
c1 cos t+c2 sin t. The undetermined coefficients method finds xp = − cos 10t.
Use the initial data and the general solution x = xh + xp to find linear
equations for c1, c2:

c1(1) + c2(0)− cos(0) = 0, −c1(0) + c2(1) + 10(0) = 0

Solve for c1 = 1, c2 = 0. Then x = cos t − cos 10t. Use the text-
book formulas from subsection Black Box in the Trunk to write x =
−2 sin(9t/2) sin(11t/2). The envelope curves use the sine factor with smaller
natural frequency.

18. x′′ + 4x = 252 cos 10t.

19. x′′ + x = 143 cos 12t.

Solution: Answer: x(t) = cos(t) − cos(12t) = 2 sin(11t/2) sin(13t/2), enve-
lope curves ± sin(11t/2).

20. x′′ + 256x = 252 cos 2t.

Waves and Superposition
Graph the individual waves x1, x2 and then the superposition x = x1 + x2.
Report the apparent period of the superimposed waves.

21. x1(t) = sin 22t, x2(t) = 2 sin 20t

Solution: The periods of the two waves: 2π/20 and 2π/22. The waves share
a common period T provided T = 2nπ/20 = 2mπ/22 for some positive
integers n, m. The requirement on n, m: n/10 = m/11 or 11n = 10m. Find
the least period by trying n = 1, 2, 3, . . . until 11n = 10m can be satisfied
for some m. This happens at n = 10 and m = 11. The least period common
to both waves is T = n(2π/20) = π.
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# Exercise 21, Waves and superposition

isolve(11*n=10*m,a);

# {m = 11 a, n = 10 a}, a=integer=1=least solution

x1:=sin (22*t); x2:=2*sin( 20*t);

plot(x1+x2,t=0..Pi,color=[green],thickness=3);

plot({x1,x2},t=0..Pi,color=[red,blue],thickness=3);

22. x1(t) = cos 16t, x2(t) = 4 cos 20t

23. x1(t) = cos 16t, x2(t) = 4 sin 16t

Solution: Fundamental period = T = 2π/16.
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# Exercise 23, Waves and superposition

x1:=cos (16*t); x2:=4*sin( 16*t);

opts:=thickness=3,font=[courier,14,bold];

plot(x1+x2,t=0..Pi/8,color=[green],opts);

plot([x1,x2],t=0..Pi/8,color=[red,blue],opts);

24. x1(t) = cos 25t, x2(t) = 4 cos 27t

Periodicity

25. Let x1(t) = cos 25t, x2(t) = 4 cos 27t. Their sum has period T = m 2π
25 =

n 2π
27 for some integers m,n. Find all m,n and the least period T .

Solution: Solve 27m = 25n for positive integers n, m: m = 25a, n = 27a,
a = 1, 2, 3, . . .. The smallest period is for a = 1. Then T = m 2π

25 = (25a) 2π25 ,
therefore T = 2π. Maple code to solve the equation 27m = 25n appears
above in Exercise 21.
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26. Let x1(t) = cosω1t, x2(t) = cosω2t. Find a condition on ω1, ω2 which
implies that the sum x1 + x2 is periodic.

27. Let x(t) = cos(t) − cos(
√
2t). Explain without proof, from a graphic, why

x(t) is not periodic.

Solution: The graphic displayed on a large interval does not show repeating
extrema. So it cannot be periodic.

A proof can be done by expanding the relation x(t+ T ) = x(t):

x(t+ T ) = x(t)
cos(t+ T )− cos(

√
2t+

√
2T ) = cos(t)− cos(

√
2t)

cos(t) cos(T )− sin(t) sin(T )− cos(
√
2T ) cos(

√
2T )+

sin(
√
2t) sin(

√
2T ) = cos(t)− cos(

√
2t)

Transform to a system of four nonlinear equations by matching coef-
ficients of Euler solution atoms cos(t), sin(t), cos(

√
2t), sin(

√
2t) on each

side (independence of atoms used here):
cos(T ) = 1

− sin(T ) = 0

− cos(
√
2T ) = 1

sin(
√
2T ) = 0

The first two equations imply T = 2nπ for integers n = 0, 1, 2, . . .. The last
two equations violate T = 2nπ. There is no solution T : function x(t) fails
to be periodic. ■

28. Let x(t) = cos(5t) + cos(5
√
2t). Is x(t) is periodic? Explain without proof.

Rotating Drum
Let x(t) and xp(t) be defined as in Example 4, page 509 �. Replace Hooke’s
constant k = 10 by k = 1, all other constants unchanged.

29. Re-compute the amplitude A(t) of solution xp(t). Find the decimal value
for the maximum of |A(t)|.

Solution: Answer: xp = −275π2 cos (20π t)

4120π2 − 2
, amplitudeA(t) =

275π2

4120π2 − 2
.

The maximum of |A(t)| is |A(0)| ≈ 0.067.

30. Find x(t) when x(0) = x′(0) = 0. It is known that x(t) fails to be periodic.
Let t1 = 0, . . . , t29 be the consecutive extrema on 0 ≤ t ≤ 1.4. Verify
graphically or by computation that |x(ti+1)−x(ti)| ≈ 0.133 for i = 1, . . . , 28.

Solution: Answer:

x (t) =
275π2

4120π2 − 2
cos

(
2
√
515t

103

)
− 275

π2 cos (20π t)

4120π2 − 2
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6.7 Forced and Damped Vibrations

Function x(t) is not periodic: identity x(t+ T ) = x(t) fails for all T > 0. A
function that fails to be periodic is called Aperiodic. Functions like x(t)
are called Quasiperiodic.

# Exercise 30, Rotating drum, quasiperiodic x(t)

de:=m*diff(x(t),t,t)+k*x(t)=R*M*omega^2*cos(omega*t);

DE:=subs(k=1,M = 0.275, m =5.15, R = 1.25, omega = 20*Pi,de);

p:=dsolve([DE,x(0)=0,D(x)(0)=0],x(t));

X:=unapply(evalf(rhs(p)),t);

plot(X(t),t=0..1.4);

seq(abs(X(0.1*j+0.05)-X(0.1*j)),j=0..7);

Musical Instruments
Melodious tones are superpositions of harmonics sin(nωt), with n = an integer,
ω = fundamental frequency.

In 1885 Alexander J. Ellis introduced a measurement unitCent by the equation
one cent = 2

1
12 ≈ 1.0005777895. On most pianos, the frequency ratio between

two adjacent keys equals 100 cents, called an equally tempered semitone.
Two piano keys of frequencies 480 Hz and 960 Hz span 1200 cents and have
tones sin(ωt) and sin(2ωt) with ω = 480. A span of 1200 cents between two
piano key frequencies is called an Octave.

31. (Equal Temperament) Find the 12 frequencies of equal temperament for
octave 480 Hz to 960 Hz. The first two frequencies are 480, 508.5422851.

Solution: The frequencies are

480.0, 508.5422851, 538.7817830, 570.8194152,

604.7621040, 640.7231299, 678.8225098, 719.1873970,

761.9525050, 807.2605589, 855.2627693, 906.1193400,

960.0

# Exercise 31, Equal temperament

seq(480.0*2.0^(n/12),n=0..12);

32. (Flute or Noise) Equation x(t) = sin 220πt + 2 sin 330πt could represent
a tone from a flute or just a dissonant, unpleasing sound. Discuss the
impossibility of answering the question with a simple yes or no.

33. (Guitar) Air inside a guitar vibrates a little like air in a bottle when you
blow across the top. Consider a flask of volume V = 1 liter, neck length
L = 5 cm and neck cross-section S = 3 cm2. The vibration has model

x′′ + f2x = 0 with f = c
√

S
V L , where c = 343 m/s is the speed of sound in

air. Compute f
2π and λ = 2πc

f , the frequency and wavelength. The answers
are about 130 Hz and λ = 2.6 meters, a low sound.

441



6.7 Forced and Damped Vibrations

Solution: Answers: ω := 343.2
√
6, F = 133.7959711, λ = 2.565099660

# # Exercise 33, Guitar

S:=3*(1/100)^2; # 1cm=m/100

L:=5*(1/100);

V:=1/1000; # 1000 liters = 1 cubic meter

c:=343.2;

omega:=c*sqrt(S/(V*L));

F:=omega/(2*Pi); # Frequency in Hz

lambda:=evalf(c/F); # wavelength

34. (Helmholtz Resonance) Repeat the previous exercise calculations, using
a flask with neck diameter 2.0 cm and neck length 3 cm. The tone should
be lower, about 100 Hz, and the wavelength λ should be longer.

Seismoscope

35. Verify that xp given in (14) and x∗
p given by (15), page 519 �, have the

same initial conditions when u(0) = u′(0) = 0, that is, the ground does not
move at t = 0. Conclude that xp = x∗

p in this situation.

Solution: Given u(0) = u′(0) = 0 then x∗
p(0) = 0 by (15). Differentiate (15)

to obtain d
dtxp ∗ (0) = −u′(0) +K(0)u(0) +

∫ 0

0
Kt(0− x)u(x)dx = 0.

Equation (14) implies xp(0) = x′
p(0) = 0 similarly. Then both xp and x∗

p

have the same initial data. Apply Picard-Lindelöf to show they are identical
solutions. ■

36. A release test begins by starting a vibration with u = 0. Two successive
maxima (t1, x1), (t2, x2) are recorded. Explain how to find β,Ω0 in the
equation x′′ + 2βΩ0x

′ +Ω2
0x = 0, using Exercises 69 and 70, infra.

Free Damped Motion
Classify the homogeneous equation mx′′+cx′+kx = 0 as over-damped, crit-
ically damped or under-damped. Then solve the equation for the general
solution x(t).

37. m = 1, c = 2, k = 1

Solution: Answer: Critically-damped, x = c1e
−t + c2te

−t

Characteristic equation: r2 + 2r + 1 = 0 with roots r = 1, 1 and atoms
e−t, te−t. The discriminant of ar2+br+c is zero: D = b2−4ac = 4−4 = 0.
Critical damping corresponds to the double root case.

38. m = 1, c = 4, k = 4
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39. m = 1, c = 2, k = 3

Solution: Answer: under-damped, x = c1e
at cos(bt) + c2e

at sin(bt) where
aπib are the two complex roots of the characteristic equation r2 + 2r + 3 =
0. The roots are −1 ±

√
2i. The discriminant of ar2 + br + c is D =

b2−4ac = 4−12 < 0, which implies complex roots and therefore oscillation.
The only oscillatory case is for complex roots and then the classification is
underdamped.

40. m = 1, c = 5, k = 6

41. m = 1, c = 2, k = 5

Solution: Roots of r2 + 2r + 5 = 0 are complex: −1 ± 2i. Classification:
under-damped. Solution: x = c1e

−t cos 2t+ c2e
−t sin 2t.

42. m = 1, c = 12, k = 37

43. m = 6, c = 17, k = 7

Solution: Roots of r2 +2r+5 = 0 are real distinct: −1/2,−7/3. Classifica-
tion: over-damped. Solution: x = c1e

−t/2 + c2e
−7t/3.

44. m = 10, c = 31, k = 15

45. m = 25, c = 30, k = 9

Solution: Roots of 25r2 + 30r + 9 = 0 are real repeated: −3/5,−3/5. Clas-
sification: critically-damped. Solution: x = c1e

−3t/5 + c2te
−3t/5.

46. m = 9, c = 30, k = 25

47. m = 9, c = 24, k = 41

Solution: Roots of 9r2 + 24r + 41 = 0 are complex: −4/3 ± 5i/3. Classifi-
cation: under-damped. Solution: x = c1e

−4t/3 cos 5t/3 + c2e
−4t/3 sin 5t/3.

48. m = 4, c = 12, k = 34

Cafe and Pet Door
Classify as a cafe door model and/or a pet door model. Solve the equation for
the general solution and identify as oscillatory or non-oscillatory.

49. x′′ + x′ = 0

Solution: Cafe door. The pet door always has a nonzero x(t)-term. Non-
ocillatory because the classification is over-damped. Discriminant of ar2 +
br + c = D = b2 − 4ac = 1− 0 > 0 and two distinct real roots 0, 1.
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50. x′′ + 2x′ + x = 0

Solution: Can be either a pet door or a cafe door. Non-oscillatory because
the discriminant = 0, the critically-damped case with two equal real roots
−1,−1.

51. x′′ + 2x′ + 5x = 0

Solution: The roots are −1±
√
5i, so the equation is under-damped oscilla-

tory. Cafe door or pet door.

52. x′′ + x′ + 3x = 0

53. 9x′′ + 24x′ + 41x = 0

Solution: The roots are −4/3 ±
√
5i/3, so the equation is under-damped

oscillatory. Cafe door or pet door.

54. 6x′′ + 17x′ = 0

55. 9x′′ + 24x′ = 0

Solution: Cafe door. The pet door always has a nonzero x(t)-term. Non-
oscillatory because the classification is over-damped, discriminant = 242 −
0 > 0 and two distinct real roots 0,−8/3.

56. 6x′′ + 17x′ + 7x = 0

Classification
Classify mx′′ + cx′ + kx = 0 as over-damped, critically damped or under-
damped without solving the differential equation.

57. m = 5, c = 12, k = 34

Solution: It is enough to compute the discriminant of ar2+br+c: b2−4ac =
−536 < 0. Under-damped.

58. m = 7, c = 12, k = 19

59. m = 5, c = 10, k = 3

Solution: Under-damped.

60. m = 7, c = 12, k = 3

61. m = 9, c = 30, k = 25

Solution: Under-damped.
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62. m = 25, c = 80, k = 64

Critically Damped
The equation mx′′ + cx′ + kx = 0 is critically damped when c2 − 4mk = 0.
Establish the following results for c > 0.

63. The mass undergoes no oscillations, because

x(t) = (c1 + c2t)e
− ct

2m .

Solution: The roots of mr2 + cr + k = 0 are −c/2,−c/2, the critically-
damped case. Then the solution is a linear combination of Euler atoms
e−ct/2, te−ct/2. There are no trig terms in the solution: non-oscillatory.

64. The mass passes through x = 0 at most once.

Over-Damped
Equation mx′′+ cx′+kx = 0 is defined to be over-damped when c2− 4mk > 0.
Establish the following results for c > 0.

65. The mass undergoes no oscillations, because if r1, r2 are the roots of mr2+
cr + c = 0, then

x(t) = c1e
r1t + c2e

r2t.

Solution: Oscillation is caused by trig terms. There are none so no oscilla-
tion.

66. The mass passes through equilibrium position x = 0 at most once.

Under-Damped
Equation mx′′+cx′+kx = 0 is defined to be under-damped when c2−4mk < 0.
Establish the following results.

67. The mass undergoes infinitely many oscillations. If c = 0, then the oscilla-
tions are harmonic.

Solution: The roots are complex aπbi with a = −c/2m < 0 and b =√
4mk − c2 > 0. The solutions are linear combinations of Euler atoms

eat cos bt, eat sin bt, which is always oscillatory. If c = 0 then a = 0 and the
Euler atoms are cos bt, sin bt. Then x(t) is a pure harmonic.

68. The solution x(t) can be factored as an exponential function e−
ct
2m times a

harmonic oscillation. In symbols:

x(t) = e−
ct
2m (A cos(ωt− α)) .
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Experimental Methods
Assume model mx′′+ cx′+kx = 0 is oscillatory. The results apply to find non-
negative constantsm, c, k from one experimentally known solution x(t). Provide
details.

69. Let x(t) have consecutive maxima at t = t1 and t = t2 > t1. Then t2− t1 =
T = 2π

ω = pseudo period of x(t).

Solution: The solution is x(t) = A(t) cos(ωt − α) in phase-amplitude form.
As in the work on envelope curves and the pseudo-period, the amplitude is
A(t) = Ceat and ω is the natural frequency with a ± ωi the two complex
roots of characteristic equation mr2 + cr + k = 0. Maxima of x(t) occur
when x′(t) = 0, which is the equation 0 = x′(t) = aCeat cos(ωt − α) −
Ceatω sin(ωt − α). This equation simplifies to tan(ωt − α) = a

ω = − c
2mω .

Consecutive maxima at t1, t2 then satisfy a
ω = tan(ωt1−α) = tan(ωt2−α).

For t2 > t1 the possible solutions are ωt2 − α = ωt1 + nπ, n = 1, 2, 3, . . .,
because the tangent has period π. Suppose amplitude A(t1) is positive,
equivalent to coefficient C > 0. Then x(t1) > 0 implies cos(θ) > 0 for θ =
ωt1−α. At a later maximum t = t2 > t1 the values of x(t2) and cos(θ+nπ)
must be positive. For n = 1: cos(θ + π) = cos(θ) cos(π) = − cos(θ), so the
cosine is not positive. Then n = 1 is not a solution. Let’s try n = 2: it
works because the sine and cosine are 2π-periodic. So the correct answer
is n = 2. Choosing n = 2 gives equation ωt1 − α + 2π = ωt2 − α. Solve:
t2 − t1 = 2π

ω , which is the pseudo period.

70. Let (t1, x1) and (t2, x2) be two consecutive maximum points of the graph
of a solution x(t) = Ce−ct/(2m) cos(ωt − α) of mx′′ + cx′ + kx = 0. Let
a ± ωi be the two complex roots of mr2 + cr + k = 0 where a = −c/(2m)
and ω = 1

2m

√
4mk − c2. Then

ln
x1

x2
=

cπ

mω
,

Solution: The equations: A(t) = Ceat, x1 = A(t1) cos(ωt1−α) = A(t1)(1) =
Ceat1 , x2 = A(t2) cos(ωt2 − α) = A(t2)(1) = Ceat2 . Then Exercise 69 gives

x1

x2
= ea(t1−t2) = e(−1) c

2m (−1) 2π
ω

Take logs:

ln |x1

x2
| = c

2m

2π

ω
=

cπ

mω

71. (Bike Trailer) Assume fps units. A trailer equipped with one spring and
one shock has mass m = 100 in the model mx′′ + cx′ + kx = 0. Find c
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and k from this experimental data: two consecutive maxima of x(t) are
(0.35, 10/12) and (1.15, 8/12).
Hint: Use exercises 69 and 70.

72. (Auto) Assume fps units. An auto weighing 2.4 tons is equipped with
four identical springs and shocks. Each spring-shock module has damped
oscillations satisfying mx′′ + cx′ + kx = 0. Find m. Then find c and k from
this experimental data: two consecutive maxima of x(t) are (0.3, 3/12) and
(0.7, 2/12).
Hint: Use exercises 69 and 70.

Solution: Answer: m = 41.113, c = 83.34943495, ω = 5π, k = 10860.46092.

Let t1 = 0.3, x1 = 3/12, t2 = 0.7, x2 = 2/12. Let m = 164.452/4 =
41.113 slugs, for 2.4 tons divided among the four springs equally. The
model is under-damped from the data. The pseudo period is 2/pi/ω =
t2 − t1 = 0.4 by the result of Exercise 69. Then ω = 5π. The
logarithmic decrement = cπ/(mω) = ln |x1/x2| by Exercise 70. Then
cπ/(mω) = ln(x1/x2) = ln(3/2). Because m = 41.113 and ω = 5π then
c = 1

π (mω ln(3/2)) = 83.34943495. To find k use ω = 1
2m

√
4mk − c2 and

solve for k = 10860.46092.

Structure of Solutions
Establish these results for the damped spring-mass system mx′′+ cx′+kx = 0.
Assume m > 0, c > 0, k > 0.

73. (Monotonic Factor) Let the equation be critically damped or over-damped.
Prove that

x(t) = e−ptf(t)

where p ≥ 0 and f(t) is monotonic (f ′ one-signed).

Solution: Case 1: over-damped. Then the roots of the characteristic equa-
tion are two distinct real roots r1 > r2. The roots satisfy (r−r1)(r−r2) = 0
which upon expansion gives r2 − (r1 + r2)r+ r1r2 = 0. Because −r1 − r2 =
c/m and r1r2 = k/m then both roots are negative. The Euler atoms give
general solution x(t) = c1e

r1t+c2e
r2t = er2tf(t) where f(t) = c1e

r1t−r2t+c2.
The derivative f ′(t) is either zero (c1 = 0) or else never vanishes. Then f ′(t)
is one-signed: f(t) is monotonic.

Case 2: critically-damped, Then the characteristic equation has a double
root r1 = r2 and the general solution is x(t) = er1t(c1 + c2t). Root r1 is
negative because −r1 − r1 = c, following Case 1. Let f(t) = c1 + c2t. Then
f ′(t) is zero or never vanishes: f(t) is monotonic.

74. (Harmonic Factor) Let the equation be under-damped. Prove that

x(t) = e−atf(t)
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6.7 Forced and Damped Vibrations

where a > 0 and f(t) = c1 cosωt + c2 sinωt = A cos(ωt − α) is a harmonic
oscillation.

75. (Limit Zero and Transients) A term appearing in a solution is called
transient if it has limit zero at t = ∞. Prove that positive damping c > 0
implies that the homogeneous solution satisfies limt→∞ x(t) = 0.

Solution: The decompositions of x(t) in the last few exercises show that x(t)
equals an exponential factor ert with r < 0 multiplied by a function f(t).
There are three cases:

(1) f(t) = c1e
−at + c2 with a > 0, a monotone function with

limt=∞ f(t) = c2,
(2) f(t) = c1 + c2t, a linear function,
(3) f(t) = c1 cos(bt) + c2 sin(bt), a harmonic function.

In cases (1), (2), (3) the exponential factor ert dominates at t = ∞ with
limt=∞ x(t) = 0.

76. (Steady-State) An observable or steady-state is expression obtained
from a solution by excluding all terms with limit zero at t = ∞. The
Transient is the expression excluded to obtain the steady state. Assume
mx′′ + cx′ + kx = 25 cos 2t has a solution

x(t) = 2te−t − cos 2t+ sin 2t.

Find the transient and steady-state terms.

Damping Effects
Construct a figure on 0 ≤ t ≤ 2 with two curves, to illustrate the effect of
removing the dashpot. Curve 1 is the solution of mx′′+cx′+kx = 0, x(0) = x0,
x′(0) = v0. Curve 2 is the solution of my′′ + ky = 0, y(0) = x0, y

′(0) = v0.

77. m = 2, c = 12, k = 50,
x0 = 0, v0 = −20

Solution:
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6.7 Forced and Damped Vibrations

# Exercise 77, Damping effects

de:=m*diff(x(t),t,t)+c*diff(x(t),t)+k*x(t);

ic:=x(0)=0,D(x)(0)=-20;

de1:=subs(m=2,c=12,k=50,de);

p:=dsolve({de1,ic},x(t));X:=unapply(rhs(p),t);

de2:=subs(m=2,c=0,k=50,de);

q:=dsolve({de2,ic},x(t));Y:=unapply(rhs(q),t);

opts:=font=[courier,14,bold],thickness=3,color=[red,blue];

plot([X,Y],0..2,opts);

78. m = 1, c = 6, k = 25,
x0 = 0, v0 = 20

79. m = 1, c = 8, k = 25,
x0 = 0, v0 = 60

Solution:
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6.7 Forced and Damped Vibrations

80. m = 1, c = 4, k = 20,
x0 = 0, v0 = 4

Envelope and Pseudo-period
Plot on one graphic the envelope curves and the solution x(t), over two pseudo-
periods. Use initial conditions x(0) = 0, x′(0) = 4.

81. x′′ + 2x′ + 5x = 0

Solution: Answer: x(t) = 8
3 e

−t/2 sin (3t/2), envelope curves y(t) = ± 8
3 e

−t/2

# Exercise 81, Envelope and pseudo-period

de:=m*diff(x(t),t,t)+c*diff(x(t),t)+k*x(t);

ic:=x(0)=0,D(x)(0)=4;

de1:=subs(m=2,c=2,k=5,de);

p:=dsolve({de1,ic},x(t));X:=unapply(rhs(p),t);

Y:=t->(8/3)*exp(-(1/2)*t);Z:=t->(-8/3)*exp(-(1/2)*t);

T:=4*Pi/3;

opts:=font=[courier,14,bold],thickness=3,color=[red,blue];

plot([X,Y,Z],0..2*T,opts);

82. x′′ + 2x′ + 26x = 0

83. 2x′′ + 12x′ + 50x = 0

Solution: Answer: x(t) = e−3t sin (4t), envelope curves y(t) = ±e−3t
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6.7 Forced and Damped Vibrations

84. 4x′′ + 8x′ + 20x = 0
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6.8 Resonance

Beats
Each equation satisfies the beats relation ω ̸= ω0. Find the general solution.
See Example 6.53, page 538 �.

1. x′′ + 100x = 10 sin 9t

Solution: Answer: x = xh + xp, xh = c1 cos 10t+ c2 sin 10t, xp = 5
19 sin(9t)

2. x′′ + 100x = 5 sin 9t

3. x′′ + 25x = 5 sin 4t

Solution: Answer: x = xh + xp, xh = c1 cos 5t+ c2 sin 5t, xp = 5
9 sin(4t)

4. x′′ + 25x = 5 cos 4t

Pure Resonance
Each equation satisfies the pure resonance relation ω = ω0. Find the general
solution. See Example 6.53, page 538 �.

5. x′′ + 4x = 10 sin 2t

Solution: Answer: x = xh + xp, xh = c1 cos 2t+ c2 sin 2t, xp = − 5
2 t cos(2t)

6. x′′ + 4x = 5 sin 2t

7. x′′ + 16x = 5 sin 4t

Solution: Answer: x = xh + xp, xh = c1 cos 4t+ c2 sin 4t, xp = − 5
8 t cos(4t)

8. x′′ + 16x = 10 sin 4t

Practical Resonance
For each model, find the tuned practical resonance frequency Ω and the
resonant amplitude C:

Ω =
√
k/m− c2/(2m2),

C = F0/
√
(k −mΩ2)2 + (cΩ)2

9. x′′ + 2x′ + 17x = 100 cos(4t)

Solution: Answer: m = 1, c = 2, k = 17, F0 = 100, ω = 4, C = 20
13

√
65,

Ω =
√
60/2, xp = 20

13 cos 4t, xh = c1e
−t cos 4t+ c2e

−t sin 4t
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6.8 Resonance

# Exercise 9, practical resonance

F:=t->100*cos(4*t);

de:=m*diff(x(t),t,t)+c*diff(x(t),t)+k*x(t)=F(t);

de1:=subs(m=1,c=2,k=17,de);

p:=dsolve(de1,x(t));X:=unapply(rhs(p),t);

C:=F(0)/sqrt( (k-m*omega^2)^2 + (c*omega)^2 );

Omega:=sqrt(k/m - c^2/(2*m^2));

subs(m=1,c=2,k=17,Omega);

subs(m=1,c=2,k=17,omega=4,C);

10. x′′ + 2x′ + 10x = 100 cos(4t)

11. x′′ + 4x′ + 5x = 10 cos(2t)

Solution: Answer: m = 1, c = 4, k = 5, F0 = 100, ω = 2, C = 2
√
65

13 , Ω = −3
which means no practical resonant frequency exists, xp = 2

13 cos 2t+
16
13 sin 2t,

xh = c1e
−2t cos t+ c2e

−2t sin t

12. x′′ + 2x′ + 6x = 10 cos(2t)

Transient Solution
Identify from superposition x = xh + xp a shortest particular solution, given
one particular solution.

13. x′′ + 2x′ + 10x = 26 cos(3t),
x = 100e−t cos(3t) + 3 cos (2 t) + 2 sin (2 t)

Solution: xp = 3 cos (2 t) + 2 sin (2 t)

14. x′′ + 4x′ + 13x = 920 cos(3t),
x = 5 e−2 t cos (3 t) + 23 cos (3 t) + 69 sin (3 t)

15. x′′ + 2x′ + 2x = 2 cos(t),
x = 3 e−t sin (t) + 5 e−t cos (t) + cos (t) + 2 sin (t)

Solution: xp = cos (t) + 2 sin (t)

16. x′′ + 2x′ + 17x = 65 cos(4t),
x = −2 e−t sin (4 t) + 7 e−t cos (4 t) + cos (4 t) + 8 sin (4 t)

Steady-State Periodic Solution
Consider the model mx′′+cx′+kx = F0 cos(ωt) of external frequency ω. Com-
pute the unique steady-state solution A cos(ωt) + B sin(ωt) and its amplitude
C(ω) =

√
A2 +B2. Graph the ratio 100C(ω)/C(Ω) on 0 < ω < ∞, where Ω is

the tuned practical resonance frequency.
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17. x′′ + 2x′ + 17x = 100 cos(4t)

Solution: xss =
20 cos (4 t)

13
+
160 sin (4 t)

13
, because the steady-state consists

of terms left over in the general solution after the transient terms have been
removed.
# Exercise 17, Steady-state periodic solution

F:=t->100*cos(4*t);

de:=m*diff(x(t),t,t)+c*diff(x(t),t)+k*x(t)=F(t);

de1:=subs(m=1,c=2,k=17,de);

p:=dsolve(de1,x(t));X:=unapply(rhs(p),t);

18. x′′ + 2x′ + 10x = 100 cos(4t)

19. x′′ + 4x′ + 5x = 10 cos(2t)

Solution: xss =
16 sin (2 t)

13
+ 2/13 cos (2 t)

20. x′′ + 2x′ + 6x = 10 cos(2t)

21. x′′ + 4x′ + 5x = 5 cos(2t)

Solution: xss =
8 sin (2 t)

13
+ 1/13 cos (2 t)

22. x′′ + 2x′ + 5x = 5 cos(1.5t)

Phase-Amplitude
Solve for a particular solution in the form x(t) = C cos(ωt− α).

23. x′′ + 6x′ + 13x = 174 sin(5t)

Solution: Answer: xp =
√
(29) cos(arctan(5/2)− π).

First solve for the general solution

x(t) = c1e
−3 t cos (2 t) + c2e

−3 t sin (2 t)− 2 sin (5 t)− 5 cos (5 t)

Extract the steady-state solution xp = −2 sin (5 t)− 5 cos (5 t) and convert
to phase-amplitude form as follows:

xp = −5 cos (5 t)− 2 sin (5 t)

=
√

c21 + c22 cos(5t− α) where c1 = −5, c2 = −2
=

√
29 cos(5t− α) where tan(α) = c1/c2 = 5/2

Then α = arctan(5/2) + π because α is the angle in quadrant 3 formed by
point (−5,−2). Check: expand

√
29 cos(u− arctan(5/2)− π) using the trig

sum identities to get −2 cosu− 5 sinu.

24. x′′ + 8x′ + 25x = 100 cos(t) + 260 sin(t)
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Chapter 7

Topics in Linear Differential
Equations
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7.1 Higher Order Homogeneous

Higher Order Factored
Solve the higher order equation with the given characteristic equation. Display
the roots according to multiplicity and list the corresponding solution atoms.

1. (r − 1)(r + 2)(r − 3)2 = 0

Solution: Roots: 1,−2, 3, 3. Atoms: ex, e−2x, e3x, xe3x.

eq:=(r-1)*(r+2)*(r-3)^2;

solve(eq=0,r);

2. (r − 1)2(r + 2)(r + 3) = 0
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3. (r − 1)3(r + 2)2r4 = 0

Solution: Roots: 1, 1, 1,−2,−2, 0, 0, 0, 0. Atoms: ex, xex, x2ex e−2x, xe−2x,
1, x, x2, x3

4. (r − 1)2(r + 2)3r5 = 0

5. r2(r − 1)2(r2 + 4r + 6) = 0

Solution: Roots: 0, 0, 1, 1,−2 ±
√
2i. Atoms: 1, x, ex, xex, e−2x cos

√
2x,

e−2x sin
√
2x

6. r3(r − 1)(r2 + 4r + 6)2 = 0

7. (r − 1)(r + 2)(r2 + 1)2 = 0

Solution: Roots: 1,−2,±i. Atoms: ex, e−2x, cosx, sinx

8. (r − 1)2(r + 2)(r2 + 1) = 0

9. (r − 1)3(r + 2)2(r2 + 4) = 0

Solution: Roots: 1, 1, 1,−2,−2,±2i. Atoms: ex, xex, x2ex, e−2x, xe−2x,
cos 2x, sin 2x

10. (r − 1)4(r + 2)(r2 + 4)2 = 0

Higher Order Unfactored
Completely factor the given characteristic equation, then the roots according
to multiplicity and the solution atoms.

11. (r − 1)(r2 − 1)2(r2 + 1)3 = 0

Solution: (r− 1)3(r+1)2(r2 +1)3 = 0, roots 1, 1, 1− 1,−1, i, i, i,−i,−i,−i,
atoms ex, xex, x2ex, e−x, xe−x, cosx, x cosx, x2 cosx, sinx, x sinx, x2 sinx

12. (r + 1)2(r2 − 1)2(r2 + 1)2 = 0

13. (r + 2)2(r2 − 4)2(r2 + 16)2 = 0

Solution: (r + 2)4(r − 2)2(r2 + 16)3 = 0, roots
−2,−2,−2,−2, 2, 2, , 4i, 4i, 4i,−4i,−4i,−4i, atoms e−2x, xe−2x, x2e−2x,
x3e−2x, e2x, xe2x, cos 4x, x cos 4x, x2 cos 4x, sin 4x, x sin 4x, x2 sin 4x

14. (r + 2)3(r2 − 4)4(r2 + 5)2 = 0
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15. (r3 − 1)2(r − 1)2(r2 − 1) = 0

Solution: (r − 1)5(r2 + r + 1)2(r + 1) = 0, roots 1, 1, 1, 1, 1,−1/2 +√
3i/2,−1/2+

√
3i/2,−1/2−

√
3i/2,−1/2−

√
3i/2,, −1, atoms 1, x, x2, x3,

x4, e−x/2 cos
√
3x/2, xe−x/2 cos

√
3x/2, e−x/2 sin

√
3x/2, xe−x/2 sin

√
3x/2,

e−x

16. (r3 − 8)2(r − 2)2(r2 − 4) = 0

17. (r2 − 4)3(r4 − 16)2 = 0

Solution: (r − 2)3(r + 2)3(r2 − 4)2(r2 + 4)2 = 0 or (r − 2)5(r + 2)5(r2 +
4)2 = 0, roots 2, 2, 2,−2,−2,−2, 2i, 2i,−2i,−2i, atoms e2x multiplied by
1, x, x2, x3, x4, e−2x multiplied by 1, x, x2, x3, x4, cos 2x, x cos 2x, sin 2x,
x sin 2x

18. (r2 + 8)(r4 − 64)2 = 0

19. (r2 − r + 1)(r3 + 1)2 = 0

Solution: (r2 − r + 1)3(r + 1)2 = 0, roots −1,−1, 1/2 +
√
3i/2, 1/2 +√

3i/2, 1/2 +
√
3i/2, 1/2 −

√
3i/2, 1/2 −

√
3i/2, 1/2 −

√
3i/2, atoms e−x,

xe−x, ex/2 cos
√
3x/2, xex/2 cos

√
3x/2, x2ex/2 cos

√
3x/2, ex/2 sin

√
3x/2,

xex/2 sin
√
3x/2, x2ex/2 sin

√
3x/2

20. (r2 + r + 1)2(r3 − 1) = 0

Higher Order Equations
The exercises study properties of Euler atoms and nth order linear differential
equations.

21. (Euler’s Theorem)

Explain why the derivatives of atom x3ex satisfy a higher order equation
with characteristic equation (r − 1)4 = 0.

Solution: Euler’s theorem says that x3ex is a solution if and only if r = 1
is a root of the characteristic of multiplicity 4. Therefore, (r − 1)4 is a
factor of the characteristic equation. The simplest such equation comes
from expanding (r − 1)4 and then recovering the differential equation from
the powers of r: rn 7→ (d/dx)ny(x).

22. (Euler’s Theorem)

Explain why the derivatives of atom x3 sinx satisfy a higher order equation
with characteristic equation (r2 + 1)4 = 0.
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23. (Kümmer’s Change of Variable)

Consider a fourth order equation with characteristic equation (r + a)4 = 0
and general solution y. Define y = ue−ax. Find the differential equation for
u and solve it. Then solve the original differential equation.

Solution: Let v = ebx, b = −a. Then v′ = bv. The product rule for
derivatives gives

(d/dx)(uv) = u′v + buv = (u′ + bu)v

Expand (D + a)y = (D + a)(uebx) = u′v + buv + auv = u′v. Replace u by
u′ and repeat the expansion: (D + a)2y = (D + a)(u′v) = u′′v. Conclusion:
(D + a)4u = u′′′′v. Because y is a solution of (D + a)4y = 0 then 0 = u′′′′v.
Cancel v = e−ax to reach the differential equation for u: u′′′′ = 0.

The solution of u′′′′ = 0 is u =
∑3

i=1 cix
i−1. Then y =

(∑3
i=1 cix

i−1
)
e−ax.

24. (Kümmer’s Change of Variable)

A polynomial u = c0 + c1x + c2x
2 satisfies u′′′ = 0. Define y = ueax.

Prove that y satisfies a third order equation and determine its characteristic
equation.

25. (Ziebur’s Derivative Lemma)

Let y be a solution of a higher order constant-coefficient linear equation.
Prove that the derivatives of y satisfy the same differential equation.

Solution: The proof consists of differentiation of the differential equation, n
times to find a new differential equation for y(n). ■

26. (Ziebur’s Lemma: atoms)

Let y = x3ex be a solution of a higher order constant-coefficient linear
equation. Prove that Euler atoms ex, xex, x2ex are solutions of the same
differential equation.

27. (Ziebur’s Atom Lemma)

Let y be an Euler atom solution of a higher order constant-coefficient lin-
ear equation. Prove that the Euler atoms extracted from the expressions
y, y′, y′′, . . . are solutions of the same differential equation.

Solution: The ideas are in Exercise 22 and Exercise 26. The proof of Exercise
27 is inductive, motivated by Ziebur’s Derivative Lemma, Exercise 25.

Induction Hypothesis:
Let y be an Euler atom solution decomposed as y = xnz, where z is a base
atom. If z has associated complex root a + ib (b = 0 if real) then for some
constants ci, di

y′ =

n∑
i=1

xi−1(ci cos bx+ di sin bx)⃗e
ax
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The identity for y′ says that y′ is a linear combination of Euler solution
atoms w. Each atom w is a solution by Euler’s theorem.

Induction n = 0:
Let y = x0z where z is a base atom. Then z = eat cos bt or z = eat sin bt,
with b = 0 allowed, the latter excluding z = 0 from the cases. Differentiate
y = z = eat cos bt and y = z = eat sin bt, proving directly from Euler’s the-
orem that y′ = z′ = linear combination of solution atoms of the differential
equation.

Induction n ≥ 1:
Assume the induction hypothesis is true for all powers less than or equal to
n−1. Differentiate y = xnz to obtain nxn−1z+xnz′. The induction hypoth-
esis applies to nxn−1z: it equals some

∑n−1
i=1 xi−1(ci cos bx + di sin bx)⃗e

ax

and the atoms w involved are solutions of the differential equation. Euler’s
theorem implies z′ is a linear combination of at most two base atoms which
are solutions of the same differential equation. Multiply by xn to produce
xnz′ as a linear combination of Euler atoms w. Each atom w is known by
Euler’s theorem and the hypothesis on y to be a solution. Then y′ is a sum
of linear combinations of Euler solution atoms. ■

28. (Differential Operators)

Let y be a solution of a differential equation with characteristic equation
(r − 1)3(r + 2)6(r2 + 4)5 = 0. Explain why y′′′ is a solution of a differential
equation with characteristic equation (r − 1)3(r + 2)6(r2 + 4)5r3 = 0.

29. (Higher Order Algorithm)

Let atom x2 cosx appear in the general solution of a linear higher order
equation. Find the pair of complex conjugate roots that constructed this
atom, and the multiplicity k. Report the 2k atoms which must also appear
in the general solution.

Solution: The root pair for the base atom cosx is ±i. The base atoms for
this pair are cosx, sinx. The multiplicity according to Euler’s theorem is
k = 3, always one higher than the highest power of x in the atom. The
2k = 6 atoms according to Euler’s theorem: cosx, x cosx, x2 cosx, sinx,
x sinx, x2 sinx.

30. (Higher Order Algorithm)

Let Euler atom xex cos 2x appear in the general solution of a linear higher
order equation. Find the pair of complex conjugate roots that constructed
this atom and estimate the multiplicity k. Report the 2k atoms which are
expected to appear in the general solution.
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31. (Higher Order Algorithm)

Let a higher order equation have characteristic equation (r−9)3(r−5)2(r2+
4)5 = 0. Explain precisely using existence-uniqueness theorems why the
general solution is a sum of constants times Euler atoms.

Solution: The number of independent solutions is the order n of the differ-
ential equation, which is the degree of the characteristic equation: n = 15.
It suffices by existence-uniqueness theory to find a basis of n independent
solutions, because then the general solution is a linear combination of these
solutions. Euler’s theorem provides the n solutions from the roots listed ac-
cording to multiplicity: 3, 3, 3, 5, 5, and ±2i repeated 5 times. The atoms:
e9x, xe9x, x2e9x, e5x, xe5x, cosx, x cosx, x2 cosx, x3 cosx, x4 cosx, sinx,
x sinx, x2 sinx, x3 sinx, x4 sinx. The atoms are independent by a theorem:
A finite list of distinct Euler atoms is independent.

32. (Higher Order Algorithm)

Explain why any higher order linear homogeneous constant-coefficient dif-
ferential equation has general solution a sum of constants times Euler atoms.
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7.2 Differential Operators

Operator Arithmetic
Compute the operator and solve the corresponding differential equation.

1. D(D + 1) +D

Solution: Answers: D2 + 2D, y′′ + 2y′ = 0 has solution y = c1 + c2e
−2x.

2. D(D + 1) +D(D + 2)

3. D(D + 1)2

Solution: Answers: D3 + 2D3 + D, y′′′ + 2y′′ + y′ = 0 has solution y =
c1 + c2e

−x + c3xe−x.

4. D(D2 + 1)2

5. D2(D2 + 4)2

Solution: Answers: D6 + 8D4 + 16D2, solution y = c1 + c2x + c3 cos 2x +
c4 sin 2x+ c5x cos 2x+ c6x sin 2x.

6. (D − 1)((D − 1)2 + 1)2

Operator Properties.

7. (Operator Composition) Multiply P = D2 + D and Q = 2D + 3 to get
R = 2D3 + 5D2 + 3D. Then compute P (Qy) and Q(Py) for y(x) 3-times
differentiable, and show both equal Ry.

Solution: Multiply: PQ = (D2 +D)(2D + 3) = 2D3 + 5D2 + 3D = R.

Compute P (Qy): Let u = Qy = (2D + 3)(y) = 2y′ + 3y. Then P (u) =
(D2+D)(u) = u′′+u′ = (2y′+3y)′′+(2y′+3y)′ = 2y′′′+3y′′+2y′′+3y′ =
2y′′′ + 5y′′ + 3y′.

Compute Q(Py): Let u = Py = (D2 + D)(y) = y′′ + y′. ThenQ(Py) =
Q(u) = (2D + 3)(u) = 2u′ + 3u = 2(y′′ + y′)′ + 3(y′′ + y′) = 2y′′′ + 2y′′ +
3y′′ + 3y′ = 2y′′′ + 5y′′ + 3y′

Because R(y) = (2D3 + 5D2 + 3D)(y) = 2y′′′ + 5y′′ + 3y′, then P (Qy) =
Q(Py) = Ry.

8. (Kernels)

The operators (D − 1)2(D + 2) and (D − 1)(D + 2)2 share common fac-
tors. Find the Euler solution atoms shared by the corresponding differential
equations.
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9. (Operator Multiply)

Let differential equation (D2 +2D+1)y = 0 be formally differentiated four
times. Find its operator and solve the equation. What does this have to do
with operator multiply?

Solution: After four differentiations: y(6)+2y(5)+y(4) = 0. The operator is
D6 + 2D5 +D4, which can be factored according to theorems in a number
of ways, one of which is D4(D2 + 2D + 1). The meaning: to differentiate
the differential equation four times, multiply the operator equation by D4.

10. (Non-homogeneous Equation) The differential equation (D5+4D3)y = 0
can be viewed as (D2 + 4)u = 0 and u = D3y. On the other hand, y is a
linear combination of the atoms generated from the characteristic equation
r3(r2 + 4) = 0. Use these facts to find a particular solution of the non-
homogeneous equation y′′′ = 3 cos 2x.

Kümmer’s Change of Variable
Kümmer’s change of variable y = ueax changes a y-differential equation into a
u-differential equation. It can be used as a basis for solving homogeneous nth
order linear constant coefficient differential equations.

11. Supply details: y = ueax changes y′′ = 0 into u′′ + 2au′ + a2u = 0.

Solution: Differentiate y = ueax: y′ = u′eax + aueax = (u′ + au)eax, then
differentiate again to get y′′ = (u′′ + 2au′ + a2u)eax.

12. Supply details: y = ueax changes (D2 + 4D)y = 0 into ((D + a)2 + 4(D +
a))u = 0.

13. Supply details: y = ueax changes the differential equation Dny = 0 into
(D + a)nu = 0.

Solution: The details in Exercise 11 give D(weax) = (w′ + aw)eax = ((D +
a)(w))eax. Then y′ = ((D + a)(u))eax, y′′ = D(weax) = ((D + a)(w))eax

where w = (D + a)(u). Repeat or use induction to give Dny = ((D +
a)n(u))eax.

14. Kümmer’s substitution y = ueax changes the differential equation (Dn +
an−1D

n−1 + · · · + a0)y = 0 into (Fn + an−1F
n−1 + · · · + a0)u = 0, where

F = D + a. Write the proof.
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Variation of Parameters
Solve the higher order equation given by its characteristic equation and right
side f(x). Display the Cauchy kernel K(x) and a particular solution yp(x) with
fewest terms. Use a computer algebra system to evaluate integrals, if possible.

1. (r − 1)(r + 2)(r − 3)2 = 0,
f(x) = ex

Solution: Answers: y = 1
12 xe

x + c1 ex + c2 e−2 x + c3 e3 x + c4 xe3 x,
yp = 1

12 xe
x, k(x) = 1

12 e
x − 1

75e
−2 x − 7

100e
3 x + 1

10 xe
3 x

# Exercise 1,Variation of Parameters

F:=x->exp(x);

sol:=c1*exp(x)+c2*exp(-2*x)+c3*exp(3*x)+c4*x*exp(3*x);

eqs:=[subs(x=0,sol)=0,

subs(x=0,diff(sol,x))=0,

subs(x=0,diff(sol,x,x))=0,

subs(x=0,diff(sol,x,x,x))=1];

solve(eqs,[c1,c2,c3,c4]);

kk:=unapply(subs(c1 = 1/12, c2 = -1/75, c3 = -7/100,

c4 = 1/10,sol),x);

int(kk(x-t)*F(t),t=0..x);# Var of parameters formula

# (1/900*(45*exp(5*x)*x-54*exp(5*x)+75*x*exp(3*x)+

50*exp(3*x)+4))*exp(-2*x)

# Answer check

expand((r-1)*(r+2)*(r-3)^2);

# r^4-5*r^3+r^2+21*r-18

de:=diff(u(x),x,x,x,x)-5*diff(u(x),x,x,x)+diff(u(x),x,x)+

21*diff(u(x),x)-18*u(x)=F(x);

dsolve(de,u(x));

2. (r − 1)2(r + 2)(r + 3) = 0,
f(x) = ex

3. (r − 1)3(r + 2)2r4 = 0,
f(x) = x+ e−2x

Solution: Answers: k (x) = −e−2 x

144
− xe−2 x

432
+

13 ex

9
− 14xex

27
+

1

18
exx2 − 23

16
− 15x

16
− 1

4
x2 − 1

24
x3,

yh = c1 e−2 x + c2 xe−2 x + c3 e
x + c4 x ex + c5 x2 ex+

c6 + c7 x+ c8 x2 + c9 x3,

yp =
x3ex

54
− 2

9
exx2 +

10xex

9
− 20 ex

9
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4. (r − 1)2(r + 2)3r5 = 0,
f(x) = x+ e−2x

5. r2(r − 1)2(r2 + 4r + 6) = 0,
f(x) = x+ ex

Solution: k (x) = 2/9 + x/6 − 28 ex

121
+

1

11
xex +

10 e−2 x cos
(√

2x
)

1089
−

17
√
2e−2 x sin

(√
2x
)

4356
,

yp (t) =
1

36
x3+

4xex

33
+
1

9
x2− 545 ex

1089
+
11x

27
+
313

648
+
263 e−2x sin

(√
2x
)√

2

78408
+

139 cos
(√

2x
)

39204 (ex)
2 +

1

72
e−2x

# Exercise 5,Variation of Parameters

F:=x->x+exp(x);

solve(r^2*(r-1)^2*(r^2+4*r+6)=0,r);

# 0, 0, 1, 1, -2+I*sqrt(2), -2-I*sqrt(2)

sol:=c1+c2*x+c3*exp(x)+c4*x*exp(x)+

c5*exp(-2*x)*cos(sqrt(2)*x)+c6*exp(-2*x)*sin(sqrt(2)*x);

eqs:=[subs(x=0,sol)=0,subs(x=0,diff(sol,x))=0,

subs(x=0,diff(sol,x$2))=0,subs(x=0,diff(sol,x$3))=0,

subs(x=0,diff(sol,x$4))=0,subs(x=0,diff(sol,x$5))=1];

p:=solve(eqs,[c1,c2,c3,c4,c5,c6]);

q:=convert(p[1],set,nested=true);

kk:=unapply(subs(q,sol),x);

int(kk(x-t)*F(t),t=0..x);# Var of parameters formula

6. r3(r − 1)(r2 + 4r + 6)2 = 0,
f(x) = x2 + ex

7. (r − 1)(r + 2)(r2 + 1)2 = 0,
f(x) = cosx+ e−2x

Solution: k(x) = − 1

75
e−2x+

1

12
ex− 7

100
cos(x)− 13

50
sin(x)+

3

20
x cos(x)−

1

20
x sin(x),

yp(x) = −67 (cos (x))
3

400
− 67 (sin (x))

2
cos (x)

400
+

3 cos (x)x2

80
− sin (x)x2

80
+

19x cos (x)

400
− 33x sin (x)

400
+

237 cos (x)

2000
− 289 sin (x)

2000
+

5 ex

72
+

(cos (x))
2

500 (ex)
2 +

(sin (x))
2

500 (ex)
2 − x

75 (ex)
2 − 101

4500 (ex)
2
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8. (r − 1)2(r + 2)(r2 + 1) = 0,
f(x) = sinx+ e−2x

9. (r − 1)3(r + 2)2(r2 + 4) = 0,
f(x) = cos 2x+ ex

Solution: k(x) =
e−2 x

144
− xe−2 x

216
+

14 ex

1125
− 16xex

675
+

exx2

90
− 11 cos (2x)

2000
+

sin (2x)

1000
,

yp(x) =
(sin (x))

2
(cos (x))

4

500
+

(cos (x))
6

500
− 7 ex (sin (x))

2
(cos (x))

2

2500
−

7 ex (cos (x))
4

2500
− (sin (x))

2
(cos (x))

2

1000
− 3 (cos (x))

4

1000
+
x3ex

270
+
sin (x) cos (x)x

1000
+

7 ex (cos (x))
2

2500
−11 (cos (x))

2
x

2000
−13 exx2

1350
+
93 sin (x) cos (x)

20000
+
71 (cos (x))

2

20000
+

7xex

675
− 887 ex

151875
+

11x

4000
− 51

40000
+

7x

2592 (ex)
2 +

71

15552 (ex)
2

10. (r − 1)4(r + 2)(r2 + 4)2 = 0,
f(x) = sin 2x+ ex

Undetermined Coefficient Method
A higher order equation is given by its characteristic equation and right side
f(x). Display (a) a trial solution, (b) a system of equations for the undeter-
mined coefficients, and (c) a particular solution yp(x) with fewest terms. Use a
computer algebra system to solve for undetermined coefficients, if possible.

11. (r − 1)(r + 2)(r − 3)2 = 0,
f(x) = ex

Solution: (a) Trial solution y = c1xe
x

The char equation roots: −2, 1, 3, 3
The roots for f(x): 1

(b) System
The differential equation is (D − 1)(D + 2)(D − 3)2y = ex.
Substitute the trial solution into the DE to get 12c1e

x = ex. Then only one
equation occurs by matching coefficients of atoms:
c1 = 1/12

(c) Particular solution: yp = 1
12xe

x
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F:=x->exp(x);

solve((r-1)*(r+2)*(r-3)^2=0,r);

# -2, 1, 3, 3

sol:=c1*exp(-2*x)+c2*exp(x)+c3*exp(3*x) + c4*x*exp(3*x);

L:=PolynomialTools[CoefficientList]((r-1)*(r+2)*(r-3)^2,r)

# [-18, 21, 1, -5, 1]

n:=numelems(L);

expand((r-1)*(r+2)*(r-3)^2);

de:=L[1]*y(x):for i from 1 to n-1 do

de:= de + diff(y(x),x$i)*L[i+1];

od:

trial:=c1*x*exp(x);

eqs:=subs(y(x)=trial,de=F(x)):simplify(eqs);

# 12 c1 exp(x) = exp(x)

solve(eqs,c1);

# c1 = 1/12

# Answer check:

dsolve(de = F(x),y(x))

# yp = (1/12)*x*exp(x) by setting y_h=0

12. (r − 1)2(r + 2)(r + 3) = 0,
f(x) = ex

13. (r − 1)3(r + 2)2r4 = 0,
f(x) = x+ e−2x

Solution: Roots of the char equation: −2,−2, 1, 1, 1, 0, 0, 0, 0
Roots for f : 0, 0,−2
Trial solution: y = c1x

4 + c2x
5 + c3x

2e−2x

Differential equation:

−4y′′′′ + 8y(5) − y(6) − 5y(7) + y(8) + y(9) = f(x)

Equations:  −96 c1 − 864 c3 + 960 c2 = 1
−480 c2 + 1728 c3 = −1
−3456 c3 = 4

Solution to the equations: c1 = −1/48, c2 = −1/480, c3 = −1/864
Particular solution:

yp = −x4

48
− x5

480
− x2e−2 x

864
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# Exercise 13, Undetermined coefficients

F:=x->x+exp(-2*x);charpoly:=(r-1)^3*(r+2)^2*r^4;

solve(charpoly=0,r); # -2, -2, 1, 1, 1, 0, 0, 0, 0

sol:=c1*exp(-2*x)+c2*x*exp(-2*x) + c3*exp(x)+c4*x*exp(x)

+ c5*x^2*exp(x) + c6 + c7*x + c8*x^2+c9*x^3;

L:=PolynomialTools[CoefficientList](charpoly,r)

n:=numelems(L);expand(charpoly);

de:=L[1]*y(x):for i from 1 to n-1 do

de:= de + diff(y(x),x$i)*L[i+1];

od:

# roots F: 0,0,-2

trial:=c1*x^4 + c2*x^5+c3*x^2*exp(-2*x);

eqs:=subs(y(x)=trial,de=F(x)):simplify(eqs);

eq1:=simplify(subs(x=0,eqs));

eq2:=simplify(subs(x=0,diff(eqs,x)));

eq3:=simplify(subs(x=0,diff(eqs,x$2)));

solve([eq1,eq2,eq3],[c1,c2,c3]);

# c1 = -1/48, c2 = -1/480, c3 = -1/864

# Answer check:

dsolve(de = F(x),y(x))

# yp = -x^5/480-x^4/48+2* exp(-2*x) -x^2*exp(-2*x)/864

# Extra terms from y_h removed

14. (r − 1)2(r + 2)3r5 = 0,
f(x) = x+ e−2x

15. r2(r − 1)2(r2 + 4r + 6) = 0,
f(x) = x+ ex

Solution: Roots of char equation: 0, 0, 1, 1,−2± i
√
2

Roots for f : 0, 0, 1
Trial solution: y = c1x

2 + c2x
3 + c3x

2ex

Differential equation:
6D2y − 8D3y −D4y + 2D5y +D6y = f(x)
Particular solution:

yp =
1

36
x3 +

2

9
x2 +

1

22
exx2

16. r3(r − 1)(r2 + 4r + 6)2 = 0,
f(x) = x2 + ex

17. (r − 1)(r + 2)(r2 + 1)2 = 0,
f(x) = cosx+ e−2x

Solution: Roots of char equation: −2, 1,±i,±i
Roots for f : ±i,−2
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Trial solution: y = c1x
2 cos(x) + c2x

2 sin(x) + c3xe
−2x

Differential equation:
−2y +Dy − 3D2y + 2D3y +D5y +D6y = f(x)
Particular solution:

yp = 3x2 cos (x)

80
− x2 sin (x)

80
− xe−2 x

75

18. (r − 1)2(r + 2)(r2 + 1) = 0,
f(x) = sinx+ e−2x

19. (r − 1)3(r + 2)2(r2 + 4) = 0,
f(x) = cos 2x+ ex

Solution: Roots of char equation: −2,−2, 1, 1, 1,±2i
Roots for f : ±2i, 1
Trial solution: y = c1x cos(2x) + c2x sin(2x) + c3x

3ex

Differential equation:
−16y + 32Dy − 8D2y − 12D3y + 3D4y −D5y +D6y +D7y = f(x)
-16, 32, -8, -12, 3, -1, 1, 1 Particular solution:

yp =
11x cos (2x )

4000
+

x sin (2x)

2000
+

x3ex

270

20. (r − 1)4(r + 2)(r2 + 4)2 = 0,
f(x) = sin 2x+ ex
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Cauchy-Euler Equation
Find solutions y1, y2 of the given homogeneous differential equation which are
independent by the Wronskian test, page 464 �.

1. x2y′′ + y = 0

Solution: y1 (x) =
√
x sin

(
1/2

√
3 ln (x)

)
, y2 (x) =

√
x cos

(
1/2

√
3 ln (x)

)
2. x2y′′ + 4y = 0

3. x2y′′ + 2xy′ + y = 0

Solution: y1 (x) =
sin
(
1/2

√
3 ln (x)

)
√
x

, y2 (x) =
cos
(
1/2

√
3 ln (x)

)
√
x

4. x2y′′ + 8xy′ + 4y = 0

Variation of Parameters
Find a solution yp using a variation of parameters formula.

5. x2y′′ = x

6. x3y′′ = ex

Solution: yp (x) = x ln (x)− x

Because yh = c1 + c2x then variation of parameters in Cauchy kernel form
gives

yp =

∫ x

1

k(x− t)f(t)dt/t2 =

∫ x

1

k(x− t)(1/t)dt

Compute k(x) = x. Then integrate:

yp =

∫ x

1

k(x− t)(1/t)dt =

∫ x

1

(x
t
− 1
)
dt = x ln |x| − x+ c

for some constant c. Choose c = 0.

7. y′′ + 9y = sec 3x

Solution: yp = (1/3)x sin(3x) + (1/9) cos(3x) ln | cos(3x)|
The Cauchy kernel for y′′ + 9y = 0 is k(x) = sin(3x)/3. To keep the
integration result simple, feed the computer algebra system integrator this
t-expression for the integrand k(x− t) sec(3t) in the variation of parameters
formula (x held fixed):

(1/3)(sin(3x)− cos(3x) sin(3t)/ cos(3t))

8. y′′ + 9y = csc 3x
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Cauchy Kernel
Find the Cauchy kernel K(x, t) for the given homogeneous differential equation.

1. y′′ − y = 0

Solution: Solve the equation with initial data x(0) = 0, x′(0) = 1. Then
k(x) = 1

2e
x − 1

2e
−x = sinh(x).

2. y′′ − 4y = 0

3. y′′ + y = 0

Solution: k(x) = sinx

4. y′′ + 4y = 0

5. 4y′′ + y′ = 0

Solution: k(x) = c1 + c2e
−x/4 = 4− 4e−x/4

6. y′′ + y′ = 0

7. y′′ + y′ + y = 0

Solution: k(x) = 2
3

√
3 e−x/2 sin(

√
3x/2)

8. y′′ − y′ + y = 0

Variation of Parameters
Find the general solution yh+yp by applying a variation of parameters formula.

9. y′′ = x2

Solution: yh = c1 + c2x, yp = x4/12

10. y′′ = x3

11. y′′ + y = sinx

Solution: yh = c1 cosx + c2 sinx, k(x) = sinx, yp =
∫ x

0
k(x − t) sin(t)dt =

1
2 sin(x)−

1
2x cos(x). A shortened yp = − 1

2x cos(x).

12. y′′ + y = cosx

13. y′′ + y′ = ln |x|
Solution: yh = c1 + c2x, k(x) = x, yp =

∫ x

1
k(x − t) ln(t)dt = x − 1

4 +
1
2 x

2 ln (x)− 3
4 x

2. A shortened yp = 1
2 x

2 ln (x)− 3
4 x

2.
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14. y′′ + y′ = − ln |x|

15. y′′ + 2y′ + y = e−x

Solution: yh = c1e
−x + c2xe

−x, k(x) = xe−x,
yp =

∫ x

0
k(x− t)e−tdt = 1

2x
2e−x.

16. y′′ − 2y′ + y = ex

471



7.6 Undetermined Coefficients Library

7.6 Undetermined Coefficients Library

Polynomial Solutions
Determine a polynomial solution yp for the given differential equation. Apply
Theorem 7.8, page 581 �, and model the solution after Examples 7.5, 7.6, 7.7
and 7.8.

1. y′′ = x

Solution: The example needs no special method: use quadrature. Answer:
yp = x3/6.

2. y′′ = x− 1

3. y′′ = x2 − x

Solution: The example needs no special method: use quadrature. Answer:
yp = x4/12− x2/6.

4. y′′ = x2 + x− 1

5. y′′ − y′ = 1

Solution: Equilibrium method is an easy shortcut: drop term y′′ and solve
−y′ = 1 by quadrature. Then yp = −x.

6. y′′ − 5y′ = 10

7. y′′ − y′ = x

Solution: The polynomial method applies. Differentiate the DE until the
RHS becomes constant: {

y′′ − y′ = x
y′′′ − y′′ = 1

Use the equilibrium method on the last equation: drop y′′′ and solve−y′′ = 1
by quadrature. Then y = p(x) = −x2/2 + d0 + d1x is a polynomial trial
solution. Insert the trial solution into the DE:

(−x2/2 + d0 + d1x)
′′ − (−x2/2 + d0 + d1x)

′ = x

(−1)− (−x+ d1) = x

Match Euler atom coefficients left and right to find the equation(s) for d0,
d1: −1− d1 = 0. Then d1 = −1 and d0 is a free variable. Let c0 = 0. Then
yp = p(x) = −x2/2− x.
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Check the answer:

(−x2/2− x)′′ − (−x2/2− x)′ = (−1)− (−x− 1) = x

The method agrees with case One Root r = 0 of characteristic equation
r2 − r = 0.

8. y′′ − y′ = x− 1

9. y′′ − y′ + y = 1

Solution: Equilibrium method: replace terms y′′ and y′ by zero, then solve
0+0+ y = 1 to find yp = 1. The answer can be checked without pencil and
paper.

10. y′′ − y′ + y = −2

11. y′′ + y = 1− x

Solution: The polynomial method applies. The trial solution arises from
y′′′ + y′ = −1, solved by replacing y′′′ by zero, then apply quadrature to
0+y′ = −1 get y = p(x) = d0−x. Substitute back into the DE: (d0−x)′′+
(d0 − x) = 1 − x. Then d0 = 1 and y = p(x) = 1 − x. The answer can be
checked without pencil and paper.

12. y′′ + y = 2 + x

13. y′′ − y = x2

Solution: The polynomial method applies. Reduced equation: 0 − y′′ = 2.
Trial solution: y = p(x) = x2 + d1x+ d0. Euler atom equation for d0, d1:

(x2 + d1x+ d0)
′′ + (x2 + d1x+ d0) = x2

(2) + (x2 + d1x+ d0) = x2

Then d0 = −2, d1 = 0 and yp = p(x) = x2 − 2
Answer check:

(x2 − 2)′′ + (x2 − 2) = (2) + x2 − 2 = x2

14. y′′ − y = x3

Polynomial-Exponential Solutions
Determine a solution yp for the given differential equation. Apply Theorem 7.9,
page 581 �, and model the solution after Example 7.9.
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15. y′′ + y = ex

Solution: The polynomial times exponential method applies. Kum-
mer’s transformation y = exY is used to obtain the new equation
(D + 1)2Y + Y = 1, which expands to Y ′′ + 2Y ′ + 2Y = 1. The latter is
solved by the equilibrium shortcut: replace terms Y ′′ and Y ′ by zero, then
solve the reduced equation: 2Y = 1. Then Y = 1/1 and y = exY = 1

2e
x.

Answer check:

(
1

2
ex)′′ + (

1

2
ex) = (

1

2
+

1

2
)ex = ex

16. y′′ + y = e−x

17. y′′ = e2x

Solution: Solved by quadrature: yp = 1
4e

2x.

18. y′′ = e−2x

19. y′′ − y = (x+ 1)e2x

Solution: The polynomial times exponential method applies: Replace D by
D + 2 in the DE and cancel e2x on the RHS:

(D + 2)2Y − Y = x+ 1, or Y ′′ + 4Y ′ + 3Y = x+ 1

The solution will be yp = e2xY , which is Kummer’s transformation.
The trial solution: solve 0 + 0 + 3Y ′ = 1, which is obtained by one differ-
entiation of the equation Y ′′ + 4Y ′ + 3Y = x + 1 then replace Y ′′ and Y ′

by zero. The trial solution: Y = p(x) = x/3 + d0. Substitute Y into the
original equation Y ′′ + 4Y ′ + 3Y = x+ 1 to determine d0:

(x/3 + d0)
′′ + 4(x/3 + d0)

′ + 3(x/3 + d0) = x+ 1

(0) + 4(1/3) + 3(x/3 + d0) = x+ 1

Then 4/3 + 3d0 = 1 and d0 = −1/9, giving Y = x/3− 1/9.
Answer check:
Y ′′ + 4Y ′ + 3Y = (x/3− 1/9)′′ + 4(x/3− 1/9)′ + 3(x/3− 1/9) = 0 + 4/3 +
x− 1/3 = x+ 1.
Final answer: y = e2xY = (x/3− 1/9)e2x.

20. y′′ − y = (x− 1)e−2x
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21. y′′ − y′ = (x+ 3)e2x

Solution: The polynomial times exponent method applies. Replace D by
D + 2 in the DE and cancel e2x on the RHS:

(D + 2)2Y − (D + 2)Y = x+ 3, or Y ′′ + 3Y ′ + 2Y = x+ 3

The solution will be yp = e2xY , which is Kummer’s transformation.
The trial solution: solve 0 + 0 + 2Y ′ = 1, which is obtained by one differ-
entiation of the equation Y ′′ + 3Y ′ + 2Y = x + 3 then replace Y ′′′ and Y ′′

by zero. The trial solution is Y = x/2 + d0. Substitute Y into the original
equation Y ′′ + 3Y ′ + 2Y = x+ 3 to determine d0:

(x/2 + d0)
′′ + 3(x/2 + d0)

′ + 2(x/2 + d0) = x+ 3

(0) + 3(1/2) + 2(x/2 + d0) = x+ 3

Then 3/2 + 2d0 = 3 and d0 = 3/4, giving Y = x/2 + 3/4.
Answer check:
Y ′′+3Y ′+2Y = (x/2+3/4)′′+3(x/2+3/4)′+2(x/2+3/4) = (0)+(3/2)+
(x+ 3/2) = x+ 3.
Final answer: y = e2xY = (x/2 + 3/4)e2x.

22. y′′ − y′ = (x− 2)e−2x

23. y′′ − 3y′ + 2y = (x2 + 3)e3x

Solution: The polynomial times exponent method applies. Final answer:

y =

(
1

2
x2 − 3

2
x+

13

4

)
e3x.

24. y′′ − 3y′ + 2y = (x2 − 2)e−3x

Sine and Cosine Solutions
Determine a solution yp for the given differential equation. Apply Theorem
7.10, page 581 �, and model the solution after Examples 7.10 and 7.11.

25. y′′ = sin(x)

Solution: The polynomial times exponential times sine method applies. The
root: z = 0 + i. The reduced equation: (D + z)2Y = 1. Expand: (D2 +
2zD + z2 = D2 + 2iD − 1. Solve Y ′′ + 2iY ′ − Y = 1 by the equilibrium
method: Y = −1. Then y = e0x Im(eixY ) = − sinx.
Answer check:
y′′ = (− sinx)′′ = sinx

26. y′′ = cos(x)

475

https://math.utah.edu/~gustafso/debook/chapters/7.pdf#page=582


7.6 Undetermined Coefficients Library

27. y′′ + y = sin(x)

Solution: The polynomial times exponential times sine method applies. The
root: z = 0+ i. The reduced equation: (D+ z)2Y +Y = 1. Expand: (D2+
2zD+ z2 +1 = D2 +2iD. Solve Y ′′ +2iY ′ = 1 by the equilibrium method:
2iY = x (d0 = 0 to simplify). Then y = e0x Im(eix Y ) = Im(eix x/(2i)) =
− 1

2 x cosx.
Answer check:
y′′ = 1

2 (−x cosx)′′ + 1
2 (−x/ cosx) = 1

2 (− cosx + x sinx)′ + 1
2 (−x/ cosx) =

1
2 (sinx+ sinx+ x cosx) + 1

2 (−x/ cosx) = sinx.

28. y′′ + y = cos(x)

Solution: yp = 1
2x sinx. See also Exercise 39.

29. y′′ = (x+ 1) sin(x)

Solution: The polynomial times exponential times sine method applies.
y = −2 cos(x)− x sin(x)− sin(x)

30. y′′ = (x+ 1) cos(x)

31. y′′ − y = (x+ 1)ex sin(2x)

Solution: The polynomial times exponential times sine method applies.
The root: z = 1+2i. The reduced equation: (D+z)2Y −Y = x+1. Expand:
(D+z)2−1 = D2+2D+(4i)D−4+4i. Solve D2+2D+(4i)D−4+4i = x+1
by the equilibrium method: Y ′′′ + 2Y ′′ + (4i)Y ′′ − 4Y ′ + 4iY ′ = 1 reduces
to (−4 + 4i)Y ′ = 1 and then Y = x/(4i− 4) + d0. Find d0 by substitution
into Y ′′ + 2Y ′ + (4i)Y ′ + (−4 + 4i)Y = x + 1. Then y = ex Im(e2ix Y ) =
ex Im(e2ix (x/(4i− 4) + d0)).

Final answer: y =
1

16
(−2x− 3)ex cos(2x)− 1

8
x ex sin(2x)

Answer check by maple dsolve.

# Exercise 31

F:=x->(x+1)*exp(x)*sin(2*x);

de:=m*diff(y(x),x,x)+c*diff(y(x),x)+k*y(x)=F(x);

de1:=subs(m=1,c=0,k=-1,de);

p:=dsolve(de1,y(x));

32. y′′ − y = (x+ 1)ex cos(2x)

33. y′′ − y′ − y = (x2 + x)ex sin(2x)

Solution: The polynomial times exponential times sine method applies.
The root: z = 1+ 2i. The reduced equation: (D+ z)2Y − (D+ z)Y − Y =
x2 + x.
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Final answer:

y =

(
−1682x2 − 7714x− 956

)
ex cos (2x)

24389
−

5 ex sin (2x)

29

(
x2 +

27x

145
− 943

841

)

34. y′′ − y′ − y = (x2 + x)ex cos(2x)

Undetermined Coefficients Algorithm
Determine a solution yp for the given differential equation. Apply the polyno-
mial algorithm, page 576 �, and model the solution after Example 7.12.

35. y′′ = x+ sin(x)

Solution: Break the problem into two equations:

y′′1 = x, y′′2 = sin(x)

Solve each problem by quadrature, dropping homogeneous terms. Then
yp = y1 + y2 = x3/6− sin(x).

36. y′′ = 1 + x+ cos(x)

37. y′′ + y = x+ sin(x)

Solution: Break the problem into two equations:

y′′1 + y1 = x, y′′2 + y2 = sin(x)

Solve for y1 by the equilibrium method for polynomials: y1 = x (or guess
the answer). Solve for y2 by the polynomial exponential sine method: y2 =
− 1

2x cosx by Exercise 27. Then yp = y1 + y2 = x− 1
2x cosx.

38. y′′ + y = 1 + x+ cos(x)

39. y′′ + y = sin(x) + cos(x)

Solution: Break the problem into two equations:

y′′1 + y1 = sinx, y′′2 + y2 = cos(x)

Solve for y1 by the polynomial exponential sine method: y1 = − 1
2x cosx by

Exercise 27. Then yp = y1 + y2 = x− 1
2x cosx.

Solve for y2 by the polynomial exponential cosine method: y2 = 1
2x sinx by

Exercise 28. Then yp = y1 + y2 = − 1
2x cosx+ 1

2x sinx.

40. y′′ + y = sin(x)− cos(x)
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41. y′′ = x+ xex + sin(x)

Solution: Break the problem into three equations:

y′′1 = x, y′′2 = xex,′ quady′′3 = sin(x)

All three can be solved by quadrature.
Final answer: yp = y1+y2+y3 = (1/6)∗x3+x∗exp(x)−2∗exp(x)−sin(x)

42. y′′ = x− xex + cos(x)

43. y′′ − y = sinh(x) + cos2(x)

Solution: Use identities sinhu = 1
2e

u − 1
2e

−u, cos 2θ = cos(θ+ θ) = cos2θ−
sin2 θ and cos2 θ+sin2 θ = 1 to write the RHS of the DE as f(x) = sinh(x)+
cos2(x) = 1

2e
x − 1

2e
−x + 1

2 (cos 2x + 1). Then split into four differentia
equations:

y′′1 − y1 =
1

2
ex, y′′2 − y2 = −1

2
e−x, y′′3 − y3 =

1

2
cos 2x, y′′4 − y4 =

1

2

Apply classical undetermined coefficients to find y1, y2 and y3. Guess y4 =
− 1

2 . Then
yp = y1 + y2 + y3 + y4 = 1

40 (10x+ 5)e−x − 1
10 cos(2x)−

1
2 + 1

40 (10x− 5)ex

Answer check: Use maple dsolve

44. y′′ − y = cosh(x) + sin2(x)

45. y′′ + y′ − y = x2ex + xex cos(2x)

Solution: Break into two equations:

y′′1 + y′1 − y1 = x2ex, y′′2 + y′2 − y2 = xex cos(2x)

Alternatively, apply Kummer’s transformation y = zex to reduce the prob-
lem to polynomial type and polynomial cosine type.
The steps to solution are challenging. Final answer:
yp = −(1/45)ex(3x cos(2x)− 6x sin(2x)− 45x2 − 5 cos(2x) + 270x− 720)

46. y′′ + y′ − y = x2e−x + xex sin(2x)

Additional Proofs
The exercises below fill in details in the text. The hints are in the proofs in the
textbook. No solutions will be given for the odd exercises.

47. (Theorem 7.8)

Supply the missing details in the proof of Theorem 7.8 for case 1. In par-
ticular, give the details for back-substitution.
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48. (Theorem 7.8)

Supply the details in the proof of Theorem 7.8 for case 2. In particular, give
the details for back-substitution and explain fully why it is possible to select
y0 = 0.

49. (Theorem 7.8)

Supply the details in the proof of Theorem 7.8 for case 3. In particular,
explain why back-substitution leaves y0 and y1 undetermined, and why it is
possible to select y0 = y1 = 0.

50. (Superposition)

Let Ly denote ay′′ + by′ + cy. Show that solutions of Lu = f(x) and
Lv = g(x) add to give y = u+ v as a solution of Ly = f(x) + g(x).

51. (Easily Solved Equations)

Let Ly denote ay′′ + by′ + cy. Let Lyk = fk(x) for k = 1, . . . , n and define
y = y1 + · · ·+ yn, f = f1 + · · ·+ fn. Show that Ly = f(x).
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Chapter 8

Laplace Transform

Contents

8.1 Laplace Method Introduction . . . . . . . 480
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8.1 Laplace Method Introduction

Laplace method
Solve the given initial value problem using Laplace’s method.

1. y′ = −2, y(0) = 0.

Solution: Answer: y(t) = −2t.

L(y′) = L(−2) Apply L across the DE

sL(y)− y(0) = −2/s Laplace derivative rule, forward Laplace table

L(y) =)y(0)− 2)/s Isolate L(y) left
L(y) = −2/s = L(−2t) Use y(0) = 0 and the backward Laplace table

y = −2t Lerch’s cancellation law
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# Exercise 1, Laplace method

with(inttrans):

de:=diff(y(t),t)=-2;

p:=laplace(de,t,s); # Apply L across DE

q:=solve(p,laplace(y(t), t, s)); # Isolate L(y)

y(t)= subs(y(0)=0,invlaplace(q,s,t)); # Solve for y

# y(t)=-2t

2. y′ = 1, y(0) = 0.

3. y′ = −t, y(0) = 0.

Solution: y(t) = −(1/2)t2

4. y′ = t, y(0) = 0.

5. y′ = 1− t, y(0) = 0.

Solution: y(t) = t− (1/2)t2

6. y′ = 1 + t, y(0) = 0.

7. y′ = 3− 2t, y(0) = 0.

Solution: y(t) = −t2 + 3t

8. y′ = 3 + 2t, y(0) = 0.

9. y′′ = −2, y(0) = y′(0) = 0.

Solution: y = −t2

L(y′′) = L(−2) apply L across the DE

s2L(y)− y′(0)− y(0)s = −2/s Derivative theorem, forward Laplace table

L(y) = y′(0) + y(0)s− 2/s

s2
Isolate L(y) left

L(y) = −2/s3 Insert y(0) = 0 and y′(0) = 0

L(y) = L(−t2) backward Laplace table

y = −t2 Lerch’s cancellation law

# Exercise 9, Laplace method

with(inttrans):

de:=diff(y(t),t,t)=-2;

p:=laplace(de,t,s);

q:=solve(p,laplace(y(t), t, s));

y(t)= subs(y(0)=0,D(y)(0)=0,invlaplace(q,s,t));
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10. y′′ = 1, y(0) = y′(0) = 0.

11. y′′ = 1− t, y(0) = y′(0) = 0.

Solution: y(t) = (1/2)t2 − (1/6)t3

12. y′′ = 1 + t, y(0) = y′(0) = 0.

13. y′′ = 3− 2t, y(0) = y′(0) = 0.

Solution: y(t) = (3/2)t2 − (1/3)t3

14. y′′ = 3 + 2t, y(0) = y′(0) = 0.

Exponential order
Show that f(t) is of exponential order, by finding a constant α ≥ 0 in each case

such that lim
t→∞

f(t)

eαt
= 0.

15. f(t) = 1 + t

Solution: Let α > 0, e.g., α = 1. Then lim
t→∞

f(t)

eαt
= 0.

16. f(t) = et sin(t)

17. f(t) =
∑N

n=0 cnt
n, for any choice of the constants c0, . . . , cN .

Solution: Let α > 0, e.g., α = 1. Then lim
t→∞

f(t)

eαt
= 0. The limit is zero

because an exponential eαt grows faster than any power xk. The latter is
proved in calculus using L’Hôpital’s Rule.

18. f(t) =
∑N

n=1 cn sin(nt), for any choice of the constants c1, . . . , cN .

Existence of transforms
Let f(t) = tet

2

sin(et
2

). Establish these results.

19. The function f(t) is not of exponential order.

Solution: Let α be any real number. Then f(t)/eαt = tet
2−αt sin(et

2

).

Define sequence {tn} by the equation et
2
n = (4n + 1)π/2. Then sin(et

2
n) =

sin(2nπ + π/2) = 1 by periodicity of the sine function. Fraction f(tn)/e
αtn

then equals tne
t2n−αtn , which has limit infinity as n → ∞ (t2 grows faster

than αt for any fixed α). Therefore, f(t)/eαt cannot have limit zero at
infinity for any value of α. ■

20. The Laplace integral of f(t),
∫∞
0

f(t)e−stdt, converges for all s > 0.
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Jump Magnitude
For f piecewise continuous, define the jump at t by

J(t) = lim
h→0+

f(t+ h)− lim
h→0+

f(t− h).

Compute J(t) for the following f .

21. f(t) = 1 for t ≥ 0, else f(t) = 0

Solution: The left limit at t = 0 is one, the right limit at t = 0 is zero.
Then J(0) = 1 and by continuity elsewhereJ(t) = 0.

22. f(t) = 1 for t ≥ 1/2, else f(t) = 0

23. f(t) = t/|t| for t ̸= 0, f(0) = 0

Solution: J(0) = 1− (−1) = 2 and elsewhere J(t) = 0.

24. f(t) = sin t/| sin t| for t ̸= nπ, f(nπ) = (−1)n

Taylor series
The series relation L(

∑∞
n=0 cnt

n) =
∑∞

n=0 cnL(tn) often holds, in which case
the result L(tn) = n!s−1−n can be employed to find a series representation of
the Laplace transform. Use this idea on the following to find a series formula
for L(f(t)).

25. f(t) = e2t =
∑∞

n=0(2t)
n/n!

Solution: L(f(t)) =
∑∞

n=0

2n

n!
L(tn) =

∑∞
n=0

2n

n!

n!

sn+1 =
∑∞

n=0

2n

sn+1

26. f(t) = e−t =
∑∞

n=0(−t)n/n!

Transfer of Radiance
The differential equation d

drN+αN = N∗ models laser beam radiance (absorp-
tion and scattering out of the beam) in a medium like water, where r is the
distance from the source.

27. Solve d
drN + 2N = 1, N(0) = 20 by Laplace’s method.

Ans: N (r) = 1
2 + 39

2 e−2 r.

Hint: Obtain L(N(t)) = 1+20 s
s(s+2) = 1

2s + 39
2(s+2) using L(eat) = 1

s−a from the

Forward Table page 601 �.

Solution: Let y = N(t) and use y′ + 2y = 1, y(0) = 20 with Laplace’s
method as follows.
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L(y′ + 2y) = L(1) Apply L across the DE.

sL(y)− y(0) + 2L(y) = 1

s
Derivative rule, forward table.

L(y) =
20 +

1

s
s+ 2

Isolate L(y) left, use y(0) = 20.

L(y) = a

s+ 2
+

b

s
Partial fractions, a, b found later.

L(y) = L(ae−2t + b) Backward table.

y = ae−2t + b Lerch’s cancellation law.

y = ae−2t + b Found a =

28. Solve d
drN + 2N = 1− e−r, N(0) = 25 by any method.

Ans: N (r) = 1
2 − e−r + 51

2 e−2 r.

Hint: A particular solution is Np = 1
2 −e−r. Superposition applies. See also

Example 8.11 page 609 �.

Piecewise-Defined Functions

29. Define a piecewise continuous function f(t) on [−1, 1] that agrees with sin(t)
|t|

except at t = 0. Suggestion: use Taylor expansion sin(t) = t− t3/6 + · · · to
define continuous functions f1, f2 on −∞ < t < ∞.

Solution: Let f1 = −f2 and f2(t) = 1 − t2/6 + t4/5! − · · · =
1
t

∑∞
n=0(−1)nt2n+1/(2n+ 1)! =

∑∞
n=0(−1)nt2n/(2n+ 1)!. Power series are

infinitely differentiable, therefore continuous. Define

f(t) =

 f1(t) t < 0,
1 t = 0,
f2(t) t > 0.

Then f(t) =
sin t

|t|
except at t = 0 where the fraction is undefined.

30. Explain in detail why 1/t is not piecewise continuous on [−1, 1]. ■

31. Find L(f(t)), given

f(t) =

{
1 1 ≤ t < 2,
0 otherwise.

Solution: A basic solution:

L(f(t)) =
∫∞
0

f(t)e−stdt =
∫ 2

1
(1)e−stdt =

e−s

s
− e−2s

s
.

A second solution:
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Define pulse(t, a, b) =

{
1 a ≤ t < b,
0 otherwise.

as in Exercise 32, infra. Then

f(t) = pulse(t, 1, 2). Because pulse(t, a, b) = u(t − a) − u(t − b) and

L(u(t− c)) =
e−cs

s
then L(f(t)) = L(u(t− 1))−L(u(t− 2)) =

e−s

s
− e−2s

s
.

32. Find L(pulse(t, a, b)), given

pulse(t, a, b) =

{
1 a ≤ t < b,
0 otherwise.

33. Define

f(t) =

 1 1 ≤ t < 2,
2 3 ≤ t < 4,
0 otherwise.

Find the weights c1, c2 such that
f(t) = c1 pulse(t, 1, 2)+

c2 pulse(t, 3, 4).

Solution: c1 = 1, c2 = 2

f(t) =

 1 1 ≤ t < 2,
2 3 ≤ t < 4,
0 otherwise.

=

{
1 1 ≤ t < 2,
0 otherwise.

+ 2

{
1 3 ≤ t < 4,
0 otherwise.

= pulse(t, 1, 2) + 2pulse(t, 3, 4)

34. Let
f(t) = cos(t)pulse(t, 0, π)+

(sin(t)− 1)pulse(t, π, 2π)
Write f as a piecewise-defined function and graph it.

Piecewise Continuous Definition
Let g(t) be zero for t < 0 and have on t ≥ 0 at most finitely many points of
discontinuity, at which finite right and left hand limits exist.

This definition is an alternative way to define piecewise continuous, crafted for
Laplace theory.

35. Let t1, t2 be consecutive points of discontinuity of g. Define a function g1(t)
continuous on −∞ < t < ∞ such that g(t) = g1(t) on t1 ≤ t ≤ t2.

The whole real line is the required domain of g1, which must be defined using g itself and

right and left hand limit values of g.

Solution: The plan: define g1 = g on t1 ≤ t ≤ t2 with the endpoint definition
taken to mean the appropriate left or right limit at the point. Then extend
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g1 to the whole real line as a constant on t < t1 and also on t > t2.

g1(t) =

 g(t1 + 0) t ≤ t1,
g(t) t1 < t < t2,
g(t2 − 0) t ≥ t2.

Then g1 is continuous except possibly at t = t1, t = t2. Compute the left
and right limits at these two points:

(g1(t1 − 0) = g(t1 + 0) = g1(t1 + 0)
(g1(t2 − 0) = g(t2 − 0) = g1(t2 + 0)
Because right and left limits match at t = t1, t2 then g1 is continuous. ■

36. Let t1, t2, t3 be consecutive points of discontinuity of g. Invent functions
g1(t), g2(t) continuous on −∞ < t < ∞ such that g(t) = g1(t) on t1 ≤ t ≤ t2
and g(t) = g2(t) on t2 ≤ t ≤ t3.

37. Define g1, g2 as in Exercise 36 above. Compute the jump at t = t2, J(t2) =
g(t2 + 0)− g(t2 − 0), in terms of g1, g2.

Solution:

g(t2 + 0) = g2(t2 + 0) = g2(t2)
g(t2 − 0) = g1(t2 − 0) = g1(t2)
Then: J(t2) = g2(t2)− g1(t2)

38. Using the preceding steps, prove that g is piecewise continuous according
to the definition given in the text.
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8.2 Laplace Integral Table

Laplace Transform Forward Table
Using the basic Laplace table and linearity properties of the transform, compute
L(f(t)). Do not use the direct Laplace transform!

1. L(2t)

Solution: L(2t) = 2L(t) = 2
1

s2

2. L(4t)

3. L(1 + 2t+ t2)

Solution: L(1 + 2t+ t2) = L(1) + L(2t) + L(t2) = 1

s
+ 2

1

s2
+

2

s3

4. L(t2 − 3t+ 10)

5. L(sin 2t)

Solution: L(sin 2t) = b

s2 + b2

∣∣∣∣
b=2

=
2

s2 + 4

6. L(cos 2t)

7. L(e2t)

Solution: L(e2t) = 1

s− a

∣∣∣∣
a=2

=
1

s− 2

8. L(e−2t)

9. L(t+ sin 2t)

Solution: L(t+ sin 2t) = L(t) + L(sin 2t) = 1

s2
+

2

s2 + 4

10. L(t− cos 2t)

11. L(t+ e2t)

Solution: L(t+ e2t) = L(t)L(+e2t) =
1

s2
+

1

s− 2

12. L(t− 3e−2t)
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13. L((t+ 1)2)

Solution: L((t+1)2) = L(t2+2t+1) = L(t2)+L(2t)+L(1) = 2

s3
+

2

s2
+

1

s

14. L((t+ 2)2)

15. L(t(t+ 1))

Solution: L(t(t+ 1)) = L(t2 + t) = L(t2) + L(t) = 2

s3
+

1

s2

16. L((t+ 1)(t+ 2))

17. L(
∑10

n=0 t
n/n!)

Solution:
L(
∑10

n=0 t
n/n!) =

∑10
n=0 L(tn/n!)

=
∑10

n=0

n

sn+1(n!)

=
∑10

n=0

1

sn+1((n− 1)!)

18. L(
∑10

n=0 t
n+1/n!)

19. L(
∑10

n=1 sinnt)

Solution:
L(
∑10

n=1 sinnt) =
∑10

n=1 L(sinnt) =
∑10

n=1

n

s2 + n2

20. L(
∑10

n=0 cosnt)

Laplace Backward Table
Solve the given equation for the function f(t). Use the basic table and linearity
properties of the Laplace transform.

21. L(f(t)) = s−2

Solution: L(f(t)) = s−2 = L(t) by the backward table, then f(t) = t by
Lerch’s cancellation law.

22. L(f(t)) = 4s−2

23. L(f(t)) = 1/s+ 2/s2 + 3/s3

Solution: L(f(t)) = 1/s+2/s2+3/s3 = L(1)+2L(t)+ 3
2

2

s3
= L(1+2t+ 3

2 t
2)

by the backward table, then f(t) = 1+2t+ 3
2 t

2 by Lerch’s cancellation law.
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# Exercise 23, Laplace backward table

with(inttrans):

invlaplace(1/s+2/s^2+3/s^3,s,t);

24. L(f(t)) = 1/s3 + 1/s

25. L(f(t)) = 2/(s2 + 4)

Solution: L(f(t)) = 2/(s2 + 4) =
b

s2 + b2

∣∣∣∣
b=2

= L(sin(bt)) = L(sin(2t)) by

the backward table, then f(t) = sin(2t) by Lerch’s cancellation law. )

26. L(f(t)) = s/(s2 + 4)

27. L(f(t)) = 1/(s− 3)

Solution: L(f(t)) = 1/(s− 3) =
1

s− a

∣∣∣∣
a=3

= L(e3t) by the backward table,

then f(t) = e3t by Lerch’s cancellation law.

28. L(f(t)) = 1/(s+ 3)

29. L(f(t)) = 1/s+ s/(s2 + 4)

Solution: L(f(t)) = 1/s+s/(s2+4) = L(1)+L(cos(bt))|b=2 = L(1+cos(2t))
by the backward table, then f(t) = 1 + cos(2t) by Lerch’s cancellation law.

30. L(f(t)) = 2/s− 2/(s2 + 4)

31. L(f(t)) = 1/s+ 1/(s− 3)

Solution: L(f(t)) = 1/s + 1/(s − 3) =
1

s
+

1

s− a

∣∣∣∣
a=3

= L(1) + L(e3t) =

L(1+e3t) by the backward table, then f(t) = 1+e3t by Lerch’s cancellation
law.

32. L(f(t)) = 1/s− 3/(s− 2)

33. L(f(t)) = (2 + s)2/s3

Solution: L(f(t)) = (2+s)2/s3 =
4 + 4s+ s2

s3
= 2

2

s3
+4

1

s2
+

1

s
= 2L(t2)+

4L(t)+L(1) = L(2t2+4t+1) by the backward table, then f(t) = 2t2+4t+1
by Lerch’s cancellation law.

34. L(f(t)) = (s+ 1)/s2
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35. L(f(t)) = s(1/s2 + 2/s3)

Solution: L(f(t)) = s(1/s2 +2/s3) =
1

s
+

2

s2
= L(1)+ 2L(t) = L(1+ 2t) by

the backward table, then f(t) = 1 + 2t by Lerch’s cancellation law.

36. L(f(t)) = (s+ 1)(s− 1)/s3

37. L(f(t)) =
∑10

n=0 n!/s
1+n

Solution: L(f(t)) =
∑10

n=0 n!/s
1+n =

∑10
n=0 L(tn) = L

(∑10
n=0 t

n
)
by the

backward table, then f(t) =
∑10

n=0 t
n by Lerch’s cancellation law.

38. L(f(t)) =
∑10

n=0 n!/s
2+n

39. L(f(t)) =
∑10

n=1

n

s2 + n2

Solution: L(f(t)) =
∑10

n=0

s

s2 + n2
=

∑10
n=0 L(sin(nt)) =

L
(∑10

n=0 sin(nt)
)

by the backward table, then f(t) =
∑10

n=0 sin(nt) by

Lerch’s cancellation law.

40. L(f(t)) =
∑10

n=0

s

s2 + n2

Laplace Table Extension
Compute the indicated Laplace integral using the extended Laplace table, page
602 �.

41. L(u(t− 2) + 2u(t))

Solution: L(u(t − 2) + 2u(t)) = L(u(t − 2)) + 2L(u(t)) =
e−as

s

∣∣∣∣
a=2

+

2
e−as

s

∣∣∣∣
a=0

=
e−2s

s
+

2

s

42. L(u(t− 3) + 4u(t))

43. L(u(t− π)(u(t) + u(t− 1)))

Solution: L(u(t−π)(u(t)+u(t−1))) = L(u(t−π)u(t)+u(t−π)u(t−1)) =

L(u(t− π) + u(t− π)) = 2L(u(t− π))) = 2
e−as

s

∣∣∣∣
a=π

=
2e−πs

s

# Exercise 43, Laplace table extension

with(inttrans):u:=Heaviside:

laplace( u(t-Pi)*(u(t)+u(t-1) ),t,s);
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44. L(u(t− 2π) + 3u(t− 1)u(t− 2))

45. L(δ(t− 2))

Solution: L(δ(t− 2)) = e−as|a=2 = e−2s

# Exercise 45, Laplace table extension

with(inttrans):

laplace( Dirac(t-2),t,s );

46. L(5δ(t− π))

47. L(δ(t− 1) + 2δ(t− 2))

Solution: L(δ(t− 1)+ 2δ(t− 2)) = L(δ(t− 1))+ 2L(δ(t− 2)) = e−as|a=1 +
2 e−as|a=2 = e−s + 2e−2s

48. L(δ(t− 2)(5 + u(t− 1)))

49. L(floor(3t))

Solution: L(floor(3t)) = e−as

s(1− e−as)

∣∣∣∣
a=1/3

=
e−s/3

s(1− e−s/3)
=

1

s(es/3 − 1)

# Exercise 49, Laplace table extension

with(inttrans):

laplace( floor(3*t),t,s );

50. L(floor(2t))

51. L(5 sqw(3t))

Solution: L(5 sqw(3t)) = L(5 sqw(t/a))|a=1/3 = 5
tanh(as/2)

s

∣∣∣∣
a=1/3

=

5
tanh(s/6)

s
maple does not have a laplace table entry for the square wave in 2022.

52. L(3 sqw(t/4))

53. L(4 trw(2t))
Solution: L(4 trw(2t)) = 8L( 12 trw(t/(1/2))) = 8 L(a trw(t/a))|a=1/2 =

8
tanh(s/4)

s2

54. L(5 trw(t/2))
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8.2 Laplace Integral Table

55. L(t+ t−3/2 + t−1/2)

Solution:

L(t+ t−3/2 + t−1/2) = L(t) + L(tα)|α=−3/2 + L(tα)|α=−1/2

= L(t) + Γ(1 + α)

s1+α

∣∣∣∣
α=−3/2

+
Γ(1 + α)

s1+α

∣∣∣∣
α=−1/2

=
1

s2
+

Γ(−1/2)

s−1/2
+

Γ(1/2)

s1/2

=
1

s2
+

Γ(−1/2)

s−1/2
+

√
π√
s

56. L(t3 + t−3/2 + 2t−1/2)

Inverse Laplace, Extended Table
Solve the given equation for f(t), using the extended Laplace integral table.

57. L(f(t)) = e−s/s

Solution: L(f(t)) = e−s/s =
e−as

s

∣∣∣∣
a=1

= L(δ(t− a))|a=1 = L(δ(t − 1)) by

the extended Laplace table.
Then f(t) = δ(t− 1) by Lerch’s cancellation law.

58. L(f(t)) = 5e−2s/s

59. L(f(t)) = e−2s

Solution: L(f(t)) = e−2s = e−as|a=2 = L(δ(t− a))|a=2 = L(δ(t − 2)) by
the extended Laplace table.
Then f(t) = δ(t− 2) by Lerch’s cancellation law.

60. L(f(t)) = 5e−3s

61. L(f(t)) = e−s/3

s(1− e−s/3)

Solution:

L(f(t)) =
e−s/3

s(1− e−s/3)
=

e−as

s(1− e−as)

∣∣∣∣
a=1/3

= L(floor(t/a)|a=1/3 =

L(floor(3t)) by the extended Laplace table.
Then f(t) = floor(3t) by Lerch’s cancellation law.

62. L(f(t)) = e−2s

s(1− e−2s)

492



8.2 Laplace Integral Table

63. L(f(t)) = 4 tanh(s)

s
Solution:

L(f(t)) =
4 tanh(s)

s
= 4

tanh(as/2)

s

∣∣∣∣
a=2

= 4 L(sqw(t/a))|a=2 =

L(4 sqw(t/2)) by the extended Laplace table.
Then f(t) = 4 sqw(t/2) by Lerch’s cancellation law.

64. L(f(t)) = 5 tanh(3s)

2s

65. L(f(t)) = 4 tanh(s)

3s2

Solution: f(t) = 4a trw(t/a) where a/2 = 1 by the extended Laplace table.
Final answer: f(t) = 8 trw(t/2).

66. L(f(t)) = 5 tanh(2s)

11s2

67. L(f(t)) = 1√
s

Solution: f(t) =
1√
πs

by the extended Laplace table entry

L(t−1/2) =
√
π/s.

68. L(f(t)) = 1√
s3
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8.3 Laplace Transform Rules

First Order Linear DE
Display the Laplace method details which verify the supplied answer.
The first two exercises use forward and backward Laplace tables plus the first shifting

theorems. The others require a calculus background in partial fractions.

1. x′ + x = e−t, x(0) = 1;
x(t) = (1 + t)e−t.

Solution:
Transform and isolate L(x):
L(x′ + x) = L(e−t) Apply L across the DE.

sL(x)− x(0) + L(x) = 1

s+ 1
Derivative rule, forward table.

L(x) =
x(0) +

1

s+ 1
s+ 1

Isolate L(x) left.

L(x) = 1

s+ 1
+

1

(s+ 1)2
Use x(0) = 1 and expand in partial frac-
tions.

L(x) = L(e−t) + L(t)|s→s+1 Backward Laplace table.

L(x) = L(e−t) + L(te−t) Shift theorem.

x(t) = e−t + te−t Linearity, Lerch’s theorem.

f:=proc(de1) local q;

q:=subs(laplace(x(t),t,s)=F,laplace(de1,t,s));

collect(q,F);# Collect on F=Laplace of x(t)

end proc:

#

fx:=proc(de,label)global qx,qxx;

qx:=f(de); qxx:=solve(qx,F);# Isolate F=laplace(x(t))

printf("%a: %a\n%a\nF=%a\n",label,convert(de,D),qx,qxx);

dsolve([de,ic],x(t));

end proc:

#

# Exercise 1, First Order Linear DE

ic:=x(0)=1;de1:=diff(x(t),t)+x(t)=exp(-t):

fx(de1,DE1);

# DE1: D(x)(t)+x(t) = exp(-t)

# (s+1)*F-x(0) = 1/(s+1)

# F=(x(0)*s+x(0)+1)/(s+1)^2

# x(t) = (t + 1) exp(-t)
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2. x′ + 2x = −e−2t, x(0) = 1;
x(t) = (1− t)e−2t.

3. x′ + x = 1, x(0) = 1; x(t) = 1.

Solution: L(x(t)) = (x(0)s + 1)/(s(s + 1)) =
1

s
= L(1), then x(t) = 1 by

Lerch’s theorem.

4. x′ + 4x = 4, x(0) = 1; x(t) = 1.

5. x′ + x = t, x(0) = −1; x(t) = t− 1.

Solution: L(x(t)) = −(s−1)/s2 =
−1

s
+

1

s2
= L(−1+t). Then x(t) = −1+t

by Lerch’s theorem.

6. x′ + x = t, x(0) = 1;
x(t) = t− 1 + 2e−t.

Second Order Linear DE
Display the Laplace method details which verify the supplied answer.
The first 4 exercises require only forward and backward Laplace tables and the first

shifting theorems. The others require methods in partial fractions beyond a calculus

background.

7. x′′ + x = 0, x(0) = 1, x′(0) = 1; x(t) = cos t+ sin t.

Solution:
Transform and isolate L(x):
L(x′′ + x) = 0 Apply L across the DE.

sL(x′)− x′(0) + L(x) = 0 Derivative rule on x′.

s(sL(x)− x(0))− x′(0) + L(x) = 0 Derivative rule on x.

L(x) =
x(0) +

1

s+ 1
s+ 1

Isolate L(x) left.

L(x) = (x(0)s+ x′(0))/(s2 + 1) Expand and simplify.

L(x) = s/(s2 + 1) + 1/(s2 + 1) Use x(0) = x′(0) = 1 and expand in
partial fractions.

L(x) = L(cos t) + L(sin t) Backward Laplace table.

x(t) = cos t+ sin t Linearity, Lerch’s theorem.

# Exercise 7, Second Order Linear DE

de7:=diff(x(t),t,t)+x(t)=0;ic:=x(0)=1,D(x)(0)=1;

fx(de7,DE7);# See Exercise 1 for the code

# F=(x(0)*s+D(x)(0))/(s^2+1)

# x(t) = sin(t)+cos(t)
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8. x′′ + x = 0, x(0) = 1, x′(0) = 2; x(t) = cos t+ 2 sin t.

9. x′′ + 2x′ + x = 0, x(0) = 0, x′(0) = 1; x(t) = te−t.

Solution: L(x(t)) = (x(0)s + x′(0) + 2x(0))/(s2 + 2s + 1) = 1/(s + 1)2 =
L(te−t) by the backward table and the first shifting theorem. Then x(t) =
te−t by Lerch’s theorem.

10. x′′ + 2x′ + x = 0, x(0) = 1, x′(0) = −1; x(t) = e−t.

11. x′′ + 3x′ + 2x = 0, x(0) = 1, x′(0) = −1; x(t) = e−t.

Solution: L(x(t)) = (x(0)s+x′(0)+3x(0))/(s2+3s+2) = (s− 1+3)/((s+

1)(s + 2)) =
1

s+ 1
= L(e−t) by the backward table. Then x(t) = e−t by

Lerch’s theorem.

12. x′′ + 3x′ + 2x = 0, x(0) = 1, x′(0) = −2; x(t) = e−2t.

13. x′′ + 3x′ = 0, x(0) = 5, x′(0) = 0; x(t) = 5.

Solution: L(x(t)) = (x(0)s+D(x)(0)+3x(0))/(s(s+3)) = (5s+15)/(s(s+
3)) = 5/s = L(5). Then x(t) = 5 by Lerch’s theorem.

14. x′′ + 3x′ = 0, x(0) = 1, x′(0) = −3; x(t) = e−3t.

15. x′′ + x = 1, x(0) = 1, x′(0) = 0; x(t) = 1.

Solution: L(x(t)) = (x(0)s2+x′(0)s+1)/(s(s2+1)) = (s2+1)/(s(s2+1)) =
1/s = L(1). Then x(t) = 1 by Lerch’s theorem.

16. x′′ = 2, x(0) = 0, x′(0) = 0; x(t) = t2.

Forward Integral Rule
The rule is L

(∫ t

0
g(r)dr

)
= 1

sL(g(t))

17. Relate this rule to the convolution rule with f(t) = 1.

Solution: The integral
∫ t

0
g(r)dr is the convolution of 1 and g. Therefore,

L(
∫ t

0
g(r)dr) = L(1)L(g) = 1

sL(g) by the convolution rule.

18. Compute L
(∫ t

0
sin(r)dr

)
.

19. Compute L
(∫ t

0
(r + 1)3 dr

)
.

Solution: Answer: (s3 + 3 ∗ s2 + 6 ∗ s+ 6)/s5.

Details: Let g(t) = (t+ 1)3. Then
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L(
∫ t

0
g(r)dr) = L(1)L(g) = 1

s
L(g)

=
1

s
L(t3 + 3t2 + 3t+ 1)

=
1

s

(
6

s4
+ 3

2

s3
+ 3

1

s2
+

1

s

)
=

6

s5
+

6

s4
+

3

s3
+

1

s2

20. Compute L
(∫ t

0
sqw(r)dr

)
, where sqw is the square wave of period 2. Use

the Extended Laplace Table.

Backward Integral Rule
Apply rule 1

sL(g(t)) = L
(∫ t

0
g(r)dr

)
and Lerch’s theorem to solve for f(t).

21. L(f(t)) = 1
s(s2+1)

Solution: L(f(t)) = 1
s

1
s2+1 = 1

sL(sin t) = L
(∫ t

0
sin(r)dr

)
=

L (− cos(t) + 1). Then f(t) = 1− cos(t) by Lerch’s theorem.

22. L(f(t)) = 1
s

s+1
s2+1

23. L(f(t)) = 1
s

(
1

s+1 − 1
s+2

)
Solution: L(f(t)) = 1

s

(
1

s+1 − 1
s+2

)
= 1

sL
(
e−t − e−2t

)
by the backward

table. Then L(f(t)) = L
(∫ t

0
(e−r − e−2r)dr

)
= L

(
1− e−t − 1/2 + e−2t/2

)
.

By Lerch’s theorem, f(t) = 1/2− e−t + e−2t/2.

24. L(f(t)) = 1
s

e−s

s
Hint: L(u(t− a)) = 1

se
−as.

The s–Integral Rule
Identity L

(
f(t)
t

)
=
∫∞
s

L(f(t)) ds

requires piecewise continuous f(t) of exponential order with limt→0+
f(t)
t = L.

25. Prove the identity.

Solution: A statement of the known theorem appears in Joel Schiff’s text-
book The Laplace Transform: Theory and Applications, Springer New York
(1999), page 33, ISBN 0-0387-98698-7. The proof found there has missing
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details.

Let g(t) = f(t)/t with definition g(0) = L and g(t) = 0 for t < 0.
Lemma 1. Function g(t) is piecewise continuous and of exponential order.

Lemma 2. Function F (x) =
∫∞
0

f(t)e−xtdt is continuous, of exponential

order and
∫∞
s

F (x)dx exists for s ≥ 0.

Details:
Proofs of the lemmas require details but the details will not be supplied.

L(tg(t)) = L(f(t) definition g(t) = f(t)/t

− d
dsL(g) = L(f) Derivative theorem

−
∫∞
s

d
dsL(g)ds =

∫∞
s

L(f)ds integrate, valid by Lemma 2

−0 + L(g) =
∫∞
s

L(f)ds because lims→∞ L(g) = 0

L(f(t)/t) =
∫∞
s

L(f)ds because g(t) = f(t)/t
■

26. Compute L
(

sin(t)
t

)
.

Forward First Shifting Rule
Apply L(f(t)eat) = L(f(t))|s→s−a to find the Laplace transform.

27. L(tet)
Solution: Let f(t) = t. Then

L(tet) = L(f(t)eat)
∣∣
a=1

= L(f)|s→s−a

∣∣
a=1

= L(t)|s→s−a

∣∣
a=1

=
1

s2

∣∣∣∣
s→s−a

∣∣∣∣∣
a=1

=
1

(s− a)2

∣∣∣∣
a=1

=
1

(s− 1)2

28. L(tet + e2t)

29. L(sin(t)et)

Solution:
1

(s− 1)2 + 1

30. L(sin(2t)e2t + cos(t)et)
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31. L(t cosh(2t)) using identity
cosh(w) = 1

2e
w + 1

2e
−w.

Solution:
s2 + 4

(s2 − 4)2

32. L((t+ 1)3 et)

Backward First Shifting Rule
Apply L(f(t))|s→s−a = L(f(t)eat) and Lerch’s theorem to solve for f(t).

33. Explain for L(t2)
∣∣
s→s−4

the rule

Erase a shift |s→s−a by inserting eat inside the scope of L.
Solution: Rule L(f(t))|s→s−a = L(f(t)eat) on the left has a shift while on
the right there is no shift. The effect of the shift on the left is to multiply
f(t) by an exponential. Then:

L(t2)
∣∣
s→s−4

= L(g(t)) where g(t) is t2 multiplied by e4t:

L(t2)
∣∣
s→s−4

= L(t2e4t)

34. L(f(t)) = s
s2+1

∣∣∣
s→s−1

35. L(f(t)) = s−1
(s−1)2+4

Solution: L(f(t)) = s−1
(s−1)2+4 = s

s2+4

∣∣∣
s→s−1

= L(cos(2t))|s→s−1 =

L(cos(2t) et). Then f(t)) = cos(2t) et by Lerch’s theorem.

36. L(f(t)) = 8
(s+1)2+4

37. L(f(t)) = s+1
s2+2s+5

Solution: L(f(t)) =
s+ 1

s2 + 2s+ 5
=

s+ 1

(s+ 1)2 + 4
=

s

s2 + 4

∣∣∣∣
s→s+1

=

L(cos(2t))|s→s+1 = L(cos(2t)e−t). Then f(t)) = cos(2t) e−t by Lerch’s
theorem.

38. L(f(t)) = 4
s2+8s+17

39. L(f(t)) = 2
(s+1)2

Solution: L(f(t)) =
2

(s+ 1)2
=

2

s2

∣∣∣∣
s→s+1

= L(2t)|s→s+1 = L(2te−t).

Then f(t)) = 2te−t by Lerch’s theorem.
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40. L(f(t)) = 1
(s+2)101

Forward s-Differentiation
Apply L((−t)f(t)) = d

dsL(f(t)) to find the Laplace transform.

41. Explain for L((−t) cos(t)) the rule
Multiplying by (−t) differentiates the Laplace transform..

Solution: One explanation:
L((−t) cos(t)) = d

dsL(cos t) effectively differentiates on s the expression

L(cos t) = s

s2 + 1
to obtain the final answer d

ds

s

s2 + 1
=

−(s2 − 1)

(s2 + 1)2
.

Another explanation:

L((−t) cos(t)) =
∫∞
0

cos(t)(−t)e−stdt

=
∫∞
0

cos(t) d
ds (e

−st) dt

= d
ds

∫∞
0

cos(t)e−stdt

= d
dsL(cos(t))

42. L((−t) sin(2t))

43. L((−t) sinh(2t)), using identity
sinh(w) = 1

2e
w − 1

2e
−w.

Solution: L((−t) sinh(2t)) = 1
2L(e

2t)− 1
2L(e

−2t) = 1
2 (1/(s−2)−1/(s+2)).

Further simplifications would give
−4s

(s2 − 4)2
.

44. L(tet sin(2t) + te2t cos(t))

Backward s-Differentiation
Apply d

dsL(f(t)) = L((−t)f(t)) and Lerch’s theorem to solve for f(t).

45. Explain for d
dsL(cos(t)) the rule

Erase d
ds by inserting factor (−t) inside the scope of L.

Solution:
d
dsL(cos(t)) =

d
ds

∫∞
0

cos(t)e−stdt

=
∫∞
0

cos(t) d
ds (e

−st)dt

=
∫∞
0

cos(t)(−t)e−stdt

= L((−t) cos(t))

46. L(f(t)) = d
ds

s
s2+4
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47. L(f(t)) = d2

ds2
1

(s+1)5

Solution:

L(f(t)) = d2

ds2
1

(s+1)5

= d2

ds2 L(t4/24)
∣∣
s→s+1

= L((−t)(−t)t4/24)
∣∣
s→s+1

one (−t) for each d/ds

= L((−t)(−t)t4e−t/24) first shifting theorem

Then f(t) = t6e−t/24 by Lerch’s theorem.

48. L(f(t)) = d3

ds3
s+1

s2+2s+5

Unit Step and Pulse
Define

pulse(t, a, b) =

{
1 a ≤ t < b,
0 else,

which is a tool for encoding and decoding piecewise-defined functions.

49. Prove the identity
pulse(t, a, b)=u(t− a)− u(t− b),
where u is the unit step.

Solution:

pulse(t, a, b) =

{
1 a ≤ t < b,
0 else,

u(t− a) =

{
1 t ≥ a
0 else,

u(t− b) =

{
1 t ≥ b
0 else,

u(t− a)− u(t− b) =

{
1 t ≥ a
0 else,

−
{

1 t ≥ b
0 else,

=

 1− 1 t ≥ b,
1 a ≤ t < b,
0 else,

= pulse(t, a, b)

50. Prove the Laplace formula

L(pulse(t, a, b))= e−at−e−bt

s

51. Verify that f(t) defined by2 1 ≤ t < 2,
0 else

+

3 3 ≤ t < 4,
0 else
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encodes to representation
2pulse(t, 1, 2)+3pulse(t, 3, 4).

Solution: Let

LHS =

{
2 1 ≤ t < 2,
0 else

+

{
3 3 ≤ t < 4,
0 else

LHS = 2pulse(t, 1, 2) + 3pulse(3, 4)

To use Laplace calculations in a computer algebra system it is necessary to
write a function for pulse(t, s, b) or to rewrite in unit step form:

= 2(u(t− 1)− u(t− 2)) + 3(u(t− 3)− u(t− 4))

52. Decode f(t) into a piecewise–defined function and graph it by hand, no
computer, given f(t) is
et pulse(t, 1, 3)+e−t pulse(t, 4, 6)

53. Decode f(t) into a piecewise–defined function and graph it, no computer,
given f(t) is the sum∑3

n=1 | sin(nπt)|pulse(t, 2n, 2n+1)

Solution: Let

f(t) = | sin(πt)|pulse(t, 2, 3) + | sin(2πt)|pulse(t, 4, 5) +
| sin(3πt)|pulse(t, 6, 7). Pulses are sine graphs: 1/2 period, 1 period,
1.5 periods. The graph is all in quadrant I.

# Exercise 53, Answer check

step:=t->piecewise(t >=0,1,0);

pulse:=(t,a,b)->step(t-a)-step(t-b);

f:=t->abs(sin(Pi*t))*pulse(t,2,3) +

abs(sin(2*Pi*t))*pulse(t,4,5) +abs(sin(3*Pi*t))*pulse(t,6,7);

plot(f(t),t=0..7,font=[courier,18,bold],thickness=3)
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54. Encode as a combination of pulses

f(t)=


1 1 ≤ t < 2,

−2 3 ≤ t < 4,
1 5 ≤ t < 6,
0 else,

showing all encoding details. Ans: f(t)=pulse(t,1,2)−2pulse(t,3,4)

+pulse(t,5,6).

Alternate Second Shifting Rule
L(g(t)u(t − a)) = e−asL

(
g(w)|w=t+a

)
. No Laplace here. The focus is on

function notation and finding g(t + a) = g(w)|w=t+a, which means substitute
w = t+ a into the g(w)–formula.

55. Let g(t) = te−t. Verify identity g(w)|w=t+2 = e−2(te−t + 2e−t).

Solution:
g(w)|w=t+2 = we−w|w=t+2

= (t+ 2)e−t−2

= e−2(t+ 2)e−t

= e−2 (te−t + 2e−t).

56. Let g(t) = t3. Verify identity g(w)|w=t+2 = 8 + 12t+ 6t2 + t3.

57. Typical polynomial g(w) = 1 + 2w2 + 3w4 upon substitution w = t + a
requires expansions for (t+a)2 and (t+a)4. Pascal’s Triangle can be useful.
Find the answer for g(t+ a) = g(w)|w=t+a.

Solution:
g(t+ a) = g(w)|w=t+a

= 1 + 2w2 + 3w4
∣∣
w=t+a

= 1 + 2(t+ a)2 + 3(t+ a)4

= 1 + 2(t2 + 2at+ a2) + 3(a4 + 4a3t+ 6a2t2 + 4at3 + t4)

= a4 + 4 a3t+ 6 a2t2 + 4 at3 + t4 + 2 a2 + 4 ta+ 2 t2 + 1

58. Polynomial 1+2w2+3w4 upon substitution w = t−b is a Taylor polynomial
expansion

f(t) =
∑4

n=0
f(n)(b)

n! (t− b)n .
Find the Maclaurin expansion

f(t) =
∑4

n=0
f(n)(0)

n! tn.

Forward Second Shifting Rule
L(g(t)u(t− a)) = e−asL(g(t+ a))
Find L(f(t)), where u is the unit step.
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59. f(t) = u(t− π)

Solution:

f(t) = L(u(t− π)) = e−asL(u(t))| a = π = e−as 1

s

∣∣∣∣ a = π = e−πs 1

s

60. f(t) = et u(t− 1)

61. f(t) = t3u(t− π)

Solution:
L(f(t)) = L(t3u(t− π)

= e−asL((t+ a)3u(t))
∣∣
a=π

= e−asL(t3 + 3at2 + 3a2t+ a3)
∣∣
a=π

= e−as

(
6

s4
+

6a

s3
+

3a2

s2
+

a3

s

)∣∣∣∣
a=π

= e−πs

(
6

s4
+

6π

s3
+

3π2

s2
+

π3

s

)

62. f(t) = et pulse(t, 1, 2), where
pulse(t, a, b)=u(t− a)−u(t− b).

63. f(t) = tetu(t− 2)

Solution: L(f) = (−1 + 2s)e−2s+2

(s− 1)2

64. f(t) = t sin(t)u(t− π)

Backward Second Shifting Rule
e−asL(f(t)) = L(f(t− a)u(t− a))
Find f(t) using the rule and Lerch’s theorem, giving a piecewise–defined display
and a unit step or pulse formula.

65. L(f(t)) = 1
se

−3s

Ans: f(t)=u(t− 3)=

{
1 t ≥ 3,
0 else,

Solution:

L(f(t)) = 1

s
e−3s

= e−3sL(u(t))
= L(u(t− a)u(t− a))|a=3

= L(u(t− a))|a=3
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= L(u(t− 3))

Then

f(t) = u(t− 3) =
{
0 t < 3
1 3 ≤ t

66. L(f(t)) = 1

s2
e3−3s

67. L(f(t)) = 4

s2 + 8s+ 17
e−2s

Solution: f(t) = 4u(t− 3)e−4t+12 sin(t− 3) or

f(t) = 4 e−4 t+12 sin (t− 3)
{
1 0 ≤ t− 3
0 otherwise

68. L(f(t)) = 4 + s

s2 + 8s+ 17
e−3s

69. L(f(t)) =
(

1

s2
+

2

s3

)
e−2s

Solution: f(t) = (t− 2)(t− 1)u(t− 2) or

f(t) =

{
0 t < 2
(t− 2) (t− 1) 2 ≤ t

70. L(f(t)) = 1

(s− 4)2
e−2s

Trigonometric Formulas
Supply the details in Example 8.21.

71. L(t sin at) = 2as

(s2 + a2)2

Solution:
L(t sin at) = −L((−t) sin(at))

= − d
dsL(sin(at))

= − d
ds

a

s2 + a2

=
2as

(s2 + a2)2
calculus quotient rule (1/u)′ = −u′/u2
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72. L(t2 sin at) = 6s2a− a3

(s2 + a2)3

Exponential Formulas
Supply the details in Example 8.22.

73. L(eat sin bt) = b

(s− a)2 + b2

Solution:
L(eat sin bt) = L(sin(bt))|s→s−a

=
b

s2 + b2

∣∣∣∣
s→s−a

=
b

(s− a)2 + b2

74. L(teat sin bt) = 2b(s− a)

((s− a)2 + b2)2

Hyperbolic Functions
Supply the details in Example 8.23.

75. L(sinh at) = a

s2 − a2

Solution:
L(sinh at) = L

(
1
2e

at − 1
2e

−at
)

because sinhu = (eu − e−u)/2

= 1
2L(e

at)− 1
2L(e

−at)

=
1

2(s− a)
− 1

2(s+ a)

=
4a

4(s− 1)(s+ a)

=
a

s2 − a2

76. L(t cosh at) = s2 + a2

(s2 − a2)2

Waves
Use Laplace ideas from Examples 8.24 and 8.25. Each f(t) can be expressed as
a pulse train, which is an expression

∑∞
n=1 fn(t)pulse(t, ai, bi) to which the

second shifting theorem applies.
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77. Find L(f(t)) for the square wave
f(t)=

∑∞
n=0(−1)n pulse(t, n, n+ 1)

Solution: First, establish L(pulse(t, a, b)) = L(u(t − a)) − L(u(t − b)) =
e−as/s− e−bs/s. Then

L(f(t)) =
∑∞

n=0(−1)nL(pulse(t, n, n+ 1))

=
∑∞

n=0(−1)n (e−ns/s− e−ns−s/s)

=
∑∞

n=0(−1)ne−ns

(
1− e−s

s

)
=

1− e−s

s

∑∞
n=0(−1)ne−ns

=
1− e−s

s

∑∞
n=0 rn|r=−e−s

=
1− e−s

s

(
1

1− r

∣∣∣∣
r=−e−s

)
by geometric series

=
1− e−s

s

1

1 + e−s

=
1− e−s

s

es

es + 1
multiply by

es

ss

=
es − 1

s(es + 1)

=
es/2 − e−s/2

s(es/2 + e−s/2)
multiply by

e−s/2

s−s/2

=
1

s

sinh(s/2)

s cosh(s/2)

=
1

s
tanh(s/2)

The answer agrees with the Extended Laplace Table: L(sqw(t/a)) =
1
s tanh(as/2) when a = 1.

78. Define pulse train
f(t)=

∑∞
n=0 fn(t)pulse(t, n, n+ 1),

f2n(t)=t− 2n, f2n+1(t)=2− t+ 2n. Show that f(t+ 2) = f(t) and

f(t)=

{
t 0 ≤ t < 1,
2− t 1 ≤ t ≤ 2.

79. Find L(f(t)) for

f(t) =

{
| sin(2t)| 0 ≤ t ≤ π,
0 π ≤ t ≤ 2π,
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and f(t+ rπ) = f(t).

Solution: Answer: L(f) = 2 (esπ − 1) e−sπ

(s2 + 4)(1− e−2πs

The Rule for P-periodic functions will be applied:

L(f) =

∫ P

0

f(t)e−stdt

1− e−Ps
where P = 2π

∫ P

0
f(t)e−stdt =

∫ π

0
sin(2t)e−stdt

=
2 (esπ − 1) e−sπ

s2 + 4
# Exercise 79, P-Periodic Function Rule

int(sin(2*t)*exp(-s*t),t=0..Pi);

# (2*(exp(s*Pi)-1))*exp(-s*Pi)/(s^2+4)

80. Find L(f(t)) for

f(t) =

{
1 0 ≤ t ≤ π,
| sin(t)| π ≤ t ≤ 2π,

and f(t+ 2π) = f(t).

81. Given f(t) = 1
2 (| sin t|+ sin t), called the Half–wave rectification of the

sine wave, derive L(f(t))= 1
(s2+1)(1−e−πs)

Solution: Answer: Following the method in Exercise 79, maple gives:

L(f) = 1 + e−πs

(s2 + 1)(1− e−2πs)

The problem reduces to rewriting the answer in reduced form:

L(f) = 1

s2 + 1

1 + e−πs

1− e−2πs .

=
1

s2 + 1

1 + e−πs

(1− e−πs)(1 + e−πs)
factor by a2 − b2 = (a− b)(a+ b)

=
1

s2 + 1

1

1− e−πs

82. Solve for 2–periodic function f(t):

L(f(t)) = 1

s
tanh

(s
2

)
.

Use the Extended Laplace Integral Table.
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8.4 Heaviside’s Method

Partial Fraction Mistakes

1. How many real constants appear in the partial fraction expansion of the

fraction
s+ 1

s2(s+ 2)(s+ 3)2
?

Solution: The numerator does not divide the denominator. The degree of
the denominator is 5. The number of constants is 5.

2. How many real constants appear in the partial fraction expansion of
s+ 1

s2(s2 + 4)(s2 + 2s+ 5)2
?

3. Guido expanded
s+ 1

s(s+ 2)(s+ 3)2

to get
a

s
+

b

s+ 2
+

c

(s+ 3)2
.

What is the mistake?

Solution: The numerator does not divide the denominator. The degree of
the denominator is 4. The number of constants is 4. Guido omitted fraction
d

s+ 3
.

4. Helena made this expansion:
s+ 1

s(s+ 2)
=
a

s
+

b

s+ 2
+

c

s+ 3
The expansion is correct! Explain how you know that c = 0 without com-
puting anything.
This example explains why fractions on the right have denominators dividing the de-

nominator on the left.

5. Marco made an expansion:
s+ 1

s(s2 + 4)
=
a

s
+

b

s+ 2
+

c

s− 2
Explain why it is a mistake.

This example explains why sanity checks have more than one item to check.

Solution: Marco incorrectly factored s2+4 as though the roots are π2. The

roots are complex: ±2i. The correct term is
cs+ d

s2 + 4
or if using complex

numbers then instead
C

s− 2i
+

D

s+ 2i
with C,D complex.
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6. Violeta made an expansion
s+ 2

s(s− 2)(s+ 2)
=
a

s
+

b

s− 2
+

c

s+ 2
Explain why c = 0 without computing anything.

This example explains why common factors of numerator and denominator should be

removed.

7. Find the mistake in expansion
(s+ 2)2

s(s− 2)
=
a

s
+

b

s− 2
This example explains why the degree of the numerator and denominator are check-

points.

Solution: The degree of the numerator is not less than the degree of the
denominator. Long division should be applied followed by partial fraction
theory:

(s+ 2)2

s(s− 2)
= 1 +

6s+ 4

s(s− 2)
= 1− 2

s
+

8

(s− 2

8. Is there a mistake here?
(s+ 2)2

s2(s− 2)
=
a

s
+

b

s2
+

c

s− 2

Solution: No mistake.

Sampling Method
Apply the sampling method (a failsafe method) to verify the given equation.

9.
s

s2 − 1
=

1/2

s− 1
+

1/2

s+ 1
Solution:

Seek a, b in the equation
s

(s− 1)(s+ 1)
=

a

s− 1
+

b

s+ 1

s = a(s+ 1) + b(s− 1) Clear fractions.
Then substitute roots of the denominator.{

1 = a(2) + b(0) substitute s = 1
−1 = a(0) + b(−2) substitute s = −1

Solution of the system of equations: a = 1/2, b = 1/2

Then

s

(s− 1)(s+ 1)
=

a

s− 1
+

b

s+ 1
=

1/2

s− 1
+

1/2

s+ 1

10.
s

s4 − 1
=

1/4

s− 1
+

1/4

s+ 1
+

−s/2

s2 + 1
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Method of Atoms
Apply the method of atoms to verify the given equation.

11.
2s

s2 − 1
=

1

s− 1
+

1

s+ 1
Solution:

Seek a, b in the equation
2s

(s− 1)(s+ 1)
=

a

s− 1
+

b

s+ 1

2s = a(s+ 1) + b(s− 1) Clear fractions.

2s = (a+ b)s+ (a− b)1 collect coefficients on atoms s, 1.{
2 = a+ b match coefficient of atom = s
0 = a− b match coefficient of atom = 1

Solution of the system of equations: a = 1, b = 1

Then
2s

(s− 1)(s+ 1)
=

a

s− 1
+

b

s+ 1
=

1

s− 1
+

1

s+ 1

12.
4s

s4 − 1
=

1

s− 1
+

1

s+ 1
+

−2s

s2 + 1

Heaviside’s 1890 Shortcut
Apply Heaviside’s shortcut to verify the given equation.

13.
2s

s2 − 4
=

1

s− 2
+

1

s+ 2
Solution: Solve for a, b in the equation

2s

(s− 2)(s+ 2)
=

a

s− 2
+

b

s+ 2

To find a, let H = s− 2 be the denominator of the fraction
a

s− 2
. Mentally

multiply the equation by H to get

2s

(s+ 2)(H removed)
=

a

H removed
+

bH

s+ 2

Set H = 0 and solve for s = 2. Substitute s = 2 and H = 0 into the
mentally multiplied equation. This step removes all symbols from the
equation except for symbol a.

2(2)

((2) + 2)(H was removed)
=

a

(H was removed)
+

b(0)

(2) + 2

Simplify:
2(2)

4
= a

Then 1 = a.
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The process repeats using H = s+ 2 to find symbol b:

2s

(s− 2)(H covered up)
=

a(H)

s− 2
+

b

(H covered up)

Then set s = −2 and H = 0:

2(−2)

(−2− 2)(H remvoved)
=

a(0)

−2− 2
+

b

(H removed)

Simplify: 1 = b.

Conclusion:

2s

(s− 2)(s+ 2)
=

a

s− 2
+

b

s+ 2
=

1

s− 2
+

1

s+ 2

14.
s+ 4

s3 + 4s
=
1

s
+

−s+ 1

s2 + 4

Residues and Poles
Compute the residue for the given pole.

15. Residue at s = 2 for
2s

s2 − 4
.

Solution: The process is the same as Heaviside’s Coverup method but with
steps eliminated. The residue calculation imagines the coverup method in
progress with H = s−2 so that s = 2 results from H = 0. The given fraction
2s

s2 − 4
is imagined as the LHS of the equation before mentally multiplying

by H. Suppose constant a in fraction
a

H
is being determined by the coverup

method. Then multiplying by H and setting H = 0 and s = 2 would result
in

2sH

s2 − 4

∣∣∣∣
s=2,H=0

= a

This is the essence of the residue formula: multiply by H then set s = 2
(which also means H = 0). Because H cancels in the fraction then it is only
required to set s = 2:

2s(s+ 2)

(s− 2)(s+ 2)

∣∣∣∣
s=2

= a

2s

(s+ 2)

∣∣∣∣
s=2

= a H = s− 2 cancelled

Then: 1 = a is the residue.

16. Residue at s = 0 for
s+ 4

s3 + 16s
.
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Scalar Differential Equations
The transfer function of x′′ +x = f(t) is H(s) = 1

s2+1 . A common definition
is H(s) = L(f(t)) divided by L(x(t)), assuming x(0) = x′(0) = 0.

17. Verify for x′′+x = e−t with x(0) = 0, x′(0) = 0 that L(x)= 1
s+1

1
s2+1 . Then

compute H(s).

Solution: Step 1:

L(x′′ + x) = L(e−t) Apply L across the DE.

sL(x′)− x′(0) + L(x) = 1

s+ 1
Derivative rule on x′.

s(sL(x)− x(0))− x′(0) + L(x) = 1

s+ 1
Derivative rule on x.

(s2 + 1)L(x) = 1

s+ 1
Use x(0) = x′(0) = 0 and collect on L(x).

L(x) = 1

(s2 + 1)(s+ 1)
Use x(0) = x′(0) = 0 Isolate L(x) left.

Step 2:

H(s) = transfer function = L(f)/L(x)
= L(e−t)/L(x)

=
1/(s+ 1)

1/((s2 + 1)(s+ 1))

=
1(s2 + 1)(s+ 1)

(s+ 1)

= s2 + 1

The most often-used shortcut: H(s) is the characteristic polynomial of the
homogeneous DE with the variable changed to s: r2 + 1 with r → s is
H(s) = s2 + 1.

18. Explain the transfer function
equation
H(s) = 1

characteristic equation
.

19. Solve L(x(t))= 1
s+1

1
s2+1 by Heaviside cover–up for output x(t) = 1

2 (e
−t −

cos t+ sin t).

Solution: The roots of s2+1 = 0 are complex: s = ±i. The plan is to expand
L(x(t)) in partial fractions and then use the backward Laplace table:

L(x(t)) = 1

s+ 1

1

s2 + 1
=

a

s+ 1
+

bs+ c

s2 + 1
, Real a, b, c.

The coverup method applies because the roots are distinct: −1, i,−i.
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8.4 Heaviside’s Method

Let H = s− i for root s = i. Multiply by H mentally and cancel H where
possible, then set H = 0 which implies symbol s is replaced by i:

1

s+ 1

s− i

(s− i)(s+ i)
=

a(s− i)

(s+ i)(s− i)
+

(bs+ c)(s− i)

(s− i)(s+ i)

1

s+ 1

1

s+ i

∣∣∣∣
s=i,H=0

= 0 +
bs+ c

s+ i

∣∣∣∣
s=i

1

s+ 1

1

s+ i
=

bs+ c

s+ i

∣∣∣∣
s=i

1

1

i+ 1

1

i+ i
=

bi+ c

i+ i

1

i+ 1
= bi+ c

1 = (bi+ c)(i+ 1) = −b+ ci+ bi+ c

Then 1 = −b + c and 0 = c + b by matching real and imaginary parts of
the complex number on each side of the equation. Solve to get b = −1/2,
c = 1/2. The usual Heaviside coverup method quickly finds a = 1. Lerch’s
theorem and the backward Laplace table then imply

x(t) = ae−t + b cos(t) + c sin(t) = e−t − 1
2 cos(t) +

1
2 sin(t)

Shortcut.
The substitution of s = i found both c = −1/2 and c = 1/2 in one step.
It turns out that the answer can be found by manipulation of s instead of
substitution of s = i at stage 1 above. Using just symbol s gives:

1 = (bs+ c)(s+ 1)

1 = bs2 + (b+ c)s+ c

1 = (b+ c)s+ (c− b) because s2 = i2 = −1.

It is correct to analyze the equation as a linear equation in s and match
coefficients: 1 = c − b, 0 = b + c. This is due to independence of complex
numbers i and 1, imagined as 2-vectors in the plane.The result is a method
to find b, c without using complex arithmetic.

20. Given x′′ + x = te−t, x(0) = x′(0) = 0, show all steps to find
L(x(t)) = 1

(s+1)2
1

s2+1 .

First Order System
Using Example 8.29 as a guide, solve the system for x1(t) by Laplace’s method.

21.

 x′
1=x2,

x′
2=4x1 + 12e−t,

x1(0)=x2(0)=0.

Ans: x1(t)=e2t + 3e−2t − 4e−t.
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8.4 Heaviside’s Method

Solution:
Step 1.
Apply L across each of the two differential equations. Use the Derivative
Theorem and the Forward Table to reduce the equations to a system in
L(x1, L(x2) with coefficients in variable s.{

sL(x1)− x1(0) = L(x2),
sL(x2)− x2(0) = 4L(x1) + 12/(s+ 1)

Step 2.
Insert the initial data x1(0) = x2(0) = 0 to obtain the nonhomogeneous
linear algebraic system for variables X1 = L(x1), X2 = L(x2):{

sX1 −X2 = 0,
−4X1 + sX2 = 12/(s+ 1)

Solve by linear algebra:

X1 =
12

(s− 2)(s+ 2)(s+ 1)
, X2 =

12s

(s− 2)(s+ 2)(s+ 1)

Step 3.
Solve the preceding equations for x1 and x2. For instance,

L(x1) = X1 =
12

(s− 2)(s+ 2)(s+ 1)

=
a

s− 2
+

b

s+ 2
+

c

s+ 1

Then a = 1, b = 3, c = −4 by Heaviside coverup and the backward table.
Final answer:

L(x1) = L(ae2t + be−2t + ce−t)

x1 = e2t + 3e−2t − 4e−t by Lerch’s theorem.

Details for x2 = 2e2t − 6e−2t + 4e−t are similar.

22.


x′
1=x2,

x′
2=x3,

x′
3=4x1 − 4x2 + x3 + 10e−t,

x1(0)=x2(0)=x3(0)=0.

Ans: x1(t)=et − e−t − sin(2t).

Second Order System
Using Example 8.29 as a guide, compute x(t), y(t).

23. L(x(t))= 3s2+2
(s−1)(s2+4) ,

L(y(t))= 10
(s−1)(s2+4) .

515



8.4 Heaviside’s Method

Ans: x=2 cos(2t)+ sin(2t)+et,
y=− 2 cos(2t)− sin(2t)+2et

Solution: The methods are in Exercise 19. To solve for x(t):

3s2 + 2

(s− 1)(s2 + 4)
=

a

s− 1
+

bs+ c

s2 + 4

Then a = 1 by Heaviside coverup. To find b, c multiply by H = s2 + 4 and
then set H = 0:

3s2 + 2

s− 1
= bs+ c subject to H = s2 + 4 = 0

3s2 + 2 = (bs+ c)(s− 1) cross-multiply

3s2 + 2 = bs2 + cs− bs− c

3(−4) + 2 = b(−4) + cs− bs− c because H = 0 implies s2 = −4 for both
roots of H = 0

−10 = −4b− c, 0 = c− b match coefficients of 1 and s

Solve: b− 2, c = 2. Then

L(x(t)) = 3s2 + 2

(s− 1)(s2 + 4)

=
1

s− 1
+

2s+ 2

s2 + 4

= L(et) + L(2 cos 2t+ sin 2t)

Lerch’s theorem gives x(t) = et + 2 cos 2t + sin 2t. The details for y(t) are
similar.
# Exercise 23, Answer check

convert((3*s^2+2)/((s-1)*(s^2+4)),parfrac);

# 1/(s-1)+(2*s+2)/(s^2+4)

24. L(x(t))= 2s2+4
(s+1)(s2+1) ,

L(y(t))= 2
(s+1)(s2+1) .

Ans: x=− cos(t)+ sin(t)+3e−t,
y=− cos(t)+ sin(t)+e−t.
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8.5 Heaviside Step and Dirac Impulse

Unit Step and Heaviside

1. The unit step u(t) is defined on the whole real line. Is it piecewise continuous
on the whole line?

Solution: Yes.

2. Is there a continuous function on the real line that agrees with the Heaviside
function except at t = 0?

3. The piecewise continuous function pulse(t, a, b) is defined everywhere. Re-
define pulse(t, a, b) using H(t) instead of u(t).

Solution: Replace in the pulse(t, a, b) definition symbol u(t) by symbol
H(t), the Heaviside function. There is a difference at t = a and t = b,
because H(0) is undefined. The piecewise definition after the replacement:

pulse(t, a, b) =


0 t < a
undefined t = a
1 a < t < b
undefined t = b
0 t > b

4. Write f(t) = floor(t)u(t) as a sum of terms, each of which has the form
g(t)pulse(t, a, b).

Solution: An infinite series is required.

Dirac Impulse

5. Verify
∫∞
−∞

pulse(t,a,b)
b−a dt = 1.

Solution:∫ ∞

−∞

pulse(t, a, b)

b− a
dt =

∫ ∞

−∞

1

b− a

({
1 a ≤ t < b
0 otherwise

)
dt

=

∫ b

a

1

b− a
dt zero integrand outside a ≤ t ≤ b

= 1

6. Verify by direct integration that f(t) = 10 pulse(t,−0.001, 0.001) represents
a simple impulse of 10 at t = 0 of duration 0.002. Graph it without using
technology.

517



8.5 Heaviside Step and Dirac Impulse

7. Find L(δ(t− 1) + δ(t− 2)).

Solution: L(δ(t− 1) + δ(t− 2)) = e−s + e−2s

8. Find L(10 δ(t− 1)− 5 δ(t− 2)).

9. Solve for f(t) in terms of δ:
L(f(t)) = 10e−s

Solution: There is no piecewise continuous function f(t) of exponential order
satisfying the equation L(f(t)) = 10e−s. Nevertheless, most experts would
write L(f(t)) = 10e−s = L(10δ(t − 1)), then write f(t) = 10δ(t − 1) which
represents an impulse of 10 at t = 1 (a hammer hit). It is technically
incorrect to claim that f(t) is a function. It is not, but it is approximated
by the function fϵ(t) = 10 1

2ϵ pulse(t, 1− ϵ, 1+ ϵ) as ϵ → 0. What allows the
formal result is the equation limϵ→0 L(fϵ) = e−s = L(δ(t− 1)). The formal
calculation looks like we used Lerch’s theorem. But Lerch’s theorem does
not apply to equations involving δ.

10. Solve for f(t) in terms of δ:
L(f(t)) = 10e−s + s

s2+1 e
−2s

11. Find L
(∑10

n=1(1 + n)δ(t− n)
)
.

Solution:

L
(∑10

n=1(1 + n)δ(t− n)
)
=
∑10

n=1(1 + n)L(δ(t− n)) =
∑10

n=1(1 + n)e−ns

12. A sequence of camshaft impulses happening periodically in a finite time
interval have transform L(f(t)) =

∑N
i=1 e−ci s. Find the idealized impulse

train f .

Riemann–Stieltjes Integral
Evaluate the integrals either directly from the definition or else by using The-
orem 8.15.

13.
∫ 2

0
du(t− 1)

Solution: Theorem 8.15 part (2) does not apply directly because the limits
of integration do not match.∫ 2

0
du(t− 1) =

∫∞
−∞ pulse(t,−1, 3)du(t− 1) because du(t− 1) = 0 outside

a small interval containing t = 1.∫ 2

0
du(t− 1) = limt→1+ pulse(t,−1, 3) by Theorem 8.15 part (2)∫ 2

0
du(t− 1) = 1
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8.5 Heaviside Step and Dirac Impulse

14.
∫∞
0

du(t− 2)

15.
∫ 2

0
tanh(t2 + 1) du(t− 1)

Solution:∫ 2

0
tanh(t2 + 1) du(t− 1) =

∫∞
−∞ pulse(t,−1, 3) tanh(t2 + 1) du(t− 1)

= limt→1+ pulse(t,−1, 3) tanh(t2 + 1)

= tanh(2) by Theorem 8.15 part (2).

16.
∫∞
0

t
1+t2 du(t− 2)
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8.6 Modeling

Oscillatory and Non–oscillatory
Assume x′′ + px′ + qx = 0 with p, q nonnegative.

Parameter p is imagined as a set screw adjustment on a screen door dashpot,
larger p meaning more damping effect.

Parameter q is the Hooke’s constant for the spring restoring force.

1. Let q = 100, p = 99. Verify that the equation is over–damped in two ways:
(1) Graph x(t);
(2) Justify that r2 + pr + q = 0 has real negative roots.

Solution: The graph can be made by hand for

x (t) = c1 e(−99+
√
9401)t/2 + c2 e−(99+

√
9401)t/2

It looks like x = e−t or x = −e−t as t → ∞ no matter the nonzero values
of c1, c2.

The characteristic equation r2 + pr + q = 0 has roots −1.02062294,
−97.97937706, both negative.

# Exercise 1, Over-damped

de:=diff(x(t),t,t)+p*diff(x(t),t)+q*x(t)=0;

eq:=r^2+p*r+q=0;

p:=99;q:=100;

X:=dsolve(de,x(t));

# x(t) = _C1*exp((1/2*(-99+sqrt(9401)))*t)+

# _C2*exp(-(1/2*(99+sqrt(9401)))*t)

R:=solve(eq,r);evalf([R]);

# [-1.02062294, -97.97937706]

XX:=subs(_C1=1,_C2=1,rhs(X));

plot(XX,t=0..5);

2. Let q = 100. The case which is called critically–damped happens at exactly
one value p = p∗ between 0 and 99. Compute p∗ numerically. Graph x(t)
using q = 100, p = p∗, x(0) = 0, x′(0) = 1.

3. Let q = 100. Verify that p = 0 produces the harmonic oscillator x′′ +
ω2 x = 0, ω = 10.

Small set screw changes from p = 0 to p > 0 are still oscillatory. Under–damped
means weak dashpot reaction.

Solution: Equation x′′+px′+qx = 0 becomes x′′+100x = 0 or x′′+102x = 0.
Then ω = 10 and the equation is the harmonic oscillator.

520



8.6 Modeling

4. Let q = 100, p = 2. Justify oscillatory under–damped from the graph of
x(t) and also by solving r2 + pr + q = 0.

Simplistic Dirac Impulse
Define g(t) = 7 e−153800 t u(t) and
f(t, a) = 1

a (u(t)− u(t− a)), a > 0.

The impulse of force h is
∫∞
−∞ h(t) dt.

5. Compute the impulse for f(t, a).
Ans: 1.

Solution: Let h(t) = f(t, a) be the force. The impulse of h is∫∞
−∞ h(t) dt =

∫∞
−∞

1
a pulse(t, 0, a)dt

=
∫ a

0
1
a pulse(t, 0, a)dt

=
∫ a

0
1
a (1)dt

= 1

6. Plot f(t, a) for a = 0.1, 0.001, 0.0001.

7. Calculate the impulse for g(t).
Ans: About 46 times 10−6.

Solution:

Given: g(t) = 7 e−153800 t u(t), compute
∫∞
−∞ g(t) dt.∫∞

−∞ g(t) dt =
∫∞
−∞ 7 e−153800 t u(t) dt

= 7
∫∞
0

e−153800 t (1) dt

=
7e−153800 t

−153800

∣∣∣∣∞
t=0

= 0− 7

−153800

== 0.00004551365410

8. Try to find an RC discharge circuit with 10 volt emf and output g(t).

Circuit response g(t) simulates Dirac impulsive force 45.5
1000000

δ(t).

Parameters: Over–Damped
Find a, b, ω =

√
ab, ζ = a+b

2ω given the plot and two dots on the graph.

9. Step input Figure 9, dots
(1, 0.1998), (4, 0.4819).
Ans: a = 1.0000, b = 1.9997, ω = 1.4141, ζ = 1.0607.
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8.6 Modeling

Solution: The exercise follows the solution to the example following Figure
9 page 660 �. The work should be carried out with a computer.

# Exercise 9, Parameters: Over-Damped

F:=(t,a,b)->1/(a*b)+exp(-a*t)/(a^2-a*b)+exp(-b*t)/(b^2-a*b);

t1:=1;x1:=0.1998;t2:=4;x2:=0.4819;

ans:=fsolve(eval({F(t1,a,b)=x1,F(t2,a,b)=x2}),{a,b});

# ans := {a = 1.000041775, b = 1.999717461}

omega:=eval(sqrt(a*b),ans);

# omega := 1.414143203

zeta:=eval((a+b)/(2*omega),ans);

# zeta := 1.060627817

10. Impulse input Figure 10, dots
(0.5, 0.1193), (2, 0.0585).
Ans: a = 0.9991, b = 2.0021, ω = 1.4143, ζ = 1.0610.

Parameters: Under–Damped
Find a, b, ω =

√
a2 + b2, ζ = a

ω given the plot and two dots on the graph.

11. Zero input like Figure 11, but consecutive maxima at (2.5107, 0.0257),
(4.6051, 0.0032).
Ans: Approximately a = 1, b = 3.

Solution: Follow the solution to the Example after Figure 11 page 663 �.

# Exercise 11, Parameters: Under-Damped

t1:=2.5107; x1:=0.0257; t2:=4.6051;x2:=0.0032;y0:=0;

a=ln((x1-y0)/(x2-y0))/(t2-t1); # a = 0.9947193382

b=2*Pi/(t2-t1);# b = 2.999992986

12. Step input like Figure 13, but steady–state y0 = 1/26 and consecutive
maxima at (0.6283, 0.0205), (1.8850, 0.0058).
Ans: Approximately a = 1, b = 5.
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Chapter 9

Eigenanalysis
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9.1 Matrix Eigenanalysis

Eigenanalysis
Classify as true or false. If false, then explain.

1. The purpose of eigenanalysis is to discover a new coordinate system.

Solution: True.

2. Eigenanalysis can discover an opportunistic change of coordinates.

3. A matrix can have eigenvalue 0.

Solution: True: the zero matrix.

4. Eigenvalues are scale factors, imagined to be measurement units.

5. Eigenvectors are directions.

Solution: True. A physical example is a football or ellipsoid. The eigenvec-
tors are the three semiaxis directions.
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9.1 Matrix Eigenanalysis

6. For each eigenvalue of a matrix A, there always exists at least one eigenpair.

7. If A−1 has eigenvalue λ, then A has eigenvalue 1/λ.

Solution: True. If A−1 exists then identity A−1 = adj(A)/|A| prevents
|A| = 0. Matrix A−1 cannot have eigenvalue zero, due to characteristic
equation |A−1 − λI| = 0 being impossible for λ = 0 (use product identity
|A||A−1| = |AA−1| = |I| = 1). If A−1x⃗ = λx⃗ then x⃗ = λAx⃗ . Because
λ ̸= 0, then division is possible and (1/λ, x⃗ ) is an eigenpair of A.

8. Eigenvectors cannot be 0⃗ .

9. The transpose of A has the same eigenvalues as A.

Solution: True. Eigenvalues of A are found from algebraic equation |A −
λI| = 0, called the characteristic equation of A. Then |AT − λI| = |(A −
λI)T | = |A− λI| = 0 by the determinant property |B| = |BT |. Therefore A
and AT have the same eigenvalues.

10. Eigenpairs (λ, v⃗ ) of A satisfy the equation (A− λI)v⃗ = 0⃗ .

Eigenpairs of a Diagonal Matrix
Find eigenpairs of A without computation. Use Theorem 9.7.

11.

(
2 0
0 3

)
Solution: λ = 2, 3

12.

(
1 0
0 4

)

13.

(
2 0 0
0 3 0
0 0 1

)
Solution: λ = 2, 3, 1

14.

(
2 0 0
0 1 0
0 0 1

)

15.

(
7 0 0
0 2 0
0 0 −6

)
Solution: λ = 7, 2,−6
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16.

(
2 0 0
0 −4 0
0 0 −1

)

Fourier Replacement
Let symbols c1, c2 represent arbitrary constants. Let 2×2 matrix A have Fourier
replacement equation

A

(
c1

(
1
1

)
+c2

(
1
2

))
= 2c1

(
1
1

)
−5c2

(
1
2

)
17. Display the eigenpairs of A.

Solution:

(
2,

(
1
1

))
,

(
−5,

(
1
2

))
18. Display the replacement equation if the eigenvalues 2,−5 are replaced by

1, 0.

19. Display the eigenpair packages P,D such that AP = PD.

Solution: By Exercise 17, the eigenpairs of A are

(
2,

(
1
1

))
,

(
−5,

(
1
2

))
.

Then

P =

(
1 1
1 2

)
, D = diag(2,−5)

20. Find A.

Eigenanalysis Facts
Mark as true or false, then explain your answer.

21. If matrix A has all eigenvalues zero, then A is the zero matrix.

Solution: False. A triangular matrix with zeros on the diagonal has all
eigenvalues zero.

22. If 2× 2 matrix A has all eigenvalues zero, then Fourier’s replacement equa-
tion is

A (c1v⃗ 1+c2v⃗ 2) = 0⃗ .

23. There are infinitely many 2 × 2 matrices A with complex eigenvalues 1 +
i, 1− i.

Solution: True. Let B =

(
1 1

−1 1

)
. Then B has eigenvalues 1 + i, 1 − i.

Let P =

(
1 x
0 1

)
for arbitrary real x. Let A(x) = P−1BP . Then A(x) and

B have the same eigenvalues and there are infinitely many distinct matrices
A(x).
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24. A real 2 × 2 matrix A with eigenvalues 2 + 3i, 2 − 3i cannot have a real
eigenvector.

25. A real 2× 2 matrix A with real eigenvalues has only real eigenvectors.

Solution: False. If λv⃗ = Av⃗ and v⃗ is real then w⃗ = zv⃗ is complex for
purely complex z and λw⃗ = z(λv⃗ ) = zAv⃗ = Aw⃗ . Then (λ, w⃗ ) is an
eigenpair with complex eigenvector.

What is known:
The eigenpairs (λ, v⃗ ) of A in the case of a real eigenvalue λ can always
be selected so that v⃗ is real. This is because A − λI is a real matrix and
Gaussian elimination finds a real vector v⃗ solution to the homogeneous
system (A− λI)v⃗ = 0⃗ .

26. A real 2×2 matrix A with complex eigenvalues has only complex eigenvec-
tors.

Eigenpair Packages and equation AP = PD

27. Suppose A has eigenpair packages. Explain why there are so many different
answers for P,D.

Solution: The packages contain eigenpairs which can be listed in many
different orders, resulting in different P and D. Further, while eigenvalues
are determined from |A−λI| = 0, the eigenvectors are not unique: even for
2× 2 matrices an eigenvector is either determined up to a constant multiple
or else kernel(A − λI) is two dimensional leaving infinitely many choices
for two independent eigenvectors. For instance, the eigenvectors of the zero
matrix can be any two independent vectors in R2.

28. Suppose AP = PD and AQ = QD hold (same diagonal matrix D). Does
P = Q?

29. Find one choice of P and D for A = 2× 2 diagonal matrix.

Solution: Let A = diag(a, b). The eigenpairs can be

(
a,

(
1
0

))
,

(
b,

(
0
1

))
.

Then P = I and D = A.

30. Given A = 3× 3 zero matrix, find one choice of P and D with column one

of P equal to

(
1

−1
1

)
.

Matrix Eigenanalysis Method
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31. The eigenvalues of

(
1 3
1 4

)
satisfy a quadratic equation. Find the equation

and solve for the eigenvalues.

Solution: The equation is |A − λI| = 0 which is

∣∣∣∣ 1− λ 3
1 4− λ

∣∣∣∣ = 0.

The equation can be written directly as (−λ)2 + trace(A)(−λ)+ |A| = 0 or
λ2−5λ+1 = 0. The roots are found by the quadratic formula: 5/2±

√
21/2.

32. Find the eigenvalues of

(
1 3
2 4

)
.

33. Find all eigenpairs of

(
1 2 0
0 2 2
0 0 3

)
.

Solution: The eigenvalues are the diagonal elements of A: 1, 2, 3.

Eigenvectors are found from solving the equation (A − I)v⃗ 1 = 0⃗ , (A −
2I)v⃗ 2 = 0⃗ , (A − 3I)v⃗ 3 = 0⃗ . Each of the three homogeneous systems
is solved by finding the general solution by swap, combo, multiply. Take
as the eigenvector in each case ∂v⃗/∂t1 where t1 is the free variable. We
know in advance that each eigenvalue has at least one eigenvector. Distinct
eigenvalues implies the dimension of the solution space, which equals the
number of free variables, is in each case exactly one.

To find an eigenpair (1, v⃗ ), solve A1v⃗ = 0⃗ where

A1 = A− (1)I =

 1− (1) 2 0
0 2− (1) 2
0 0 3− (1)

 =

 0 2 0
0 1 2
0 0 2


Then rref(A1) =

(
0 1 0
0 0 1
0 0 0

)
. The general solution is v⃗ = t1

1
0
0

. Let

v⃗ 1 = ∂v⃗/∂t1 =

1
0
0


and then the eigenpair (1, v⃗ 1) is1,

1
0
0


The other two eigenpairs are found similarly:2,

2
1
0

 ,

3,

2
2
1


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# Exercise 33

A:=Matrix([[1,2,0],[0,2,2],[0,0,3]]);

CharacteristicPolynomial(A,r);

# r^3 - 6 r^2 + 11 r - 6

Eigenvalues(A);Eigenvectors(A);

A1:=A-(1)*IdentityMatrix(3);

ReducedRowEchelonForm(A1);

LinearSolve(A1,ZeroVector(3));

34. A triangular n × n matrix with distinct diagonal entries has n eigenpairs.
Provide a detailed proof for the case n = 3.

35. Find all eigenpairs of

(
1 2 0
0 1 2
0 0 1

)
.

Solution: There is only one eigenpair, all eigenvalues = 1:1,

1
0
0


# Exercise 35

A:=Matrix([[1,2,0],[0,2,2],[0,0,3]]);

CharacteristicPolynomial(A,r);

# r^3 - 6 r^2 + 11 r - 6

Eigenvalues(A);Eigenvectors(A);

A1:=A-(1)*IdentityMatrix(3);

ReducedRowEchelonForm(A1);

LinearSolve(A1,ZeroVector(3));

36. A triangular n × n matrix may not have n eigenpairs. Provide a series of
examples for dimensions n = 2, 3, 4, 5.

37. Prove that equations Ax⃗ = λx⃗ and (A− λI)x⃗ = 0⃗ have exactly the same
solutions x⃗ .

Solution:

Proof:
Part I. Let x⃗ solve Ax⃗ = λx⃗ . Then

(A− λI)x⃗ = Ax⃗ − λIx⃗ = λx⃗ − λx⃗ = 0⃗

Part II. Let x⃗ solve (A− λI)x⃗ = 0⃗ . Then

Ax⃗ = λx⃗ + (Ax⃗ − λx⃗ ) = λx⃗ + 0⃗ = λx⃗

Combine Part I and Part II: the equations have the same solutions. ■
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38. Cite basic linear algebra theorems to prove that (A − λI)x⃗ = 0⃗ has a
nonzero solution x⃗ if and only if λ is a root of the characteristic equation
|A− λI| = 0.

Basis of Eigenvectors
The problem Ax⃗ = λx⃗ has a standard general solution x⃗ with invented symbols
t1, t2, t3, . . .. Strang’s special solutions are defined to be the vector partial
derivatives of x⃗ with respect to the invented symbols.

39. Why are Strang’s special solutions independent?

Solution:
First solution: We can cite a theorem which says they are independent:
Theorem 5.22 page 370 �.

Second solution: The plan is prove that a linear combination of the special
solutions equal to the zero vector has all weights zero.
The special solutions are given as vector partial derivatives on the free vari-
ables t1, . . . , tk where k is the rank of the matrix. A linear combination of
the special solutions with weights c1, . . . , ck is the same as the vector general
solution with substitutions t1 = c1, . . . , tk = ck. Setting this linear com-
bination equal to the zero vector is the same as setting the vector general
solution equal to the zero vector, except for notation. Then the correspond-
ing scalar general solution is also zero. But the free variables t1, . . . , tk then
appear in the zero scalar general solution in k scalar equations 0 = t1, . . . ,
0 = tk. The other scalar equations in the general solution not of this form
are ignored for this analysis. This means all free variables t1, . . . , tk are zero,
which also means all weights c1, . . . , ck are zero. The special solutions are
proved independent. ■

40. Prove that linear combinations of Strang’s special solutions provide all pos-
sible solutions of Ax⃗ = λx⃗ .

Independence of Eigenvectors
Eigenvectors of matrix A for eigenvalue λ are the nonzero solutions of Ax⃗ = λx⃗ .

41. Invent a 2 × 2 example A with eigenpairs

(
2,

(
1
1

))
,

(
2,

(
5
5

))
. Then

explain why an eigenvector for eigenvalue λ is never unique.

Solution:
Explanation: Only the first eigenpair is used to construct the example be-

cause

(
5
5

)
= c

(
1
1

)
for c = 5. A constant multiple of an eigenvector is also

an eigenvector, therefore an eigenvector for eigenvalue λ is never unique.
Eigenvectors can be unique up to a constant multiple. If an eigenvalue has
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algebraic multiplicity greater than 1, then uniqueness up to a constant mul-
tiple fails.

An example: let D = diag(1, 2), P =

(
1 0
1 1

)
, A = PDP−1. Then A has two

distinct eigenvalues 1, 2 and two independent eigenvectors. One eigenpair is(
2,

(
1
1

))
and another is is

(
2, 5

(
1
1

))
.

42. Explain: For a given eigenvalue λ, there are infinitely many eigenvectors.

43. Explain: Each solution x⃗ of Ax⃗ = λx⃗ is a linear combination of Strang’s
special solutions for B = A− λI.

Solution:
Solution 1. Apply Theorem 5.22 page 370 �.

Solution 2. Equation Ax⃗ = λx⃗ has the same solutions as equation
(A− λI) x⃗ , or Bx⃗ = 0⃗ . Then x⃗ is a linear combination of Strang’s special
solutions by elimination methods for solving homogeneous linear algebraic
equations of the form Bx⃗ = 0⃗ .

44. Let P be an invertible 3×3 matrix. Construct a matrix A which has eigen-
vectors equal to the columns of P and corresponding eigenvalues −1, 0, 0.

Eigenspaces
Let B(λ) denote some basis of eigenvectors for the eigenpair equation Av⃗ = λv⃗ .
The eigenspace for λ is the subspace span(B(λ)).

45. Explain: The eigenspace of λ does not depend on the choice of basis.

Solution: An eigenspace E is a subspace of vector space Rn. It is a
vector space itself using the toolkit of Rn. Then E = span{v⃗ 1, . . . , v⃗ k} for
every basis v⃗ 1, . . . , v⃗ k of E. The vectors in any basis of E satisfy equation
Ax⃗ = λx⃗ .

46. Every nonzero vector in eigenspace span(B(λ)) is an eigenvector of A for
eigenvalue λ. Provide details of proof.

47. Justify that span(B(λ)) is a vector subspace ofRn, one possible basis being
Strang’s special solutions for matrix B = A− λI.

Solution: Apply to matrix B the Kernel Theorem 5.2 page 300 �.

48. Find a 4× 4 matrix A with only one eigenvalue λ = 1 such that eigenspace
B(λ) (defined above) has dimension two.
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Independence of Unions of Eigenvectors
Denote by B(λ) some basis for the eigenpair equation Av⃗ = λv⃗ .

49. Define U1 to be the union of lists B(λ1), B(λ2) and define U2 to be the union
of lists B(λ3), B(λ4), where λ1, λ2, λ3, λ4 is a list of distinct eigenvalues of
A. Prove that subspaces V1 = span(U1) and V2 = span(U2) intersect in
only the zero vector.

Solution:
Let x⃗ ∈ V1 ∩ V2. We will prove x⃗ = 0⃗ .

Vector x⃗ is a linear combination
∑k

i=1 civ⃗ i of basis vectors v⃗ i from U1.

Also vector x⃗ is a linear combination
∑ℓ

j=1 djw⃗ j of basis vectors w⃗ j from
U2. The proof will be completed by showing that all weights are zero:
ci = dj = 0.

Theorem 9.5 page 673 � about unions of eigenvectors tell us that the list
v⃗ 1, . . . , v⃗ k, w⃗ 1, . . . , w⃗ ℓ is independent. Then independence and the equa-
tion

x⃗ − x⃗ =
∑k

i=1 civ⃗ i −
∑ℓ

j=1 djw⃗ j = 0⃗

results in all weights zero: ci = dj = 0. Conclusion: zero is the only vector
in the intersection of V1 and V2. ■

50. Complete the details of the induction proof of Theorem 9.5, using the text-
book details for k = 3.

51. Let U∗ be a subset of the list U of independent vectors in Theorem 9.5.
Explain why U∗ is an independent set.

Solution: Subsets of independent sets are independent: Theorem 5.24 page
378 �.

52. Let Bi be a subset of the list of independent vectors in B(λi), i = 1, . . . , p.
Explain why the union U∗ of B1, . . . , Bp is an independent set.

Diagonalization Theory

53. Let A =

(
2 0 0
0 5 0
0 0 8

)
.

(a) Find Strang’s special solutions for each eigenvalue.
(b) Compare to Theorem 9.7 on diagonal matrices.

Solution: (a) The eigenvalues are the diagonal elements. The eigenpairs
are (2, v⃗ 1), (2, v⃗ 2), (2, v⃗ 3) where v⃗ 1, v⃗ 3, v⃗ 3 are the columns of the 3 × 3
identity matrix, in order left to right. The method: subtract λ = 2 from the
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diagonal of A then row-reduce to rref(A− 2I) =

(
0 1 0
0 0 1
0 0 0

)
. Then x1 = t1 =

free variable, x2 = x3 = 0. The eigenvector is ∂t1 x⃗ = column 1 of I. Similar
for the other two eigenvectors.

(b) Same result as the theorem.

54. Let v⃗ !, v⃗ 2, v⃗ 3 be independent vectors in R3. Explain why (0, v⃗ 1), (0, v⃗ 2),
(0, v⃗ 3) is a complete set of eigenpairs for the 3 × 3 zero matrix. Does this
contradict Theorem 9.7?

55. Write a proof of Theorem 9.7 for n = 3.

Solution: The eigenvalues are the diagonal elements of A, which are symbols
a, b, c. Details: expand |A− λI| = (λ− a)(λ− b)(λ− c) and solve for λ.

(1) Subtract λ = a from the diagonal of A and reduce to row echelon form(
0 1 0
0 0 1
0 0 0

)
. Convert the matrix problem (A− λI)x⃗ = 0⃗ to scalar form 0 = 0,

x2 = 0, x3 = 0. Then x1 = t1 = free variable, x2 = x3 = 0. The eigenvector
is ∂t1 x⃗ = column 1 of I.
(2) Repeat (1) for λ = b, result v⃗ 2 = column 2 of I.
(2) Repeat (1) for λ = c, result v⃗ 2 = column 3 of I.

56. State Theorem 9.7 for n× n diagonal matrices and outline a proof.

Non-diagonalizable Matrices
Verify that the matrix is not diagonalizable by using the equation AP = PD.

57. A =

(
5 2
0 5

)
Solution: Eigenvalues are on the diagonal of A. Then D = diag(5, 5). Use
AP = PD to reach a contradiction. Compute PD = 5P . Then AP = 5P .
Multiply right by P−1, assumed to exist. Then APP−1 = 5PP−1 simplifies

to

(
5 2
0 5

)
=

(
5 0
0 5

)
, which is false. Contradiction reached. ■

58. A =

(
5 2 1
0 5 1
0 0 5

)

Distinct Eigenvalues
Find the eigenvalues.

532



9.1 Matrix Eigenanalysis

59. A =

(
2 6
5 3

)
Ans: 8,−3

Solution: Characteristic equation: |A−λI| = λ2− 5λ− 24 with roots 8,−3.

60. A =

(
1 2
2 4

)
Ans: 0, 5

61. A =

(
2 6 2
9 3 9
1 3 1

)
Ans: 0, 12,−6

Solution: |A−λI| = λ3−6λ2−72λ with roots 0, 12,−6 found by factoring.

62. A =

(
0 2 0
0 1 0
3 0 3

)
Ans: 0, 1, 3

63. A =

(
7 12 6
2 2 2

−7 −12 −6

)
Ans: 0, 1, 2

Solution: |A− λI| = λ3 − 3λ2 + 2λ with roots 0, 1, 2 found by factoring.

64. A =

(
2 2 −6

−3 −4 3
−3 −4 −1

)
Ans: 0, 1, 4

Computing 2× 2 Eigenpairs

65. Verify eigenpairs:

(
1 2
4 3

)
,(

−1,

(
−1
1

))
,

(
5,

(
1
2
1

))
Solution: The plan: check the answer, do not compute eigenvalues or eigen-
vectors.

Let A =

(
1 2
4 3

)
, v⃗ 1 =

(
−1
1

)
, λ1 = −1. Then:

Av⃗ 1 =

(
1 2
4 3

) (
−1
1

)
=

(
1

−1

)
λ1v⃗ 1 = (−1)

(
−1
1

)
=

(
1

−1

)
Then Av⃗ 1 = λ1v⃗ 1, verifying the first eigenpair.
The second eigenpair is done similarly.

# Exercise 65, Answer check

A:=<1,2|4,3>^+;Eigenvectors(A);

#[5, -1]), v1=[1/2, 1], v2=[-1, 1]
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66. Verify eigenpairs:

(
1 6
2 −3

)
,(

−5,

(
−1
1

))
,

(
3,

(
3

−1

))
Solution:
# Exercise 66, Answer check

A:=<1,6|2,-3>^+;Eigenvectors(A);

# [3, -5], v1=[1/2, 1], v2=[-1, 1]

67. Verify eigenpairs:

(
1 6
4 3

)
,(

7,

(
1
1

))
,

(
−3,

(
−3
2

))
Solution:
# Exercise 67, Answer check

A:=<1,2|4,3>^+;Eigenvectors(A);

# [7, -3], v1=[1, 1], v2=[-3/2, 1]

68. Verify eigenpairs:

(
7 4

−1 3

)
,(

5,

(
1
2

))
, only one eigenpair

Solution:
# Exercise 68, Answer check

A:=<7,4|-1,3>^+;Eigenvectors(A);

# [5, 5], v1=[1/2, 1], v2=[0, 0] invalid

Computing 2× 2 Complex Eigenpairs

69. Verify eigenpairs:

(
−2 −6
3 4

)
,(

1 + 3i,

(
−1 + i

1

))
,

(
1− 3i,

(
−1− i

1

))
Solution: The first eigenpair is checked like in Exercise 65.

Let A =

(
−2 −6
3 4

)
, v⃗ 1 =

(
−1 + i

1

)
, λ1 = 1 + 3i. Then:

Av⃗ 1 =

(
−2 −6
3 4

) (
−1 + i

1

)
=

(
2− 2i− 6

−3 + 3i+ 4

)
=

(
−4− 2i
1 + 3i

)
λ1v⃗ 1 = (1 + 3i)

(
−1 + i

1

)
=

(
−4− 2i
1 + 3i

)
Then Av⃗ 1 = λ1v⃗ 1, verifying the first eigenpair.
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The second eigenpair is checked by replacing i by −i throughout the first
eigenpair.

# Exercise 69, Answer check

A:=<-2,-6|3,4>^+;Eigenvectors(A);

# [1+3*I, 1-3*I], v1=[-1+I, 1], v2=[-1-I, 1]

lambda:=1+3*I;v:=<-1+I,1>;A.v - lambda*v;# zero expected

70. Verify eigenpairs:

(
2 3

−3 2

)
,(

2 + 3i,

(
−i
1

))
,

(
2− 3i,

(
i
1

))
Solution:
# Exercise 70, Answer check

A:=<2,-3|3,2>^+;Eigenvectors(A);

# [2+3*I, 2-3*I]

# v1=[I, 1], v2=[-I, 1]

lambda:=2+3*I;v:=<I, 1>;

simplify(A.v - lambda*v);# zero expected

71. Let a, b be real with b ̸= 0. Assume n × n real matrix A has eigenpair
(a+ ib, v⃗ ). Replace i by −i throughout expression v⃗ to obtain vector w⃗ .
Prove that (a− ib, w⃗ ) is an eigenpair.

Solution:
Proof:
To be verified is equation Aw⃗ = λw⃗ where λ = a− ib. Notation: an over-
line on a symbol denotes complex conjugation, which is replacing i by −i.

Aw⃗ = Av⃗

= Av⃗ because A is a real matrix

= Av⃗ by college algebra rule z1z2 = z1z2

= λv⃗ by Av⃗ = λv⃗

= (a− ib)w⃗ ■

72. Explain: Eigenpairs of a 2× 2 real matrix A with complex eigenvalues are
computed with just one row-reduction sequence.

Computing 3× 3 Eigenpairs

73. Show algorithm steps to compute eigenpairs of A =

(
2 1 0
1 0 0
0 0 3

)
.

Answers:

(
1,

(
−1
1
0

))
,

(
3,

(
0
0
1

))
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Solution: There are only two eigenpairs, not three. The eigenvalues λ =
1, 1, 3 are found from the characteristic equation |A− λI| = 0, which is the
cubic equation λ3 − 5λ2 + 7λ− 3 = (3− λ)(λ2 − 2λ+ 1) = 0.

Cofactor expansion of the determinant produces a pre-factored equa-
tion. Make this your default method of attack on paper. Computer
algebra systems like maple will display the expanded polynomial and
then extra steps are required to factor it or to find the roots.

Steps for λ = 1:

Create matrix B = A − λI = A − (1)I =

(
1 1 0
1 −1 0
0 0 2

)
. Row-reduce B to

rref(B) and find Strang’s Special Solutions:

B =

(
1 1 0

−1 −1 0
0 0 2

)

B1 =

(
1 1 0

−1 −1 0
0 0 1

)
mult(3,1/2)

B2 =

(
1 1 0
0 0 0
0 0 1

)
combo(1,2,1)

B3 =

(
1 1 0
0 0 1
0 0 0

)
swap(2,3)

Then B3 = rref(B) and the scalar equations for Bx⃗ = 0⃗ are x1 + x2 = 0,
x3 = 0. The lead variables are x1, x3 and x2 = free variable. Let x2 = t1 =
invented symbol. Due to only one free variable, there will be only one
eigenvector. The scalar solution is x1 = −t1, x2 = t1, x3 = 0 and Strang’s
solution is

v⃗ 1 = ∂t1 x⃗ =

−1
1
0


There is no eigenvector v⃗ 2.

Steps for λ = 3:
The eigenvector for λ = 3 is found similarly by creating matrix B = A−λI =

A − (3)I =

(
−1 1 0
1 −3 0
0 0 0

)
. Row-reduce B to rref(B) =

(
1 0 0
0 1 0
0 0 0

)
. The scalar

equations for Bx⃗ = 0⃗ are x1 = 0, x2 = 0. The lead variables are x1, x2 and
x3 = free variable. Let x3 = t1 = invented symbol. Due to only one free
variable, there will be only one eigenvector. The scalar solution is x1 = 0,
x2 = 0, x3 = t1 and Strang’s solution is
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v⃗ 3 = ∂t1 x⃗ =

0
0
1


# Exercise 73, Compute 3x3 eigenpairs

A:=<2,1,0|-1,0,0|0,0,3>^+;p:=Eigenvectors(A);

# lambda= [1, 1, 3]

# v1=[-1, 1, 0], v2=[0, 0, 0], v3=[0, 0, 1]

CharacteristicPolynomial(A,’lambda’);

# lambda^3-5*lambda^2+7*lambda-3

Z:=<0,0,0>;# Solve (A-I)x=Z, (A-3I)x=Z

ReducedRowEchelonForm(A-1);LinearSolve(A-1,Z);

ReducedRowEchelonForm(A-3);LinearSolve(A-3,Z);

74. Show algorithm steps to compute eigenpairs of A =

(
1 −2 0
0 −1 0
4 −4 −1

)
.

Answers:(
1,

(
1
0
2

))
,

(
−1,

(
1
1
0

))
,(

−1,

(
0
0
1

))

75. Suppose A is row-reduced to a triangular form B. Are the eigenvalues of
B also the eigenvalues of A? Give a proof or a counter-example.

Solution: Counterexample: Choose an invertible matrix A with at least two
complex eigenvalues.Then rref(A) = I, which has all eigenvalues equal to
one. ■
# Exercise 75, Counterexample

A:=<1 , 2 , 4|-2 , 1 , 0|0 , 0 , -1>^+;

with(LinearAlgebra):

Eigenvalues(A);

# lambda = -1. 1 + 2i, 1-2i

B:=ReducedRowEchelonForm(A);

Eigenvalues(B);

# lambda = 1,1,1

76. Suppose A − λI is row-reduced to a triangular form B. Explain: The
eigenvalues of A are usually unrelated to the roots λ of |B| = 0.

Decomposition A = PDP−1

Compute the eigenpairs. If diagonalizable, then display D, P and Fourier’s
replacement equation.
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77. A =

 7 4 0
−1 3 0
0 0 3


Ans: only 2 eigenpairs

Solution: The expected solution is by hand. It terminated when λ = 5
produced rank(A− 5I) = 2, meaning only one free variable.

# Exercise 77, A=P.D.(1/P) failed

A:=<7,4,0|-1,3,0|0,0,3>^+; Eigenvectors(A);

# lambda = 5,5,3

# v1=[-2,1,0], v2=[0,0,0] (not an eigenvector), v3=[0,0,1]

Rank(A-5);

# rank = number lead vars = 2, nullity = number free vars = 1

.

78. A =

 1 6 0
2 −3 0
0 0 3


Ans:

(
3 0 0
0 3 0
0 0 −5

)
,

(
3 0 −1
1 0 1
0 1 0

)
Fourier equation: AP c⃗ = PDc⃗ .

Diagonalization
Report diagonalizable or not and explain why.

79. A =


1 2 0 0
2 1 0 0
0 0 3 1
0 0 0 −3


Ans: diagonalizable

Solution: Cofactor expansion of |A − λI| along the last row produces the
factored form ((1 − λ)2 − 4)(3 − λ)(−3 − λ). Then λ = −1,−3, 3, 3. To
decide diagonalizability we only need to find the nullity of A − 3I, by row
reduction.

A− 3I =


−2 2 0 0
2 −2 0 0
0 0 0 1
0 0 0 −6



7→


1 −1 0 0
0 0 0 1
0 0 0 0
0 0 0 0

 the RREF after several row operations.

Then rank(A − 3I) = 2, nullity(A − 3I) = 4 − rank(A − 3I) = 2 and
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matrix A is diagonalizable.

# Exercise 79, Diagonalization

A:=<1,2,0,0|2,1,0,0|0,0,3,1|0,0,0,-3>^+;

Eigenvectors(A);

RowDimension(A)-Rank(A-3);

80. A =


1 2 0 0
2 1 0 0
0 0 3 1
0 0 0 3


Ans: not diagonalizable

Non-diagonalizable Matrices

81. Verify A =

(
1 2

−8 9

)
is not diagonalizable.

Solution: The eigenvalues: λ = 5, 5. To decide compute the nullity of A−5I
by row operations.

A− 5I =

(
−4 2
−8 5

)
subtract 5 along the diagonal of A

rref(A− 5I) =

(
1 −1/2
0 0

)
after some row operations

Then rank(A−6I) = 1, nullity(A−5I) = 1. There is only one eigenvector
for λ = 5, because there is only one free variable. Conclusion: A is not
diagonalizable.

82. Verify A =

(
1 2 0

−8 9 1
0 0 5

)
is not diagonalizable.

83. Invent a 3× 3 matrix which has exactly one eigenpair.

Solution: Let A =

(
0 1 0
0 0 1
0 0 0

)
. The eigenvalues are λ = 0, 0, 0. Then rank(A−

0I) = 2 and nullity(A−0I) = 1. There is only one free variable hence only
one eigenvector.

84. Invent a 4× 4 matrix which has exactly two eigenpairs.

Fourier’s Heat Model
Define
v⃗ 1=sinπx, v⃗ 2=sin 2πx, v⃗ 3=sin 3πx
considered as vectors in the vector space V of twice continuously differentiable
functions on 0 ≤ x ≤ 1.
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85. Verify that v⃗ 1, v⃗ 2, v⃗ 3 are independent vectors in V .

Solution: Apply Theorem 6.11 page 453 �: a finite list of distinct Euler
atoms is independent.

86. Verify that v⃗ 1, v⃗ 2, v⃗ 3 vanish at x = 0 and x = 1.

87. Define u(x) = sinπx (from v⃗ 1). Explain: Function u satisfies differential

equation
d2u

dx2
+ π2u = 0.

Solution: The general solution of the harmonic oscillator x′′ + ω2x = 0 is
x = c1 cosωt+ c2 sinωt. Choose ω = π.

88. Write vector expression
c1e

−π2tv⃗ 1 + c2e
−4π2tv⃗ 2

+c3e
−9π2tv⃗ 3

as a scalar function u(t, x). Find initial heat distribution u(0, x). Explain
how Fourier replacement (re-scaling) constructs future state u(t, x) from
initial state u(0, x).
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Discrete Dynamical Systems
Define matrix A via equation

y⃗ =
1

10

 5 1 0
3 4 3
2 5 7

 x⃗(1)

1. Find eigenpair packages of A.
Answers:

D=

 0.5 0 0
0 0.1 0
0 0 1


P=

 −1 1 1
0 −4 5
1 3 9


Solution:
# Exercise 1, Discrete Dynamical Systems

with(LinearAlgebra):

A:=(1/10)*Matrix([[5,1,0],[3,4,3],[2,5,7]]);

B:=A-lambda*IdentityMatrix(3);

DD,P:=Eigenvectors(A);

# lambda = [1/2, 1, 1/10]

# v1=[-1, 0, 1], v2=[1/9, 5/9, 1], v3=[1/3, -4/3, 1]

factor(Determinant(B));

# -(1/20*(lambda-1))*(2*lambda-1)*(10*lambda-1)

2. Explain: A is a transition matrix.1

3. Assume y⃗ = Ax⃗ has period one year. Find the system state after two years.

Solution: Ax⃗ is the state after one year, A2x⃗ is after two years. Compute
in maple:

A2 =


7
25

9
100

3
100

33
100

17
50

33
100

39
100

57
100

16
25


1Perron-Frobenius theory extensions in the literature apply to transition matrices.

See the Weierstrass Proof exercises.

541



9.2 Eigenanalysis Applications

# Exercise 3, Discrete Dynamical Systems

with(LinearAlgebra):

A:=(1/10)*Matrix([[5,1,0],[3,4,3],[2,5,7]]);

X:=<x1,x2,x3>;

B:=A^2;

y:=B . X;

4. Explain: Anx⃗ is the system state after n periods.

Market Shares
Define matrix A via equation

y⃗ =
1

10

(
5 4 0
3 5 3
2 1 7

)
x⃗(2)

5. Find with software the eigenpairs of A given by equation 2.

Solution: The maple eigenvectors v1, v2, v have fractions. Multiply to clear
fractions. Then:

v⃗ 1 = 13 ∗ v1 =

12
15
13

 , v⃗ 2 = v2 =

−4
3
1

 , v⃗ 3 = v3 =

−1
0
1


# Exercise 5, Market shares

A:=(1/10)*Matrix([[5,4,0],[3,5,3],[2,1,7]]);

Eigenvectors(A);

# lambda = [1, 1/5, 1/2]

# v1=[12/13, 15/13, 1], v2=[-4, 3, 1], v3=[-1, 0, 1]

6. Compute A2, A3, A4 using software. Predict the limit of An as n approaches
infinity.

7. Compute with software (rounded)

A10=

(
.30 .30 .30
.37 .38 .37
.32 .32 .33

)
(3)

Solution:

A10 =


0.3001953637 0.3005207480 0.2992188012

0.3749999616 0.3750000640 0.3749999616

0.3248046747 0.3244791880 0.3257812372


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# Exercise 7, Market shares

A:=(1/10)*Matrix([[5,4,0],[3,5,3],[2,1,7]]);

B:=A^10;

evalf(B);# rounded to default number of digits

8. Let x⃗= 1
3

(
1
1
1

)
. Compute

A10x⃗ =

(
0.30
0.37
0.33

)
(rounded)

in two ways by calculator:
(1) Fourier replacement (3).
(2) Matrix multiply using (17).

Stochastic Matrices
Reference: Perron-Frobenius proof on page 715 �.

9. Establish the identity |A− λI| = |AT − λI|.
Solution: Determinant theory provides |B| = |BT | for any square matrix B
and (C +D)T = CT +DT for any two square matrices C,D.

Let B = A− λI. Then BT = (A− λI)T = AT − (λI)T = AT − λI. Apply
the identity |B| = |BT |. ■

10. Explain why A and AT have the same eigenvalues but not necessarily the
same eigenvectors.

11. Verify maxr(A) = ⟨w⃗ |w⃗ | · · · |w⃗ ⟩, where w⃗ has components wi =
max{aij , 1 ≤ j ≤ n}.
Solution: Let B = maxr(A), which is the n×n matrix formed by replacing
aij by the largest element in row i, for i = 1, . . . , n and j = 1, . . . , n.

We are given vector w⃗ with components equal to the largest element in each
row:

w⃗ =

 max{a1j , 1 ≤ j ≤ n}
...

max{anj , 1 ≤ j ≤ n}


By definition, bij = max{aij , 1 ≤ j ≤ n} = wi. Therefore, each column of
B is a copy of vector w⃗ . ■

12. Verify maxr(A) = DO, where D is the diagonal matrix of row maxima
and O is the matrix of all ones.
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Perron-Frobenius Theorem
Let A > 0 be n × n stochastic with unique eigenpair (1, w⃗ ), all wi > 0 and∑n

i=1 wi = 1. Assume v⃗ ≥ 0⃗ ,
∑n

i=1 vi = 1 and δ = mini,j aij .

13. Apply inequality minr(A
n)v⃗ ≤ Anv⃗ ≤ maxr(A

n)v⃗ to prove limn→∞ Anv⃗ =(∑n
i=1 vi

)
w⃗ = w⃗ .

Solution:
Proof from Perron-Frobenius:
Part (a) of Perron-Frobenius Theorem 9.13 page 705 � concludes

limn→∞ An = ⟨w⃗ | · · · |w⃗⟩. Uniqueness was used to draw the conclusion.
The definition of matrix multiply gives

lim
n→∞

Anv⃗ = ⟨w⃗ | · · · |w⃗⟩v⃗ =

n∑
i−1

viw⃗ = w⃗

Proof using the inequality:
Apply proof details in Lemma 5a in the Perron-Frobenius proof: minr(A

n)
and maxr(A

n) converge by the calculus squeeze theorem to some matrix P .

Limit as n → ∞ across the inequality minr(A
n)v⃗ ≤ Anv⃗ ≤ maxr(A

n)v⃗ to
obtain inequality P v⃗ ≤ limn→∞ Anv⃗ ≤ P v⃗ , which implies limn→∞ Anv⃗ =
P v⃗ .

Matrix P has identical elements in each row which means P = ⟨y⃗ | · · · |y⃗⟩
for some vector y⃗ . Argue as in the proof of Lemma 5a that y⃗ = Ay⃗ and
y⃗ > 0. So (1, y⃗ ) is an eigenpair of A. In summary:

lim
n→∞

Anv⃗ = P v⃗ = (

n∑
i=1

vi)y⃗ = y⃗

It remains to prove y⃗ = w⃗ by uniqueness. First, y⃗ > 0⃗ was argued above.
Second, relation

∑n
i=1 vi = 1 implies

∑n
i=1 yi = 1 by Stochastic Matrix

Properties Theorem 9.12 page 705 � and limiting. Because (1, y⃗ ) is an
eigenpair of A with properties y⃗ > 0 and

∑n
i=1 yi = 1 then y⃗ = w⃗ by

uniqueness. ■

Brief Proof:
Because 0 ≤ Ak+1v⃗ − Ak+1+pv⃗ ≤ maxr(A

k+1)v⃗ − minr(A
k+1+p)v⃗ ≤

maxr(A
k+1)v⃗ −minr(A

k+1)v⃗ ≤ (1 − δ)kOv⃗ , then in the limit as p → ∞
Ak+1v⃗ − (

∑n
i=1 vi)w⃗ ≤ (1 − δ)kOv⃗ . Because

∑n
i=1 vi = 1, simplification

shows that each vector entry on the left is no greater than (1 − δ)k, which
implies the result. ■

14. Verify Euclidean norm inequality
∥Ak+1v⃗ − w⃗∥ ≤

√
n (1− δ)k
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Weierstrass Proof
These exercises establish existence of an eigenpair (1, v⃗ ) for stochastic matrix
A having only nonnegative entries.

Weierstrass Compactness Theorem

A sequence of vectors {v⃗ i}∞i=1 contained in a closed, bounded set K in Rn has a subse-

quence converging in the vector norm of Rn to some vector v⃗ in K.

Define set K to be all vectors v⃗ with nonnegative components adding to 1.
Let v⃗ 0 be any element of K. Assume stochastic A with aij ≥ 0 and define

v⃗N = 1
N

∑N−1
j=0 Ajv⃗ 0.

15. Verify K is closed and bounded in Rn. Then prove λx⃗ + (1− λ)y⃗ is in K
for 0 ≤ λ ≤ 1 and x⃗ , y⃗ in K.

Solution:
Closed and Bounded.
Let u⃗ be the vector of all ones. The first requirement can be written as
u⃗ · v⃗ = 1. A convergent sequence whose terms v⃗ have nonnegative entries
and satisfy u⃗ · v⃗ = 1 gives two relations for the sequence limit v⃗ ∗:

u⃗ · v⃗ ∗ = 1 and v∗i ≥ 0

So K is closed.

Set K is norm-bounded because ∥v⃗∥2 =
∑n

i−1 v
2
i ≤

∑n
i−1 vi = 1, due to

inequality 0 ≤ vi ≤ 1.

Convexity.
Let 0 ≤ λ ≤ 1. Let x⃗ , y⃗ be in K. Let z⃗ = λx⃗ + (1− λ)y⃗ . To be proved:

(1) z⃗ ≥ 0⃗
(2)

∑n
i=1 zi = 1

Item (1): Because x⃗ ≥ 0⃗ and y⃗ ≥ 0⃗ then

z⃗ = λx⃗ + (1− λ)y⃗ ≥ λ0⃗ + (1− λ)0⃗ = 0⃗

Item (2):∑n
i=1 zi =

∑n
i=1 (λxi + (1− λ)yi)

= λ
∑n

i=1 xi + (1− λ)
∑n

i=1 yi

= λ(1) + (1− λ)(1) = 1
Convexity verified. ■

16. Prove identity
v⃗N+1 = λv⃗N + (1− λ)AN v⃗ 0

where λ = N
N+1 and then prove by induction that v⃗N is in K.
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17. Verify all hypotheses in the Weierstrass theorem applied to {v⃗N}∞N=0. Ap-
plying the theorem produces a subsequence {v⃗Np

}∞p=1 limiting to some v⃗
in K.

Solution: To prove: set K is closed and bounded and all sequence elements
are in K.

Closed and Bounded.
Exercise 15 establishes K as closed and bounded.

Sequence element v⃗N is in K.

Vector v⃗ 0 is given to belong to K. Matrix A is stochastic with nonnegative
elements. Stochastic Matrix Properties Theorem 9.12 page 705 � shows
that Av⃗ 0 is in K. Several applications imply Aiv⃗ 0 is in K for i ≥ 0.
Exercise 15 shows directly that v⃗ 2 = 1

2 (v⃗ 0 +Av⃗ 0) is in K. Induction on
the convexity result of Exercise 15 provides: if y⃗ i is in K and λi ≥ 0 with∑k

i−1 λi = 1 then
∑k

i=1 λiy⃗ i is inK. This is called generalized convexity.
Apply generalized convexity with λi = (i + 1)/N , 0 ≤ i ≤ N − 1. Then∑N−1

i=0 λi = 1 and v⃗N = 1
N

∑N−1
i=0 Aiv⃗ 0 =

∑N−1
i=0 λiA

iv⃗ 0. Because Aiv⃗ 0 is
in K then v⃗N is in K. ■

18. Verify identity
v⃗N −Av⃗N = 1

N (v⃗ 0 −AN v⃗ 0).

19. Explain why Av⃗ = limp→∞ Av⃗Np . Then prove v⃗ = Av⃗ .

Solution:
Proof:
The limit is Av⃗ because function x⃗ → Ax⃗ is continuous from Rn to Rn.
Applied is the advanced calculus theorem which says that all subsequences
of a convergent sequence are also convergent. Also used: continuity is equiv-
alent to sequential continuity.

Because v⃗ 0 and AN v⃗ 0 are in bounded set K, then their Euclidean norms
are bounded by some number M > 0. Compute:

v⃗N −Av⃗N = 1
N

(∑N−1
i=0 Aiv⃗ 0 −

∑N−1
i=0 Ai+1v⃗ 0

)
= 1

N

(
v⃗ 0 −AN v⃗ 0

)
The triangle inequality gives ∥v⃗N−Av⃗N∥ ≤ 1

N

(
∥v0∥+ ∥AN v⃗ 0∥

)
≤ 2M/N .

Replace N by subsequence values Np, p = 1, . . . ,∞ and limit p → ∞ to con-
clude v⃗ = limp→∞ v⃗Np = Av⃗ . ■

20. The claimed eigenpair (1, v⃗ ) has been found, provided v⃗ ̸= 0⃗ . Explain
why v⃗ ̸= 0⃗ .
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Coupled Systems
Find the coefficient matrix A. Identify as coupled or uncoupled and explain
why.

21. x′ = 2x+ 3y, y′ = x+ y

Solution: Coupled. The matrix

(
2 3
1 1

)
is not diagonal.

22. x′ = 3y, y′ = x

23. x′ = 3x, y′ = 2y

Solution: Uncoupled. The matrix of coefficients is diagonal.

24. x′ = 3x, y′ = 2y, z′ = z

Solving Uncoupled Systems
Solve for the general solution.

25. x′ = 3x, y′ = 2y

Solution: No linear algebra required. Both equations are growth-decay equa-
tions u′ = au with solution u = u0e

at. Then: x = x0e
3t, y = y0e

2t.

26. x′ = 3x, y′ = 2y, z′ = z

Change of Coordinates
Given the change of coordinates y⃗ = Ax⃗ , find the matrix B for the inverse
change x⃗ = By⃗ .

27. y⃗ =

(
1 0 0
1 0 1
0 1 0

)
x⃗

Solution: The matrix is B = A−1 =


1 0 0

0 0 1

−1 1 0

.

# Exercise 27, Change of coordinates

A:=Matrix([[1,0,0],[1,0,1],[0,1,0]]);

B:=1/A;

# [[1, 0, 0], [0, 0, 1], [-1, 1, 0]]

28. y⃗ =

(
−1 1 0
1 1 0
0 0 1

)
x⃗
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Constructing Coupled Systems
Given the uncoupled system and change of coordinates y⃗ = P x⃗ , find the cou-
pled system.

29. x′
1 = 2x1, x

′
2 = 3x2, P =

(
1 1
2 −1

)
Solution: Let D =

(
2 0
0 3

)
= matrix of coefficients for the uncoupled system.

The coupled system is u⃗ ′ = Au⃗ where u⃗ =

(
x
y

)
and AP = PD. Then

A = PDP−1 =

(
8
3 − 1

3

− 2
3

7
3

)
and the coupled system is


x′ =

8

3
x − 1

3
y

y′ = −2

3
x +

7

3
y

# Exercise 29, Constructing Coupled Systems

P:=<1,-1|2,1>^+;

DD:=<2,0|0,3>^+;

A:=P.DD.(1/P);

<D(x),D(y)> = A . <x,y>;

30. x′
1 = x1, x

′
2 = −x2, P =

(
1 −1
2 1

)
Uncoupling a System
Change the given coupled system into an uncoupled system using the eigen-
analysis change of variables y⃗ = P x⃗ .

31. x′
1 = 2x1, x

′
2 = x1 + x2, x

′
3 = x3

Ans: P =

(
1 0 0
1 0 1
0 1 0

)
, y′1 = 2y1, y

′
2 = y2, y

′
3 = y3

Solution: The eigenvectors of coefficient matrix A are the columns of P ,
reported above. The corresponding eigenvalues are 2, 1, 1.
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# Exercise 31, Uncoupling a System

A:=<2,0,0|1,1,0|0,0,1>^+;;

Evalues,P:=Eigenvectors(A);

# Evalues = [2, 1, 1]

# P = [[1, 0, 0], [1, 0, 1], [0, 1, 0]]

DD:=(1/P).A.P;# Solve AP=PD for D

# DD = [[2, 0, 0], [0, 1, 0], [0, 0, 1]]

<D(y1),D(y2),D(y3)> = DD . <y1,y2,y3>;

# y_’=2y1, y2’=y2, y3’=y3

32. x′
1 = x1 + x2, x

′
2 = x1 + x2, x

′
3 = x3

Ans: P =

(
−1 1 0
1 1 0
0 0 1

)
, y′1 = 0, y′2 = 2y2, y

′
3 = y3

Solving Coupled Systems
Report the answers for x(t), y(t).

33. x′ = −x− 2y, y′ = −4x+ y

Solution: Eigenanalysis of A =

(
−1 −2

−4 1

)
is required. Use AP = PD.

Matrix P =

(
1 −1/2

1 1

)
. Matrix D = diag(−3, 3).

Then X⃗ = P Y⃗ , Y1 = ae−3t, Y2 = be3t, x = X1 = ae−3t − 1
2b e

3t, y = X2 =
a e−3t + b e3t.
# Exercise 33, Solving Coupled Systems

A:=<-1,-2|-4,1>^+;

Lambda,P:=Eigenvectors(A);

DD:=DiagonalMatrix(Lambda);

# DD = [[-3, 0], [0, 3]]

# P = [[1, -1/2], [1, 1]]

# Warning: eigenpair order can change!

Y:=<a*exp(Lambda[1]*t),b*exp(Lambda[2]*t)>;

X:=P.Y;

# ans check

de:=diff(x(t),t)=A[1].vars,diff(y(t),t)= A[2].vars;

dsolve([de],[x(t),y(t)]);

q:=subs(x(t)=X[1],y(t)=X[2],[de]);

simplify(q);

34. x′ = 8x− y, y′ = −2x+ 7y
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Eigenanalysis and Footballs
The exercises study the ellipsoid
17x2 + 8y2 − 12xy + 80z2 = 80.

35. Let A =

(
17 −6 0
−6 8 0
0 0 80

)
. Expand equation W⃗TAW⃗ = 80, where W⃗ has

components x, y, z.

Solution: Answer: 17x2 − 12xy + 8y2 + 80z2 = 80

Exercise 35, Eigenanalysis and Footballs

A:=Matrix([[17,-6,0],[-6,8,0],[0,0,80]]);

W:=<x,y,z>;

expand(W^+ . A . W=80);

# 7*x^2-12*x*y+8*y^2+80*z^2 = 80

36. Find the eigenpairs of

A =

(
17 −6 0
−6 8 0
0 0 80

)
.

37. Verify the semi-axis lengths 4, 2, 1.

Solution: The standard ellipsoid equation is
X2

a2
+

Y 2

b2
+

Z2

c2
= 1. Numbers

a, b, c are the semiaxis lengths in coordinate system X,Y, Z.

Use relations λ1 =
80

a2
, λ2 =

80

b2
, λ3 =

80

c2
. The order a, b, c depends on the

eigenpairs used to create the new X,Y, Z coordinate system.

The computations are possible by hand, but labor intensive. Computer
algebra system maple will be used.

# Exercise 37, Eigenanalysis and Footballs

# Equation 7*x^2-12*x*y+8*y^2+80*z^2 = 80

# Standard form (X^2/16+Y^2/4+Z^2 = 1

A:=Matrix([[17,-6,0],[-6,8,0],[0,0,80]]);

Lambda,P:=Eigenvectors(A);

# Lambda=[[5, 20, 80]] or some other order

# P = [[1/2, -2, 0], [1, 1, 0], [0, 0, 1]]

# warning: eigenpairs can be in any order!

semiAxisLength:=proc(eqnRHS,LAMBDA) sqrt(eqnRHS/LAMBDA);end proc;

a:=semiAxisLength(80,Lambda[1]);

b:=semiAxisLength(80,Lambda[2]);

c:=semiAxisLength(80,Lambda[3]);

# Semiaxis lengths a,b,c = 4,2,1 for eigenvalue order 5,20,80

DD:=DiagonalMatrix(Lambda);

W:=<’X’,’Y’,’Z’>;

stdForm:=(W^+ . DD . W )/80 = 1;
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38. Verify that the ellipsoid has semi-axis unit directions0
0
1

 , 1√
5

1
2
0

 , 1√
5

−2
1
0


The Ellipse and Eigenanalysis
The exercises study the ellipse
2x2 + 4xy + 5y2 = 24.

39. Let A =

(
2 2
2 5

)
. Expand equation W⃗TAW⃗ = 24, where W⃗ =

(
x
y

)
.

Solution:

W⃗TAW⃗ =

(
x
y

)T (
2 2
2 5

)(
x
y

)
=

(
x
y

)T (
2x+ 2y
2x+ 5y

)
= x2x+ 2y + y(2x+ 5y)

= 2x2 + 2xy + 2xy + 5y2

= 2x2 + 4xy + 5y2

40. Find the eigenpairs of A =

(
2 2
2 5

)
.

41. Verify the semi-axis lengths 2, 2
√
6.

Solution: The eigenpairs of A are

(
6,

(
1
2

))
,

(
1,

(
−2
1

))
. Let D =

diag(5, 1). The same equation 2x2 + 4xy + 5y2 = 24 in new coordinates
X,Y is(
X
Y

)T (
6 0
0 1

)(
X
Y

)
= 24

⇝

(
X
Y

)T (
6X
Y

)
= 24

⇝ 6X2/24 + Y 2/24 = 1

Then
√
4,
√
24 are the semiaxis lengths.

42. Verify that the ellipse has semi-axis unit directions

1√
5

(
1
2

)
, 1√

5

(
−2
1

)
.
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Orthogonal Triad Computation
The exercises fill in details from page 711 �.
The ellipsoid equation: x2+4y2+xy+4z2=16 or x⃗TAx⃗=16,

A =

 1 1
2 0

1
2 4 0
0 0 4


43. Find the characteristic equation of A. Then verify the roots are 4, 5/2 +√

10/2, 5/2−
√
10/2.

Solution: Characteristic equation A− λI = (4− λ)(((1− λ)(4− λ)− 1/4)
by cofactor expansion along row 3. Expand and factor:

(4− λ)(((1− λ)(4− λ)− 1/4) = (4− λ)(4− 5λ+ λ2 − 1
4 )

= (4− λ)(4− 5λ+ λ2 − 1
4 )

= 1
4 (λ− 4)(4λ2 − 20λ+ 15)

One root is λ = 4. Quadratic formula roots are λ = 1
2 ± 1

2

√
10.

44. Show the steps from rref to second eigenvector x⃗2:

rref =

 1 3−
√
10 0

0 0 1
0 0 0

,

x⃗2 =

√
10−3
1
0


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Diagonalization
Find the eigenpair packages P and D in the relation AP = PD.

1. A =

(
−4 2
0 −1

)
Solution:

D =

(
−1 0

0 −4

)
, P =

(
2/3 1

1 0

)
# Exercise 1, Diagonalization

A:=<-4,2|0,-1>^+;Lambda,P:=Eigenvectors(A);

DD:=DiagonalMatrix(Lambda);

# Lambda = [-1, -4]

# P = [[2/3, 1], [1, 0]]

2. A =

(
7 5

10 −7

)

3. A =

(
1 2
2 4

)
Solution:

D =

(
0 0

0 5

)
, P =

(
−2 1/2

1 1

)
# Exercise 3, Diagonalization

A:=<1,2|2,4>^+;Lambda,P:=Eigenvectors(A);

DD:=DiagonalMatrix(Lambda);

# Lambda = [0, 5]

# P = [[-2, 1/2], [1, 1]]

4. A =

(
1 0
2 −1

)

5. A =

 −1 0 3
3 4 −9

−1 0 3


Solution:

D =


4 0 0

0 2 0

0 0 0

, P =


0 1 3

1 3 0

0 1 1


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# Exercise 5, Diagonalization

A:=<-1,0,3|3,4,-9|-1,0,3>^+;

Lambda,P:=Eigenvectors(A);

DD:=DiagonalMatrix(Lambda);

# Lambda = [4, 2, 0]

# P = [[0, 1, 3], [1, 3, 0], [0, 1, 1]]

6. A =

 1 1 0
1 1 0
0 0 −3



7. A =


1 1 0 1
1 1 0 1
0 0 −3 0
0 0 0 −1


Solution:

D =


0 0 0 0

0 2 0 0

0 0 −1 0

0 0 0 −3

, P =


−1 1 −1/3 0

1 1 −1/3 0

0 0 0 1

0 0 1 0


# Exercise 7, Diagonalization

A:=<1,1,0,1|1,1,0,1|0,0,-3,0|0,0,0,-1>^+;

Lambda,P:=Eigenvectors(A);

DD:=DiagonalMatrix(Lambda);

# Lambda = [0, 2, -1, -3]

# P = [[-1,1,-1/3,0],[1,1,-1/3,0],[0,0,0,1],[0,0,1,0]]

8. A =


4 0 0 1
12 −2 0 0
0 0 −3 0
21 −6 1 0


Jordan’s Theorem
Given matrices P and T , verify Jordan’s relation AP = PT .

9. A =

(
−4 2
0 −1

)
, P = I, T = A.

Solution: AP = AI = A = IA = PT

10. A =

(
0 1

−2 3

)
, P =

(
1 0
1 1

)
, T =

(
1 1
0 2

)
Cayley-Hamilton Theorem
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11. Verify that A =

(
a b
c d

)
satisfies

A2=(a+d)A−(ad− bc)

(
1 0
0 1

)
.

Solution:
LHS = A2

=

(
a b
c d

)(
a b
c d

)
=

(
a2 + bc ab+ bd
ac+ cd bc+ d2

)

RHS = (a+ d)A− (ad− bc)

(
1 0
0 1

)
= (a+ d)

(
a b
c d

)
− (ad− bc)

(
1 0
0 1

)
=

(
a2 + ad ab+ bd
ac+ cd ad+ d2

)
−
(

ad− bc 0
0 ad− bc

)
=

(
a2 + bc ab+ bd
ac+ cd bc+ d2

)
Then LHS = RHS. ■
# Exercise 11, Diagonalization

A:=<a,b|c,d>^+;

A.A;

(a+d)*A-(a*d-b*c)*IdentityMatrix(2);

p:=simplify(%);

simplify(A.A-p);

12. Verify

(
1 0
2 1

)20

=

(
1 0
40 1

)
by induction using Cayley-Hamilton.

Gram-Schmidt Process
Find the Gram–Schmidt orthonormal basis from the given independent set.

13.

1
0
0

,

0
1
0

,

−1
0
1

.

Ans: Columns of I.

Solution: Notation is important for use of the Gram-Schmidt formulas. Fol-
low notation x⃗ j , y⃗ k developed in subsection The Gram-Schmidt pro-
cess. After the y⃗ k are found then the final answer will be orthogonal unit
vectors y⃗ k/∥y⃗ k∥.
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Let

x⃗1 =

1
0
0

 , x⃗2 =

0
1
0

 , x⃗3 =

−1
0
1


The first two vectors are already of unit length and orthogonal. Therefore
Gram-Schmidt gives y⃗ 1 = x⃗1 and y⃗ 2 = x⃗2. It remains to find

y⃗ 3 = x⃗3 −
2∑

k=1

(vector shadow projection of x⃗3 onto y⃗ k)

The shadow projection formula is

Shadow projection of X⃗ onto a line with direction Y⃗ =
X⃗ · Y⃗
Y⃗ · Y⃗

Y⃗

The two shadow projections to be inserted into the answer for y⃗ 3 are:

Shadow projection of x⃗3 onto y⃗ 1 =
x⃗3 · y⃗ 1

y⃗ 1 · y⃗ 1
y⃗ 1 =

−1

1

 1
0
0

 =

 −1
0
0


Shadow projection of x⃗3 onto y⃗ 2 =

x⃗3 · y⃗ 2

y⃗ 2 · y⃗ 2
y⃗ 2 =

0

1

 0
1
0

 =

 0
0
0


Then

y⃗ 3 = x⃗3 −

 −1
0
0

−

 0
0
0

 =

 −1
0
1

−

 −1
0
0

 =

 0
0
1


Because y⃗ 3 has unit length then y⃗ 1, y⃗ 2, y⃗ 3 are orthonormal. The Gram-
Schmidt orthonormal basis constructed from x⃗1, x⃗2, x⃗3 is the list of columns
of the 3× 3 identity matrix. ■
# Exercise 13, Gram-Schmidt answer check

x1:=<1,0,0>;x2:=<0,1,0>;x3:=<-1,0,1>;

GramSchmidt([x1,x2,x3]);

14.

 1
2

−1

,

2
0
3

,

0
4
1

.

15.


1
0
0
1

,


−1
0
2
1

,


0
1
2
0

,


0
0

−1
1

.
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Solution: The answer is the list of columns of the 4 × 4 identity matrix.
The paper and pencil solution is computation-intensive, but possible in 5-10
minutes.
# Exercise 15, Gram-Schmidt answer check

V:=[<1,0,0,0>,<1,1,0,0>,<1,1,1,0>,<1,1,1,1>];

GramSchmidt(V);

16.


1
0
0
0

,


1
1
0
0

,


1
1
1
0

,


1
1
1
1

.

Ans: Columns of I.

Gram-Schmidt on Polynomials
Define V = span(1, x, x2) with inner product

∫ 1

0
f(x)g(x)dx. Find a Gram–

Schmidt orthonormal basis.

17. 1, 1 + x, x2

Solution: Answer: 1, x− 1/2, x2 − x+ 1/6

Details for Gram-Schmidt.
Let x⃗1 = 1, x⃗2 = 1 + x, x⃗3 = x2(an abuse of notation, but faster commu-
nication). Then y⃗ 1 = 1 in Gram-Schmidt. Compute y⃗ 2:

y⃗ 2 = x⃗2 − (x⃗2 · y⃗ 1)y⃗ 1/(y⃗ 1 · y⃗ 1)

= 1 + x− (
∫ 1

0
(1 + x)(1)dx)(1)(

∫ 1

0
(1)2dx)

= 1 + x−
(
x+ x2/2

∣∣1
x=0

)
(1)(1)

= 1 + x− (3/2) (1)(1)

= x− 1/2

Check: y⃗ 1 = 1 and y⃗ 2 = x − 1/2 are independent and
∫ 1

0
y⃗ 1y⃗ 2dx =∫ 1

0
(1)(x− 1/2)dx = 0: they are orthogonal.

Then y⃗ 1 = 1, y⃗ 2 = x− 1/2 in Gram-Schmidt. Compute y⃗ 3:

y⃗ 3 = x⃗3 − (x⃗3 · y⃗ 1)y⃗ 1/(y⃗ 1 · y⃗ 1)− (x⃗3 · y⃗ 2)y⃗ 2/(y⃗ 2 · y⃗ 2)

= x2 − (
∫ 1

0
x⃗3y⃗ 1dx)y⃗ 1/(y⃗ 1 · y⃗ 1)− (

∫ 1

0
x⃗3y⃗ 2dx)y⃗ 2/(

∫ 1

0
y⃗ 2

2dx)

= x2− (
∫ 1

0
x2dx)(1)/(1)− (

∫ 1

0
x2(x− 1/2)dx)(x− 1/2)/(

∫ 1

0
(x− 1/2)2dx)

= x2 − (1/3)(1)/(1)− (1/4− 1/6)(x− 1/2)/(1/12)

= x2 − 1/3− (x− 1/2)

= x2 − x+ 1/6

Check:
∫ 1

0
y⃗ 1y⃗ 3dx =

∫ 1

0
(x2 − x + 1/6)dx = 1/3 − 1/2 + 1/6 = 0,
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∫ 1

0
y⃗ 2y⃗ 3dx =

∫ 1

0
(x − 1/2)(x2 − x + 1/6)dx = 0. Then y⃗ 3 is orthogonal

to y⃗ 1 and y⃗ 2. Conclusion: 1, x− 1/2, x2 − x+ 1/6 are pairwise orthogonal
vectors in V .

A Warning about method.
A commonly attempted technique uses the mapping

T : a+ bx+ cx2 →

 a
b
c


The mapping allows the polynomial computation to be computerized, but it also
allows efficient hand computation in low dimensions. The mapping is called an
isomorphism, meaning T is a one-to-one linear map from V onto R3. A basis
constructed from the images

T (1) =

 1
0
0

 , T (1 + x) =

 1
1
0

 , T (x2) =

 0
0
1


will map by the inverse T−1 into a basis in V . Because Gram-Schmidt vectors y⃗ k

are orthonormal then they form a basis of R3. Therefore, the inverse mapping
provides a basis for V .

Normal Gram-Schmidt on paper will produce vectors y⃗ 1, y⃗ 2, y⃗ 3 from

x⃗1 =

 1
0
0

 , x⃗2 =

 1
1
0

 , x⃗3 =

 0
0
1


The vectors y⃗ 1, y⃗ 2, y⃗ 3 are the columns of the identity matrix. The inverse images
are the polynomials

p1 = 1 = T−1

 1
0
0

 , p2 = x = T−1

 0
1
0

 , p3 = x2 = T−1

 0
0
1


The process looks like it worked. But it fails. The polynomials p1, p2, p3 are

independent but they fail to be orthogonal with inner product ⟨f, g⟩ =∫ 1

0
fgdx.

18. 1− x, 1 + x, 1 + x2

Gram-Schmidt: Coordinate Map
Define V = span(1, x, x2) with inner product

∫ 1

0
f(x)g(x)dx. The coordinate

map is

T : c1 + c2x+ c3x
2 →

c1
c2
c3


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19. Find the images of 1− x, 1 + x, 1 + x2 under T .

Solution: See Exercise 17 for a warning using the coordinate map with
Gram-Schmidt.

The images are  1
−1
0

 ,

 1
1
0

 ,

 1
0
1


20. Assume column vectors x⃗1, x⃗2, x⃗3 in R3 orthonormalize under Gram-

Schmidt to u⃗1, u⃗2, u⃗3. Are the pre-images T−1(u⃗1), T
−1(u⃗2), T

−1(u⃗3)
orthonormal in V ?

Solution: Hint: Read the solution to Exercise 17.

Shadow Projection
Compute shadow vector (x⃗ · u⃗)u⃗ for direction u⃗ = v⃗

|v⃗ | . Illustrate with a hand–

drawn figure.

21. x⃗ =

(
1

−1

)
, v⃗ =

(
1
2

)
Ans: − 1

5

(
1
2

)
Solution: Compute u⃗ = v⃗/∥v⃗∥ =

1√
5

(
1
2

)
. Then the shadow projection =

(x⃗ · u⃗ )u⃗ =

((
1

−1

)
·
(
1
2

))
1√
5

1√
5

(
1
2

)
=

−1

5

(
1
2

)
.

22. x⃗ =

(
1
1

)
, v⃗ =

(
1
3

)

23. x⃗ =

1
1
2

, v⃗ =

1
0
2


Ans:

1
0
2


Solution: Compute u⃗ = v⃗/∥v⃗∥ =

1√
5

1
0
2

. Then the shadow projection

= (x⃗ · u⃗)u⃗ =

1
1
2

 ·

1
0
2

 1√
5

1√
5

1
0
2

 =
5

5

1
0
2

 =

1
0
2

.
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24. x⃗ =


1
1
2
1

, v⃗ =


1
0
2
1


Orthogonal Projection
Find an orthonormal basis {u⃗k}nk=1 for V = span(1+x, x, x+x2), inner product∫ 1

0
f(x)g(x)dx. Then compute the orthogonal projection p⃗ =

∑n
k=1(x⃗ · u⃗k)u⃗k.

25. x⃗ = 1 + x+ x2

Solution: Vector x⃗ is in V so p⃗ = x⃗ .

The basis computation follows. We’ll answer-check p⃗ = 1 + x+ x2 = x⃗ .

Exercise 17 gives orthogonal basis 1, x−1/2, x2−x+1/6 for span(1, x, x2).
Because V = span(1 + x, x, x + x2) = span(1, x, x2) then the same basis
can be used in this exercise. An orthonormal basis is required, so unitize
the three vectors to obtain {u⃗k}3k=1:

u⃗1 =
1√∫ 1

0

12dx

= 1

u⃗2 =
x− 1/2√∫ 1

0

(x− 1/2)2dx

=
√
12(x− 1/2)

u⃗3 =
x2 − x+ 1/6√∫ 1

0

(x2 − x+ 1/6)2dx

=
√
180(x2 − x+ 1/6)

To compute the orthogonal projection of x⃗ = 1+x+x2 requires three inner
products to be computed.

x⃗ · u⃗1 =
∫ 1

0
(1 + x+ x2)(1) dx = 1 + 1/2 + 1/3 = 11/6

x⃗ · u⃗2 =
∫ 1

0
(1 + x+ x2)(x− 1/2)

√
12 dx = 1/

√
3

x⃗ · u⃗3 =
∫ 1

0
(1 + x+ x2)(

√
180(x2 − x+ 1/6)) dx =

√
5/30

Then p⃗ = (11/6)u⃗1 + (1/
√
3)u⃗2 + (

√
5/30)u⃗3 = 1 + x+ x2 = x⃗ . ■

26. x⃗ = 1 + 2x+ x2 + x3

Orthogonal Projection: Theory
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27. Prove that the orthogonal projection ProjV (x⃗ ) on V = span{Y⃗} is the
vector shadow projection projY⃗ (x⃗ ).

Solution: Let u⃗ = Y⃗/∥Y⃗∥, a unit vector. Then V has orthonormal basis
{u⃗} and ProjV (x⃗ ) = (x⃗ · u⃗)u⃗ . The shadow projection of x⃗ onto the line

determined by Y⃗ is:

projY⃗ (x⃗ ) =
x⃗ · Y⃗
Y⃗ · Y⃗

Y⃗

=

(
x⃗ · Y⃗

∥Y⃗∥

)
Y⃗

∥Y⃗∥
= (x⃗ · u⃗)u⃗

= ProjV (x⃗ ) ■

28. (Gram-Schmidt Construction)

Define x⃗⊥
j = x⃗ j −ProjWj−1

(x⃗ j),
and Wj−1 = span(x⃗1, . . . , x⃗ j−1).
Prove these properties.

(a) Subspace Wj−1 is equal to the Gram-Schmidt Vj−1 =
span(u⃗1, . . . , u⃗ j).

(b) Vector x⃗⊥
j is orthogonal to all vectors in Wj−1.

(c) The vector x⃗⊥
j is not zero.

(d) The Gram-Schmidt vector is

u⃗ j =
x⃗⊥

j

∥x⃗⊥
j ∥

.

Near Point Theorem
Find the near point to the subspace V .

29. x⃗ =

(
1
1

)
, V = span

((
1
2

))
Solution: The near point is the orthogonal projection of x⃗ onto V , which is

the same as the shadow projection of x⃗ onto Y⃗ =

(
1
2

)
. Compute ∥Y⃗∥ =

√
5

then the near point =
x⃗ · Y⃗
∥Y⃗∥2

Y⃗ =
3

5

(
1
2

)
.

30. x⃗ =

(
1
1

)
, V = span

((
0
1

))
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31. x⃗=

1
1
0

,V= span

1
2
0

 ,

1
0
1


Solution: The near point is 1

9

 7
10
2

. Computation follows.

Compute an orthonormal basis u⃗1, u⃗2 for V spanned by

x⃗1 =

1
2
0

, x⃗2 =

1
0
1

. Details:

y⃗ 1 = x⃗1 =

1
2
0


u⃗1 =

y⃗ 1

∥y⃗ 1∥
= 1√

5

1
2
0


y⃗ 2 = x⃗2 −

x⃗2 · y⃗ 1

y⃗ 1 · y⃗ 1
y⃗ 1

=

1
0
1

−

1
0
1

 ·

1
2
0

1
2
0


=

1
0
1

− 1
5

1
2
0


=

 4/5
−2/5
1


u⃗2 =

y⃗ 2

∥y⃗ 2∥
=

√
5

15

 4
−2
5


Then the near point is the orthogonal projection

ProjV (x⃗ ) = (x⃗ · u⃗1)u⃗1 + (x⃗ · u⃗2)u⃗2

=

 7/9
10/9
2/9


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# Exercise 31, Near Point Theorem

x1:=<1,2,0>;x2:=<1,0,1>;

y1:=x1;

u1:=y1/sqrt(y1.y1);

y2:=x2-(x2.y1)*y1/(y1.y1);

u2:=y2/sqrt(y2.y2);

u1.u2;u1.u1;u2.u2;# check orthonormal

X:=<1,1,0>;NearPoint:=(X.u1)*u1+(X.u2)*u2;

# NearPoint=[7/9, 10/9, 2/9]

32. x⃗=

1
0
1

,V= span

1
1
0

 ,

1
1
1


QR-Decomposition
Give A, find an orthonormal matrix Q and an upper triangular matrix R such
that A = QR.

33. A=


5 9
1 7
1 5
3 5

, Ans: R =

(
6 12
0 6

)

Solution: Q =


5/6 −1/6

1/6 5/6

1/6 1/2

1/2 −1/6


The details by pencil and paper involve Gram-Schmidt on the columns of
A. The k columns of A must be independent for success. The method first
writes the Gram-Schmidt identities for y⃗ 1, . . . , y⃗ k in terms of x⃗1, . . . , x⃗k.
Symbol u⃗ i = y⃗ i/∥y⃗ i∥. Then find (see Theorem 9.26, Matrices Q and R in
A = QR)

R =


∥y1∥ u⃗1 · x⃗2 u⃗1 · x⃗3 · · · u⃗1 · x⃗n

0 ∥y2∥ u⃗2 · x⃗3 · · · u⃗2 · x⃗n

...
...

... · · ·
...

0 0 0 · · · ∥yn∥

 .

Equation A = QR is solved for Q = AR−1. Compute R−1 with row opera-
tions, then find Q by matrix multiply.

# Exercise 33, QR-Decomposition

A:=< 5,9 | 1,7 | 1,5 | 3,5 >^+;

Q,R:=QRDecomposition(A);
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34. A=


2 1
2 0
2 0
2 1

, Ans: R =

(
4 1
0 1

)

35. A=


1 0 0
1 1 0
1 1 0
1 0 0

, Ans: R=

(
2 1 0
0 1 0

)

Solution: Q =


1/2 −1/2

1/2 1/2

1/2 1/2

1/2 −1/2


# Exercise 35, QR-Decomposition

A:=< 1,0,0 | 1,1,0 | 1,1,0 | 1,0,0 >^+;

Q,R:=QRDecomposition(A);

36. A=


1 0 0
1 1 1
1 1 1
1 0 0

, Ans: R=

(
2 1 1
0 1 1

)

Linear Least Squares: 3× 2

Let A=

2 0
0 2
1 1

, b⃗=

1
0
5

.

37. Find the normal equations for Ax⃗ = b⃗ .

Solution: The normal equation refers to ATAx⃗ = AT b⃗ . Applications
generally require the columns of A to be independent. The m×n matrix A
generally has m is much larger than n: there are more rows than columns.
In applications, the number of rows can be the number of data samples and
the number of columns can represent a short list of parameters.

ATA =

(
2 0 1
0 2 1

) 2 0
0 2
1 1

 =

(
5 1
1 5

)

AT b⃗ =

(
2 0 1
0 2 1

) 1
0
5

 =

(
7
5

)
The normal equation:
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(
5 1
1 5

)
x⃗ =

(
7
5

)
# Exercise 37, Linear Least Squares: 3 x 2

A:=<2,0 | 0,2 | 1,1>^+;

A^+ . A;

b:=<1,0,5>;

A^+ . b;

38. Solve Ax⃗ = b⃗ by least squares.

Linear Least Squares: 4× 3

Let A=


4 0 1
1 0 1
0 1 0
1 1 1

, b⃗=


3
0
0
0

.

39. Find the normal equations for Ax⃗ = b⃗ .

Solution:


18 1 6

1 2 1

6 1 3

 x⃗ =

 12
0
3


# Exercise 39, Linear Least Squares: 4 x 3

A:=<4,0,1 | 1,0,1 |0,1,0 | 1,1,1>^+;

A^+ . A;

b:=<3,0,0,0>;

A^+ . b;

LeastSquares(A,b);# Answer check to Exercise 40

40. Solve Ax⃗ = b⃗ by least squares.

Orthonormal Diagonal Form
Let A = AT . The spectral theorem implies AQ = QD where D is diagonal
and Q has orthonormal columns. Find Q and D.

41. A=

(
7 2
2 4

)
Solution: D =

(
8 0
0 3

)
, P =

(
2 −1/2
1 1

)
, Q =

1√
5

(
2 −1

1 2

)
.

The plan: find D and P for matrix A by eigenanalysis. Matrix D is the
correct diagonal matrix of eigenvalues. Check that A is symmetric: AT −A.
Then the spectral theorem applies and success is guaranteed to find the or-
thonormal matrix Q from P . Matrix Q contains the orthonormal vectors
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u⃗1, u⃗2 constructed by Gram-Schmidt from the columns x⃗1, x⃗2 of matrix
P .

Details.

Computation by hand or computer gives D =

(
8 0
0 3

)
and P =(

2 −1/2
1 1

)
. Then x⃗1 =

(
2
1

)
, x⃗2 =

(
−1/2
1

)
are the columns of P to

which Gram-Schmidt will be applied. We check first that x⃗1 · x⃗2 = 0, then
y⃗ 1 = x⃗1, y⃗ 2 = x⃗2 and Gram-Schmidt has no details except to unitize the

two answers, making u⃗1 =
1√
5

(
2
1

)
, u⃗2 =

1√
5/4

(
−1/2
1

)
=

1√
5

(
−1
2

)
.

Then

Q = ⟨u⃗1|u⃗2⟩ =
1√
5

(
2 −1

1 2

)
# Exercise 41, Orthonormal Diagonal Form

A:=<7,2|2,4>^+;

Lambda,P:=Eigenvectors(A);

# Lambda = [8,3]

# P = [[2, -1/2], [1, 1]]

DD:=DiagonalMatrix(Lambda);

L:=[Column(P,1),Column(P,2)];

q:=GramSchmidt(L,normalized);

Q:=Matrix(q);

Q^+ . Q; # Check orthogonal Q: Q^TQ=I

A.Q-Q.DD; # Check identity: AQ=QD

42. A=

(
1 5
5 1

)

43. A=

(
1 5 0
5 1 0
0 0 2

)
Ans: Eigenvalues −4, 2, 6, orthonormal eigenvectors

1√
2

−1
1
0

,

minicolvectorC001, 1√
2

1
1
0



Solution: D =

 −4 0 0
0 2 0
0 0 6

, Q =
√
2


−1 0 1

1 0 1

0
√
2 0

.
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# Exercise 43, Orthonormal Diagonal Form

A:=<1,5,0|5,1,0|0,0,2>^+;

Lambda,P:=Eigenvectors(A);

# Lambda = [-4, 2, 6]

# P = Matrix([[-1, 0, 1], [1, 0, 1], [0, 1, 0]])

DD:=DiagonalMatrix(Lambda);

L:=[Column(P,1),Column(P,2)];

q:=GramSchmidt(L,normalized);

Q:=Matrix(q);

Q^+ . Q; # Check orthogonal Q: Q^TQ=I

A.Q-Q.DD; # Check identity: AQ=QD

44. A=

(
1 5 0
5 1 1
0 1 1

)

Eigenpairs of Symmetric Matrices:
Spectral Theorem.

45. Let A=

(
3 −1 1

−1 3 −1
1 −1 3

)
. Eigenvalues are 2, 2, 5. Find three orthonormal

eigenpairs.

Solution: Eigenanalysis of A gave eigenpair packages P =

(
−1 1 1
0 1 −1
1 0 1

)
and

D =

(
2 0 0
0 2 0
0 0 5

)
. The orthonormal eigenvectors are found by Gram-Schmidt

from the columns of P , reported below as the columns of Q:

Q =


− 1

2

√
2 1

6

√
6 1

3

√
3

0 1
3

√
6 − 1

3

√
3

1
2

√
2 1

6

√
6 1

3

√
3


# Exercise 45, Eigenpairs of Symmetric Matrices

A:=<3,-1,1|-1,3,-1|1,-1,3>^+;

Lambda,P:=Eigenvectors(A);

# Lambda = [2, 2, 5]

# P = Matrix([[-1, 1, 1], [0, 1, -1], [1, 0, 1]])

DD:=DiagonalMatrix(Lambda);

L:=[seq( Column(P,j), j=1..RowDimension(A) )];

q:=GramSchmidt(L,normalized);

Q:=Matrix(q);

Q^+ . Q; # Check orthogonal Q: Q^TQ=I

A.Q-Q.DD; # Check identity: AQ=QD
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46. Let A=

(
5 −1 1

−1 5 −1
1 −1 5

)
. Then |A−λI|=(4−λ)2(7−λ). Find three orthonor-

mal eigenpairs.

47. Let A=

(
6 −1 1

−1 6 −1
1 −1 6

)
. Eigenvectors

(
1
0

−1

)
,

(
1
1
0

)
,

(
1

−1
1

)
are for λ = 5, 5, 8.

Illustrate AQ = QD with D diagonal and Q orthogonal.

Solution: The plan is similar to Exercise 45: apply Gram-Schmidt to find
orthonormal eigenvectors, then insert the answers into matrix Q. Then

D = diag(5, 5, 8) and Q =

 − 1
2

√
2 1

6

√
6 1

3

√
3

0 1
3

√
6 − 1

3

√
3

1
2

√
2 1

6

√
6 1

3

√
3

array


# Exercise 47, Eigenpairs of Symmetric Matrices

A:=<6,-1,1|-1,6,-1|1,-1,6>^+;

Lambda,P:=Eigenvectors(A);

# Lambda = [5, 5, 8]

# P = Matrix([[-1,1,1],[0,1,-1],[1,0,1]])

DD:=DiagonalMatrix(Lambda);

L:=[seq( Column(P,j), j=1..RowDimension(A) )];

q:=GramSchmidt(L,normalized);

Q:=Matrix(q);

Q^+ . Q; # Check orthogonal Q: Q^TQ=I

A.Q-Q.DD; # Check identity: AQ=QD

48. Matrix A for λ = 1, 1, 4 has orthogonal eigenvectors(
1
1
0

)
,

(
1
0

−1

)
,

(
1

−1
1

)
.

Find A and directly verify A = AT .

Singular Value Decomposition
Find the SVD A = UΣV T .

49. A=

−1 1
−2 2
2 −2

.

Ans: U=3× 3, V=2× 2. Matrix

Σ=

3
√
2 0

0 0
0 0

=3× 2, the size of A.

Solution: Details:
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Let A =

 −1 1
−2 2
2 −2

.

Compute

B = ATA

=

(
−1 −2 2
1 2 −2

) −1 1
−2 2
2 −2

( 9 −9
−9 9

)

=

(
9 −9

−9 9

)
.

The eigenvalues of B are 0, 18. Then the singular values are 0, 3
√
2, to be

reordered largest to smallest: 3
√
2, 0. The size of Σ is 3× 2:

Σ =

 3
√
2 0
0 0
0 0


The eigenpairs of B = ATA =

(
9 −9

−9 9

)
are

(
0,

(
1
1

))
,

(
18,

(
−1
1

))
The eigenvectors are orthogonal. Unitize them to obtain

v⃗ 1 =
1√
2

(
1
1

)
, v⃗ 2 =

1√
2

(
−1
1

)
, V =

1√
2

(
1 −1
1 1

)

Define u⃗1 =
1√
18

Av⃗ 1 = 1
3

(
1
2

−2

)
. Define C = ⟨u⃗1|I⟩ where I is the 3× 3

identity matrix. Find rref(C) and select the pivot columns of C as the
columns of U :

U =

 1/3 1 0 0
2/3 0 1 0
−2/3 0 0 1

array


To check the answers, compute UΣV T , which should equal A.

UΣV T =

 1/3 1 0
2/3 0 1

−2/3 0 0

 3
√
2 0
0 0
0 0

 1√
2

(
−1 1
1 1

)

=

 −1 1
−2 2
2 −2

 = A
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# Exercise 49, Singular Value Decomposition

A:=<-1,1|-2,2|2,-2>^+;

B:=A^+ . A;

Lambda,P:=Eigenvalues(B);map(sqrt,Lambda);

# reorder singular values to 3*sqrt(2), 0,

# then make Sigma 3x2

Sigma:=Matrix([[3*sqrt(2),0],[0,0],[0,0]]);

#

# Compute orthogonal matrix V

v2:=(1/sqrt(2))*<1,1>;v1:=(1/sqrt(2))*<-1,1>;

V:=<v1 | v2>;

#

# Compute orthogonal matrix U

u1:=(1/sqrt(18))*A.v1;

C:=<u1 | IdentityMatrix(3)>;

ReducedRowEchelonForm(C);

U:=C[1..3,1..3];# Select pivot columns of C

L:=[seq(Column(U,j),j=1..3)];

q:=GramSchmidt(L);

U:=Matrix(q);# Columns of U are orthonormal

#

# Answer check

A-U.Sigma.V^+;# Expect zero

#

# Answer check with package LinearAlgebra[SingularValues]

# Warning: answers are floats, not symbolic

S:=SingularValues(A);# answer check singular values

U, Vt := SingularValues(A, output = [’U’, ’Vt’]);# float answers

Solution:

The support in maple for the svd has computation limited to floating point
and limited symbolic support, whereas mathematica has full support. The
list of singular values returned by maple is in the wrong order, causing
manual construction of Σ.
Access to mathematica in 2022 is free via

https://www.wolframalpha.com/
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50. A=

−1 1
−2 2
1 1

.

Ans: σ1 =
√
10, σ2 =

√
2.

51. A=

−3 3
0 0
1 1

.

Solution: The method follows Exercise 49.
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Let B = ATA =

(
10 −8
−8 10

)
. The eigenpairs of B are

(
18,

(
−1
1

))
,

(
2,

(
1
1

))

The eigenvalues of B are 18, 2. Then the singular values are 3
√
2,
√
2, to

be reordered largest to smallest: 3
√
2,
√
2. Define 3× 2 matrix

Σ =

 3
√
2 0

0
√
2

0 0


The eigenvectors of B are orthogonal. Unitize them to obtain

v⃗ 1 =
1√
2

(
−1
1

)
, v⃗ 2 =

1√
2

(
1
1

)
, V =

1√
2

(
−1 1
1 1

)

Define u⃗1 =
1√
18

Av⃗ 1 =

(
1
0
0

)
. Define u⃗2 =

1√
2
Av⃗ 2 =

(
0
0
1

)
. Define

C = ⟨u⃗1|u⃗2|I⟩ where I is the 3 × 3 identity matrix. Find rref(C) and
identify the pivot columns 1,2,4. These columns of C are the columns of U :

U =

 1 0 0
0 0 1
0 1 0


To check the answers, compute UΣV T , which should equal A.

UΣV T =

 1 0 0
0 0 1
0 1 0

 3
√
2 0

0
√
2

0 0

 1√
2

(
−1 1
1 1

)

=

 −3 3
0 0
1 1

 = A
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# Exercise 51, Singular Value Decomposition

A:=<-3,3|0,0|1,1>^+;

B:=A^+ . A;

Lambda,P:=Eigenvalues(B);map(sqrt,Lambda);

# reorder singular values to 3*sqrt(2), sqrt(2),

Sigma:=Matrix([[3*sqrt(2),0],[0,sqrt(2)],[0,0]]);# size 3x2

# Compute orthogonal matrix V

v2:=(1/sqrt(2))*<1,1>;v1:=(1/sqrt(2))*<-1,1>;

V:=<v1 | v2>;

# Compute orthogonal matrix U

1:=(1/sqrt(18))*A.v1;u2:=(1/sqrt(2))*A.v2;

C:=<u1 | u2 | IdentityMatrix(3)>;

ReducedRowEchelonForm(C);# pivots 1,2,4

U:=C[1..3, [1,2,4] ];# Select pivot columns 1,2,4 of C

# Cols are already orthonormal, no Gram-Schmidt!

A-U.Sigma.V^+;# Expect zero

52. A=

1 1
0 1
1 −1

.

Ellipse and the SVD
Repeat Example 9.17, page 736 � for the given ellipse equation.

53. 50x2 − 30xy + 10y2 = 2500

Solution: Let B =

(
50 −15

−15 10

)
. Then BP = PD with eigenpair

packages

D =

(
5 0
0 55

)
, P =

(
1/3 −3
1 1

)
Unitize the orthogonal eigenvectors in P and define

Q =
1√
10

(
1 −3
3 1

)
Let u⃗ =

(
x
y

)
= Qw⃗ with w⃗ =

(
X
Y

)
. Then

50x2 − 30xy + 10y2 = 2500

⇝ w⃗TDw⃗ = 2500

⇝ ⟨X|Y ⟩
(

5 0
0 55

)(
X
Y

)
= 2500

⇝
1

500
X2 +

11

500
Y 2 = 1

The semiaxis lengths are 10
√
5 and 10

√
55/11. ■
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54. 40x2 − 16xy + 10y2 = 2500

Mapping and the SVD
Reference: Example 9.18, page 738 �.

Let w⃗=

(
x
y

)
=c1v⃗ 1+c2v⃗ 2,

U= 1√
5

(
1 2
2 −1

)
, Σ=

(
10 0
0 5

)
, V= 1√

5

(
1 −2
2 1

)
,

A=

(
−2 6
6 7

)
. Then A=UΣV T .

55. Verify ∥w⃗∥2 = w⃗ · w⃗ = c21 + c22.

Solution: ∥w⃗∥2 = w⃗ ·w⃗ = (c1v⃗ 1+c2v⃗ 2)·(c1v⃗ 1+c2v⃗ 2) = c21v⃗ 1·v⃗ 1+2c1c2v⃗ 2·
v⃗ 1 + c22v⃗ 2 · v⃗ 2 = c21(1) + 2c1c2(0) + c22(1) due to v⃗ 1, v⃗ 2 given orthonormal
(unit vector, pairwise orthogonal). Then ∥w⃗∥2 = w⃗ · w⃗ = c21 + c22. ■

56. Verify V T w⃗=

(
c1
c2

)
from the general identity V TV = I. Then show that

ΣV T w⃗=

(
10c1
5c2

)
.

Therefore, coordinate map w⃗ →
(
c1
c2

)
undergoes re-scaling by 10 in direction v⃗ 1 and 5

in direction v⃗ 2.

57. Find the angle θ of rotation for V T and the reflection axis for U .

Solution:
The angle θ of rotation for V T .
Angle θ must satisfy(

cos θ sin θ
− sin θ cos θ

)
= V T = 1√

5

(
1 2

−2 1

)
A clever shortcut is to use the isomorphism between 2 × 2 matrices and
complex numbers:

a+ bi →
(

a b
−b a

)
Then cos θ = 1/

√
5, sin θ = 2/

√
5 or tan θ = 2 with θ in quadrant 1.

Conclusion: θ = arctan(2) = 1.107148718 radians = 63.43494883 degrees,
proper rotation about the origin clockwise.

Line of reflection for U .

Let R = U = 1√
5

(
1 2
2 −1

)
. Then |R| = −1 and RTR = I, so it is an

improper rotation, which is a reflection across a line of symmetry. The line
of reflection has equation y = mx + b for some slope m and intercept b.
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Points of the line do not move under the action R. Choose two points on
the line, say x = 1 and x = 2. Then the following equations hold:

w⃗ =

(
1

m+ b

)
for x = 1

w⃗ = Rw⃗(
1

m+ b

)
= R

(
1

m+ b

)
= 1√

5

(
1 2
2 −1

)(
1

m+ b

)
= 1√

5

(
1 + 2m+ 2b

2−m− b

)

The vectors must match entries, giving two equations in two unknowns:{ √
5 = 1 + 2m+ 2b√
5(m+ b) = 2−m− b

w⃗ =

(
1

m+ b

)
for x = 2

w⃗ = Rw⃗(
2

2m+ b

)
= R

(
2

2m+ b

)
= 1√

5

(
1 2
2 −1

)(
2

2m+ b

)
= 1√

5

(
1 + 4m+ 2b
4− 2m− b

)
Match vector entries to give two equations in two unknowns:{

2
√
5 = 1 + 2m+ 2b√
5(2m+ b) = 4− 2m− b

Solve the four equations for m =
−1 +

√
5

2
, b = 0. The line of reflection is

y = mx+ 0, which is y = (−1 +
√
5)x/2. ■

# Exercise 57, Mapping and the SVD

R:=(1/sqrt(5))*Matrix([[1,2],[2,-1]]);

w1:=<1,m+b>;A1:=R.w1-w1;

w2:=<2,2*m+b>;A2:=R.w2-w2;

solve({A1[1]=0,A1[2]=0,A2[1]=0,A2[2]=0},[m,b]);

# reflection line: y = mx+b, m=(-1+sqrt(5))/2, b=0

58. Assume |w⃗∥ = 1, a point on the unit circle. Is Aw⃗ on an ellipse with
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semi-axes 10 and 5? Justify your answer geometrically, no proof expected.
Check your answer with a computer plot.

Solution:
Proof: Let A = UΣV T . Let vector w⃗ be given. Then V T w⃗ rotates w⃗ by
angle θ, so the image remains on the unit circle. Then Σ scales the axes.
Finally, U reflects ΣV T w⃗ across the line of symmetry found in Exercise
57. ■

Four Fundamental Subspaces

Compute matrices S1, S2 such that the column spaces of S1, S2 are the nullspaces
of A and AT . Verify the two orthogonality relations of the four subspaces page
739 � from the matrix identities AS1 = 0, ATS2 = 0.

59. A =

(
1 0 0
1 1 0
2 1 0

)
. Answer:

S1 =

0
0
1

, S2 =

−1
−1
1

.

Solution: Details require finding the nullspace of A and the nullspace of AT .
The calculations can be done on paper or by computer. The orthogonality
tests are by matrix multiply, which should return a matrix with columns all
zero.
# Exercise 59, Four Fundamental Subspaces

A:=<1,0,0|1,1,0|2,1,0>^+;

S1:=Matrix(convert(NullSpace(A), ’list’ ));

A.S1;# check A perp cols of S1

B:=A^+;

S2:=Matrix(convert(NullSpace(B), ’list’ ));

B.S2;# check A^T perp cols of S2

60. A =

1 0 0
1 1 0
2 1 0
3 2 0

. Answer:

S1 =

0
0
1

, S2 =

−1 −1
−2 −1
0 1
1 0


61. A =

(
1 0 0 0
1 1 0 1
2 2 0 2

)
Answer:
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S1 =

 0 0
−1 0
0 1
1 0

, S2 =

−1
−1
1



62. A =

1 0 0 0
2 0 0 2
0 0 0 0
0 0 0 2

 Answer:

S1 =

0 0
0 1
1 0
0 0

, S2 =

 2 0
−1 0
0 1
1 0

,

Fundamental Theorem of Linear Algebra
Strang’s Theorem says that the four subspaces built from n×m matrix A and
m× n matrix AT satisfy

colspace(AT ) ⊥ nullspace(A),
colspace(A) ⊥ nullspace(AT ).

Let r = rank(A) = rank(AT ). The four subspace dimensions are:

dim(colspace(A)) = r,
dim(nullspace(A)) = n− r,
dim(colspace(AT )) = r,
dim(nullspace(AT )) = m− r.

63. Explain why dim(colspace(A)) = dim(colspace(AT )) = r from the Pivot
Theorem.

Solution: Let r1 = dim(colspace(A)) and r2 = dim(colspace(AT )). To
prove: r1 = r2 = r = rank(A). First, r1 is the number of pivot columns
of A by the pivot theorem, which the theorem states is equal the number
of independent columns of A. Second, r2 is the number of independent
columns of AT , which equals the number independent rows of A. Because
rank = number of independent columns of A = number of independent rows
of A, by the theorem row rank = column rank, then r = r1 = r2. ■

64. Suppose A is 10× 4. What are the dimensions of the four subspaces?

65. Invent a 4× 4 matrix A where one of the four subspaces is the zero vector
alone.

Solution: Let A be a 4× 4 invertible matrix, like the identity matrix. Then
the nullspace of A is the zero vector. ■
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66. Prove that the only vector in common with rowspace(A) and
nullspace(A) is the zero vector.

67. Prove that each vector x⃗ in Rn can be uniquely written as x⃗ = x⃗1 + x⃗2

where x⃗1 is in colspace(AT ) and x⃗2 is in nullspace(A). See direct sum
in exercise page 428 �.

Solution: Assume A is m×n, r = rank(A), s = nullity(A). Then r+s = n
by the rank-nullity theorem, which in simpler language says the number
of lead variables plus the number of free variables equals n = number of
variables.

Let S1 = colspace(AT ) = rowspace(A) and S2 = nullspace(A). Let
V = Rn. Assemble these facts:

Both S1 and S2 are subspaces.
Exercise 66 provides S1 ∩ S2 = {0⃗}.
Subspace S1 has a basis u⃗1, . . . , u⃗ r where r = rank(A).
Subspace S2 has basis v⃗ 1, . . . , v⃗ s where s = nullity(A) = n− r.
Let W = {u⃗1, . . . , u⃗ r, v⃗ 1, . . . , v⃗ s}. Then W contains n indepen-
dent vectors because S1 ∩ S2 = {0⃗} (independence proof omit-
ted).
Set W is a basis for V = Rn. See Theorem 5.40 page 406 �.

The proof:
Let x⃗ be any vector in Rn. Expand x⃗ with basis W . Then

x⃗ =
∑r

i=1 aiu⃗ i +
∑s

j=1 bjv⃗ j

Let x⃗1 =
∑r

i=1 aiu⃗ i and x⃗2 =
∑s

j=1 bjv⃗ j . Then x⃗ = x⃗1 + x⃗2 with x⃗1 in
S1 and x⃗2 in S2. Existence established.

It remains to prove uniqueness. Suppose x⃗ = x⃗1+x⃗2 = y⃗ 1+y⃗ 2 with x⃗1, y⃗ 1

in S +1 and x⃗2, y⃗ 2 in S2. To prove: x⃗1 = y⃗ 1 and x⃗2 = y⃗ 2. Rearrange the
equation for x⃗ : x⃗1 − y⃗ 1 = y⃗ 2 − x⃗2. Then the LHS is in S1 and the RHS is
in S2. Because S1 ∩ S2 = {0⃗} then x⃗1 − y⃗ 1 = y⃗ 2 − x⃗2 = 0⃗ , which proves
uniqueness. ■

68. Prove that each vector y⃗ in Rm can be uniquely written as y⃗ = y⃗ 1 + y⃗ 2

where y⃗ 1 is in colspace(A) and y⃗ 2 is in nullspace(AT ).
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Chapter 10

Phase Plane Methods
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10.1 Planar Autonomous Systems

Autonomous Planar Systems.

Consider
x′(t) = x(t) + y(t),
y′(t) = 1− x2(t).

(1)

1. (Vector-Matrix Form) System (1) can be written in vector-matrix form

d

dt
u⃗ = F⃗ (u⃗(t)).

Display formulas for u⃗ and F⃗ .

Solution: The formulas:

u⃗ =

(
x
y

)
, F⃗(u⃗) =

(
x+ y
1− x2

)
Computer implementations use strict rules with code only similar to the
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10.1 Planar Autonomous Systems

mathematics, not the same.

# Exercise 1, Autonomous Planar Systems

PDEtools[declare]((x, y)(t), prime = t);

## x(t), y(t) are displayed as x, y

## diff(f(t),t) displayed in prime notation f’

u:=t-><x(t),y(t)>;

F0:=(x,y)-><x+y,1-x^2>;

F:=w->F0(w[1],w[2]):

F(u(t));## = < x(t)+y(t), 1-x(t)^2 >

2. (Picard’s Theorem) Picard’s vector existence-uniqueness theorem applies
to system (1) with initial data x(0) = x0, y(0) = y0. Show the details.

Solution: Expected details are hypothesis checks: F⃗ and .Fy continuous
with initial data in domain D.

Trajectories Don’t Cross.

3. (Theorem 10.1 Details) Show dy
dt = g(x1(t+ c), y1(t+ c)), then show that

y′(t) = g(x(t), y(t)) in the proof of Theorem 10.1.

Solution:
dy

dt
= d

dt y1(t+ c)

= g(x1(t+ c), y1(t+ c))

= g(x(t), y(t)) ■

4. (Orbits Can Cross) The example

dx

dt
= 1,

dy

dt
= 3y2/3

has infinitely many orbits crossing at x = y = 0. Exhibit two distinct orbits
which cross at x = y = 0. Does this example contradict Theorem 10.1?

Equilibria. A point (x0, y0) is called an Equilibrium provided x(t) = x0,
y(t) = y0 is a solution of the dynamical system.

5. Justify that (1,−1), (−1, 1) are the only equilibria for the system x′ = x+y,
y′ = 1− x2.

Solution: For (x0, y0) to be an equilibrium the following equations must
hold:

0 = x′
0 = x0 + y0, 0 = y′0 = 1− x2

0

The second equation gives x0 = 1 or x0 = −1. The first equation provides
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y0 = −x0. Then the two solution pairs are (x0, y0) = (1,−1) and (x0, y0) =
(−1, 1). ■

6. Display the details which justify that (0, 0), (90, 0), (0, 60), (80, 20) are all
equilibria for the system x′(t) = x(−2x−y+180), y′(t) = y(−x−2y+120).

Practical Methods for Computing Equilibria.

7. (Murray System) The biological system

x′ = x(6− 2x− y), y′ = y(4− x− y)

has equilibria (0, 0), (3, 0), (0, 4), (2, 2). Justify the four answers.

Solution:

Instead of using symbols x0, y0 let’s use x, y. Equilibrium (x, y) satisfies

0 = x(6− 2x− y), 0 = y(4− x− y)

First equation: x = 0 or 2x+ y = 6.

Second equation: y = 0 or x+ y = 4.

There are 4 possibilities:

x = 0, y = 0

x = 0, x+ y = 4

2x+ y = 6, y = 0

2x+ y = 6, x+ y = 4

The first three possibilities give three equilibria: (0, 0), (0, 4), (3, 0). The
last possibility requires a solving with the linear algebra toolkit or Cramer’s
rule to find the unique solution (2, 2).

8. (Nullclines) Curves along which either x′ = 0 or y′ = 0 are called null-
clines. The biological system

x′ = x(6− 2x− y), y′ = y(4− x− y)

has nullclines x = 0, y = 0, 6− 2x− y = 0, 4− x− y = 0. Justify the four
answers.

9. (Nullclines by Computer) Produce a graphical display of the nullclines of
the Murray System above. Maple code below makes a plot from equations
x(6− 2x− y) = 0, y(4− x− y) = 0.

eqns:={x*(6-2*x-y),y*(4-x-y)};

wind:=x=-5..5,y=-10..10;

opts:=wind,contours=[0];

plots[contourplot](eqns,opts);
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Solution: Plot options can improve a nullcline plot. System mathematica

offers a nullcline plot demonstration
https://demonstrations.wolfram.com/NullclinePlot/
that uses the free WolframPlayer. System maple produced the plot below
using the code that follows the plot.

# Exercise 9, Autonomous planar systems: nullclines

eqns:={x*(6-2*x-y),y*(4-x-y)};

wind:=x=-5..5,y=-10..10;

opts:=contours=[0],filledregions = true,

coloring = ["White", "PaleGreen"];

plots[contourplot](eqns,wind,opts);

10. (Isoclines by Computer) Level curves f(x, y) = c are called Isoclines.

Maple will plot level curves f(x, y) = −2, f(x, y) = 0, f(x, y) = 2 using
the nullcline code above, with replacement contours=[-2,0,2]. Produce
an isocline plot for the Murray System above with these same contours.

11. (Implicit Plot) Equilibria can be found graphically by an implicit plot.

# MAPLE implicit plot

eqns:={x*(6-2*x-y),y*(4-x-y)};

wind:=x=-5..5,y=-10..10;

plots[implicitplot](eqns,wind);

Produce the implicit plot. Is it the same as the nullcline plot?

Solution:
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10.1 Planar Autonomous Systems

# Exercise 11, Autonomous systems: implicit plot, equilibria

eqns:={x*(6-2*x-y),y*(4-x-y)};

wind:=x=-5..5,y=-10..10;

plots[implicitplot](eqns,wind,gridrefine=2);

solve(eqns,[x,y]);

# equilibria: [x=0, y=0],[x=0, y=4],[x=3, y=0],[x=2, y=2]

12. (Implicit Plot) Find the equilibria graphically by an implicit plot. Then
find the equilibria exactly.{

x′(t) = x(t) + y(t),
y′(t) = 4− x2(t).

Rabbit-Fox System.

13. (Predator-Prey) Consider a rabbit and fox system

x′ =
1

200
x(30− y),

y′ =
1

100
y(x− 40).

Argue why extinction of the rabbits (x = 0) implies extinction of the foxes
(y = 0).

Solution: When x = 0 then y′ = −40y which is a decay equation. Then
limt→∞ y(t) = limt→∞ y0e

−40t = 0, which is extinction.
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14. (Predator-Prey) The rabbit and fox system

x′ =
1

200
x(40− y),

y′ =
1

100
y(x− 40),

has extinction of the foxes (y = 0) implying Malthusian population explosion
of the rabbits (limt=∞ x(t) = ∞). Explain.

Trout System. Consider

x′(t) = x(−2x− y + 180),
y′(t) = y(−x− 2y + 120).

15. (Carrying Capacity) Show details for calculation of the equilibrium x =
80, y = 20, which is co-existence.

Solution: Equilibria (x, y) are found from the equations

0 = x(−2x− y + 180),
0 = y(−x− 2y + 120).

Follow the method in Exercise 7 to solve for

(x, y) = (0, 0), (0, 60), (90, 0), (80, 20)

The first three equilibria involve at least one extinction state x = 0 or y = 0.
Equilibrium x = 80, y = 20 is co-existence, analagous to co-habitation for
foxes and rabbits.

16. (Stability) Equilibrium point x = 80, y = 20 is stable. Explain this state-
ment using geometry from Figure 10 and the definition of stability.

Phase Portraits. Consider

x′(t) = x(t) + y(t),
y′(t) = 1− x2(t).

17. (Equilibria) Solve for x, y in the system

0 = x+ y,
0 = 1− x2,

for equilibria (1,−1), (−1, 1). Explain why |x| ≤ 2, |y| ≤ 2 is a suitable
graph window.
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Solution: Equilibrium (x, y) is a solution of the system of equations

0 = x+ y,
0 = (1− x)(1 + x)2,

which arises by factoring the second equation. Follow the method in Exercise
7 to solve for

(x, y) = (1,−1), (−1, 1)

18. (Grid Points) Draw a 5 × 5 grid on the graph window |x| ≤ 2, |y| ≤ 2.
Label the equilibria.

19. (Direction Field) Draw direction field arrows on the 5 × 5 grid of the
previous exercise. They coincide with the tangent direction v⃗ = x′⃗ı+ y′ȷ⃗ =
(x + y)⃗ı + (1 − x2)ȷ⃗, where (x, y) is the grid point. The arrows may not
touch.

Solution: Expected is a plot made on paper using graph paper or similar.
There should be 5 lines of 5 grid points, a uniform grid. The arrows have
tail or midpoint at a grid point and head pointing in the direction of the
tangent vector v⃗ . The arrow length is by trial and error. The result should
look like the figure below.

# Exercise 19, Direction field

de1:=diff(x(t),t)=x(t)+y(t);

de2:=diff(y(t),t)=1-x(t)*x(t);

trange:=t=-10..10:xrange:=x=-2..2:yrange:=y=-2..2:

vars:=[x(t),y(t)];opts1:=trange,xrange,yrange:

opts2:=arrows=large,color=cyan,dirfield=[5,5]:

DEtools[dfieldplot]([de1,de2],vars,opts1,opts2);
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20. (Threaded Orbits) On the direction field of the previous exercise, draw
orbits (threaded solution curves), using the rules:

1. Orbits don’t cross.

2. Orbits pass direction field arrows with nearly matching tangent.

Phase Plot by Computer. Use a computer algebra system or a numerical
workbench to produce phase portraits for the given dynamical system. A graph
window should contain all equilibria.

21. (Rabbit-Fox System I)

x′ =
1

200
x(30− y),

y′ =
1

100
y(x− 40).

Solution:

The solution uses maple. Instructions:

To open the Phase portrait task, click Tools => Tasks menu =>
Browse, then Differential Equations => ODEs => Phase por-
trait - Autonomous Systems. Click on Insert Minimal Con-
tent, which inserts the template into the worksheet. For safety, save
the WorkSheet as soon as the template loads.

There are input boxes to fill. Careful: any click error or keyboard
error may destroy the template, resulting in all data and images lost.
The most common error is the RETURN key. Don’t use it. If an
error stops you then the only alternative is to exit maple, start again
and load the WorkSheet saved earlier. Do not save a worksheet that
has a template error!
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To begin a new example, click button Erase Data. Use a mouse
click to start filling a data box, then Backspace and Delete keys for
correction. It is OK to copy text from an editor and paste it.

After all data is entered, then click button Enter Data. To add
threaded curves to the plot, click on the plot where you want the
curve to start. If no action, then right-click on the plot to bring up
the Plot Menu. In the menu select Manipulator => Click and
Drag. Then try clicking on the plot to generate a threaded curve.

# Exercise 21, Rabbit-Fox System I

# Launch Task: Phase portrait - Autonomous Systems

# Save the task (ctrl-S).

# Click button: Erase Data

# Keyboard data into 5 text boxes

Box 1: x: 0 to 80, y: 0 to 80

Box 2: (1/200)*x*(30-y)

Box 3: (1/100)*y*(x-40)

Box 4: [0, 0], [40, 30]

Box 5: t: -10 to 20

# Click button: Enter Data

# Click image: Thread a solution curve

22. (Rabbit-Fox System II)

x′ =
1

100
x(50− y),

y′ =
1

200
y(x− 40).

Solution:
# Exercise 22, Rabbit-Fox System II

# Tools => Task: Phase portrait - Autonomous Systems

# Save the task (ctrl-S).

# Click button: Erase Data

# Keyboard data into 5 text boxes

Box 1: x: 0 to 60, y: 0 to 80

Box 2: (1/100)*x*(50-y)

Box 3: (1/200)*y*(x-40)

Box 4: [0, 0], [40, 50]

Box 5: t: -10 to 20

# Click button: Enter Data

# Click image: Thread a solution curve

23. (Trout System I)

x′(t) = x(−2x− y + 180),
y′(t) = y(−x− 2y + 120).
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Solution:
The solution uses maple. Follow instructions in Exercise 21.

# Exercise 23, Trout System

# Launch Task: Phase portrait - Autonomous Systems

# Save the task (ctrl-S).

# Click button: Erase Data

# Keyboard data into 5 text boxes

Box 1: x: 0 to 110, y: 0 to 80

Box 2: x*(-2*x-y+180)

Box 3: y*(-x-2*y+120)

Box 4: [0, 0], [0,60], [90,0], [80, 20]

Box 5: t: -10 to 20

# Click button: Enter Data

# Click image: Thread a solution curve

24. (Trout System II)

x′(t) = x(−2x− y + 200),
y′(t) = y(−x− 2y + 120).

Stability Conditions. Consider equilibrium point (0, 0) and nearby solution
curves x(t), y(t) with (x(0), y(0)) near (0, 0).

25. (Instability: Repeller) Prove: If for every δ > 0 there is one solution with
|x(0)2 + y(0)2| < δ2 such that limt→∞ |x(t)| + |y(t)| = ∞ then equilibrium
(0, 0) is unstable.

Solution: Let ϵ > 0. Consider a disk D = {(x, y) : x2 + y2 < ϵ2}. Stability
means that for all δ > 0, with δ < ϵ, a solution with

√
x(0)2 + y(0)2 < δ

is required to satisfy
√
x(t)2 + y(t)2 < ϵ, i.e., the solution remains in D for

588



10.1 Planar Autonomous Systems

t ≥ 0. Limit condition limt→∞ |x(t)| + |y(t)| = ∞ causes this requirement
to fail. Therefore, equilibrium (0, 0) is unstable. ■

26. (Stability: Attractor) Prove that x′(t) < 0 and y′(t) < 0 for all nearby
solutions implies stability at (0, 0), but not asymptotic stability.

Solution: Hint: Look at the geometry.

27. (Instability in x) Prove that limt→∞ |x(t)| = ∞ implies instability at (0, 0).

Solution: Then limt→∞ |x(t)|+ |y(t)| = ∞, Apply Exercise 25.

28. (Instability in y) Prove that limt→∞ |y(t)| = ∞ implies instability at (0, 0).

Geometric Stability.

29. (Attractor) Imagine a dust particle in a fluid draining down a funnel, whose
trace is a space curve. Assume fluid drains at x = 0, y = 0 and the funnel
centerline is along the z-axis. Project the space curve onto the xy-plane. Is
this planar orbit stable at (0, 0) in the sense of the definition?

Solution: Maybe yes, maybe no. Exercise 25 requires limt→∞ |x(t)|+|y(t)| =
0. That may not happen, due to gravity effects altering the path of the dust
particle. What does happen: the dust particle moves closer to (0, 0) as
t → ∞. Layman conclusion: stable.

30. (Repeller) Imagine a paint droplet from a paint spray can, pointed down-
ward, which traces a space curve. Project the space curve onto the xy-plane
orthogonal to the spray nozzle direction, centerline along the z-axis. Is this
planar orbit stable at (0, 0) in the sense of the definition?

Solution: Maybe yes, maybe no. Tracing the droplet to t = ∞ reveals a
path that moves away from the centerline (z-axis). Gravity effects may
keep the xy-plane projected droplet near (0, 0), which means a test like
limt→∞ |x(t)| = ∞ or limt→∞ |y(t)| = ∞ can fail. The key issue is the path
of a droplet from near the center of the nozzle: it likely follows the z-axis
due to gravity effects. Layman conclusion: undecided.

Geometric Stability: Phase Portrait.

31. (Rabbit–Fox I Stability) Plot a phase portrait for system

x′ =
1

200
x(30− y),

y′ =
1

100
y(x− 40).
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Provide geometric evidence for stability of equilibrium x = 40, y = 30.

Solution: The figure in Exercise 21 shows stability but not asymptotic sta-
bility. In this chapter see the discussions of center and spiral. Theorems
later in the chapter allow from calculus calculations a prediction of center
or spiral, either stable or unstable. Conclusion: the phase portrait really
helps to classify stability at an equilibrium.

32. (Rabbit–Fox II Instability) Plot a phase portrait for system

x′ =
1

100
x(50− y),

y′ =
1

200
y(x− 40).

Provide geometric evidence for instability of equilibrium x = 0, y = 0 and
stability of equilibrium x = 40, y = 50.

Solution: See Exercise 22.
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10.2 Planar Constant Linear Systems

Planar Constant Linear Systems

1. (Picard’s Theorem) Explain why planar solutions don’t cross, by appeal
to Picard’s existence-uniqueness theorem for d

dt u⃗=Au⃗.

Solution: Function u⃗ → Au⃗ is continuously differentiable for all u⃗ . Picard-
Lindelöf applies: solutions to initial value problems are locally unique.

If two solutions u⃗1 and u⃗2 cross or touch then there are times t1 and t2 such

that u⃗1(t1) = u⃗2(t2) =

(
x0
y0

)
. Define v⃗ 1(t) = u⃗1(t+t1), v⃗ 2(t) = u⃗2(t+t2).

Then v⃗ ′
1 = Av⃗ 1, v⃗

′
2 = Av⃗ 2 and v⃗ 1(0) = v⃗ 2(0) =

(
x0
y0

)
. Picard’s theorem

says v⃗ 1(t) = v⃗ 2(t) which implies that trajectories u⃗1 and u⃗2 coalesce locally
near the contact point. To cross means the curves don’t coalesce at the
contact point. ■

2. (Equilibria) System du⃗
dt = Au⃗ always has solution u⃗(t) = 0⃗, so there is

always one equilibrium point. Give an example of a matrix A for which
there are infinitely many equilibria.

Putzer’s Formula

3. (Cayley-Hamilton) Define matrices I⃗ =

(
1 0
0 1

)
, 0⃗ =

(
0 0
0 0

)
. Given matrix

A =

(
a b
c d

)
, expand left and right sides to verify the Cayley-Hamilton

identity
A2−(a+ d)A+ (ad−bc)⃗I = 0⃗ .

Solution: Expand LHS:

LHS = A2−(a+ d)A+ (ad−bc)⃗I

=

(
a b
c d

)(
a b
c d

)
− (c+ d)

(
a b
c d

)
+ (ad− bc)

(
1 0
0 1

)
=

(
a2 − (a+ d) a+ ad ab+ bd− (a+ d) b
ca+ dc− (a+ d) c d2 − (a+ d) d+ ad

)
=

(
0 0
0 0

)
# Exercise 3, Cayley-Hamilton

A:=<a,b|c,d>^+;

LHS:=A^2-(a+d)*A+(a*d-b*c)*<1,0|0,1>;

simplify(LHS);
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4. (Complex Roots) Verify the Putzer solution u⃗ = Φ(t)u⃗(0) of u⃗′ = Au⃗ for
complex roots λ1 = λ2 = a+ bi, b > 0, where Φ(t) is

eat
(
cos(bt) I + (A− aI)

sin(bt)

b

)
.

5. (Distinct Eigenvalues) Solve

du⃗

dt
=

(
−1 1
0 2

)
u⃗.

Solution: Let’s apply Theorem 10.2 page 767 �. The real eigenvalues of

A =

(
−1 1
0 2

)
are λ1 = −1, λ2 = 2. Then

Φ(t) = eλ1t I +
eλ2t − eλ1t

λ2 − λ1
(A− λ1I)

= e−t I +
e2t − e−t

2− (−1)
(A+ I)

= e−t

(
1 0
0 1

)
+

e2t − e−t

3

(
0 1
0 3

)
=

(
e−t 0
0 e−t

)
+

e2t − e−t

3

(
0 1
0 3

)
=

(
e−t 1

3 (e
2t − e−t)

0 e2t

)
6. (Real Equal Eigenvalues) Solve

du⃗

dt
=

(
6 −4
4 −2

)
u⃗.

7. (Complex Eigenvalues) Solve

du⃗

dt
=

(
2 3

−3 2

)
u⃗.

Solution: Let’s apply Theorem 10.2 page 767 �. The complex eigenvalues

of A =

(
2 3

−3 2

)
are 2± 3i. Let a = 2, b = 3. Then

Φ(t) = eat
(
cos(bt) I + (A− aI)

sin(bt)

b

)
= e2t

(
cos(3t) I + (A− 2I)

sin(3t)

3

)
592

https://math.utah.edu/~gustafso/debook/chapters/10.pdf#page=768
https://math.utah.edu/~gustafso/debook/chapters/10.pdf#page=768


10.2 Planar Constant Linear Systems

= e2t
(
cos(3t)

(
1 0
0 1

)
+

(
2− 2 3
−3 2− 2

)
sin(3t)

3

)
= e2t

((
cos(3t) 0

0 cos(3t)

)
+

(
0 sin(3t)

− sin(3t) 0

))
= e2t

(
cos(3t) sin(3t)
− sin(3t) cos(3t)

)
8. (Purely Complex Eigenvalues) Solve

du⃗

dt
=

(
0 3

−3 0

)
u⃗.

Solution: Eigenvalues are ±3i. Then

Φ(t) =

(
cos(3t) sin(3t)
− sin(3t) cos(3t)

)
by details in Exercise 7.

Continuity and Redundancy

9. (Real Equal Eigenvalues) Show that limiting λ2 → λ1 in the Putzer for-
mula for distinct eigenvalues gives Putzer’s formula for real equal eigenval-
ues.

Solution: Limiting λ2 → λ1 is done on the formula

Φ(t) = eλ1t I +
eλ2t − eλ1t

λ2 − λ1
(A− λ1I)

Quotient Q =
eλ2t − eλ1t

λ2 − λ1
can be written as

Q =
f(x0 + h)− f(x0)

h
, where f(x) = ext, x0 = λ1 and h = λ2 − λ1

Then Q is a Newton quotient for f ′(x0). Because f is differentiable with
f ′(x) = t ext then limh→0 Q = f ′(x0) = t ex0t = teλ1t

These details prove:

limλ2→λ1
Φ(t) = eλ1t I + limλ2→λ1

eλ2t − eλ1t

λ2 − λ1
(A− λ1I)

= eλ1t I + (limh→0 Q) (A− λ1I)

= eλ1t I + t eλ1t (A− λ1I)

10. (Complex Eigenvalues) Assume λ1 = λ2 = a + ib with b > 0. Then
Putzer’s first formula holds. Show the third formula details for Φ(t):

eat
(
cos(bt) I + (A− aI)

sin(bt)

b

)
.
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Illustrations

11. (Distinct Eigenvalues) Show the details for the solution of

du⃗

dt
=

(
−1 3
−6 8

)
u⃗.

Solution: Let’s apply to A =

(
−1 3
−6 8

)
the Putzer formula for distinct

eigenvalues λ1 = 5, λ2 = 2.

Φ(t) = eλ1t I +
eλ2t − eλ1t

λ2 − λ1
(A− λ1I)

= e5t I +
e5t − e2t

5− 2
(A− 5I)

= e5t
(

1 0
0 1

)
+

e5t − e2t

3

(
−6 3
−6 3

)
Then u⃗ (t) = Φ(t)u⃗ (0), verifying the illustration answer. Let’s continue to
simplify the answer:

Φ(t) = e5t
(

1 0
0 1

)
+

e5t − e2t

1

(
−2 1
−2 1

)
=

(
e5t 0
0 e5t

)
+

(
−2e5t + 2e2t e5t − e2t

−2e5t + 2e2t e5t − e2t

)
=

(
−e5t + 2e2t e5t − e2t

−2e5t + 2e2t 2e5t − e2t

)
# Exercise 11, Illustrations: distinct eigenvalues, Ans Check

A:=<-1,3|-6,8>^+;

MatrixExponential(A,t);

# Matrix([[2*exp(2*t)-exp(5*t), exp(5*t)-exp(2*t)],

# [-2*exp(5*t)+2*exp(2*t), -exp(2*t)+2*exp(5*t)]]);

12. (Complex Eigenvalues) Show the details for the solution of

du⃗

dt
=

(
2 5

−5 2

)
u⃗.

Isolated Equilibria

13. (Determinant Expansion) Verify that |A− λI| equals

λ2 − (λ1 + λ2)λ+ λ1λ2.
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Solution: Because |A+ xI| is a quadratic polynomial with roots r1, r2 then
|A+ xI| = (x− r1)(x− r2). Then

|A− λI| = |A+ xI| |x=−λ

= (−λ− λ1)(−λ− λ2)

= λ2 − (λ1 + λ2)λ+ λ1λ2

14. (Infinitely Many Equilibria) Explain why Au⃗ = 0⃗ has infinitely many
solutions when det(A) = 0.

Classification of Equilibria

15. (Rotating Figures) When sines and cosines appear in the Euler atoms,
the phase portrait at (0, 0) rotates around the origin. Explain precisely why
this is true.

Solution: Sines and cosines appear because of complex eigenvalues a ± bi
with b > 0. The phase portrait is realized as a choice of several (x0, y0)
initial conditions, from which threaded solution curves are added to the
portrait.

Matrix A satisfies AP = PD whereD =

(
a b

−b a

)
is formed from the complex

eigenvalues a ± bi. Geometrically, matrix D is a rotation matrix. Matrix
P is invertible and real: it is a change of coordinates. The columns of P
are the real and imaginary parts of an eigenvector v⃗ of A. A threaded
curve (x(t), y(t)) starting at (x0, y0) has a simpler expression in terms of the
coordinate system (X,Y ) defined by the columns of P .(

x(t)
y(t)

)
= P

(
X(t)
Y (t)

)
,

(
X0

Y0

)
= P−1

(
x0

y0

)
,

(
X(t)
Y (t)

)
= eat

(
cos bt sin bt

− sin bt cos bt

)(
X0

Y0

)
Choosing a starting point (x0, y0) amounts to choosing (X0, Y0). The impact
of factor eat is scaling, nothing to do with rotation. Matrix factor Ψ(t) =(

cos bt sin bt
− sin bt cos bt

)
for fixed t is itself a rotation matrix. Then

(
X(t)
Y (t)

)
= eatΨ(t)

(
X0

Y0

)
is rotation Ψ(t) followed by scaling eatI.

There are five values of t that provide the most insight about rotation of the
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threaded curves. They are bt = 0, π/2, π, 3π/2, 2π. Then the five rotation
matrices Ψ(t) are

R1=

(
1 0
0 1

)
, R2=

(
0 1

−1 0

)
, R3=

(
−1 0
0 −1

)
, R4=

(
0 −1
1 0

)
, R5=

(
1 0
0 1

)
Let’s ignore the scale factor eat for the moment and examine the position

of initial point v⃗ =

(
X0

Y0

)
at the five times. For the discussion, assume

v⃗ is in quadrant I, both coordinates positive. At t = 0 and t = 2π/b, point

v⃗ is multiplied by R1 = R5 = I: the point is stationary. At t =
π

2b
the

geometric result is

v⃗ 1 =

(
X
Y

)
= R1

(
X0

Y0

)
=

(
Y0

−X0

)
which is a 90 degree counter-clockwise rotation of v⃗ . Target v⃗ 1 is in quad-
rant II.

The analysis continues with rotation matrices R2, R3 resulting in vectors
v⃗ 2, v⃗ 3 having the same length as v⃗ , each a 90 degree counter-clockwise ro-
tation. Target v⃗ 2 is in quadrant III and target v⃗ 3 is in quadrant IV.

The snapshot analysis of vector v⃗ rotation at the five times from quad-
rant I counter-clockwise through the four quadrants is the rotation evidence
sought. ■

16. (Non-Rotating Figures) When sines and cosines do not appear in the
Euler atoms, the phase portrait at (0, 0) has no rotation. Give a precise
explanation.

Attractor and Repeller

17. (Classification) Which of spiral, center, saddle, node can be an attractor
or a repeller?

Solution: Spiral and node.

18. (Attractor) Prove that (0, 0) is an attractor if and only if the Euler atoms
have limit zero at t = ∞.

19. (Repeller) Prove that (0, 0) is a repeller if and only if the Euler atoms have
limit zero at t = −∞.

Solution: Definition: A repeller is an equilibrium point (x0, y0) such that
all nearby solutions limit to (x0, y0) as t tends to negative infinity.
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A solution v⃗ (t) =

(
x(t)
y(t)

)
of v⃗ ′ = Av⃗ can be written in terms of the Euler

atoms A1, A2 as v⃗ =

(
c1 c2
d1 d2

)(
A1

A2

)
for some constants a1, a2, b2, b2. Let

B =

(
c1 c2
d1 d2

)
. Then v⃗ = B

(
A1

A2

)
is a solution of v⃗ ′ = Av⃗ for any constant

matrix B.

Assume the origin is a repeller.
To prove: the Euler atoms have limit zero at t = −∞. Choose matrix

B = I. Then v⃗ = B

(
A1

A2

)
=

(
A1

A2

)
has limit zero at t = −∞. This proves

the Euler atoms have limit zero at t = −∞.

Assume the Euler atoms have limit zero at t = −∞.
To prove: the origin is a repeller, i.e., the limit of any nearby solution

v⃗ = B

(
A1

A2

)
is zero at t = −∞. Because B is a constant matrix then

lim
t=−∞

v⃗ (t) = B lim
t=−∞

(
A1

A2

)
= B

(
0
0

)
= 0⃗

■

20. (Center) A center is neither an attractor nor a repeller. Explain, using
Euler atoms.

Phase Portrait Linear
Show the classification details for spiral, center, saddle, proper node, improper
node. Include for saddle and node a drawing which shows eigenvector directions.
Notation: ′ = d

dt .

21. (Spiral)

x′ = 2x+ 3y,
y′ = −3x+ 2y.

Solution: Eigenvalues 2π3i, atoms e2t cos 3t, e2t sin 3t. Sines and cosines
are present and also scale factor e2t. It is a rotating figure. It is a center
or spiral. Center eliminated by the scale factor, which limits to infinity at
t = ∞. It is an unstable spiral.

22. (Center)

x′ = 3y,
y′ = −3x.

Solution: Purely complex eigenvalues ±3i with atoms cos 3t, sin 3t. It is a
rotating figure, center or spiral. No exponential scale factor in the atoms
implies it is a center.
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23. (Saddle)

x′ = 3x,
y′ = −5y.

Solution: Eigenvector directions are

(
1
0

)
and

(
0
1

)
. A solution u⃗ of u⃗ ′ = Au⃗

can be expanded as u⃗ = c1v⃗ 1e
λ1t + c2v⃗ 2e

λ2t = c1

(
1
0

)
e2t + c2

(
0
1

)
e−5t.

The eigenpairs λ1, v⃗ 1), λ2, v⃗ 2) determine the asymptotes of the phase por-
trait as t → ∞ or t → −∞. This is because an exponential with negative
exponent λt limits to zero. In this example, the asymptote at t = ∞ is

along v⃗ 1 =

(
1
0

)
: the x-axis. Eigenvectors do not have to be orthogonal,

therefore do not expect asymptote directions to be orthogonal.

The eigenvalues of A =

(
3 0
0 −5

)
are 3. − 5. The Euler atoms are e3t, e−5t.

No sines or cosines so it is a non-rotating phase portrait: saddle or node.
Because one atom limits to infinity as t → ∞ and the other limits to minus
infinity it must be a saddle. Reminder: Atoms are formed from the eigen-
values by strict rules: leading coefficient 1, zero is not an atom.

The test for a saddle or node:

L1 = limt=∞ (Atom 1), L2 = limt=∞ (Atom 2)
Extended limit values of ±∞ allowed.

Saddle: L1 ̸= L2.
If you trace a threaded curve in the phase portrait then x → 0, y → ±∞ or
y → 0, x → ±∞. The phase portrait asymptotes are eigenvector directions.

Node: L1 = L2.
If you trace a threaded curve in the phase portrait then limx = lim y = 0
at t = ∞ or at t = −∞. An asymptote except for a star node follows an
eigenvector in the phase portrait.

24. (Proper Node)

x′ = 2x,
y′ = 2y.

Solution: Atoms are e2t, te2t. This is a star node. There are no asymptotes
to report.

25. (Improper Node: Degenerate)

x′ = 2x+ y,
y′ = 2y.
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Solution: Repeated eigenvalue 2 produces atoms e2t, te2t. No sines or cosines
means it is a non-rotating figure: saddle or node. Find limits L1, L2 of the
two atoms. Then L1 = L2 so it is a node.

Degenerate means equal eigenvalues but only one real eigenvector.

Asymptotes are not found like in Exercise 23 because there is only one

eigenvector v⃗ 1 =

(
1
0

)
. The solution can be written

(
x
y

)
=

(
c1

(
1
0

)
+ c2

(
t
1

))
e2t

The solution follows

(
1
0

)
when c2 = 0. This is the asymptote direction,

which is the eigenvector v⃗ 1 found for λ = 2.

26. (Improper Node: λ1 ̸= λ2)

x′ = 2x+ y,
y′ = 3y.

Solution: Eigenvalues 2, 3. Atoms e2t, e3t with equal limits L1, L2 at in-
finity. No sines and cosines means a non-rotating figure: node or saddle.
Equal limits L1 = L2 eliminates the saddle: it is a node.

An improper node is distinguished from a proper node and a degen-
erate node by having distinct eigenvalues. The classification terminology
has only limited use in the literature: all are called nodes, ignoring the del-
icate distinctions. Degenerate means equal eigenvalues but only one real
eigenvector.

Asymptotes are found found using ideas in Exercise 23. The eigenpairs are

(2, v⃗ 1), (3, v⃗ 2) where v⃗ 1 =

(
1
1

)
, v⃗ 2 =

(
1
0

)
. The solution can be written

(
x
y

)
=

(
c1

(
1
1

)
e−t + c2

(
1
0

))
e3t

The solution follows v⃗ 2 =

(
1
0

)
because of the decay factor e−t. The asymp-

tote direction is eigenvector v⃗ 2 found for λ = 3, the larger eigenvalue.
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10.3 Planar Almost Linear Systems

Almost Linear Systems. Find all equilibria (x0, y0) of the given nonlinear
system. Then compute the Jacobian matrix A = J(x0, y0) for each equilibria.

1. (Spiral and Saddle)
d
dtx = x+ 2y,
d
dty = 1− x2.

Solution: Jacobian J(x, y) =

(
1 2

−2x 0

)
.

Unstable spiral at (1,−1/2), J(1,−1/2) =

(
1 2

−2 0

)
.

Unstable saddle at (−1, 1/2), J(−1, 1/2) =

(
1 2
2 0

)
.

# Exercise 1, Spiral and Saddle

f:=(x,y)->x+2*y;g:=(x,y)->1-x^2;

p:=solve({f(x,y)=0,g(x,y)=0},{x,y});

# p = {x = 1, y = -1/2}, {x = -1, y = 1/2}

J:=(a,b)->Student[MultivariateCalculus][Jacobian]

([f(x,y),g(x,y)],[x,y]=[a,b]);

A1:=subs(p[1],J(x,y));Eigenvectors(A1);# unstable spiral

A2:=subs(p[2],J(x,y));Eigenvectors(A2);# unstable saddle

2. (Two Improper Nodes, Spiral)

d
dtx = x− 3y + 2xy,
d
dty = 4x− 6y − xy − x2.

Solution:

J(x, y) =

(
2y + 1 2x− 3

−2x− y + 4 −x− 6

)
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# Exercise 2, Two Improper Nodes, Spiral

f:=(x,y)->x-3*y+2*x*y;g:=(x,y)->4*x-6*y-x*y-x^2;

q:=solve({f(x,y)=0,g(x,y)=0},{x,y});

# q := {x=0, y=0},

# {x=RootOf(_Z^2-6*_Z+3), y=-(1/5)*RootOf(_Z^2-6*_Z+3)+2/5}

r:=[allvalues(RootOf(_Z^2-6*_Z+3))];

# r = 3-sqrt(6), 3+sqrt(6)

p:=[ {x=0,y=0}, {x=r[1], y=-(1/5)*r[1]},

{x=r[2], y=-(1/5)*r[2] }] ;

J:=(a,b)->Student[MultivariateCalculus][Jacobian]

([f(x,y),g(x,y)],[x,y]=[a,b]);

J(x,y);

A1:=subs(p[1],J(x,y));Eigenvectors(A1);# stable improper node

A2:=subs(p[2],J(x,y));Eigenvectors(A2);# stable improper node

A3:=subs(p[3],J(x,y));Eigenvectors(A3);# stable spiral

3. (Proper Node, Saddle)

d
dtx = 3x− 2y − x2 − y2,
d
dty = 2x− y.

Solution:

Jacobian J(x, y) =

(
−2x+ 3 −2y − 2

2 −1

)
Equilibria at x = 0, y = 0 and x = −1/5, y = −2/5.

J(0, 0) =

(
3 −2
2 −1

)
, unstable star node (a proper node)

J(−1/5,−2/5) =

(
17/5 −6/5

2 −1

)
, unstable saddle

# Exercise 3, Spiral, Saddle

f:=(x,y)->3*x-2*y-x^2-y^2;g:=(x,y)->2*x-y;

p:=solve({f(x,y)=0,g(x,y)=0},{x,y});

# p : {x = 0, y = 0}, {x = -1/5, y = -2/5}

J:=(a,b)->Student[MultivariateCalculus][Jacobian]

([f(x,y),g(x,y)],[x,y]=[a,b]);

A1:=subs(p[1],J(x,y));Eigenvectors(A1);# unstable spiral

A2:=subs(p[2],J(x,y));Eigenvectors(A2);# unstable saddle

4. (Center and Three Saddles)

d
dtx = x− y + x2 − y2,
d
dty = 2x− y − xy.
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Solution: J(x, y) =

(
2x+ 1 −1− 2y
−y + 2 −x− 1

)
# Exercise 4, Center and Three Saddles

f:=(x,y)->x-y+x^2-y^2;g:=(x,y)->2*x-y-x*y;

p:=solve({f(x,y)=0,g(x,y)=0},{x,y});

# p := {x = 0, y = 0}, {x = 1, y = 1},

# {x = -1-RootOf(_Z^2-2*_Z-2), y = RootOf(_Z^2-2*_Z-2)}

r:=allvalues(RootOf(_Z^2-2*_Z-2));

p:=[{x = 0, y = 0}, {x = 1, y = 1}, {x = -1-r[1], y = r[1]},

{x = -1-r[2], y = r[2]}];

J:=(a,b)->Student[MultivariateCalculus][Jacobian]

([f(x,y),g(x,y)],[x,y]=[a,b]);

A1:=subs(p[1],J(x,y));Eigenvectors(A1);# stable center

A2:=subs(p[2],J(x,y));Eigenvectors(A2);# unstable saddle

A3:=subs(p[3],J(x,y));Eigenvectors(A3);# unstable saddle

A4:=subs(p[4],J(x,y));Eigenvectors(A4);# unstable saddle

5. (Proper Node and Three Saddles)

d
dtx = x− y + x2 − y2,
d
dty = y − xy.

Solution: Jacobian J(x, y) =

(
2x+ 1 −1− 2y

−y −x+ 1

)
.

Equilibria:
x = 0, y = 0, x = −1, y = 0, x = 1, y = −2, x = 1, y = 1

Jacobians in order:(
1 −1
0 1

)
,

(
−1 −1
0 2

)
,

(
3 3
2 0

)
,

(
3 −3

−1 0

)
.

# Exercise 5, Proper Node and Three Saddles

f:=(x,y)->x-y+x^2-y^2;g:=(x,y)->y-x*y;

p:=[solve({f(x,y)=0,g(x,y)=0},{x,y})];

# p := [ {x=0, y=0}, {x=-1, y=0}, {x=1, y=-2}, {x=1, y=1} ]

J:=(a,b)->Student[MultivariateCalculus][Jacobian]

([f(x,y),g(x,y)],[x,y]=[a,b]);

A1:=subs(p[1],J(x,y));Eigenvectors(A1);# star node

A2:=subs(p[2],J(x,y));Eigenvectors(A2);# unstable saddle

A3:=subs(p[3],J(x,y));Eigenvectors(A3);# unstable saddle

A4:=subs(p[4],J(x,y));Eigenvectors(A4);# unstable saddle

6. (Degenerate Node, Spiral and Two Saddles)

d
dtx = x− y + x3 + y3,
d
dty = y + 3xy.
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Solution: Jacobian J(x, y) =

(
3x2 + 1 3y2 − 1

3y 3x+ 1

)
# Exercise 6, Degenerate Node, Spiral and Two Saddles

f:=(x,y)->x-y+x^3+y^3;g:=(x,y)->y+3*x*y;

p:=[solve({f(x,y)=0,g(x,y)=0},{x,y})];# Ignore RootOf(_Z^2+1)

r:=[allvalues(RootOf(_Z^2-2*_Z-5))];

p := [{x=0, y=0}, {x=-1/3, y=-2/3}, {x=-1/3, y=(1/3)*r[1]},

{x=-1/3, y=(1/3)*r[2]}];

# p := [{x=0, y=0}, {x=-1/3, y=-2/3},

# {x=-1/3, y=1/3+(1/3)*sqrt(6)},

# {x=-1/3, y=1/3-(1/3)*sqrt(6)}]

J:=(a,b)->Student[MultivariateCalculus][Jacobian]

([f(x,y),g(x,y)],[x,y]=[a,b]);

A1:=subs(p[1],J(x,y));Eigenvectors(A1);# degenerate node

A2:=subs(p[2],J(x,y));Eigenvectors(A2);# unstable spiral

A3:=subs(p[3],J(x,y));Eigenvectors(A3);# unstable saddle

A4:=subs(p[4],J(x,y));Eigenvectors(A4);# unstable saddle

7. (Improper Node, Saddle)

d
dtx = x− y + x3,
d
dty = 2y + 3xy.

Solution: Jacobian J(x, y) =

(
3x2 + 1 −1

3y 3x+ 2

)
Equilibria: x = 0, y = 0, x = −2/3, y = −26/27

Jacobians in order:(
1 −1
0 2

)
,

(
7/3 −1

−26/9 0

)
# Exercise 7, Improper Node, Saddle

f:=(x,y)->x-y+x^3;g:=(x,y)->2*y+3*x*y;

p:=[solve({f(x,y)=0,g(x,y)=0},{x,y})];# Ignore RootOf(_Z^2+1)

p := [{x = 0, y = 0}, {x = -2/3, y = -26/27}];

J:=(a,b)->Student[MultivariateCalculus][Jacobian]

([f(x,y),g(x,y)],[x,y]=[a,b]);

A1:=subs(p[1],J(x,y));Eigenvectors(A1);# improper node

A2:=subs(p[2],J(x,y));Eigenvectors(A2);# unstable saddle

8. (Proper Node and a Saddle)

d
dtx = 2x+ y3,
d
dty = 2y + 3xy.
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Solution: Jacobian J(x, y) =

(
2x+ 1 −1− 2y

−y −x+ 1

)
# Exercise 8, Proper Node and a Saddle

p:=[solve({f(x,y)=0,g(x,y)=0},{x,y})];

restPointClassify:=proc(valueSet)# arg = {x=a,y=b}

global f,g; local J,A,Lambda,P,jacobian,L;

with(LinearAlgebra):L:=subs(valueSet,[x,y]);

jacobian:=Student[MultivariateCalculus][Jacobian]:

J:=LL->jacobian([f(x,y),g(x,y)],[x,y]=LL);

A:=J(L);Lambda,P:=Eigenvectors(A);

RETURN (A,Lambda,evalf(Lambda),P,evalf(P));

end proc:

fmt:="%a: A,Lambda,evalf(Lambda),P,evalf(P)\n":

for i from 1 to nops(p)

do printf(fmt,p[i]); restPointClassify(p[i]); od;

Phase Portrait Almost Linear. Linear library phase portraits can be locally
pasted atop the equilibria of an almost linear system, with limitations. Apply
the theory for the following examples. Complete the phase diagram by com-
puter, thereby resolving the possible mutation of a center or node into a spiral.
Label eigenvector directions where it makes sense.

9. (Center and Three Saddles)

d
dtx = x− y + x2 − y2,
d
dty = 2x− y − xy.

Solution:
Equilibria:
x = 0, y = 0, x = 1, y = 1.0,
x = −3.73, y = 2.73, x = −.2679, y = −.732

Eigenvalue pairs:
[I,-I], [2.3,-1.3], [3.2,-6.95], [1.14,-1.41]

Jacobian J(x, y) =

(
2x+ 1 −1− 2y
−y + 2 −x− 1

)
xy-Window: −5 < t < 2, −1 < y < 3.5

WolframAlpha offers a free online phase plane plotter. It is basic without
enough features to be confusing and limited in what it can display. For
Exercise 9 the graph window has to be limited to a region around one
equilibrium in order to show adequate detail. At the online Wolfram site
below, search for string phase plane:

https://www.wolframalpha.com/widgets/gallery/?category=math

604

https://www.wolframalpha.com/widgets/gallery/?category=math


10.3 Planar Almost Linear Systems

The phase plot in maple is a challenge due to proximity of the equilibria.
The maple phase portrait task needed a resolution change to 800x800 from
the default 400x400. Changes were made to line width. The graph window
was first estimated then corrected by trial and error. Changing the graph
window to focus on three of the four equilibria made it possible to see most
details. There was no facility to add z separatrix to saddles and nodes. To
do that, print the graphic on paper and draw the lines by hand.
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# Exercise 9, Center and Three Saddles

f:=(x,y)->x-y+x^2-y^2;g:=(x,y)->2*x-y-x*y;

p:=[solve({f(x,y)=0,g(x,y)=0},{x,y})];

r:=allvalues(RootOf(_Z^2-2*_Z-2));

p := [{x = 0, y = 0}, {x = 1, y = 1},

{x = -1-r[1], y = r[1]}, {x = -1-r[2], y = r[2]}];

# p := [{x = 0, y = 0}, {x = 1, y = 1},

# {x=-2-sqrt(3), y=1+sqrt(3)}, {x=-2+sqrt(3), y=1-sqrt(3)}]

restPointClassify:=proc(valueSet)# arg = {x=a,y=b}

global f,g; local J,A,Lambda,P,jacobian,L;

with(LinearAlgebra):L:=subs(valueSet,[x,y]);

jacobian:=Student[MultivariateCalculus][Jacobian]:

J:=LL->jacobian([f(x,y),g(x,y)],[x,y]=LL);

A:=J(L);Lambda,P:=Eigenvectors(A);

RETURN (A,Lambda,evalf(Lambda),P,evalf(P));

end proc:

fmt:="%a: A,Lambda,evalf(Lambda),P,evalf(P)\n":

for i from 1 to nops(p)

do printf(fmt,p[i]); restPointClassify(p[i]); od;

# center, three saddles

10. (Degenerate Node, Three Saddles)

d
dtx = x− y + x2 − y2,
d
dty = y − xy.

11. (Degenerate Node, Spiral, Two Saddles)

d
dtx = x− y + x3 + y3,
d
dty = y + 3xy.

Solution: Jacobian J(x, y) =

(
3x2 + 1 3y2 − 1

3y 3x+ 1

)
Equilibria:
x = 0, y = 0, x = −0.33, y = −0.667, x = −0.33, y = 1.15,
x = −0.33, y = −0.48

For maple: [0,0], [-.33,-.667], [-.33,1.15], [-.33,-.48]

xy-Window: −0.6 < x < 0.2, −0.8 < y < 1.5

The graphic obtained from the Phase Portrait Task in maple lacks impor-
tant detail near equilibria. One fix is to make 4 plots, each focused on an
equilibrium. Then plot on a full size window to show the global behavior.
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# Exercise 11, Degenerate Node, Spiral, Two Saddles

f:=(x,y)->x-y+x^3+y^3;g:=(x,y)->y+3*x*y;

p:=[solve({f(x,y)=0,g(x,y)=0},{x,y})];

r:=allvalues(RootOf(_Z^2-2*_Z-5));

p := [{x = 0, y = 0}, {x = -1/3, y = -2/3},

{x = -1/3, y = (1/3)*r[1]}, {x = -1/3, y = (1/3)*r[2]}];

# p := [{x=0,y=0},{x=-1/3,y=-2/3},

# {x=-1/3,y=1/3+(1/3)*sqrt(6)},{x=-1/3,y=1/3-(1/3)*sqrt(6)}]

restPointInfo:=proc(valueSet)# arg = {x=a,y=b}

global f,g,J; local A,Lambda,P,jacobian,L;

with(LinearAlgebra):

jacobian:=Student[MultivariateCalculus][Jacobian]:

J:=LL->jacobian([f(x,y),g(x,y)],[x,y]=LL);

L:=subs(valueSet,[x,y]);A:=J(L);Lambda,P:=Eigenvectors(A);

RETURN (A,Lambda,evalf(Lambda),P,evalf(P));

end proc:

JACOBIAN:=J([’x’,’y’]);

fmt:="%a: A,Lambda,evalf(Lambda),P,evalf(P)\n":

for i from 1 to nops(p)

do printf(fmt,p[i]); restPointInfo(p[i]); od;

# unstable degenerate node, stable spiral, two saddles

12. (Improper Node, Saddle)

d
dtx = x− y + x3,
d
dty = 2y + 3xy.

Solution:
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# Exercise 12, Improper Node, Saddle

f:=(x,y)->x-y+x^3;g:=(x,y)->2*y+3*x*y;

p:=[solve({f(x,y)=0,g(x,y)=0},{x,y})];

p:=[{x=0,y=0},{x=-2/3,y=-26/27}];

restPointInfo:=proc(valueSet)# arg = {x=a,y=b}

global f,g,J; local A,Lambda,P,jacobian,L;

with(LinearAlgebra):

jacobian:=Student[MultivariateCalculus][Jacobian]:

J:=LL->jacobian([f(x,y),g(x,y)],[x,y]=LL);

L:=subs(valueSet,[x,y]);A:=J(L);Lambda,P:=Eigenvectors(A);

RETURN (A,Lambda,evalf(Lambda),P,evalf(P));

end proc:

JACOBIAN:=J([’x’,’y’]);

fmt:="%a: A,Lambda,evalf(Lambda),P,evalf(P)\n":

for i from 1 to nops(p)

do printf(fmt,p[i]); restPointInfo(p[i]); od;

# Improper node, saddle

13. (Proper Node, Saddle)

d
dtx = 2x+ y3,
d
dty = 2y + 3xy.

Solution:

Jacobian J(x, y) =

(
2 3y2

3y 3x+ 2

)
Equilibria for maple: [0,0],[-0.667,1.1006]

xy-Window: −1 < x < 0.4, −1 < y < 2
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# Exercise 13, Proper Node, Saddle

f:=(x,y)->2*x+y^3;g:=(x,y)->2*y+3*x*y;

p:=[solve({f(x,y)=0,g(x,y)=0},{x,y})];

r:=allvalues(RootOf(3*_Z^3-4));

p:=[{x=0,y=0},{x=-2/3,y=r[1]}];# ignore y complex

restPointInfo:=proc(valueSet)# arg = {x=a,y=b}

global f,g,J; local A,Lambda,P,jacobian,L;

with(LinearAlgebra):

jacobian:=Student[MultivariateCalculus][Jacobian]:

J:=LL->jacobian([f(x,y),g(x,y)],[x,y]=LL);

L:=subs(valueSet,[x,y]);A:=J(L);Lambda,P:=Eigenvectors(A);

RETURN (A,Lambda,evalf(Lambda),P,evalf(P));

end proc:

JACOBIAN:=J([’x’,’y’]);

fmt:="%a: A,Lambda,evalf(Lambda),P,evalf(P)\n":

for i from 1 to nops(p)

do printf(fmt,p[i]); restPointInfo(p[i]); od;

# Proper Node, saddle

14. (Two Improper Nodes and Two Saddles)

d
dtx = (120− 4x− 2y)x,
d
dty = (60− x− 2y)y
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Solution:
# Exercise 14, Two Nodes and Two Saddles

# Peaceful co-existence, Rabbit-Gerbil system

f:=(x,y)->(120-4*x-2*y)*x;g:=(x,y)->(60-x-2*y)*y;

solve({f(x,y)=0,g(x,y)=0},{x,y});

# {x=0,y=0},{x=0,y=30},{x=30,y=0},{x=20,y= 20}

J:=(a,b)->Student[MultivariateCalculus][Jacobian]

([f(x,y),g(x,y)],[x,y]=[a,b]);

A:=J(0,0);Eigenvectors(A);# unstable node

A:=J(0,30);Eigenvectors(A);# unstable saddle

A:=J(30,0);Eigenvectors(A);;# unstable saddle

A:=J(20,20);Eigenvectors(A);evalf(%);# stable node

Classification of Almost Linear Equilibria. With computer assist, find and
classify the nonlinear equilibria.

15. (Co-existing Species)

x′(t) = x(t)(24− 2x(t)− y(t)),
y′(t) = y(t)(30− 2y(t)− x(t)).

Solution:

Jacobian J(x, y) =

(
24− 4x− y −x

−y 30− 4y − x

)
Equilibria for maple: [0,0],[0,15],[12,0],[6,12]

xy-Window: −1 < x < 15, −1 < y < 18
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# Exercise 15, Co-existing Species

f:=(x,y)->x*(24-2*x-y);g:=(x,y)->y*(30-2*y-x);

p:=[solve({f(x,y)=0,g(x,y)=0},{x,y})];

# p:=[{x=0,y=0},{x=0,y=15},{x=12,y=0},{x=6,y=12}]

restPointInfo:=proc(valueSet)# arg = {x=a,y=b}

global f,g,J; local A,Lambda,P,jacobian,L;

with(LinearAlgebra):

jacobian:=Student[MultivariateCalculus][Jacobian]:

J:=LL->jacobian([f(x,y),g(x,y)],[x,y]=LL);

L:=subs(valueSet,[x,y]);A:=J(L);Lambda,P:=Eigenvectors(A);

RETURN (A,Lambda,evalf(Lambda),P,evalf(P));

end proc:

JACOBIAN:=J([’x’,’y’]);

fmt:="%a: A,Lambda,evalf(Lambda),P,evalf(P)\n":

for i from 1 to nops(p)

do printf(fmt,p[i]); restPointInfo(p[i]); od;

# unstable node, saddle, saddle, stable node

16. (Doomsday-Extinction)

x′(t) = x(t)(x(t)− y(t)− 4),
y′(t) = y(t)(x(t) + y(t)− 8).

Almost Linear Geometry. A separatrix S is a union of curves and equilibria.
Ideally, orbits limit to S. With computer assist, make a plot of threaded curves
which identify one or more separatrices near the equilibrium.

17. (Saddle (−1, 1))
d
dtx = x+ y,
d
dty = 1− x2.

Solution:

Jacobian J(x, y) =

(
1 1

−2x 0

)
Equilibria for maple: [1,-1],[-1,1]

xy-Window: −2 < x < 2, −2 < y < 2
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18. (Saddle (−1/5,−2/5))

d
dtx = 3x− 2y − x2 − y2,
d
dty = 2x− y.

19. (Saddle (−2/3, 3
√

4/3))

d
dtx = 2x+ y3,
d
dty = 2y + 3xy.

Solution:

Jacobian J(x, y) =

(
2 3y2

3y 2 + 3x

)
Equilibria for maple: [0,0],[-0.667,1.100642416]

xy-Window: −2 < x < 2, −2 < y < 2
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20. (Degenerate Improper Node (0, 0))

d
dtx = x− y + x3 + y3,
d
dty = y + 3xy.

Rayleigh and van der Pol. Each example below has a unique periodic orbit
surrounding an equilibrium point that is the limit at t = ∞ of any other orbit.
Discuss the spiral repeller at (0, 0) in the attached figure, from the linearized
problem at (0, 0) and Paste Theorem 10.4. Create a phase portrait with
computer assist for the nonlinear problem.

21. (Lord Rayleigh 1877, Clarinet Reed Model)

d
dtx = y,

d
dty = −x+ y − y3.

Solution:

Jacobian: J(x, y) =

(
0 1

−1 −3y2 + 1

)
, J(0, 0) =

(
0 1

−1 1

)
The eigenvalues of J(0, 0) are 1

2 ± 1
2 i. The linearized problem u⃗ ′ = Au⃗ at

x = y = 0 is an unstable center. However, the Paste Theorem 10.4 does
not predict the phase portrait near (0, 0) for the nonlinear problem: it is a
center or spiral. Stability is also not inherited: the nonlinear phase portrait
can be stable or unstable at (0, 0).

Graphing the nonlinear phase portrait reveals (0, 0) is unstable, a repeller.
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Orbits that start far from (0, 0) wind around the origin but never reach it:
they limit to a cycle as shown in the figure.

# Exercise 21, Clarinet Reed Model, Lord Rayleigh 1877

f:=(x,y)->y; g:=(x,y)->-x+y-y^3;

JJ:=(a,b)->Student[MultivariateCalculus][Jacobian]

([f(x,y),g(x,y)],[x,y]=[a,b]);

JACOBIAN:=JJ(’x’,’y’);A:=JJ(0,0);

Lambda,P:=LinearAlgebra[Eigenvectors](A);

ic1:=[x(0)=0,y(0)=0.5],[x(0)=0,y(0)=-0.5],

[x(0)=0.5,y(0)=0],[x(0)=-0.5,y(0)=0];

ic2:=[x(0)=0,y(0)=1.6],[x(0)=0,y(0)=-1.6],

[x(0)=1.6,y(0)=0],[x(0)=-1.6,y(0)=0];

des:=diff(x(t),t)=f(x(t),y(t)),diff(y(t),t)=g(x(t),y(t)):

wind:=x=-3..3,y=-3..3:Times:=t=-15..15:

opts:=axes=none,thickness=2,arrows=small,color=blue,

linecolor=black,numpoints=500,stepsize=0.05:

ics:=[ic1,ic2]:

DEtools[DEplot]([des],[x(t),y(t)],Times,ics,wind,opts);

Figure 1. Clarinet Reed.

22. (van der Pol 1924, Radio Oscillator Circuit Model)

d
dtx = y,

d
dty = −x+ (1− x2)y.

Solution: Details follow Exercise 21.
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# Exercise 22, van der Pol 1924, Radio Oscillator Circuit

f:=(x,y)->y; g:=(x,y)->-x + (1-x^2)*y;

JJ:=(a,b)->Student[MultivariateCalculus][Jacobian]

([f(x,y),g(x,y)],[x,y]=[a,b]);

JACOBIAN:=JJ(’x’,’y’);A:=JJ(0,0);

Lambda,P:=LinearAlgebra[Eigenvectors](A);

ic1:=[x(0)=0,y(0)=0.5],[x(0)=0,y(0)=-0.5],

[x(0)=0.5,y(0)=0],[x(0)=-0.5,y(0)=0];

ic2:=[x(0)=0,y(0)=2.8],[x(0)=0,y(0)=-2.3],

[x(0)=2.4,y(0)=0],[x(0)=-2.8,y(0)=0];

des:=diff(x(t),t)=f(x(t),y(t)),diff(y(t),t)=g(x(t),y(t)):

wind:=x=-3..3,y=-3..3:Times:=t=-15..15:

opts:=axes=none,thickness=2,arrows=small,color=blue,

linecolor=black,numpoints=500,stepsize=0.05:

ics:=[ic1,ic2]:

DEtools[DEplot]([des],[x(t),y(t)],Times,ics,wind,opts);

Figure 2. Oscillator Circuit.
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10.4 Biological Models

Predator-Prey Models.

Consider the system

x′(t) =
1

250
(1− 2y(t))x(t),

y′(t) =
3

500
(2x(t)− 1)y(t).

1. (System Variables) The system has vector-matrix form

d

dt
u⃗ = F⃗ (u⃗(t)).

Display formulas for u⃗ and F⃗ .

Solution: The formulas:

u⃗ =

(
x
y

)
, F⃗(u⃗) =

( 1
250x(1− 2y)
3

500y(2x− 1)

)
Computer implementations are not the same:

# Exercise 1, Predator-Prey, System Variables

PDEtools[declare]((x, y)(t), prime = t);

## x(t), y(t) are displayed as x, y

## diff(f(t),t) displayed in prime notation f’

u:=t-><x(t),y(t)>;

F0:=(x,y)-><x*(1-2*y)/250,3*y*(2*x-1)/500>;

F:=w->F0(w[1],w[2]):

F(u(t));

## <(1/250)*x(t)*(1-2*y(t)),(3/500)*y(t)*(2*x(t)-1)>

2. (System Parameters) Identify the values of a, b, c, d, p, q, as used in the
textbook’s predator-prey system.

3. (Identify Predator and Prey) Which of x(t), y(t) is the predator?

Solution: When the number of predators is near zero then the number of
prey explodes: think rabbits and foxes. In the model, y ≈ 0 in the first
differential equation reduces to x′ = cx with c = 1/250 positive. The model
is Malthusian population growth: population x explodes. Therefore, x =
prey, y = predator.

4. (Switching Predator and Prey) Give an example of a predator-prey system
in which x(t) is the predator and y(t) is the prey.
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Implicit Solution Predator-Prey. These exercises prove equation

a ln |y|+ b ln |x| − q x− p y = C

for predator-prey system

x′(t) = (a− p y(t))x(t),
y′(t) = (q x(t)− b)y(t).

5. (First Order Equation) Verify from the chain rule of calculus the first order
equation

dy

dx
=

y′(t)

x′(t)
=

y

x

qx− b

a− py
.

Solution: Details:

dy
dx =

y′(t)

x′(t)

=
(q x(t)− b)y(t)

(a− p y(t))x(t)

=
y(t)

x(t)

(q x(t)− b)

(a− p y(t))

=
y

x

q x− b

a− p y
■

6. (Separated Variables) Verify(
a

y
− p

)
dy =

(
q − b

x

)
dx.

7. (Quadrature) Integrate the equation of Exercise 6 to obtain

a ln |y| − p y = q x− b ln |x| = C.

Then re-arrange to obtain the reported implicit solution.

Solution: Details:∫ (
a
y − p

)
dy = a ln |y| − py + c1∫ (

q − b
x

)
dx = qx− b ln |x|+ c2

Equate the two answers above. Move constants to the right and all other
terms to the left. Let C = c2 − c1. ■

8. (Energy Function) Define E(t) = a ln |u| − pu. Show that dE/du = (a −
pu)/u. Then show that dE/du < 0 for a > 0, p > 0 and a/p < u < ∞.
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Linearized Predator-Prey System. Consider

x′(t) = (100− 2y(t))x(t),
y′(t) = (2x(t)− 160)y(t).

9. (Find Equilibria) Verify equilibria (0, 0), (80, 50).

Solution: An equilibrium point (x, y) satisfies the equations

0 = (100− 2y)x,
0 = (2x− 160)y.

If either x = 0 or y = 0 then the other variable is zero, giving equilibrium
(0, 0). If both x ̸= 0 and x ̸= 0 then 100− 2y = 0 and 2x− 160 = 0, giving
equilibrium (80, 50). ■

10. (Jacobian Matrix) Compute J(x, y) for each x, y. Then find J(0, 0) and
J(80, 50).

Solution:

Jacobian J(x, y) =

(
100− 2y −2x

2y 2x− 160

)
J(80, 50) =

(
0 −160
100 0

)
.

# Exercise 10, Jacobian Matrix J(x,y)

f:=(x,y)->(100-2*y)*x;g:=(x,y)->(2*x-160)*y;

p:=solve({f(x,y)=0,g(x,y)=0},{x,y});

# p = {x = 1, y = -1/2}, {x = -1, y = 1/2}

J:=(a,b)->Student[MultivariateCalculus][Jacobian]

([f(x,y),g(x,y)],[x,y]=[a,b]);

J(x,y);J(0,0);J(80,50);

11. (Transit Time) Find the transit time of an orbit for one loop about (0, 0)

for system d
dt v⃗ =

(
0 −160
100 0

)
v⃗ , the linearization about (80, 50).

Solution: The transit time T for one loop is T = 0.04967294134 seconds.

# Exercise 11, Transit time for one loop about (0,0)

f:=(x,y)->(100-2*y)*x;g:=(x,y)->(2*x-160)*y;

J:=(a,b)->Student[MultivariateCalculus][Jacobian]

([f(x,y),g(x,y)],[x,y]=[a,b]);

A:=J(80,50);

LinearAlgebra[Eigenvectors](A);

# eigenvalues = [ (40*I)*sqrt(10),-(40*I)*sqrt(10) ]

omega:=40*sqrt(10);

# One period of cosine and sine of omega*t is 2*Pi/omega

T:=evalf(2*Pi/omega);

# T = 0.04967294134
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12. (Paste Theorem) Describe the local figures expected near equilibria in the
nonlinear phase portrait.

Solution: Saddle at (0, 0). At (80, 50) either a spiral or a center.

Rabbits and Foxes. Consider

x′(t) =
1

200
x(t)(50− y(t)),

y′(t) =
1

100
y(t)(x(t)− 40).

13. (Equilibria) Verify equilibria (0, 0), (40, 50), showing all details.

Solution: Equilibria (x, y) satisfy

0 =
1

200
x(50− y),

0 =
1

100
y(x− 40).

If x = 0 or y = 0 then both x = y = 0 and the equilibrium is (0, 0).
Otherwise, x ̸= 0 and y ̸= 0 and then 50 − y = 0, x − 40 = 0 giving
equilibrium (40, 50). ■

14. (Jacobian) Compute Jacobian J(x, y), then J(0, 0) and J(40, 50).

Solution:

J(x, y) =

(
1/4− y/200 −x/200

y/100 x/100− 2/5

)
J(0, 0) =

(
1/4 0
0 −2/5

)
J(40, 50) =

(
0 −1/5
1/2 0

)
# Exercise 14, Jacobian, Rabbits and Foxes

f:=(x,y)->(50-y)*x/200;g:=(x,y)->(x-40)*y/100;

J:=(a,b)->Student[MultivariateCalculus][Jacobian]

([f(x,y),g(x,y)],[x,y]=[a,b]);

J(x,y);J(0,0);J(40,50);

15. (Rabbit Oscillation) Find a graphical estimate for the period of oscillation
of the rabbit population x(t) for the nonlinear system, given x(0) = 100,
y(0) = 60 and t is in weeks. Answer: about 23 weeks.

Solution: The plan is to graph the solution of the nonlinear Lotka-Volterra
system with initial data x(0) = 100, y(0) = 30 and then estimate the period

619



10.4 Biological Models

from the plot. Expected is a plot that looks like sine curve. The period is
the t-range between two consecutive local maxima. Because the curve fails
to be exactly periodic, several pairs of maxima are tested to arrive at an
estimate for the period.

In maple the maxima can be located by mouse probe. Right-click on the
plot, then click on menu item Manipulator ⇝ Point Probe. Right-click
again on the plot and click on menu item Probe Info ⇝ Cursor position.
Next step: hover the mouse over several consecutive maxima in the plot.
Write on paper the t-value displayed by maple. Subtract t-values to get an
estimate for the period:

46.32− 22.58, 68.876− 46.32, 91.735− 68.876

The three values are all different, but approximately equal to 23 weeks. ■
# Exercise 15, Rabbit Estimates, Rabbits and Foxes

f:=(x,y)->(50-y)*x/200;g:=(x,y)->(x-40)*y/100;

ic:=[x(0)=x0,y(0)=y0];

de:=diff(x(t),t)=f(x(t),y(t)),diff(y(t),t)=g(x(t),y(t));

DEtools[DEplot]([de],[x(t),y(t)],t=0..100,

[[x(0)=100,y(0)=30]],scene=[t,x]);

# See solution text for mouse hover to display t-values at maxima.

16. (Rabbit-Gerbil Competing Species) Consider system

x′ =
(
5
4 − x

160 − 3y
1000

)
x,

y′ =
(
3− 3y

500 − 3x
160

)
y.

Verify equilibria (0, 0), (0, 500), (200, 0), (80, 250). Show the first three are
nodes and the last is a saddle.
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Pesticides. Consider the system

x′(t) = (10− y(t))x(t)− s1x(t),
y′(t) = (x(t)− 20)y(t)− s2y(t).

17. (Average Populations) Explain: A field biologist should count, on the
average, populations of about 20 + s2 prey and 10− s1 predators.

Solution: Equilibrium (20 + s2, 10 − s1) is an attractor, which means
limt→∞ x(t) = 20 + s2 and limt→∞ y(t) = 10 − s1. On a given day af-
ter the populations have oscillated sufficiently long (t → ∞) the limiting
populations should be observed on the average by a field biologist.

18. (Equilibria) Show details for computing the pesticide system equilibria
(0, 0), (20 + s2, 10− s1), where s1, s2 are the pesticide death rates.

Survival of One Species. Consider

x′(t) = x(t)(24− x(t)− 2y(t)),
y′(t) = y(t)(30− y(t)− 2x(t)).

19. (Equilibria) Find all equilibria.

Solution: Equilibria (x, y) satisfy the equations

0 = x(24− x− 2y),
0 = y(30− y − 2x).

Solve for x, y: x = 0 and y = 0 or else x = 0 and y = 30 or else y = 0 and
x = 24 or else 24− x− 2y = 0 and 30− y − 2x = 0. The last equilibrium is
the unique solution of the linear algebraic system of equations. Elimination
gives x = 12, y = 6.

# Exercise 19, Survival of One Species, equilibria

x:=’x’:y:=’y’:

eqs:=24-x-2*y=0, 30-y-2*x=0;

solve([eqs],[x,y]);

# [[x = 12, y = 6]]

20. (Interactions) Show that doubling either x or y causes the interaction term
2xy to double.

21. (Nonlinear Classification) Classify each equilibrium point (x0, y0) as cen-
ter, spiral, node, saddle, using the Paste Theorem. Determine stability
for node and spiral. Make a computer phase portrait to confirm the classi-
fications.

Solution:
Equilibria: [0, 0], [0, 30], [24, 0], [12, 6]
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(0,0) unstable improper node (repeller)
(0,30) stable improper node (attractor)
(24,0) stable improper node (attractor)
(12,6) unstable saddle

The Paste Theorem says that the linear classification and stability are in-
herited to the nonlinear phase portrait.
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# Exercise 21, Survival of One Species, Paste Theorem

f:=(x,y)->(24-x-2*y)*x;g:=(x,y)->(30-y-2*x)*y;

p:=solve([f(x,y)=0,g(x,y)=0],[x,y]);

# [0, 0], [0, 30], [24, 0], [12, 6]

J:=(a,b)->Student[MultivariateCalculus][Jacobian]

([f(x,y),g(x,y)],[x,y]=[a,b]);

JACOBIAN:=J(’x’,’y’);

q:=seq(subs(p[i],JACOBIAN),i=1..nops(p));

seq(print(LinearAlgebra[Eigenvectors](q[i])),i=1..nops(p));

# (0,0) unstable improper node (repeller)

# (0,30) stable improper node (attractor)

# (24,0) stable improper node (attractor)

# (12,6) unstable saddle

# Used MAPLE task Phase Portrait

# Window: -10<x<30, -10<y<40

# F=(24-x-2*y)*x, G=(30-y-2*x)*y

# Equilibria: [0, 0], [0, 30], [24, 0], [12, 6]

# Time: -20 to 20

22. (Extinction and Competing Species) Equilibria for which either x = 0
or y = 0 signal extinction states. Discuss how the phase portrait of the
nonlinear system shows extinction of one species but not both.

Co-existence
Find the equilibria, then classify them as node, saddle, spiral, center using the
Paste Theorem. Determine stability for node and spiral. Make a computer
phase portrait to confirm the classifications.

23. (Node, Saddle, Saddle, Node)

x′ = (144− 2x− 3y)x,
y′ = (90− 6y − x)y.

Solution:
Equilibria: [0,0], [0,15], [72,0], [66,4]

(0,0) unstable improper node (repeller)
(0,15) unstable saddle
(24,0) unstable saddle
(12,6) stable improper node (attractor)

The Paste Theorem says that the linear classification and stability are in-
herited to the nonlinear phase portrait.
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# Exercise 23, Co-existence, Paste Theorem

f:=(x,y)->(144-2*x-3*y)*x;g:=(x,y)->(90-6*y-x)*y;

p:=solve([f(x,y)=0,g(x,y)=0],[x,y]);

# [0,0], [0,15], [72,0], [66,4]

J:=(a,b)->Student[MultivariateCalculus][Jacobian]

([f(x,y),g(x,y)],[x,y]=[a,b]);

JACOBIAN:=J(’x’,’y’);

q:=seq(subs(p[i],JACOBIAN),i=1..nops(p));

seq(print(LinearAlgebra[Eigenvectors](q[i])),i=1..nops(p));

# (0,0) unstable improper node (repeller)

# (0,15) unstable saddle

# (72,0) unstable saddle

# (66,4) stable improper node (attractor)

# Used MAPLE task Phase Portrait

# Window: -10<x<85, -10<y<20

# F=(144-2*x-3*y)*x G=(90-6*y-x)*y

# Equilibria: [0,0], [0,15], [72,0], [66,4]

# Time: -20 to 20

24. (Node, Saddle, Saddle, Node)

x′ = (120− 4x− 2y)x,
y′ = (60− x− 2y)y.
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Solution: Equilibria (0, 0), (30, 0), (0, 30), (20, 20). The nodes are stable.

Explosion and Extinction
Find the equilibria, then classify them as node, saddle, spiral, center using the
Paste Theorem. Determine stability for node and spiral. Make a computer
phase portrait to confirm the classifications.

25. (Node, Saddle, Saddle, Spiral)

x′ = x(x− 2y − 4),
y′ = y(x+ 2y − 8).

Solution:
Equilibria: [0,0], [0,8], [4,0], [6,2]

(0,0) stable improper node (attractor)
(0,8) unstable saddle
(4,0) unstable saddle
(6,2) unstable spiral (repeller)

The Paste Theorem says that the linear classification and stability are in-
herited to the nonlinear phase portrait.
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# Exercise 25, Explosion and Extinction, Paste Theorem

f:=(x,y)->(x-y-4)*x;g:=(x,y)->(x+y-8)*y;

p:=solve([f(x,y)=0,g(x,y)=0],[x,y]);

# [0,0], [0,8], [4,0], [6,2]

J:=(a,b)->Student[MultivariateCalculus][Jacobian]

([f(x,y),g(x,y)],[x,y]=[a,b]);

JACOBIAN:=J(’x’,’y’);

q:=seq(subs(p[i],JACOBIAN),i=1..nops(p));

seq(print(LinearAlgebra[Eigenvectors](q[i])),i=1..nops(p));

# (0,0) stable improper node (attractor)

# (0,8) unstable saddle

# (4,0) unstable saddle

# (6,2) unstable spiral (repeller)

# Used MAPLE task Phase Portrait

# Window: -5<x<8, -5<y<10

# F=((x-y-4)*x G=(x+y-8)*y

# Equilibria: [0,0], [0,8], [4,0], [6,2]

# Time: -20 to 20

26. (Node, Saddle, Saddle, Spiral)

x′ = x(x− y − 4),
y′ = y(x+ y − 6).
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10.5 Mechanical Models

Linear Mechanical Models
Consider the unforced linear model mx′′ + cx′ + kx = 0, where m, c, k are
positive constants: m=mass, c=dashpot constant, k=Hooke’s constant.

1. (Dynamical System Form) Write the scalar problem as u⃗ ′ = Au⃗ . Explicit
definitions of u⃗(t) and A are expected.

Solution:

u⃗ =

(
x
y

)
,

(
x′

y′

)
= A

(
x
y

)
, A =

(
0 1

− k
m − c

m

)
# Exercise 1, Linear Mechanical Model, Dynamical System Form

PDEtools[declare]((x, y)(t), prime = t);

## x(t), y(t) are displayed as x, y

## diff(f(t),t) displayed in prime notation f’

A:=Matrix([[0, 1], [-k/m, -c/m]]);

u:=t-><x(t),y(t)>;

# Check dynamical system form

map(diff,u(t),t) = A.u(t);

2. (Attractor to u⃗ = 0⃗ ) Explain why limt→∞ u⃗(t) = 0⃗ , giving citations to
theorems in this book.

Solution: Hint: Theorem 6.21 (Transient Solution) page 530 �.

3. (Isolated Equilibrium) Prove that u⃗ ′ = Au⃗ has a unique equilibrium at
u⃗ = 0⃗ . Then explain why the equilibrium is isolated.

Solution: Matrix A =

(
0 1

− k
m − c

m

)
has nonzero determinant, therefore it is

invertible. If Ax⃗ = 0⃗ then x⃗ = A−1Ax⃗ = A−10⃗ = 0⃗ . This proves the
equilibrium u⃗ = 0⃗ is unique.

Isolated means there is a disk ∥x⃗∥ < r which excludes all solutions of Ax⃗ =
0⃗ except x⃗ = 0⃗ . Let r = 1 and assume a solution x⃗ of Ax⃗ = 0⃗ with
∥x⃗∥ < r. Multiply Ax⃗ = 0⃗ by A−1 to obtain x⃗ = 0⃗ . Then this disk
contains no other solution of Ax⃗ = 0⃗ except x⃗ = 0⃗ . ■

4. (Phase Plots) Classify the cases of over-damped and under-damped as
a stable node or a stable spiral for u⃗ ′ = Au⃗ at equilibrium u⃗ = 0⃗ . Why
are classifications center and saddle impossible?

Nonlinear Spring-Mass System
Consider the general model x′′+F (x) = 0 with the assumptions on page 804 �.
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5. (Harmonic Oscillator) Let F (x) = ω2 x with ω > 0. Show F is odd and
F (0) = 0. Then find the general solution x(t) for x′′ + F (x) = 0.

Solution: The general solution is x(t) = c1 cosωt+ c2 sinωt.

Odd means F (−x) = −F (x). Calculate F (−x) = ω2(−x) = −ω2x =
−F (x). ■

6. (Taylor Series) Show that an odd function F (x) with Maclaurin series∑∞
n=0 an x

n has all even order terms zero, that is, an = 0 for n even.

Soft and Hard Springs
Classify as a hard or soft spring. Then write the conservation law for the
equation.

7. x′′ + x+ x3 = 0

Solution: Hard spring mx′′ + F (x) = 0: F (x) = kx + βx3 with m = k =
β = 1.

8. x′′ + x− x3 = 0

Hard spring

9. Prove that a hard spring has exactly one equilibrium x = y = 0.

Solution: The dynamical system is x′ = y, y′ = −F (x). Solve equations
0 = y, 0 = −F (x) for x, y. Answer: y = 0 and 1

m

(
kx+ βx3

)
= 0. Solve for

(x, y): y = 0 and x = 0 or 1 + βx2 = 0. Equation 1 + βx2 = 0 has no real
solution x, because β > 0. The only equilibrium is x = y = 0.

10. Substitute x = x(t), y = x′(t) into z = y2+x2+x4 to obtain z(t). Function
z(t) has a minimum when dz

dt = 0. Reduce this equation to x′′+x+2x3 = 0.

Soft Spring
Consider soft spring x′′ + kx− βx3 = 0, k > 0, β > 0.

11. (Equilibria) Verify the three equilibria (0, 0), (0,
√
kβ), (0,−

√
kβ).

Solution: The dynamical system is x′ = y, y′ = −F (x) = −kx+ βx3. Solve
equations 0 = y, 0 = −F (x) for x, y. Answer: y = 0 and kx − βx3 = 0.
Solve for (x, y): y = 0 and x = 0 or 1 − βx2 = 0. Then the equilibria are
(0, 0), (1/

√
β, 0), (−1/

√
β, 0).

12. (Saddles) Verify by linearization and the Paste Theorem that nonlinear
equilibria (0,

√
kβ), (0,−

√
kβ) are saddles.
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13. (Center or Spiral) The Paste Theorem says that equilibrium (0, 0) of
the nonlinear system is a center or spiral. Verify by computer phase portrait
m = k = 1 and β = 2 Figure 37, page 807 �.

Solution: The phase portrait at (0, 0) is a center.

# Exercise 13, Center or Spiral, phase portrait soft spring

beta:=1/sqrt(2.);# 0.7071067814

# Used MAPLE task Phase Portrait

# Window: -2<x<2, -3<y<3

# F=y G=-x-2*x^3

# Equilibria: [0,0], [0.707,0], [-0.707,0]

# Time: -20 to 20

14. (Mass at Rest) Verify that the only solutions with the mass at rest are
the equilibria. Mass at rest means velocity zero: u⃗ ′(t0) = 0⃗ for some t0,
vector notation from Exercise 1.

15. (Phase Portrait) Solve for the equilibria of x′′+4x−x3 = 0. Draw a phase
portrait similar to Figure 37, page 807 �.

Solution: Equilibria: [0,0], [2,0], [-2,0].
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10.5 Mechanical Models

# Exercise 15, Soft Spring phase portrait

# Used MAPLE task Phase Portrait

# Window: -3<x<3, -4<y<4

# F=y G=-4*x-x^3

# Equilibria: [0,0], [2,0], [-2,0]

# Time: -20 to 20

16. (Separatrix) The energy equation for x′′+4x−x3 = 0 is 1
2y

2+2x2− 1
4x

4 =
E. Substitute the saddle equilibria to find E = 4. Plot implicitly the energy
equation curve. A separatrix is the union of the two saddle equilibria and
this implicit curve.

Solution:
# Exercise 16, Separatrix

Energ:=(1/2)*y^2+2*x^2-(1/4)*x^4;

plots[implicitplot](Energ=4,x=-3..3,y=-4..4,gridrefine=3);
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Damped Nonlinear Pendulum
Consider d2θ(t)

dt2 + cdθdt + g
L sin(θ(t)) = 0, which has vector-matrix form u⃗ ′ =

G⃗(u⃗ (t)).

17. Display both u⃗ and G⃗ .

Solution: Let u⃗ =

(
u1

u2

)
=

(
θ(t)
θ′(t)

)
. Then

G⃗ (u⃗) =

(
θ′(t)

−cθ′(t)− g
L sin θ(t)

)
=

(
u2

−cu2 − g
L sin(u1)

)

18. Find the Jacobian matrix of G⃗ with respect to u⃗ .

Undamped Nonlinear Pendulum
Consider d2θ(t)

dt2 + g
L sin(θ(t)) = 0, having vector-matrix form u⃗ ′ = F⃗(u⃗ (t)).

19. Find the Jacobian matrix of F⃗ with respect to u⃗ .

Solution: Apply Exercise 17 with c = 0, u1 = x, u2 = y:

G⃗(u⃗) ==

(
y

− g
L sin(x)

)
Then

J(x, y) = Jacobian matrix =

(
0 1

− g
L cos(x) 0

)
J(θ, θ′) =

(
0 1

− g
L cos(θ) 0

)
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20. Solve F⃗(u⃗) = 0⃗ for u⃗ , showing all details.

Solution: Equation F⃗(u⃗) = 0⃗ means G⃗(u⃗ ) =

(
u2

−cu2 − g
L sin(u1)

)
= 0⃗

in Exercise 17. Let c = 0. Details omitted to find equilibria (nπ, 0), n =
0,±1,±2, . . ., which are points along the abscissa equally spaced by pi units.

21. Evaluate the Jacobian matrix at the roots of F⃗(u⃗) = 0⃗ .

Solution: By Exercise 20 the equilibria are (nπ, 0), n = 0,±1,±2, . . .. By
Exercise 19:

J(nπ, 0) =

(
0 1

− g
L cos(nπ) 0

)
=

(
0 1

−(−1)n g/L 0

)

22. Plot y2 + 4g
L sin2(x/2) = 4 g

L
implicitly for g

L = 10. The separatrix is this curve plus equilibria.

Solution:
# Exercise 22, Separatrix, Nonlinear Pendulum

Energ:=y^2 + 40*sin(x/2)^2;

plots[implicitplot](Energ=40,x=-10..10,y=-10..10,gridrefine=4);

The phase portrait below shows the separatrix location.
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Chapter 11

Systems of Differential
Equations

Contents

11.1 Examples of Systems . . . . . . . . . . . . 634

11.2 Fundamental System Methods . . . . . . 635

11.3 Structure of Linear Systems . . . . . . . . 645

11.4 Matrix Exponential . . . . . . . . . . . . . 654

11.5 Eigenanalysis, Spectral, CHZ . . . . . . . 662

11.6 Jordan Form and Eigenanalysis . . . . . . 672

11.7 Nonhomogeneous Linear Systems . . . . . 692

11.8 Second Order Systems . . . . . . . . . . . 698

11.9 Numerical methods for Systems . . . . . . 710

11.1 Examples of Systems

There are no exercises for this section of examples. Later sections use this
section for definitions, equations and key examples.
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11.2 Fundamental System Methods

Solving 2× 2 Systems

1. Solve x′
1 = 2x1 + x2, x

′
2 = x2. Ans: x1 = c1 e

2 t − c2 e
t, x2 = c2 e

t

Solution: Solve growth-decay equation x′
2 = x2 by the Growth-Decay short-

cut for u′ = ku:. Then x2 = c2e
t. Insert this answer into the first equation.

Then x′
1 = 2x1 + c2e

t. Write it in standard form x′
1 + (−2)x1 = c2e

t. Solve
by the linear integrating factor method.

x′
1 + (−2)x1 = c2e

t(
x1e

−2t
)′

e−2t = c2e
t Replace LHS x′ + px by

(
x e
∫
pdt
)′

/e
∫
pdt.(

x1e
−2t
)′

= c2e
t e−2t

x1e
−2t =

∫
c2e

t e−2tdt Quadrature method.

x1 = −c2 e
t + c1 e

2 t

2. Discuss how to solve x⃗ ′ =

(
a b
0 d

)
x⃗ .

Triangular 2× 2 Matrix A

3. Solve x⃗ ′ =

(
2 1
0 3

)
x⃗ .

Solution: Answer: x1 = c1e
2t + c2e

3t, x2 = c2e
3t

Use the scalar method in Exercise 1. First step: convert the matrix form to
scalar form.

Given x′
1 = 2x1 + x2, x

′
2 = 3x2, solve for x2 then x1.

x′
2 = 3x2 Second DE, solve for x2.

x2 = c2e
3t Growth-decay shortcut for u′ = ku.

x′
1 = 2x1 + x2 First DE, solve for x1.

x′
1 = 2x1 + c2e

3t Substitute x2 = c2e
3t into the first DE.

(e−2tx1)
′/e−2t = c2e

3t Linear integrating factor method.

e−2tx1 =
∫
c2e

3te−2t dt Quadrature method.

e−2tx1 = c1 + c2e
t

x1 = c1e
2t + c2e

3t

4. Solve x⃗ ′ =

(
2 0
2 3

)
x⃗ .
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Non-Triangular 2× 2 Matrix A

5. Solve x⃗ ′ =

(
1 3
3 1

)
x⃗ .

Solution: Answer: x1 = c1e
4t + c2e

−2t, x2 = c1e
4t − c2e

−2t

Details:
Characteristic equation: r2−trace(A)r+ |A| = r2−2r−8 = 0. Roots: r =
4,−2. Atoms: e4t, e−2t. The scalar system is x′

1 = x1 +3x2, x
′
2 = 3x1 +x2.

The Cayley-Hamilton-Ziebur Theorem page 840 � applies:

x1 = c1e
4t + c2e

−2t.

Solve the first differential equation for x2:

x2 = 1
3 (x

′
1 − x1)

Insert equation x1 = c1e
4t + c2e

−2t and simplify:

x2 = 1
3 (x

′
1 − x1)

= 1
3 (4c1e

4t − 2c2e
−2t − c1e

4t − c2e
−2t)

= c1e
4t − c2e

−2t

6. Solve x⃗ ′ =

(
1 3

−3 1

)
x⃗ .

Method for n× n Diagonal A

7. Solve x⃗ ′ =

(
1 0 0
0 3 0
0 0 2

)
x⃗ .

Solution: Answer: x⃗ =

 et 0 0
0 e3t 0
0 0 e2t

 c1
c2
c3

 =

 c1e
t

c2e
3t

c3e
2t



8. Solve x⃗ ′ =

1 0 0 0
0 3 0 0
0 0 4 0
0 0 0 2

 x⃗ .

Method for n× n Lower Triangular

9. Solve x⃗ ′ =

(
1 0 0
1 3 0
1 0 2

)
x⃗ .

Solution: Answer:

By maple:
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x1 (t) = d1 et,
x2 (t) = − 1

2 d1 et + d2 e3 t,
x3 (t) = −d1 et + d3 e2 t

Vector-Matrix form of the answer: x⃗ =

 et 0 0
− 1

2e
t e3t 0

−et 0 e2t

  d1
d2
d3


Pencil and paper: solve the differential equations top to bottom by either
the shortcut for u′ = ku or else the linear integrating factor method for
u′ + pu = q. Involved in the preparation to solve is substitution of previ-
ously known functions, order x1, x2, x3 for lower triangular matrices.

Start: x1 = c1e
t.

Second equation: x′
2 = x1 + 3x2 = c1e

t + 3x2. To standard form:

x′
2 − 3x2 = c1e

t.

x2 = − 1
2c1e

t + c2e
3t By the linear integrating factor method.

Third equation: x′
3 = x1 + 2x3

x′
3 − 2x3 = c1e

t

x3 = −c1e
t + c3e

2t By the Linear integrating factor method.

Vector-Matrix Answer obtained by the linear integrating factor method
matches the maple dsolve answer:

x⃗ =

 et 0 0
− 1

2e
t e3t 0
et 0 e2t

  c1
c2
c3


# Exercise 9, 3x3 lower triangular

A:=Matrix([[1 , 0 , 0],[1 , 3 , 0],[1 , 0 , 2]]);

sys:=[diff(x(t),t)=x(t),

diff(y(t),t)=x(t)+3*y(t),

diff(z(t),t)=x(t)+2*z(t)];

vars:=[x(t),y(t),z(t)];

dsolve(sys,vars);

10. Solve x⃗ ′ =

(
1 0 0
0 3 0
1 0 2

)
x⃗ .

Method for n× n Upper Triangular

11. Solve x⃗ ′ =

(
1 0 1
0 3 1
0 0 2

)
x⃗ .
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Solution: The scalar equations:

x′
1 = x1 + x3, x′

2 = 3x2 + x3, x′
3 = 2x3

maple answer:

x1 (t) = d3 e
2t + d1e

t,
x2 (t) = −d3e

2t + d2e
3t,

x3 (t) = d3e
2t

Vector-Matrix form: x⃗ =

 et 0 e2t

0 e3t −e2t

0 0 e2t

  d1
d2
d3


Pencil and paper answer:
Solve the differential equations bottom to top by either the shortcut for
u′ = ku or else the linear integrating factor method for u′+pu = q. Involved
in the preparation to solve is substitution of previously known functions, or-
der x3, x2, x1 for upper triangular matrices.

Start: x3 = c3e
2t.

Second equation:
x′
2 = 3x2 + x3 = 3x2 + c3e

2t

x′
2 − 3x2 = c3e

2t Standard form.

x2 = −c3e
2t + c2e

3t By the linear integrating factor method.

Third equation:
x′
1 = x1 + x3

x′
1 − x1 = c3e

2t

x1 = c1e
t + c3e

2t By the Linear integrating factor method.

Vector-Matrix Answer obtained by the linear integrating factor method
matches the maple dsolve answer:

x⃗ =

 et 0 e2t

0 e3t −e2t

0 0 e2t

  c1
c2
c3


# Exercise 11, 3x3 upper triangular

A:=Matrix([[1 , 0 , 1],[0 , 3 , 1],[0 , 0 , 2]]);

sys:=[diff(x(t),t)=x(t)+z(t),

diff(y(t),t)=3*y(t)+z(t),

diff(z(t),t)=2*z(t)];

vars:=[x(t),y(t),z(t)];

p:=dsolve(sys,vars);

638



11.2 Fundamental System Methods

12. Solve x⃗ ′ =

(
1 1 0
0 3 1
0 0 2

)
x⃗ .

Jordan’s n× n Variable Change
Let A = PTP−1 with T upper triangular and P invertible. Define change of
variable x⃗ (t) = P y⃗ (t). Prove these results:

13. If x⃗ (t) solves x⃗ ′(t) = Ax⃗ (t), then y⃗ (t) = P−1x⃗ (t) solves y⃗ ′(t) = T y⃗ (t).

Solution: Let x⃗ = P y⃗ , Then AP y⃗ = Ax⃗ = x⃗ ′ = P y⃗ ′. Reverse to P y⃗ ′ =
AP y⃗ , then multiply by P−1 and use AP = PT :

y⃗ ′ = P−1AP y⃗ = P−1PT y⃗T y⃗ . ■

14. If y⃗ ′(t) = T y⃗ (t), then x⃗ (t) = P y⃗ (t) solves x⃗ ′(t) = Ax⃗ (t).

Convert Scalar Linear 2nd Order to u⃗ ′ = Au⃗ + F⃗ (t)

15. x′′ + 2x′ + x = sin t

Solution: Let u⃗ =

(
x
x′

)
. Then

u⃗ ′ =

(
x′

x′′

)
=

(
x′

−2x′ − x+ sin t

)
=

(
x′

−2x′ − x

)
+

(
0

sin t

)
=

(
0 1

−1 −2

)(
x
x′

)
+

(
0

sin t

)
=

(
0 1

−1 −2

)
u⃗ +

(
0

sin t

)

Then A =

(
0 1

−1 −2

)
. F⃗ =

(
0

sin t

)
. ■

16. 2x′′ + 3x′ + 8x = 4 cos t

Convert Second Order Scalar System to u⃗ ′ = Au⃗

17. x′′ = x+ y, y′′ = x− y

Solution: Let u⃗ =


x
x′

y
y′

. Then
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u⃗ ′ =


x′

x′′

y′

y′′



=


x′

x+ y
y′

x− y



=


0 1 0 0
1 0 1 0
0 0 0 1
1 0 −1 0




x
x′

y
y′



Then A =


0 1 0 0
1 0 1 0
0 0 0 1
1 0 −1 0

 and F⃗ = 0⃗ . ■

18. x′′ = x+ y + sin t, y′′ + y = x+ cos t

Convert Coupled Spring-Mass System to u⃗ ′ = Au⃗ + F⃗

19. x⃗ ′′ =

(
−2 1
1 −1

)
x⃗ +

(
0

sin t

)

Solution: Assume ′ = d
dt . Let x⃗ =

(
x1

x2

)
and u⃗ =


x1

x2

x′
1

x′
2

. Then

u⃗ ′ =


x′
1

x′
2

x′′
1

x′′
2



=


x′
1

x′
2

−2x1 + x2

x1 − x2 + sin t



=


0 0 1 0
0 0 0 1

−2 1 0 0
1 −1 0 0




x1

x2

x′
1

x′
2


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Then A =


0 0 1 0
0 0 0 1

−2 1 0 0
1 −1 0 0

 and F⃗(t) =


0
0
0

sin t

. ■

20. x⃗ ′′ =

(
−2 1 0
1 −2 1
0 −1 −2

)
x⃗

Convert Higher Order Linear Equations to u⃗ ′ = Au⃗

21. x′′′ = x

Solution: Let u⃗ =

 x
x′

x′′

, then

u⃗ ′ =

 x′

x′′

x′′′

 =

 x′

x′′

x


u⃗ ′ =

 0 1 0
0 0 1
1 0 0

  x
x′

x′′


Then A =

 0 1 0
0 0 1
1 0 0

. ■

22.
d4y

dx4 + 16y = 0

Convert Scalar Continuous-Coefficient Equation to u⃗ ′ = Au⃗

23. x2y′′ + 3xy′ + 2y = 0

Solution: Let u⃗ =

(
y
y′

)
, then

u⃗ ′ =

(
y′

y′′

)
=

(
y′

−3y′/x− 2y/x2

)
u⃗ ′ =

(
0 1

−2/x2 −3/x

)(
y
y′

)
Then A =

(
0 1

−2/x2 −3/x

)
. ■

24. y′′′ + xy′′ + x2y + y = 0
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Convert Forced Higher Order Equation to u⃗ ′ = Au⃗ + F⃗ (t)

25.
d4y

dx4 = y′′′ + y + sinx

Solution: Variable t is the same as variable x and ′ = d
dx = d

dt .

Let u⃗ =


y
y′

y′′

y′′′

, then

u⃗ ′ =


y′

y′′

y′′′

y′′′′



=


y′

y′′

y′′′

y′′′ + y + sinx



=


y′

y′′

y′′′

y′′′ + y

+


0
0
0

sinx



=


0 1 0 0
0 0 1 0
0 0 0 1
1 0 0 1




y
y′

y′′

y′′′

+


0
0
0

sinx


Then

A =


0 1 0 0
0 0 1 0
0 0 0 1
1 0 0 1

, F⃗ (x) =


0
0
0

sinx

. ■

26.
d6y

dx6 =
d4y

dx4 + y + cos t

Convert 2nd Order System to u⃗ ′ = Au⃗ + G⃗ (t)

27. x⃗ ′′ =

(
−2 1
1 −1

)
x⃗ +

(
1

−1

)
Solution: Assume ′ = d

dt .
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Let x⃗ =

(
x1

x2

)
and u⃗ =


x1

x2

x′
1

x′
2

. Then:

u⃗ ′ =


x′
1

x′
2

x′′
1

x′′
2



=


x′
1

x′
2

−2x1 + x2 + 1
x1 − x2 − 1



=


x′
1

x′
2

−2x1 + x2

x1 − x2

+


0
0
1

−1



=


0 0 1 0
0 0 0 1

−2 1 0 0
1 −1 0 0




x1

x2

x′
1

x′
2

+


0
0
1

−1


Then

u⃗ ′ =


0 0 1 0
0 0 0 1

−2 1 0 0
1 −1 0 0




x1

x2

x′
1

x′
2

+


0
0
1

−1



A =


0 0 1 0
0 0 0 1

−2 1 0 0
1 −1 0 0

, G⃗(t) =


0
0
1

−1

. ■

28. x⃗ ′′=

(
−2 1 0
1 −2 1
0 −1 −2

)
x⃗ + et

1
1
1


Convert Damped 2nd Order System to u⃗ ′ = Au⃗ + G⃗ (t)

29. x⃗ ′′=

(
−2 1
1 −1

)
x⃗ +

(
0 1
1 0

)
x⃗ ′ +

(
1

−1

)
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Solution: Assume ′ = d
dt . Let x⃗ =

(
1

x2

)
. Let u⃗ =


x1

x2

x′
1

x′
2

.

Write the differential equation in terms of components:(
x′′
1

x′′
2

)
=

(
−2x1 + x2 + x′

2 + 1
x1 − x2 + x′

1 − 1

)
Then

u⃗ ′ =


x′
1

x′
2

x′′
1

x′′
2



=


x′
1

x′
2

−2x1 + x2 + x′
2 + 1

x1 − x2 + x′
1 − 1



=


0 0 1 0
0 0 0 1

−2 1 0 1
1 −1 1 0




x1

x2

x′
1

x′
2

+


0
0
1

−1



Then A =


0 0 1 0
0 0 0 1

−2 1 0 1
1 −1 1 0

 and G⃗(t) =


0
0
1

−1

. ■

30. x⃗ ′′ =

(
−2 1 0
1 −2 1
0 −1 −2

)
x⃗ + x⃗ ′ + et

1
1
1


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11.3 Structure of Linear Systems

Linear Systems
Convert to matrix notation u⃗ ′ = Au⃗ + F⃗ (t).

1. x′
1 = 2x1 + x2 + et,

x′
2 + x1 − 2x2 = sinh(t)

Solution: Answer: A =

(
2 1

−1 2

)
, F⃗ (t) =

(
et

sinh(t)

)
. ■

2. x′
1 = x1 + x2 + x3,

x′
2 + x1 − 2x2 + x3 = ln |1 + t2|,

x′
3 = x2 + x3 + cosh(t)

Existence-Uniqueness

3. Apply Gronwall’s inequality to
|y(t)| ≤ 4 +

∫ t

0
(1 + r2)|y(r| dr, t ≥ 0.

Solution: Gronwall’s inequality assumes for t for t0 ≤ t ≤ t0 +H

u(t) ≤ c+

∫ t

t0

u(r)v(r)dr

and concludes
u(t) ≤ c+ e

−
∫ t
t0

v(r)dr

Let u(t) = |y(t)|, v(r) = 1+r2, c = 4 and t0 = 0. Then Gronwall’s inequality
concludes

|y(t)| ≤ 4 +

∫ t

0

|y(r)|(1 + r2)dr

■

4. Solve with x1(0) = x2(0) = 0:
x′
1 = etx+ e−tx2,

x′
2 = ln |1 + sinh2(t)|x1 + x2

5. Find the interval on which the solution is defined:
x′
1 = tx1 + x2, x

′
2 = x1 + tan(t)x2

Solution: Answer: −π/2 < t < π/2. Reason: It is a linear system u⃗ ′ = Au⃗+

F⃗ (t) with A(t) =

(
t 1
1 tan(t)

)
continuous on domain −π/2 < t < π/2,

F⃗ = 0⃗ everywhere continuous. Map (t, u⃗) → A(t)u⃗ + F⃗(t) is therefore
continuous in (t, u⃗) and continuously differentiable in u⃗ on the domain
|t| < π/2, u⃗ in R2. Picard’s Theorem page 851 � says that the solution is
defined on the entire domain, initial value problems uniquely solvable.
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Remark on Global Existence
Picard’s theorem for nonlinear problems u⃗ ′ = G⃗(t, u⃗) does not
claim global definition of solutions. For instance, scalar problem
y′ = 1 + y2, y(0) = 0 has solution y(t) = tan t, which is only
defined on |t| < π/2, even though the map (t, y) → 1 + y2 is
continuous in t and infinitely continuously differentiable in y.

6. Let matrix A be 2×2 constant. Find A, given x⃗ ′ = Ax⃗ has general solution
x1 = c1e

t + c2e
2t, x2 = 5c12e

t + 4c2e
2t.

Solution: Hint: Write the general solution as u⃗ = Φ(t)

(
c1
c2

)
and insert

this equation into u⃗ ′ = Au⃗ to get an equation for A.

7. Let x⃗ ′ = A(t)x⃗ have two solutions :

(
1
2

)
,

(
et

et

)
. Solve x⃗ ′ = A(t)x⃗ .

Solution: Matrix A(t) has to be 2 × 2. The solutions are independent,

therefore x⃗ = c1

(
1
2

)
+c2

(
et

et

)
is the general solution by Picard’s Theorem.

It is possible to find A(t) explicitly. All possible constants are allowed in
the general solution. Insert x⃗ into the equation x⃗ ′ = A(t)x⃗ :

x⃗ ′ = A(t)x⃗

c1
d
dt

(
1
2

)
+ c2

d
dt

(
et

et

)
= A(t)

(
c1

(
1
2

)
+ c2

(
et

et

))
d
dt

(
1 et

2 et

)(
c1
c2

)
= A(t)

(
1 et

2 et

)(
c1
c2

)
(

0 et

0 et

)(
c1
c2

)
= A(t)

(
1 et

2 et

)(
c1
c2

)
((

0 et

0 et

)
−A(t)

(
1 et

2 et

))(
c1
c2

)
=

(
0
0

)
for all c1, c2.

Choose c1 = 1, c2 = 0 and then c1 = 0, c2 = 1 to prove the coefficient
matrix is zero:(

0 et

0 et

)
= A(t)

(
1 et

2 et

)
The matrix multiplying A(t) has determinant −et, so it is invertible for all
t with inverse(

1 et

2 et

)−1

=
1

−et

(
et −et

−2 1

)
=

(
−1 1
2e−t −e−t

)
Solve by matrix inversion
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A(t) =

(
0 et

0 et

)(
−1 1
2e−t −e−t

)
=

(
2 −1
2 −1

)
■

8. Let A =

(
0 0
0 0

)
. Solve x⃗ ′ = Ax⃗ .

9. Let constant matrix A be 10 × 10. Two solutions of x⃗ ′ = Ax⃗ have equal
value at t = 100. Are they the same solution?

Solution: Yes. Initial value problems have unique solutions by Picard’s
Theorem.

10. Solutions y1, y2 of y′+p(x)y = q(x) are zero at x = −2. What assumptions
on p, q imply y1 ≡ y2?

Superposition

11. Explain: et is a solution of y′′−y = 0 because cosh(t), sinh(t) are a solution
basis.

Solution: Function et is a linear combination of the solution basis: it is the
sum cosh(t)+sinh(t). Because linear combinations of solutions are solutions
then et is a solution.

12. Explain: et + 10 is a solution of y′′ − y = −10, therefore 10 is a particular
solution.

13. The shortest solution of y′ + y = 100 is y = 100. Explain why.

Solution: All solutions are y = yh + yp. Solution yp can be taken to be
yp = 100, an equilibrium solution. The homogeneous solution is yh =
c/integrating factor = ce−t. Let z = 100 and let y be any solution of
y′ + y = 100. Then u = y − z is a solution of u′ + u = 0, so it equals ce−t

for some c: u = y − z = ce−t implies y = ce−t + 100. The shortest solution
is when c = 0.

14. Let x′
1 = 2x1, x

′
2 = −x2. Report the matrix form x⃗ ′ = Ax⃗ and the vector

general solution.

15. Let 2-dimensional x⃗ ′ = Ax⃗ + F⃗ (t) have general solution x1 = c1e
t + c2e

3t,
x2 = (c1 + c2)e

t + 2c2e
3t + cos(t). Find formulas for vectors x⃗h and x⃗p.

Solution: Homogeneous solution x⃗h = Φ(t)

(
c1
c2

)
where Φ(t) =(

et e3t

et et + 2e3t

)
. The columns of Φ(t) are the partial derivatives of vector

x⃗ =

(
x1

x2

)
on symbols c1, c2. Particular solution x⃗p =

(
0

cos t

)
, found

from c1 = c2 = 0.
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16. Let x⃗ ′ = Ax⃗ + F⃗(t) have two solutions x1 = et + e3t, x2 = 2et +sin(t) and
x1 = e3t, x2 = e3t + sin(t). Find a solution of x⃗ ′ = Ax⃗ .

Superposition x⃗ ′ = Ax⃗ + F⃗ (t)

17. Let u⃗1(t), . . . , u⃗k(t) be solutions of x⃗
′ = A(t)x⃗ . Let c1, . . . , ck be constants.

Prove: u⃗ (t) =
∑k

i=1 ciu⃗ i(t) is a solution of x⃗ ′ = A(t)x⃗ .

Solution: // Proof:

u⃗ ′(t) =
∑k

i=1 ciu⃗
′
i(t)

=
∑k

i=1 ciA(t)u⃗ i(t)

= A(t)
(∑k

i=1 ciu⃗ i(t)
)

= A(t)u⃗(t) ■

18. Find the standard basis w⃗ 1(t), w⃗ 2(t):

x⃗ ′ =

(
1 0 0
0 2 0
0 0 0

)
x⃗

19. Let matrix A be 2× 2. For x⃗ ′ = Ax⃗ + F⃗(t), find x⃗h(t), x⃗p(t):
x1 = c1 + c2t+ et, x2 = (c1 − c2)t+ e2t

Solution: Let c1 = c2 = 0 to find particular solution x⃗p =

(
et

e2t

)
.

Subtract the particular solution from the general solution to find the homo-
geneous solution

x⃗h =

(
c1 + c2t+ et

(c1 − c2)t+ e2t

)
− x⃗p =

(
c1 + c2t
(c1 − c2)t

)
=

(
1 t
t −t

)(
c1
c2

)

20. Let matrix A(t) be 2 × 2. Let x⃗ ′ = A(t)x⃗ + F⃗(t) have two solutions(
1 + et

1

)
,

(
1 + e−t

−1

)
. Find a solution of x⃗ ′ = A(t)x⃗ .

General Solution

21. Assume A is 2× 2 and x⃗ ′ = Ax⃗ has solutions et
(
1
1

)
, e−t

(
1

−1

)
. Find the

general solution and explain.

Solution: The two solutions are independent. The solution space is 2-
dimensional for a 2 × 2 constant matrix, by Picard’s Theorem. Therefore
the two solutions are a basis for the solution space and every solution is a
linear combination of the two solutions. ■
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22. Assume x⃗ ′ = Ax⃗ +

(
1
1

)
. Prove that zero is not a solution.

23. Assume x⃗ ′ = Ax⃗ +

(
1
1

)
and x⃗ (t) = x⃗0 = constant. Find an equation for

x⃗0.

Solution: The equation: 0⃗ = Ax⃗0 +

(
1
1

)
. ■

24. Find the vector general solution:

x⃗ ′ =

(
1 0
0 2

)
x⃗ +

(
1
1

)
.

25. Given 3 x⃗ ′ = A(t)x⃗ with scalar general solution x1 = c1 + c2t + c3t
2,

x2 = c2 + c3t, x3 = c3, find the vector general solution.

Solution: There are two forms of the answer:

x⃗ =

 c1 + c2t+ c3t
2

c2 + c3t
c3

 or x⃗ =

 1 t 0
0 1 0
0 0 1

 c1
c2
c3

.

Matrix Φ(t) has columns equal to the partial derivatives on symbols c1, c2, c3

of the vector general solution

 c1 + c2t+ c3t
2

c2 + c3t
c3

. We compute by calculus:

Φ(t) =

 1 t 0
0 1 0
0 0 1

 ■

26. Given 3 x⃗ ′ = A(t)x⃗ with scalar general solution x1 = c1 + c2t + c3t
2,

x2 = c2 + c3t, x3 = c3, find A(t).

27. Find the vector general solution:

x⃗ ′ =

(
1 0 0
0 2 0
0 0 0

)
x⃗ +

(
1
1
0

)
.

Solution: Let’s find a valid x⃗p by seeking a constant solution x⃗ = x⃗0.
Then

0⃗ =

(
1 0 0
0 2 0
0 0 0

)
x⃗0 +

(
1
1
0

)
.

Then x⃗0 =

−1
− 1

2
c

 for any constant c. Choose c = 0 and x⃗p =

−1
− 1

2
0

.
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Let’s find a x⃗h by solving x⃗ ′ =

(
1 0 0
0 2 0
0 0 0

)
x⃗ or scalar equations x′

1 = x1

x′
2 = 2x2

x′
3 = 0

Then x1 = c1e
t, x2 = c2e

2t, x3 = c3.

The vector general solution is

x⃗ = x⃗h + x⃗p =

 et 0 0
0 e2t 0
0 0 1

  c1
c2
c3

+

 −1
− 1

2
0

 ■

28. Find the vector general solution:

x⃗ ′ =

(
1 0 0
0 2 0
0 0 0

)
x⃗ +

(
0
1
0

)
.

Independence

29. Assume A is 2 × 2 and x⃗ ′ = Ax⃗ has solutions et
(
1
1

)
, e−t

(
1

−1

)
. Prove

they are independent directly from the definition.

Solution: Let v⃗ 1 = et
(
1
1

)
, v⃗ 2 = e−t

(
1

−1

)
. The vectors are functions

from −∞ < t < ∞ to R2, which is a known vector space V . To prove
independence in V form the equation

c1v⃗ 2 + c2v⃗ 2 = 0⃗

and solve for c1, c2. The vectors are independent in V if the only solution
is c1 = c2 = 0. The equation formed means

c1e
t

(
1
1

)
+ c2e

−t

(
1

−1

)
=

(
0
0

)
for all t.

Vector equality gives two equations:

c1e
t + c2e

−t = 0, c1e
t − c2e

−t = 0

Add the two equations to get c1 = 0. Subtract the two equations to get
c2 = 0. Then the only solution i c1 = c2 = 0 and vectors v⃗ 1, v⃗ 2 are
independent. ■

30. Compute the Wronskian:

et
(
1
1

)
, e−t

(
1

−1

)
.

Abel-Liouville Formula
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31. Apply Abel’s Independence Test:

et
(
1
1

)
, e−t

(
1

−1

)
Solution: Compute the Wronskian of the two vector functions:

W (t) = det

(
et e−t

et −e−t

)
Then W (0) =

∣∣∣∣ 1 1
1 −1

∣∣∣∣ = −2 ̸= 0 implies the two vector functions are

independent. ■

32. Let Φ(t) an invertible matrix satisfying Φ′(t) = AΦ(t). Prove that the
columns of Φ(t) are independent solutions of x⃗ ′ = Ax⃗ .

33. Let Φ(t) an invertible matrix satisfying Φ′(t) = AΦ(t). Prove that the
columns of Φ(t) are independent solutions of x⃗ ′ = Ax⃗ .

Solution: Multiply Φ′(t) = AΦ(t) by a column e⃗ of the identity matrix.
This proves each column of Φ(t) is a solution of x⃗ ′ = Ax⃗ . Independence
follows from Abel’s Wronskian Independence Test. ■

34. Let Φ(t) any matrix satisfying Φ′(t) = AΦ(t). Assume the determinant of
Φ(t0) is nonzero. Prove that the columns of Φ(t) are independent solutions
of x⃗ ′ = Ax⃗ .

35. Let Φ(t) any matrix satisfying Φ′(t) = AΦ(t). Let C be a constant matrix.
Prove that the columns of Φ(t)C are solutions of x⃗ ′ = Ax⃗ .

Solution: A column of Φ(t)C is formally Φ(t)Ce⃗ for a column e⃗ of the
identity matrix. Product v⃗ = Ce⃗ is a column vector of constants. Matrix
multiply Φ(t)v⃗ is a linear combination of the columns of Φ(t), which is a
linear combination of solutions to x⃗ ′ = Ax⃗ . Therefore, each column of
Φ(t)C is a solution to x⃗ ′ = Ax⃗ . ■

36. Assume continuous coefficients:
y(n)+pn−1y

(n−1)+ · · ·+p0y=0
Prove from the Abel-Liouville formula for the companion system
that the Wronskian W (t) of
solutions y1, . . . , yn satisfies
W ′ + pn−1(t)W = 0.

Initial Value Problem

37. Let matrix A be 3 × 3. Assume x⃗ ′ = A(t)x⃗ + F⃗(t) has scalar general
solution x1 = c1e

t + c2e
−t + t, x2 = (c1 + c2)e

t + c3e
2t, x3 = (c1 + c2)e

t −
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2c2e
−t + c3e

2t + t. Given initial conditions x1(0) = x2(0) = 0, x3(0) = 1,
solve for c1, c2, c3.

Solution: Answers: c1 = 1/2, c2 = −1/2, c3 = 0.

There are two common solution methods:

(1) Scalar equations and linear algebra without matrices, finding
the scalar answers using college algebra.

(2) Vector-matrix notation and linear algebra, obtaining both the
scalar answers and a vector-matrix representation of the solution
x⃗ (t).

Only the second solution method (2) is offered. Let

Φ(t) =

 et e−t 0
et et e2t

et et − 2e−t e2t

, v⃗ =

 c1
c2
c3

, x⃗p =

 t
0
t


Then x⃗ = Φ(t)v⃗ + x⃗p is the vector general solution of x⃗ ′ = A(t)x⃗ + F⃗(t).

The initial value problem is solved by finding c1, c2, c3 satisfying

x⃗ (0) = Φ(0)v⃗ + x⃗p(0) =

 0
0
1


Because x⃗p(0) = 0⃗ then there is the simplified equation

Φ(0)v⃗ =

 0
0
1

 or

 1 1 0
1 1 1
1 −1 1

 c1
c2
c3

 =

 0
0
1


Constants c1, c2, c3 are found on paper from augmented matrix 1 1 0 0

1 1 1 0
1 −1 1 1


The reduced row-echelon form is 1 0 0 1/2

0 1 0 −1/2
0 0 1 0

.

Then c1 = 1/2, c2 = −1/2, c3 = 0. The solution found:

x⃗ (t) =

 et e−t 0
et et e2t

et et − 2e−t e2t

 1/2
−1/2

0

+

 t
0
t

. ■

38. Let matrix A be 3×3. Assume x⃗ ′ = A(t)x⃗+F⃗(t) has scalar general solution
x1 = c1 + c2t + c3t

2 + et, x2 = c2 + c3t + e2t, x3 = c3. Find the vector
particular solution x⃗ for initial conditions x1(0) = x2(0) = 0, x3(0) = 1.
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Equilibria

39. Find all equilibria:

x⃗ ′ =

(
cos(t) cos(t)
2 2

)
x⃗

Solution: Solve 0⃗ =

(
cos(t) cos(t)
2 2

)
x⃗0 for constant x⃗0 =

(
x1

x2

)
. Then

cos(t)(x1+x2) = 0, 2(x1+x2) = 0 for all t with x1, x2 constant. The solution

is all points on the line y = −x in the xy-plane, equivalently,

(
x1

x2

)
=

c

(
1

−1

)
for all constants c. There are infinitely many equilibria, which

are constant solutions to the equation x⃗ ′ = A(t)x⃗ . ■

40. Find all equilibria:

x⃗ ′ =

(
sin(t) sin2(t)
2 2

)
x⃗
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11.4 Matrix Exponential

Matrix Exponential.

1. (Picard) Let A be real 2×2. Write out the two initial value problems which
define the columns w⃗ 1(t), w⃗ 2(t) of e

At.

Solution:

(1) w⃗ ′
1 = Aw⃗ 1, w⃗ 1(0) =

(
1
0

)
(2) w⃗ ′

2 = Aw⃗ 2, w⃗ 2(0) =

(
0
1

)
■

2. (Picard) Let A be real 3 × 3. Write out the three initial value problems
which define the columns w⃗ 1(t), w⃗ 2(t), w⃗ 3(t) of e

At.

3. Let A be real 2× 2. Show that x⃗ (t) = eAtu⃗0 satisfies x⃗ ′ = Ax⃗ , x⃗ (0) = u⃗0.

Solution: Let u⃗0 =

(
c1
c2

)
. By definition, eAt = ⟨w⃗ 1(t)|w⃗ 2(t)⟩. Uniqueness

in Picard’s Theorem implies x⃗ = c1w⃗ 1 + c2w⃗ 2, because

x⃗ (0) = u⃗0 = c1

(
1
0

)
+ c2

(
0
1

)
= c1w⃗ 1(0) + c2w⃗ 2(0)

Then:

x⃗ ′(t) =
(
eAt
)′
u⃗0

=
(
⟨w⃗ 1(t)|w⃗ 2(t)⟩

)′
u⃗0

= ⟨w⃗ ′
1(t)|w⃗ ′

2(t)

(
c1
c2

)
= c1w⃗

′
1(t) + c2w⃗

′
2(t)

matrix multiply is a
linear combination of columns

= c1Aw⃗ 1(t) + c2Aw⃗ 2(t) because w⃗ 1, w⃗ 2 are solutions of x⃗ ′ = Ax⃗

= A(c1w⃗ 1(t) + c2w⃗ 2(t))

= Ax⃗ (t)

Proved: x⃗ (0) = u⃗0 and x⃗ ′ = Ax⃗ . ■

4. Let A be real n×n. Show that x⃗ (t) = eAtx⃗0 satisfies x⃗ ′ = Ax⃗ , x⃗ (0) = x⃗0.

Matrix Exponential 2 × 2. Find eAt from representation eAt = ⟨w⃗ 1|w⃗ 2⟩.
Use first-order scalar methods.
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11.4 Matrix Exponential

5. A =

(
1 0
0 2

)
.

Solution: Solve x⃗ ′ = Ax⃗ : x1 = c1e
t, x2 = c2e

2t. Then the vector general

solution is x⃗ =

(
c1e

t

c2e
2t

)
Vector w⃗ 1 satisfies w⃗ 1(0) =

(
1
0

)
=

(
c1e

0

c2e
2(0)

)
, resulting in c1 = 1, c2 = 0

and w⃗ 1 =

(
et

0

)
. Similarly, w⃗ 2 =

(
0
e2t

)
. Then

eAt = ⟨w⃗ 1|w⃗ 2⟩ =

(
et 0
0 e2t

)
. ■

6. A =

(
−1 0
0 0

)
.

7. A =

(
1 1
0 0

)
.

Solution: Matrix A is upper triangular. The vector general solution of x⃗ ′ =
Ax⃗ is found by scalar methods applied the scalar system

x′
1 = x1 + x2, x

′
2 = 0

Then

x⃗ =

(
x1

x2

)
=

(
c1e

t − c2
c2

)
w⃗ 1 =

(
et

0

)
w⃗ 2 =

(
et − 1

1

)
eAt = ⟨w⃗ 1|w⃗ 2⟩ =

(
et et − 1
0 1

)
. ■

8. A =

(
−1 1
0 2

)
.

Matrix Exponential Identities. Verify from exponential identities.

9. eA e−A = I

Solution: Matrices A and B = −A commute: AB = BA. Apply identity
eAteBt = e(A+B)t, valid for AB = BA. Then eA e−A = e(A−A)t = e0t =

⟨w⃗ 1|w⃗ 2⟩ where w⃗ 1, w⃗ 2 are solutions of system
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x⃗ ′ = (A−A)x⃗ =

(
0 0
0 0

)
x⃗

with initial data equal to the columns of the identity matrix. Solutions of

this system are constant vectors. Therefore w⃗ 1 =

(
1
0

)
, w⃗ 2 =

(
0
1

)
by the

definitions of w⃗ 1, w⃗ 2. Then

eA e−A = ⟨w⃗ 1|w⃗ 2⟩ =

(
1 0
0 1

)
= I. ■

10. e−A =
(
eA
)−1

11. A =
d

dt
eAt evaluated at t = 0

Solution: Let Φ(t) = eAt = ⟨w⃗ 1|w⃗ 2⟩. The exercise can be re-phased as
A = Φ′(0). The columns of Φ are the special solutions w⃗ 1, w⃗ 2 of x⃗ ′ = Ax⃗ .
Definitions of w⃗ 1, w⃗ 2 give identity Φ(0) = I. The proof is completed from
equation Φ′(t) = AΦ(t) by substitution of t = 0: Φ′(0) = AΦ(0) = AI = A.

Proof of Φ′(t) = AΦ(t):

Φ′(t) = ⟨w⃗ ′
1|w⃗ ′

2⟩
= ⟨Aw⃗ 1|Aw⃗ 2⟩
= A⟨w⃗ 1|w⃗ 2⟩
= AΦ(t) ■

12. If A3 = 0, then eA = I +A+ 1
2A

2.

13. Let A =

(
a 0
0 a

)
and N =

(
0 1
0 0

)
. Verify N2 = 0 and

eAt+Nt = eAt(I +Nt).

Solution:

(1) Verify N2 = 0:

N2 =

(
0 1
0 0

)(
0 1
0 0

)
=

(
0 0
0 0

)
(2) Verify eAt+Nt = eAt(I +Nt):

eAt =

(
eat0
0 eat

)
= eatI

I +Nt =

(
1 t
0 1

)
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eAt+Nt = eatI + teat(A+N − aI) by Putzer’s formula for λ1 = λ2 = a

= eatI + teatN

= eatI(I + tN)

= eAt(I + tN) ■

14. Let A be 3× 3 diagonal and N =

(
0 1 0
0 0 1
0 0 0

)
. Prove N3 = 0 and

eAt+Nt = eAt(I +Nt+N2 t
2

2
).

15. e

(
1 1
0 2

)
t

=

(
et e2t − et

0 e2t

)
Solution: Let A =

(
1 1
0 2

)
. Apply Putzer’s formula for λ1 = 1, λ2 = 2.

eAt = etI +
et − e2t

1− 2
(A− (1)I)

= etI + (e2t − et)

(
0 1
0 1

)
=

(
et 0
0 et

)
+

(
0 e2t − et

0 e2t − et

)
=

(
et e2t − et

0 e2t

)
■

16. e

(
1 1
0 1

)
t

=

(
et tet

0 et

)
Putzer’s Spectral Formula.

17. Apply Picard-Lindelöf theory to conclude that r1, . . . , rn are everywhere
defined,

Solution: Growth-decay differential equation r′1 = λ1r1 has solution
r1 = eλ1t, continuous everywhere. Substitute into the the second differential
equation to get r′2+ pr2 = q where p is constant and q(t) is everywhere con-
tinuous. Picard’s Theorem says that r2(t) is everywhere continuous. Cas-
cade each ri into the next differential equation and apply Picard’s Theorem
repeatedly to conclude r1, . . . , rn are everywhere continuous. ■

18. Prove that P1, . . . , Pk commute.
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Putzer’s Formula 2× 2 .

19. Find a formula for
d

dt
eAt for a 2× 2 matrix A with eigenvalues 1, 2.

Solution: Use

eAt = eλ1tI +
eλ1t − eλ2t

λ1 − λ2
(A− λ1I)

with λ1 = 1, λ2 == 2. Then

eAt = etI +
et − e2t

1− 2
(A− I).

Differentiate on t:

d

dt
eAt = etI +

et − 2e2t

1− 2
(A− I).

20. Let 2 × 2 matrix A have duplicate eigenvalues 0, 0. Compute r1, r2 and
then report eAt.

Putzer: Real Distinct. Find the matrix exponential.

21. A =

(
1 2
0 2

)
Solution: Let A =

(
1 2
0 2

)
in Exercise 19. Then

eAt = etI + et−e2t

1−2 (A− I)

= etI +
(
−et + e2t

)
(A− I)

= et
(
1 0
0 1

)
+
(
−et + e2t

)(0 2
0 1

)
=

(
et 0
0 et

)
+

(
0 −2et + 2e2t

0 −et + e2t

)
=

(
et −2et + 2e2t

0 e2t

)
# Exercise 21: Matrix exponential

A:=<1,2|0,2>^+;

with(LinearAlgebra):

MatrixExponential(A,t);

22. A =

(
1 0
2 3

)
Putzer: Real Equal. Find the matrix exponential.
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23. A =

(
1 0
0 1

)
Solution:

eAt = eλ1tI + teλ1t(A− λ1I)

eAt = etI + tet(A− I)

eAt = etI

24. A =

(
1 2
0 1

)
Putzer: Complex Eigenvalues. Find the matrix exponential.

25. A =

(
1 1

−1 1

)
Solution: Eigenvalues 1± i. Let a = 1, b = 1. Then:

eAt = eat
(
cos bt I + sin bt

b (A− aI)
)

= et
(
cos t I + sin t

1 (A− I)
)

= et
(
cos(t)

(
1 0
0 1

)
+ sin(t)

(
0 1

−1 0

))
= et

(
cos t sin t

− sin t cost

)
.

26. A =

(
0 2

−2 0

)
How to Remember Putzer’s 2× 2 Formula.

27. Find limλ→λ1

eλt − eλ1t

λ− λ1
.

Solution: L’Hôpital’s Rule applies.

28. Let matrix A be 2× 2 real. Take the real part: eAt = I +
eit − e−it

2i
A.

Classical n× n Spectral Formula. Find eAt.

29. A =

(
0 2 0

−2 0 0
0 0 1

)
Solution: The basic idea is to use the formula for a block diagonal matrix,

Theorem 11.19. Then eAt = diag
(
eBt, eCt

)
where B =

(
0 2

−2 0

)
and C = (1)
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= 1× 1 matrix.

eAt =

 cos(2t) sin(2t) 0
− sin(2t) cos(2t) 0

0 0 et


# Exercise 29: Matrix exponential

A:=<0,2,0|-2,0,0|0,0,1>^+;

with(LinearAlgebra):

MatrixExponential(A,t);

30. A =

0 0 2 0
0 −2 0 0
0 0 0 1
1 0 0 0


Proofs of Matrix Exponential
Properties.

31. Let Au⃗ = Bu⃗ for all vectors u⃗ . Prove A = B.

Solution: Let u⃗ equal the first column of the identity matrix I. Then
Au⃗ = Bu⃗ says the first column of A equals the first column of B. Repeat
for all columns of I to proved A, B have exactly the same entries. ■

32. Let A =

(
1 2
0 2

)
. Compute the first four Picard iterates for x⃗ ′ = Ax⃗ ,

x⃗ (0) = x⃗0.

Special Cases eAt.

33. Show the details to solve
x′
1 = 2x1 + x3,

x′
2 = 3x2 + x3,

x′
3 = 4x3,

x1(0) = 1, x2(0) = x3(0) = 0.

Solution: Let A =

 2 0 1
0 3 1
0 0 4

. Compute

eAt =

 e2t 0 − 1
2e

2t + 1
2e

4t

0 e3t e4t − e3t

0 0 e4t


then

x⃗ (t) = eAt

 1
0
0

 =

 e2t

0
0

.
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# Exercise 33: Matrix exponential

A:=<2,0,1|0,3,1|0,0,4>^+;

with(LinearAlgebra):MatrixExponential(A,t);

34. Let A = diag(1, 2, 3, 4). Find eAt.

35. Let B =

(
1 1
0 0

)
, A = diag(B,B). Find eAt.

Solution: Theorem 11.19 gives
eAt = diag

(
eBt, eBt

)
.

Putzer’s identity gives

eBt = e0tI +
e0t − e1t

0− 1
(B − 0I)

= I + (−1 + et)B

=

(
1 0
0 1

)
+ (−1 + et)

(
1 1
0 0

)
=

(
et et − 1
0 1

)
eAt = diag

(
eBt, eBt

)
= diag

((
et et − 1
0 1

)
,

(
et et − 1
0 1

))

=


et et − 1 0 0
0 1 0 0
0 0 et et − 1
0 0 0 1


# Exercise 35: Matrix exponential

with(LinearAlgebra):

B:=<1,1|0,0>^+;MatrixExponential(B,t);

Z:=Matrix(2,2);A:=< <B,Z> | <Z,B> >;

MatrixExponential(A,t);

36. Let B =

(
1 2

−2 1

)
and

A = diag(B,B). Find eAt.
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Determinant |A− rI|
Justify these statements.

1. Subtract r from the diagonal of A to form |A− rI|.
Solution: Matrix A with r subtracted from the diagonal is matrix B =
A− rI. The determinant of B is |A− rI|, the characteristic equation of A.

2. If A is 2× 2, then |A− rI| is a quadratic.

3. If A is 3× 3, then |A− rI| is a cubic.

Solution: Symbol r appears three times in A− rI, once per row. One term
in the determinant expansion is the product of the diagonal elements, which
is

(a11 − r)(a22 − r)(a33 − r).

Then (−r)3 appears as the largest power of r in the determinant expansion:
|A− rI| is a cubic polynomial in variable r.

4. Expansion of |A− rI| by the cofactor rule often preserves factorizations.

5. If A is triangular, then |A− rI| is the product of diagonal entries.

Solution: Apply the triangular rule for determinants, because A − rI is
also triangular.

6. The combo, mult and swap rules for determinants are generally counter-
productive for expansion of |A− rI|.

Characteristic Polynomial
Show expansion details for |A− rI|.

7. A =

(
2 3
0 4

)
.

Ans: (2− r)(4− r)

Solution: |A− rI| =
∣∣∣∣ 2− r 3

0 4− r

∣∣∣∣ = (2− r)(4− r).

8. A =

(
2 3 4
0 5 6
0 0 7

)
.

Ans: (2− r)(5− r)(7− r)
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Eigenanalysis Method: 2× 2
Solve x⃗ ′ = Ax⃗ .

9. A =

(
1 0
0 2

)
Solution: The eigenvalues of A are 1, 2. Two eigenpairs are

(
1,

(
1
0

))
,(

2,

(
0
1

))
. Then Theorem 11.21 gives

x(t) = c1e
t

(
1
0

)
+ c2e

2t

(
0
1

)
.

10. A =

(
1 1
2 2

)
Eigenanalysis Method: 3× 3
Solve x⃗ ′ = Ax⃗ .

11. A =

(
1 1 0
2 2 0
0 0 1

)

Solution: The eigenvalues are 3, 0, 1 with matching eigenvectors

1
2
0

, 1
−1
0

,

0
0
1

. The general solution using Theorem 11.22:

x⃗ (t) = c1e
3t

1
2
0

+ c2e
0t

 1
−1
0

+ c3e
t

0
0
1


# Exercise 11, Eigenanalysis method 3x3

with(LinearAlgebra):

A:=<1,1,0|2,2,0|0,0,1>^+;Eigenvectors(A);

12. A =

(
1 1 0
2 2 1
0 0 1

)

Eigenanalysis Method: n× n
Solve x⃗ ′ = Ax⃗ .

13. A =

1 1 0 0
2 2 1 0
0 0 1 0
0 0 0 1


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Solution: The eigenvalues are 0, 1, 1, 3 with matching eigenvectors


1

−1
0
0

,


0
0
0
1

,


0
0
0
1

,


0
0
0
1

. The general solution using Theorem 11.23:

x⃗ (t) = c1e
0t


1

−1
0
0

+ c2e
t


0
0
0
1

+ c3e
t


0
0
0
1

+ c4e
3t


0
0
0
1

.

# Exercise 13, Eigenanalysis method 4x4

with(LinearAlgebra):

A:=<1,1,0,0|2,2,1,0|0,0,1,0|0,0,0,1>^+;Eigenvectors(A);

14. A =


1 1 0 0 1
2 2 1 0 1
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1


eAt for Simple Eigenvalues
Find aAt using classical spectral theory. Check by computer.

15. A =

(
1 1
2 2

)
Solution: The eigenvalues are λ1 = 0, λ2 = 3. Define Q1 = (A− 0I)/(3−
0) = 1

3A, Q2 = (A− 3I)/(0− 3) = − 1
3A− I. Theorem 11.24 gives

eAt = eλ1tQ1 + eλ2tQ2

= 1
3 e

λ1tA+ eλ2t(− 1
3A− I)

= 1
3 e

0t

(
1 1
2 2

)
+ e3t

(
− 1

3

(
1 1
2 2

)
−
(
1 0
0 1

))
= 1

3 e
0t

(
1 1
2 2

)
+ e3t

(
− 4

3 − 1
3− 2

3 − 5
3

)
=

(
2
3 + 1

3e
3t 1

3e
3t − 1

3
2
3e

3t − 2
3

1
3 + 2

3e
3t

)
# Exercise 15, Classical spectral theory

with(LinearAlgebra):

A:=<1,1|2,2>^+;Eigenvectors(A);

MatrixExponential(A,t);
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16. A =

(
1 1 0
2 2 1
0 0 1

)

eAt for Multiple Eigenvalues
Find aAt using classical spectral theory. Check by computer.

17. A =

(
1 1
0 1

)
Solution: The eigenvalues are λ1 = 1, λ2 = 1. The characteristic polyno-
mial is p(λ) = (1−λ)2. Then a1(λ) = 1, a2(λ) = 0, m1 = 2, m2 = 0. Define
Q1 = a1(A)(A− I)0 = I, Q2 = 0. Theorem 11.25 gives

eAt = eλ1tQ1(I + (A− I)t)

= e1tI(I + (A− I)t)

= e1t
((

1 0
0 1

)
+ t

(
0 1
0 0

))
= et

(
1 t
0 1

)
=

(
et tet

0 et

)
# Exercise 17, Classical spectral theory

with(LinearAlgebra):

A:=<1,1|0,1>^+;Eigenvectors(A);

MatrixExponential(A,t);

18. A =

(
1 1 0
0 1 1
0 0 2

)

Cayley-Hamilton Theorem
Prove the identity by applying the Cayley-Hamilton Theorem.

19. Let A=

(
a b
c d

)
, a0=|A|=ad−bc,

a1=trace(A)=a+d. Then

A2 + a1(−A) + a0

(
1 0
0 1

)
=

(
0 0
0 0

)
Solution: Compute |A − rI| = r2 − (a + d)r + ad − bc. Cayley-Hamilton
says

A2 − (a+ d)A+ (ad− bc)I =

(
0 0
0 0

)
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Then

A2 + a1(−A) + a0I =

(
0 0
0 0

)
■

20. Let A=

(
2 3 4
0 5 6
0 0 7

)
. Then:

(2I−A)(5I−A)(7I−A)=

(
0 0 0
0 0 0
0 0 0

)

CHZ Theorem: Scalar Form

21. Write Theorem 11.27 proof missing details for n = 3.

Solution: The book’s proof is routine up to the point of multiplying by rows
of the identity matrix. Start with

x⃗ ′′ + a1x⃗
′ + a0x⃗ = 0⃗

then multiply left by row vector e⃗ =

(
1
0

)T

, which is the first row of I. Left

multiply by e⃗ is the same as taking the dot product of the equation with

vector

(
1
0

)
. Then(

1
0

)
· x⃗ ′′ + a1

(
1
0

)
· x⃗ ′ + a0

(
1
0

)
· x⃗ =

(
1
0

)
· 0⃗(

1
0

)
·
(
x′′
1

x′′
2

)
+ a1

(
1
0

)
·
(
x′
1

x′
2

)
+ a0

(
1
0

)
·
(
x1

x2

)
=

(
1
0

)
· 0⃗

x′′
1 + a1x

′
1 + a0x1 = 0

The second equation is obtained similarly by using e⃗ =

(
0
1

)T

, which is the

second row of I. ■

22. Write Theorem 11.27 proof missing details for any n.

CHZ Theorem: Vector Form

23. Write Theorem 11.28 proof details for n = 2.

Solution: Let n = 2. Expand |A − rI| = r2 + a1r + a0. The roots of
the quadratic generate Euler atoms A1(t), A2(t). Theorem 11.27 implies
components x1, x2 of solution x⃗ (t) to system x⃗ ′ = Ax⃗ satisfy the 2nd order
scalar differential equation u′′ + a1u

′ + a0u = 0. Then each of x1, x2 is
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a linear combination of atoms A1, A2. Assume x1 = c11A1 + c12A2 and
x2 = c21A1 + c22A2. Then

x⃗ =

(
x1

x2

)
=

(
c11A1 + c12A2

c21A1 + c22A2

)
=

(
c11
c21

)
A1 +

(
c12
c22

)
A2

which is a vector linear combination of atoms A1, A2. ■

24. Write Theorem 11.28 proof details for n = 3.

CHZ Identity: Vandermonde

Find matrixD = ⟨ d⃗1| · · · |d⃗n ⟩ using Theorems 11.29, 11.31, given x⃗ (0)=

c1
...
cn

.

25. A=

(
1 0
2 2

)
. Ans: W (0)T , D=(

1 2
1 1

)
,

(
0 c1

2c1 + c2 −2c1

)
Solution: The eigenvalues are 2, 1. The atoms are e2t, et. The Wronskian

matrix of the atoms isW (t) =

(
e2t et

2e2t et

)
. ThenW (0)T =

(
1 1
2 1

)T

=(
1 2
1 1

)
= the Vandermonde matrix for list 2, 1. See maple help for the

definition of the Vandermonde matrix:

(
x1 x2

1

x2 x2
2

)
= Vandermonde matrix

for list [x1, x2]. The literature has more than one definition, the currently
accepted definition matching maple help, agreeing with Wikipedia:

https://en.wikipedia.org/wiki/Vandermonde matrix

Form the equation in Theorem 11.29 and solve for matrix ⟨d⃗1|d⃗2⟩.
⟨d⃗1|d⃗2⟩ = ⟨x⃗0|Ax⃗0⟩ (W (0)T

)−1

=

(
c1 c1
c2 2c1 + 2c2

)(
−1 2
1 −1

)
=

(
0 c1

c2 + 2c1 −2c1

)
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# Exercise 25, Vandermonde identity

with(LinearAlgebra):

A:=<1,2|0,2>;

C:=x-><x|A.x>;

EV:=convert(Eigenvalues(A),list);

V:=VandermondeMatrix(EV);

x0:=<c1,c2>;

<d1|d2> = C(x0).(1/V);

26. A=

(
1 0 0
2 2 0
0 0 3

)
. Ans: W (0)T , D=(

1 1 1
1 2 4
1 3 9

)
,

(
c1 0 0

−2c1 2c1 + c2 0
0 0 c3

)

CHZ and Eigenvectors
Supply details for the following.

27. Find a scalar 3rd order linear differential equation that has et, e2it, e−2it as
solutions. Apply theorems to conclude that the Wronskian of the exponen-
tials is invertible for every t.

Solution: The plan: apply Theorem 11.13 (Abel-Liouville Formula). Ma-
trix A will be the companion matrix for the characteristic polynomial
(1 − r)(r2 + 4), the latter constructed from roots 1, 2i,−2i of atoms
et, cos 2t, sin 2t extracted from et, e2it, e−2it.

28. Assume eλ1t, . . . , eλnt are independent exponentials . Apply theorems to
conclude that the Wronskian of the exponentials is invertible for every t.

29. If d⃗1e
t + d⃗2e

−t + d⃗3e
2t =

0
0
0

, then d⃗1 = d⃗2 = d⃗3 = 0⃗ .

Solution: Let e⃗ = a column of the identity matrix. Take the dot product of
e⃗ across the equation. The result is a scalar linear combination of distinct
Euler atoms equal to zero. Independence of atoms implies all the constants
are zero. The constants for all choices of e⃗ exhaust the components of d⃗1,
d⃗2, d⃗3. Therefore, the three vectors d⃗1, d⃗2, d⃗3 have all zero components.
■

30. Independence of atoms applied to the n-vector equation d⃗1e
t + d⃗2e

−t =
c1v⃗ 1e

t + c2v⃗ 2e
−t implies d⃗1 = c1v⃗ 1 and d⃗2 = c2v⃗ 2.

31. There is a 2 × 2 system x⃗ ′ = Ax⃗ for which CHZ vectors d⃗1, d⃗2 are not
eigenvectors of A.
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Solution: Let A =

(
1 1
0 1

)
, which is non-diagonalizable with eigenvalues

1, 1. Theorem 11.31 (Vandermonde Matrix and ...) does not apply because
the eigenvalues are not distinct. Equation |A−rI| = (1−r)2 has associated
atoms et, tet (double root case). Theorem 11.29 (Cayley-Hamilton-Ziebur
Identity: Real) applies:

⟨d⃗1|d⃗2⟩ = ⟨x⃗0|Ax⃗0⟩
(

1 1
0 1

)
Then for x⃗0 =

(
1
0

)
we compute d⃗1 =(

1
0

)
and d⃗2 =

(
2
1

)
. But Ad⃗2 ̸= Ad⃗2. Then d⃗2 fails to equal an

eigenvector of A.

32. Let A be the 3× 3 identity matrix. For x⃗ ′ = Ax⃗ , two of the CHZ vectors
d⃗1, d⃗2, d⃗3 are zero.

Eigenvectors by Matrix Multiply Find the eigenvectors of A by Theorem

11.33. Report the choice of U⃗ .

33. A=

(
1 2

−2 1

)
. Ans: U⃗=

(
1
1

)
.

34. A=

(
1 0 0
0 2 1
0 0 3

)
. Ans: U⃗=

 1
1

−1

.

CHZ 2 × 2 Matrix Shortcut Find the general solution of x⃗ ′ = Ax⃗ using
Theorem 11.36.

35. A =

(
1 3
3 1

)
, r = −2, 4

Solution: Follow Example 11.8. Let y1 = e−2t, y2 = e4t, y⃗ =

(
y1
y2

)
. Then

y⃗ ′ =

(
−2e−2t

4e4t

)
=

(
−2 0
0 4

)(
e−2t

e4t

)
Let B =

(
−2 0
0 4

)
, which is the diagonal matrix of eigenvalues −2, 4.

Then(
k1
k2

)
= 1

3 (B
T − I)

(
c1
c2

)
= 1

3

(
−3 0
0 3

)(
c1
c2

)
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=

(
−c1
c2

)
Conclusion:

x1 = c1e
−2t + c2e

4t,
x2 = k1y1 + k2y2 = −c1e

−2t + c2e
4t

Remark.
The algorithm is designed to generate a solution in the correct form using
a computer workbench or a computer algebra system. This example can
be used to write the code for a subroutine that solves x⃗ ′ = Ax⃗ for a non-
diagonal matrix A.

36. A =

(
1 3

−3 1

)
, r = 1± 3i

CHZ Scalar 2 × 2 Shortcut Find the general solution of x⃗ ′ = Ax⃗ using
Theorem 11.35.

37. A =

(
1 4
4 1

)
, r = −3, 5

Solution: The scalar equations are x′
1 = x1 + 4x2, x

′
2 = 4x1 + x2. To

apply Theorem 11.35, define x1 = c1e
−3t + c2e

5t. Solve the first differential
equation x′

1 = x1+4x2 for 4x2 = x′
1−x1 = (c1e

−3t+c2e
5t)′−c1e

−3t−c2e
5t =

−4c1e
−3t + 4e5t. Then

x1 = c1e
−3t + c2e

5t

x2 = −c1e
−3t + e5t ■

38. A =

(
1 4

−4 1

)
, r = 1± 4i

Putzer’s 2× 2 Spectral Formula Verify the identity.

39. A =

(
−1 3
−6 8

)
eAt = e5tI +

e5t − e2t

3

(
−6 3
−6 3

)
Solution: Factor |A−rI| = r2−trace()r+|A| as r2−7r+10 = (r−2)(r−5).
The eigenvalues of A are 5, 2. Apply Putzer’s formula for distinct real roots:

eAt = eλ1tI +
eλ2t − eλ1t

λ2 − λ1
(A− λ1I)

eAt = e5tI +
e2t − e5t

2− 5
(A− 5I)
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eAt = e5tI +
e5t − e2t

3

(
−1− 5 3
−6 8− 5

)
eAt = e5tI +

e5t − e2t

3

(
−6 3
−6 3

)

40. A =

(
0 1
6 1

)
eAt = e−2tI +

e3t − e−2t

5

(
2 1
6 3

)

41. A =

(
0 1

−16 8

)
eAt = e4tI + te4t

(
−4 1

−16 4

)
Solution: The eigenvalues of A are 4, 4. Apply Putzer’s formula for a double
root:

eAt = eλ1tI + teλ1t(A− λ1I)

= e4tI + te4t(A− 4I)

= e4tI + te4t
(

0− 4 1
−16 8− 4

)
= e4tI + te4t

(
−4 1
−16 4

)

42. A =

(
3 2

−2 3

)
, eAt =

e3t cos(2t)I + e3t sin(2t)

(
0 2

−2 0

)
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Jordan block definition. Write out the Jordan form matrix explicitly.

1. diag(B(7, 2), B(5, 3))

Answer:


7 1 0 0 0
0 7 0 0 0
0 0 5 1 0
0 0 0 5 1
0 0 0 0 5


Solution: By definition page 894 �,

B(7, 2) =

(
7 1
0 7

)
,

B(5, 3) =

 5 1 0
0 5 1
0 0 5

.

Then

diag(B(7, 2), B(5, 3)) =


7 1 0 0 0
0 7 0 0 0
0 0 5 1 0
0 0 0 5 1
0 0 0 0 5


2. diag(B(0, 2), B(4, 3))

3. diag(B(−1, 1), B(−1, 2), B(5, 3))

Solution: Jordan matrix diag(B(−1, 1), B(−1, 2), B(5, 3)) =
−1 0 0 0 0 0
0 −1 1 0 0 0
0 0 −1 0 0 0
0 0 0 5 1 0
0 0 0 0 5 1
0 0 0 0 0 5


4. diag(B(1, 1), B(5, 2), B(5, 3))

Jordan form definition. Which are Jordan forms and which are not? Explain.

5.


0 1 0 0 0
0 0 0 0 0
0 0 5 1 0
0 0 0 5 1
0 0 0 0 5


Solution: Jordan form diag(B(0, 2), B(5, 3))
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6.

5 1 0 0
0 5 0 0
0 0 5 1
0 0 0 5



7.

1 0 0 0
0 7 0 0
0 0 1 0
0 0 5 1


Solution: Not a Jordan form because of entry 5 below the diagonal.

8.


5 1 0 0 0
0 5 0 0 0
0 0 5 1 0
0 0 0 5 0
0 0 0 0 5


Decoding A = PJP−1. Decode A = PJP−1 in each case, displaying explic-
itly the Jordan chain relations and their solutions.

9. A =


4 8 0 0 −8
0 4 0 0 0
2 8 2 0 −8
0 20 0 2 −12
0 8 0 0 −4

,

J = diag(−4, 2, 2, 4, 4)

Solution: The eigenvalues of A are −4, 2, 2, 4, 4, found by computer. What
is not known initially is the block sizes for the repeated eigenvalues. Addi-
tional information supplied says all blocks have size one. All Jordan chain
relations have the form (A− λI)v⃗ = 0⃗ , the classical eigenvalue problem.

The 5 Jordan blocks in J correspond to 1-chains. Each block decodes
into one vector equation. All vectors v⃗ below are in R5, because the row
dimension of A is 5. The ordering of the blocks is not important as long
as eigenvalues and columns of P are paired. Recorded below is the Jordan
Form computed by maple from the Frobenius Form. The maple answer for
P is not used, because it comes from the Frobenius Form, having little in
common with hand solution details. Details by hand usually differ because
eigenvectors are not unique. Additional differences arise because of the free
choice of two independent eigenvectors for both λ = 2 and λ = 4.

Block B(−4, 1), λ = −4: The 1-chain Av⃗ 1 = −4v⃗ 1 is solved for v⃗ 1 =


1
0
1
2
1


from homogeneous problem (A + 4I)v⃗ 1 = 0⃗ . Simple eigenvalues always
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generate a 1-chain solved by classical eigenanalysis.

Two Blocks B(2, 1), B(2, 1) for λ = 2: Given in the exercise: there are
no 2-chains. The task remaining: find two independent eigenvectors v⃗ 2, v⃗ 3

for problem Av⃗ = 2v⃗ . To expedite the computation we use maple, details
below.

Two Blocks B(4, 1), B(4, 1) for λ = 4: Given is there are no 2-chains.
The task remaining: find two independent eigenvectors v⃗ 4, v⃗ 5 for problem
Av⃗ = 4v⃗ . Following the case for λ = 2, we use maple, details below..

The answers:

v⃗ 1 =


1
0
1
2
1

 , v⃗ 2 =


0
0
1
0
0

 , v⃗ 3 =


0
0
0
1
0

 , v⃗ 4 =


1
0
1
0
0

 , v⃗ 5 =


0
1
0
4
1

 .

Let P be the augmented matrix of v⃗ 1 to v⃗ 5 and let J = diag(−4, 2, 2, 4, 4).
Then

P =


1 0 0 1 0
0 0 0 0 1
1 1 0 1 0
2 0 1 0 4
1 0 0 0 1

 , J =


−4 0 0 0 0
0 2 0 0 0
0 0 2 0 0
0 0 0 4 0
0 0 0 0 4


Using maple we check the equation AP = PJ , verifying the Jordan
Decomposition found by hand. The details of this example follow exactly
the details for equation AP = PD for a diagonalizable matrix A. ■

674



11.6 Jordan Form and Eigenanalysis

# Exercise 9, Decoding and solving 1-chains

A:=Matrix([

[ 4, 8, 0, 0, -8],

[ 0, 4, 0, 0, 0],

[ 2, 8, 2, 0 , -8],

[ 0, 20, 0, 2, -12],

[ 0, 8, 0, 0, -4]]);

J:=JordanForm(A);Q:=JordanForm(A,output=’Q’);# Automated by maple

A.Q - Q.J; # Check maple answer, should be zero

# Proceed to find chains manually

ZV:=ZeroMatrix(5,1);

# Eigenvalue -4

N:=A-2*IdentityMatrix(5);

ZV:=ZeroMatrix(5,1);LinearSolve(N,ZV,free=’s’);

ReducedRowEchelonForm(N);

# v1:=<1,0,1,2,1>;

# Eigenvalue 2

N:=A-2*IdentityMatrix(5);

ZV:=ZeroMatrix(5,1);LinearSolve(N,ZV,free=’ss’);

ReducedRowEchelonForm(N);

# v2:=<0,0,1,0,0>;v3:=<0,0,0,1,0>;

# Eigenvalue 4

N:=A-4*IdentityMatrix(5);LinearSolve(N,ZV,free=’sss’);

ReducedRowEchelonForm(N);

# v4:=<1,0,1,0,0>;v5:=<0,1,0,4,1>;

v1:=<1,0,1,2,1>;

v2:=<0,0,1,0,0>;v3:=<0,0,0,1,0>;

v4:=<1,0,1,0,0>;v5:=<0,1,0,4,1>;

P:=<v1|v2|v3|v4|v5>;# pair eigenvalues and eigenvectors

JJ:=DiagonalMatrix([-4,2,2,4,4]);

A.P-P.JJ;# Should be zero

10. A =


−4 −4 −12 12 4
0 0 0 0 0

−8 4 −12 16 0
−8 4 −16 20 0
0 0 −4 4 0

,

J = diag(−4, 4, 4, 0, 0)

Geometric and algebraic multiplicity.
Determine GeoMult(λ) and AlgMult(λ).

11. A =


4 8 0 0 −8
0 4 0 0 0
2 8 2 0 −8
0 20 0 2 −12
0 8 0 0 −4

, λ = 4
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Solution: Answer: GeoMult(A) = AlgMult(A) = 2 because there are two
eigenpairs for λ = 4.

# Exercise 11, GeoMult and AlgMult

A:=Matrix([[4,8,0,0,-8],[0,4,0,0,0],[2,8,2,0,-8],

[0,20,0,2,-12],[0,8,0,0,-4]]);

Eigenvectors(A);

12. A =


−4 −4 −12 12 4
0 0 0 0 0

−8 4 −12 16 0
−8 4 −16 20 0
0 0 −4 4 0

, λ = 4

Generalized eigenvectors. Find all generalized eigenvectors and represent
A = PJP−1. Check the answer in a computer algebra system.

13. A =


4 8 0 0 −8
0 4 0 0 0
2 8 2 0 −8
0 20 0 2 −12
0 8 0 0 −4

,

Answer: J = diag(−4, 4, 4, 2, 2),

P =


1 0 0 1 0
0 0 0 0 1
1 0 1 1 0
2 1 0 0 4
1 0 0 0 1


Solution: The matrix is diagonalizable. Generalized eigenvectors are eigen-
vectors. Use maple for the computation.

J =


−4 0 0 0 0
0 4 0 0 0
0 0 4 0 0
0 0 0 2 0
0 0 0 0 2



P =


1 1 0 0 0
0 0 1 0 0
1 1 0 0 1
2 0 4 1 0
1 0 1 0 0


# Exercise 13, Diagonalizable matrix

A:=Matrix([[4,8,0,0,-8],[0,4,0,0,0],[2,8,2,0,-8],

[0,20,0,2,-12],[0,8,0,0,-4]]);

JV,P:=Eigenvectors(A);J:=DiagonalMatrix(convert(JV,list));

A.P-P.J;
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14. A =


−4 −4 −12 12 4
0 0 0 0 0

−8 4 −12 16 0
−8 4 −16 20 0
0 0 −4 4 0

,

Answer: J = diag(−4, 4, 4, 0, 0),

P =


1 2 0 1 1
0 0 0 2 −1
1 −1 1 0 3
1 0 1 0 3
0 2 0 3 0



15. A =

0 2 −2 −2
2 0 −2 −4
2 2 −4 −2
0 0 0 −4

,

Ans: J = diag(0,−4,−2,−2),

P =

1 0 1 −1
1 1 −4 0
1 0 −3 −1
0 1 0 0


Solution: The matrix is diagonalizable. Generalized eigenvectors are eigen-
vectors. Use maple for the computation.

J =


−2 0 0 0
0 −2 0 0
0 0 0 0
0 0 0 −4



P =


1 −1 1 0
0 1 1 1
1 0 1 0
0 0 0 1


# Exercise 15, Diagonalizable matrix

A:=Matrix([[0,2,-2,-2],[2,0,-2,-4],[2,2,-4,-2],[0,0,0,-4]]);

JV,P:=Eigenvectors(A);J:=DiagonalMatrix(convert(JV,list));

A.P-P.J;

16. A =


−2 2 −1 −1 0
0 1 0 0 0
0 1 1 0 0
0 0 0 2 1
0 0 0 0 2

,

Ans: J = diag(2, 2, B(2, 3)),

P =


1 1 1 −2 3
0 1 0 0 0
1 2 0 0 0
0 0 0 1 −2
0 0 0 0 1


677



11.6 Jordan Form and Eigenanalysis

17. A =


2 1 0 1 0
0 2 0 0 0
0 1 2 0 0
0 0 0 2 1
0 0 0 0 2

,

Ans: J = diag(B(2, 3), B(2, 2)),

P =


1 2 1 2 1
0 0 2 0 2
0 2 1 2 1
0 1 0 0 0
0 0 1 0 0


Solution: The matrix is not diagonalizable. Use maple for the computation,
which reveals there is one eigenvalue λ = 2 and two eigenvectors. The
eigenpairs are (which we do not use)2,


0
0
1
0
0


,

2,


1
0
0
0
0




The possible chains are:

5-chain;
1-chain, 4-chain;
2-chain, 3-chain

Rank computations use the maple code below, following textbook Example
11.11, to find the possible block sizes. The result: there is a 2-chain and a
3-chain. Eliminated by the computation are three possibilities: no 1-chain,
no 4-chain, no 5-chain.

Details: Record A, N = A− 2I, N2 from computer assist:

A=


2 1 0 1 0
0 2 0 0 0
0 1 2 0 0
0 0 0 2 1
0 0 0 0 2

 , N=


1 −1 1 0 0
2 −2 1 1 0
1 −1 0 1 0

−1 1 0 0 1
−3 3 0 −2 1

 , N2=


0 0 0 0 0

−2 2 0 −1 1
−2 2 0 −1 1
−2 2 0 −1 1
2 −2 0 1 −1


The 3-chain. Let m = 3 (find a 3-chain). The plan is to find a vector
w⃗ with N3w⃗ = 0⃗ , N2w⃗ ̸= 0⃗ and N2x⃗ = w⃗ has no solution x⃗ . Then
v⃗ 1 = N2w⃗ , v⃗ 2 = Nw⃗ , v⃗ 3 = w⃗ are the columns of P corresponding to
Jordan block B(λ, 3), to wit: columns 1,2,3 of P .

We will choose w⃗ to be a basis element for the nullspace of (N2)T , following
Table 2 and Proposition 11.9. This clever choice works because Nm = 0.
We still have to check N2w⃗ ̸= 0⃗ , as in Table 2, page 898 �. Employ maple

to find the nullspace basis:

678

https://math.utah.edu/~gustafso/debook/chapters/11.pdf#page=899


11.6 Jordan Form and Eigenanalysis

nullspace((N2)T ) = span




0
0
0
0
1

 ,


0
0
0
1
0

 ,


0
0
1
0
0

 ,


0
1
0
0
0




Choose vector w⃗ to be the first basis vector above, that is, the vector with
components 0, 0, 0, 0, 1. Then (1) equation N2x⃗ = w⃗ is insolvable for x⃗ , (2)
N2w⃗ ̸= 0⃗ , (3) N3w⃗ = 0⃗ .

Columns 1,2,3 of P will be defined by equations

v⃗ 1=N2w⃗ =


1
0
0
0
0

 , v⃗ 2=Nw⃗ =


0
0
0
1
0

 , v⃗ 3=w⃗ =


0
0
0
0
1


The computation means that AP = PJ1 where

P = ⟨v⃗ 1|v⃗ 2|v⃗ 3|0⃗ |0⃗⟩ =


1 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 1 0 0 0
0 0 1 0 0

 ,

 N v⃗ 1 = 0⃗
N v⃗ 2 = v⃗ 1

N v⃗ 3 = v⃗ 2

The 2-chain. Let m = 2 (find a 2-chain). The plan is to find a vector w⃗
with N2w⃗ = 0⃗ , Nw⃗ ̸= 0⃗ and N x⃗ = w⃗ has no solution x⃗ . Then v⃗ 4 = Nw⃗ ,
v⃗ 5 = w⃗ are the columns of P corresponding to Jordan block B(λ, 2), to
wit: columns 4,5 of P .

We will choose w⃗ ̸= 0⃗ to be a vector in the nullspace of NT , following
Table 2 and Proposition 11.9. First, find a basis for the nullspace of NT

(see Proposition 11.9). Then write w⃗ in terms of this basis:

nullspace(NT ) = span




0
0
0
0
1

 ,


0
1
0
0
0


 ,

w⃗ = c1


0
0
0
0
1

+ c2


0
1
0
0
0

 .

1Zero columns in P allow rapid testing of AP = PJ .
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Next, we force w⃗ to belong to the nullspace of Nm = N2. Equation

N2w⃗ =


c1
0
0
0
0

 = 0⃗

holds if and only if c1 = 0. Choose c1 = 0, c2 = 1 to make it so, then
compute

w⃗ =


0
1
0
0
0

 , Nw⃗ =


1
0
1
0
0

 ̸= 0⃗

Conclusions: (1) equation N x⃗ = w⃗ is insolvable for x⃗ , (2) Nw⃗ ̸= 0⃗ and
(3) N2w⃗ = 0⃗ . Define

v⃗ 4 = Nw⃗ =


1
0
1
0
0

 , v⃗ 5 = w⃗ =


0
1
0
0
0


Then

P = ⟨v⃗ 1|v⃗ 2|v⃗ 3|v⃗ 4|v⃗ 5⟩ =


1 0 0 1 0
0 0 0 0 1
0 0 0 1 0
0 1 0 0 0
0 0 1 0 0


Matrix multiply verifies AP = PJ , which means P is a matrix of generalized
eigenvectors for A. ■
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# Exercise 17, Generalized Eigenvectors, non-diagonalizable

with(LinearAlgebra):

getBlockCounts:=proc(A,lambda) local m,N,j,r,p,txt;

m:=RowDimension(A);

N:=A-lambda*IdentityMatrix(m);

for j from 1 to m do r[j]:=Rank(N^j); od:

for p from m to 2 by -1 do

if(r[p]<>r[p-1])then break;fi:od;

printf("lambda=%d, nilpotency=p=%d\n",lambda,p);

txt:=(j,x)-> printf("Blocks B(%a,%d):%d\n",lambda,j,x):

for j from p to 2 by -1 do

txt(j,-2*r[j]+r[j-1]+r[j+1]):

od:end proc:

A:=Matrix([[2,1,0,1,0],[0,2,0,0,0],[0,1,2,0,0],

[0,0,0,2,1],[0,0,0,0,2]]);

Eigenvectors(A);lambda:=2;

getBlockCounts(A,\lambda);

J:=JordanBlockMatrix([[lambda,3],[lambda,2]]);

N:=A-2:print("N, N^2 N^3=",N,N^2,N^3);

# Exercise 17, Find the 3-chain

m:=3;B:=N^(m-1):B_transpose:=B^+;

NullSpace(B_transpose);

w:=<0,0,0,0,1>:v1:=N^2 .w: v2:=N.w:

v3:=w: print("v1,v2,v3=",v1,v2,v3);

Z:=ZeroMatrix(5,1):P:=<v1|v2|v3|Z|Z>;print("AP-PJ=",A.P - P.J);

# Exercise 17, Find the 2-chain

# Define v4=N.w, v5=w

# Need: N^2 .w=0, N.w not zero, N.x=w has no solution x

# Let w = linear combination in nullspace((N^(m-1))^T)

# Choose linear combination weights so that N^2 .w=0

# Then test N.w <> 0

NullSpace(N^+);c1:=’c1’:c2:=’c2’:

w:=c1*<0,0,0,0,1>+c2*<0,1,0,0,0>;

# Solve N^2 .w = 0 for c1,c2;

N^2 .w=Z;# Solve it for c1,c2;choose c1=0, c2=1

w:=<0,1,0,0,0>;

N.w; N^2 .w;# Check N.w <> 0, N^2 .w = 0

# Define chain vectors

v5:=w:v4:=N.v5:

print("v4=",v4,"v5=",v5);

P:=<v1|v2|v3|v4|v5>:print("J, P, AP-PJ=",J,P,A.P-P.J);
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18. A =


2 0 0 1 0
1 3 −1 0 0
1 1 1 0 0
0 0 0 2 1
0 0 0 0 2

,

Ans: J = diag(B(2, 4), 2),

P =


0 1 0 1 1
1 0 0 0 0
1 0 0 1 1
0 0 1 0 0
0 0 0 1 0


Number of Jordan Blocks. Outlined here is the derivation of

s(j) = 2k(j − 1)− k(j − 2)− k(j).

Definitions:

• s(j)= number of blocks B(λ, j)

• N = A− λI

• k(j) = dim(kernel(N j))

• Lj = kernel(N j−1)⊥ relative to kernel(N j)

• ℓ(j) = dim(Lj)

• p minimizes
kernel(Np) = kernel(Np+1)

19. Verify k(j) ≤ k(j + 1) from

kernel(N j) ⊂ kernel(N j+1).

Solution: Given kernel(N j) ⊂ kernel(N j+1) then the number of basis
elements for subspace kernel(N j) is less than or equal to the number of
basis elements for the containing subspace kernel(N j+1). Therefore the
dimensions of the two subspaces satisfy the inequality k(j) ≤ k(j + 1). ■

20. Verify the direct sum formula

kernel(N j) = kernel(N j−1)⊕ Lj .

Then k(j) = k(j − 1) + ℓ(j).

Solution:
Symbol definition: k(j) = dim(kernel(N j)), ℓ(j) = dim(Lj) =
dim(kernel(N j−1)⊥. Let’s derive equation k(j) = k(j − 1) + ℓ(j).
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k(j) = dim(kernel(N j))

= dim
(
kernel(N j−1)

)
⊕ kernel

(
(N j−1)⊥

)
by Exercise 20

= dim
(
kernel(N j−1)

)
+ dim

(
kernel(N j−1)⊥)

)
= k(j − 1) + ℓ(j)

Other details of Exercise 20 are omitted.

21. Given Nmw⃗ = 0⃗ , Nm−1w⃗ ̸= 0⃗ , define v⃗ i = Nm−iw⃗ , i = 1, . . . ,m.
Prove {v⃗ 1, . . . , v⃗m} is independent and they satisfy Jordan chain relations
N v⃗ 1 = 0⃗ , N v⃗ i+i = v⃗ i.

Solution:
Independence:
Assume

∑m
i=1 c1v⃗ i = 0⃗ . We prove the weights are zero. Replace v⃗ i =

Nm−iw⃗ then multiply Nm−1 across the equation:∑m
i=1 c1N

m−1 (Nm−iw⃗ ) = 0⃗ .

All terms are zero except for i = m because Nm−1 (Nm−iw⃗ )
∣∣
i=m

=

Nm−1w⃗ ̸= 0⃗ while all preceding terms contain factor Nm−1Nw⃗ = 0⃗ . The
result is equation

cmNm−1w⃗ = 0⃗

from which we conclude cm = 0. The argument repeats: multiply next by
Nm−2 and distill the equation to one term, showing cm−1 = 0. By induction
all the weights are zero and the vectors are independent.

Chain Relations:
First, N v⃗ 1 = N Nm−1w⃗ = Nmw⃗ = 0⃗ , so v⃗ 1 is an eigenvector. Next,
N v⃗ i+i = NNm−i−1w⃗ = Nm−1w⃗ = v⃗ i. ■

22. A block B(λ, p) corresponds to a Jordan chain v⃗ 1, . . . , v⃗ p constructed
from the Jordan decomposition. Use Np−1v⃗ p = v⃗ 1 and kernel(Np) =
kernel(Np+1) to show that the number of such blocks B(λ, p) is ℓ(p). Then
for p > 1, s(p) = k(p)− k(p− 1).

Solution: Some of the details can be found in the solution to Exercise 23
infra.

23. Show that ℓ(j − 1) − ℓ(j) is the number of blocks B(λ, j) for 2 < j < p.
Then

s(j) = 2k(j − 1)− k(j)− k(j − 2).

Solution:
Part I.
Prove s(j) = 2k(j − 1)− k(j)− k(j − 2), j > 2.
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A Jordan block B(λ,m) appearing in J is paired with a Jordan chain
v⃗ 1, . . . , v⃗m consisting of the matching columns in P . The first chain vector
v⃗ 1 is an eigenvector.

Let W be the set of eigenvectors v⃗ 1 found from P , considering all Jordan
blocks in J . The columns of P are independent, so W is an independent
set (subsets of independent sets are independent). The eigenvectors in W
form a basis for the kernel of N = A− λI, but this basis is different from a
standard basis found by solving equation N x⃗ = 0⃗ .

Summary: The dimension of the eigenspace kernel(A − λI) tells you the
exact number of Jordan blocks with λ on the diagonal. It tells you nothing
about the sizes of these blocks.

It may help to have an example in mind when reading the rest of the Part
I proof. Suggestion: compute basis vectors for the nullspaces of N,N3, N3

using the matrix A of example 11.12 page 900 �.

A =


3 −1 1 0 0
2 0 1 1 0
1 −1 2 1 0

−1 1 0 2 1
−3 3 0 −2 3


Fix eigenvalue λ and let N = A − λI. If nilpotency p = 1 then every
Jordan block has size 1, so assume p > 1. The subspaces kernel(N j)
grow in dimension as j increases. Let kernel(N) = span(u⃗1, . . . , u⃗ r)
and extend the basis to kernel(N2), by adding basis vectors z⃗1, . . . , z⃗ q

for kernel(N)⊥ (used kernel(N2) = kernel(N) ⊕ kernel(N)⊥). Then
kernel(N2) = span(u⃗1, . . . , u⃗ r, z⃗1, . . . , z⃗ q). The number q of basis vectors
added to obtain kernel(N2) is q = ℓ(2). Also, q = dim(kernel(N2)) −
dim(kernel(N)) = k(2)− k(1). Number q is the count of Jordan blocks of
size greater than 1, because each such block is paired with an m-chain that
has a vector in kernel(N2), but not in kernel(N). Independence of chain
vectors is a key part of this argument. Conclusion: ℓ(2) = k(2)−k(1) is the
number of Jordan blocks of size greater than 1. Then the number of Jordan
blocks of exactly size 1 is k(1)− (k(2)− k(1)) = 2k(1)− k(2).

In general, the number of Jordan blocks of size greater than k is ℓ(j + 1) =
dim(kernel(N j)⊥) = dim(kernel(N j+1))− dim(kernel(N j)) = k(j + 1)−
k(j). The logic used above applies: the number s(j+1) of Jordan blocks of
size exactly j + 1 equals k(j)− k(j − 1)− (k(j + 1)− k(j)) = 2k(j)− k(j +
1)− k(j − 1).

Replace j by j − 1 to obtain the claimed identity

s(j) = 2k(j − 1)− k(j)− k(j − 2), j > 2

Part II.
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Show ℓ(j − 1)− ℓ(j) is the number of blocks B(λ, j) for 2 < j < p.

Direct sum decomposition kernel(N j) = kernel(N j−1) ⊕ kernel(N j−1)⊥

implies identity k(j) = k(j − 1) + l(j). Then ℓ(j − 1) − ℓ(j) = k(j − 1) −
k(j−2)− (k(j)−k(j−1)) = 2k(j−1)−k(j−2)−k(j), which is the number
of blocks B(λ, j) for 2 < j < p by Part I. ■

24. Test the formulas above on the special matrices

A=diag(B(λ, 1), B(λ, 1), B(λ, 1)),

A=diag(B(λ, 1), B(λ, 2), B(λ, 3)),

A=diag(B(λ, 1), B(λ, 3), B(λ, 3)),

A=diag(B(λ, 1), B(λ, 1), B(λ, 3)),

Computing Jordan m-chains. Find the Jordan m-chain formulas for the
given eigenvalue. Then solve them to find the generalized eigenvectors.

25. A =


1 0 1 0 1
0 1 0 1 1
0 0 1 0 0
0 0 0 1 1
0 0 0 0 1


Solution: The eigenvalues: 1, 1, 1, 1, 1. Let λ = 1, N = A− (1)I. Use maple
(code infra) to decide on the number of Jordan blocks:

lambda=1, nilpotency=p=3

Blocks B(1,3):1

Blocks B(1,2):1

Find a 3-chain.
Compute a basis for the nullspace of (N2)T : columns 1,3,4,5 of the identity
matrix I. Let w⃗ be a linear combination of the basis vectors with weights
c1, c2, c3, c4. Compute the expected chain N2w⃗ , Nw⃗ , w⃗ to find a choice
for the weights that makes N2w⃗ , Nw⃗ , w⃗ a 3-chain: c1 = 0, c2 = 0, c3 = 0,
c4 = 1. Then a 3-chain is

v⃗ 1 =


0
1
0
0
0

 , v⃗ 2 =


1
1
0
1
0

 , v⃗ 3 =


0
0
0
0
1

 .

The common shortcut of choosing an eigenvector to start a 3-chain fails
in this example. This has to be frustrating, given the common advice in
textbooks.
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Find a 2-chain.
Compute a basis for the nullspace of N : columns 3, 5 of I. Write

w⃗ =


0
0
c1
0
c2

,

the plan being to find the weights c1, c2 so that v⃗ 4 = Nw⃗ , v⃗ 5 = w⃗ form a
2-chain: N v⃗ 1 = 0⃗ , N v⃗ 2 = v⃗ 1. Solving, c1 = 1, c2 = 0 works and

v⃗ 4 =


1
0
0
0
0

 , v⃗ 5 =


0
0
1
0
0

 .

Then

P =


0 1 1 7 1

−2 2 0 7 −1
−2 1 0 0 5
−2 −1 0 0 −2
2 −3 0 0 2

 , J =


1 1 0 0 0
0 1 1 0 0
0 0 1 0 0
0 0 0 1 1
0 0 0 0 1

 .

# Exercise 25, computing Jordan m-chains

with(LinearAlgebra):

A:=Matrix([[ 1,0,1,0,1],[0,1,0,1,1],[0,0,1,0,0],

[0,0,0,1,1],[0,0,0,0,1]]);

Eigenvectors(A);

getBlockCounts(A,1);N:=A-1;

# 3-chain

w:=<c1,0,c2,c3,c4>;N^2 .w,N.w,w;

w:=subs(c1=0,c2=0,c3=0,c4=1,<c1,0,c2,c3,c4>);N^2 .w,N.w,w;

NullSpace(N^+);

w:=<0,0,c1,0,c2>;N.w,w;

w:=subs(c1=1,c2=0,<0,0,c1,0,c2>);N.w,w;

P:=<v1|v2|v3|v4|v5>;

J:=JordanBlockMatrix([[1,3],[1,2]]);

26. A =


2 0 0 1 0
1 3 −1 0 0
1 1 1 0 0
0 0 0 2 1
0 0 0 0 2

, λ = 2

Solution: There is a 4-chain and a 1-chain. For the 4-chain choose w⃗ to
be the first column of (N3)T . This shortcut works to find a 4-chain. The
1-chain starts with an eigenvector independent from the one used in the
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4-chain. One possible answer:

P =


0 1 0 0 1
1 0 0 0 0
1 0 0 0 1
0 0 1 0 0
0 0 0 1 0

 , J =


2 1 0 0 0
0 2 1 0 0
0 0 2 1 0
0 0 0 2 0
0 0 0 0 2

 .

Generalized Eigenspace Basis.

Let A be n × n with distinct eigenvalues λi, ni = AlgMult(λi) and Ei =
kernel((A−λiI)

ni), i = 1, . . . , k. Assume a Jordan decomposition A = PJP−1.

27. Let Jordan block B(λ,m) appear in J . Prove that a Jordan chain corre-
sponding to this block is a set of m independent columns of P .

Solution: The columns of P are independent because P is invertible. Subsets
of independent sets are independent, therefore the Jordan chain columns iso-
lated from P are independent. By swapping blocks in J and corresponding
columns in P we can assume that block B(λ,m) occupies columns 1 to m
of J . Matrix products AP and PJ will be expanded as follows:

PJ = ⟨λ col(P, 1) + col(P, 2)|λ col(P, 2) + col(P, 3)| · · · |λ col(P,m)| · · ·⟩
AP = ⟨A col(P, 1)| · · · |A col(P,m)| · · ·⟩
Match the first m columns:

λ col(P (A, 1) + col(P, 2) = A col(P, 1)
λ col(P (A, 2) + col(P, 3) = A col(P, 2)

...
λ col(P (A,m) = A col(P,m)

Define

v⃗m = col(P, 1), . . . , v⃗ 1 = col(P,m).

Write

λ col(P (A, j) + col(P, j + 1) = A col(P, j) as col(P, j + 1) = N col(P, j).

Then

col(P, 2) = N col(P, 1)
col(P, 3) = N col(P, 2)

...

0⃗ = N col(P,m)

and
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v⃗m−1 = N v⃗m

v⃗m−2 = N v⃗m−1

...

0⃗ = N v⃗ 1

These are the Jordan Chain Relations in reverse order. ■

28. Let Bλ be the union of all columns of P originating from Jordan chains
associated with Jordan blocks B(λ, j). Prove that Bλ is an independent set.

29. Verify that Bλ has AlgMult(λ) basis elements.

Solution: There are j columns of P in Bλ from block B(λ, j). The block
has λ on the diagonal exactly j times. So λ is a repeated eigenvalue of A,
j repeats counted from the block. The algebraic multiplicity of λ is the
number of times λ is a repeated eigenvalue. Adding the repeats j block-by-
block has to add to the algebraic multiplicity. ■

30. Prove that Ei = span (Bλi
) and dim(Ei) = ni, i = 1, . . . , k.

Direct Sum Decomposition.

31. Let A =

(
2 1 0
0 2 1
0 0 2

)
. Let λ = 2. Compute k = AlgMult(λ) and a basis of

generalized eigenvectors for the subspace kernel((A− λI)k).

Solution: Matrix A is a Jordan block B(2, 3). The algebraic multiplicity of
λ = 2 is power of factor (λ − 2) in the characteristic polynomial (2 − λ)3.
Then k = 3. The nullspace of (A−2I)3 isR3. There is exactly one eigenpair:2,

 1
0
0

.

Because J = A then P = I, because AP = PJ . The columns of I are a
basis for the generalized eigenspace. ■

32. Let A =

2 1 0 0
0 2 1 0
0 0 2 0
0 0 0 4

, y⃗ =

2
0
1
9

.

Find x⃗1, x⃗2 in decomposition y⃗ = x⃗1 + x⃗2 in Theorem 11.42.

Solution: It suffices to find x1 =


2
0
1
0

, then define x⃗2 = y⃗ − x⃗1.
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Exponential Matrices. Compute the exponential matrix eAt on paper. Check
the answer using maple.

33. A =

(
2 0 0
0 3 0
0 0 0

)
Solution: Using the results for diagonal matrices, eAt = diag(e2t, e3t, 1).

34. A =

(
2 1 0
0 2 0
0 0 4

)

Nilpotent matrices. Find the nilpotency of N .

35. N =

(
0 1 0
0 0 0
0 0 0

)
Solution: Nilpotency p = 2.

36. N =


0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1
0 0 0 0 0


Solution: Nilpotency p = 5.

Real Jordan Decomposition
Find Jordan decomposition A = PJP−1 where J and P are real matrices.

37. A =

(
−2 6 −1
0 4 1
0 1 4

)
. Answer:

λ = −2, 4± i,

J =

(
−2 0 0
0 4 1
0 −1 4

)
, P =

(
1 0 1
0 0 1
0 1 0

)
Solution: Matrix A is diagonalizable with a full set of complex eigenvectors:−2,

1
0
0

 ,

4 + i,

 i
i
1

 ,

4− i,

−i
−i
1


The Jordan Form is obtained by replacing the conjugate pair 4+ i, 4− i by

matrix

(
4 1

−1 4

)
:

689



11.6 Jordan Form and Eigenanalysis

J =

 −2 0 0
0 4 1
0 −1 4


Matrix P is obtained from the eigenvectors by replacing the two complex
eigenvectors respectively by the real and imaginary parts of the first eigen-
vector (the second eigenvector is the conjugate of the first eigenvector).

Replace in the complex Jordan matrix P :

Pair

 i
i
1

,

−i
−i
1

 is replaced by pair

0
0
1

,

1
1
0

.

The real and imaginary parts apply only to the first complex eigenvector,
the second complex conjugate eigenvector is not used!

P =

 1 0 1
0 0 1
0 1 0

, AP − PJ =

 0 0 0
0 0 0
0 0 0


How to find the real and imaginary parts of a vector: replace complex unit
i by 0 to find the real part, take the derivative on symbol i to find the
imaginary part.

38. A =

(
−31 −10 18
−15 −5 10
−54 −20 32

)
. Answer:

λ = −4,±5i

J =

(
−4 0 0
0 0 5
0 −5 0

)
, P =

(
2 2 0
0 1 −1
3 4 0

)

Solving x⃗ ′ = Ax⃗
Solve for x⃗ in the differential equation.

39. x⃗ ′ =

(
−2 6 −1
0 4 1
0 1 4

)
x⃗ .

Solution: By Exercise 37, the real Jordan decomposition is

J =

 −2 0 0
0 4 1
0 −1 4

 , P =

 1 0 1
0 0 1
0 1 0

,

Then AP = PJ implies from x⃗ ′ = Ax⃗ the new equation y⃗ ′ = J y⃗ where
x⃗ = P y⃗ . Let’s solve y⃗ ′ = J y⃗ in its scalar form y′1 = −2y1,

y′2 = 4y2 + y3,
y′3 = −y2 + 4y3
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First, y⃗ 1 = c1e
−2t. The last two differential equations are solved by the

Cayley-Hamilton-Ziebur scalar 2× 2 shortcut, Theorem 11.35 page 883 �.

y2 = c2e
4t cos(t) + c3e

4t sin(t)
y3 = y′2 − 4y2 = −c2e

4t sin(t) + c3e
4t cos(t)

Then

x⃗ = P y⃗

=

 1 0 1
0 0 1
0 1 0

 y1
y2
y3


= P y⃗

=

 1 0 1
0 0 1
0 1 0

 c1e
−2t

c2e
4t cos(t) + c3e

4t sin(t)
−c2e

4t sin(t) + c3e
4t cos(t)

 ■

40. x⃗ ′ =

(
−31 −10 18
−15 −5 10
−54 −20 32

)
x⃗ .

Numerical Instability
Show directly that Jordan form J of A satisfies limϵ→0+ J(ϵ) ̸= J(0).

41. A =

(
1 1
ϵ 1

)
Solution: Matrix A has for ϵ > 0 two eigenpairs and Jordan form J(ϵ) =

diag(1+
√
ϵ, 1−

√
ϵ). The limit of J(ϵ) as ϵ → 0 is the identity matrix

(
1 0
0 1

)
.

However, J(0) is the Jordan matrix for A|ϵ=0 =

(
1 1
0 1

)
, which is itself. ■

42. A =

(
0 1 1
0 ϵ 1
0 0 0

)
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Variation of Parameters

Let A(t) =

(
0 1

−c(t)/a(t) −b(t)/a(t)

)
,

F⃗(t) =
1

a(t)

(
0

f(t)

)
, x⃗=

(
u(t)
u′(t)

)
.

1. Verify equivalence of a(t)u′′ + b(t)u′ + c(t)u = f(t) and x⃗ ′ = A(t)x⃗ + F⃗(t).

Solution:
Scalar implies vector-matrix:
Assume a(t)u′′ + b(t)u′ + c(t)u = f(t), prove x⃗ ′ = A(t)x⃗ + F⃗(t).

x⃗ ′ = d
dt

(
u
u′

)
=

(
u′

u′′

)
=

(
u′

(−bu′ − cu+ f)/a

)
=

(
0 1

−c/a −b/a

)(
u
u′

)
+

(
0

f/a

)
= A(t)x⃗ + F⃗ (t)

Vector-matrix implies scalar:
Assume x⃗ ′ = A(t)x⃗ + F⃗(t), prove a(t)u′′ + b(t)u′ + c(t)u = f(t).

Let u(t) = x1(t) where x1(t) is the first component of x⃗ (t). Convert x⃗ ′ =

A(t)x⃗ + F⃗(t) to scalar form:{
x′
1 = x2(t),

x′
2 = −cx1/a− bx2/a+ f/a

The second scalar equation becomes

x′
2 = −cx1/a− bx2/a+ f/a

x′′
1 = −cx1/a− bx′

1/a+ f/a replace x2 by x′
1

u′′ = −cu/a− bu′/a+ f/a replace x1 by u, x′
1 by u′

u′′ + cu/a+ bu′/a = f/a collect terms to the LHS

au′′ + cu+ bu′ = f multiply by a(t) ■

2. For u′′ + 100u = sin(t), find A(t) and F⃗(t).

3. For u′′ = f(t), find A(t) and F⃗(t).
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Solution: Answer: A(t) =

(
0 1
0 0

)
, F⃗ (t) =

(
0

f(t)

)
.

4. For u′′ = f(t), let u1 = 1, u2 = t, Φ(t) =

(
u1 u2
u′
1 u

′
2

)
. Verify |Φ(t)| = 1, then

find A(t) = Φ′(t)Φ−1(t).

5. State Theorem 11.46 for n = 2, then explain how it applies to this special
case.

Solution:
Theorem (Variation of Parameters: General Linear System)

Let A(t) be a 2×2 matrix and F⃗ (t) a vector function, both with continuous
entries near t = t0. Let Φ(t) be the 2×2 matrix solution of Φ′(t) = A(t)Φ(t),
Φ(t0) = I, established by the Picard-Lindelöf Theorem.

Then the unique solution x⃗ (t) of the matrix initial value problem

x⃗ ′(t) = A(t)x⃗ (t) + F⃗(t), x⃗ (t0) = x⃗0

is given by

x⃗ (t) = Φ(t)x⃗0 +Φ(t)

∫ t

t0

Φ−1(s)F⃗(s)ds.(1)

How it applies.

Matrix A(t) =

(
0 1

−c(t)/a(t) −b(t)/a(t)

)
and column vector F⃗(t) =

1

a(t)

(
0

f(t)

)
have continuous entries, therefore both A(t) and F⃗ (t) are con-

tinuous near t = t0. The theorem applies.

6. Prove Theorem 11.47 using the previous exercise.

Variation of Parameters:
Scalar 2nd Order
Let a(t)u′′ + b(t)u′ + c(t)u = 0 have
two independent solutions u1, u2.

Define Ψ(t) =

(
u1 u2
u′
1 u

′
2

)
. Then:

7. Matrix Ψ(t) has an inverse.

Solution: Independence means the Wronskian determinant does not vanish,
which is |Ψ(t|, then Ψ(t) is invertible.

8. Matrix Φ(t) = Ψ(t)Ψ−1(t0) is invertible and Φ(t0) = I.
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9. Let Ψ(t) =

(
1 t
0 1

)
. Define(

u
v

)
= Ψ(t)

∫ t

0
Ψ−1(s)f(s)ds.

Then u is a particular solution of u′′ = f(t).

Solution: Combine Exercise 3 and Exercise 5.

10. Let Ψ(t) =

(
et e−t

et −e−t

)
. Define(

u
v

)
= Ψ(t)

∫ t

0
Ψ−1(s)f(s)ds.

Then u is a particular solution of u′′ − u = f(t).

Variation of Parameters

Let A =

(
2 0
0 3

)
. Solve x⃗ ′ = Ax⃗ + F⃗ (t) using x⃗p =

∫ t

0
eA(t−s)F⃗ (s)ds and

computer assist.

11. F⃗(t) = et
(
1
2

)
, x⃗p =

(
e2t − et

e3t − et

)
Solution:
# Exercise 11, Variation of Parameters

F:=t -> exp(t)*<1,2>;

A:=Matrix([[2,0],[0,3]]);

Phi:=s -> MatrixExponential(A,s);

map(int,Phi(t-s).F(s),s=0..t);

12. F⃗(t) =

(
et

e−t

)
,

x⃗p=

(
e2t − et

1
4e

3t − 1
4e

−t

)
Undetermined Coefficients

Let A =

(
1 2
0 −1

)
. Solve x⃗ ′=Ax⃗+F⃗(t) by undetermined coefficients. Assume

x⃗h(t)=c1e
t

(
1
0

)
+c2e

−t

(
−1
1

)
13. F⃗ (t) = et

(
1
2

)
,

x⃗p=

(
e−t+3tet−et

et−e−t

)
Solution: The initial trial solution: x⃗ = etc⃗ . Substitute to get equation

etc⃗ = etAc⃗ + et
(
1
2

)
, then cancel et and try to solve for c⃗ :
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c⃗ = Ac⃗ +

(
1
2

)
(I −A)⃗c =

(
1
2

)
(
0 −2
0 −2

)
c⃗ =

(
1
2

)
It failed. The trial solution must be modified.

Second attempt, trial solution

x⃗ = etc⃗1 + tetc⃗2

x⃗ = et
(

d1
d2

)
+ tet

(
d3
d4

)
Substitute into x⃗ ′ = Ax⃗ + F⃗ :

etc⃗1 + tetc⃗2 + etc⃗2 = etAc⃗1 + tetAc⃗2 + et
(
1
2

)
Cancel et and match coefficients (method of atoms):

c⃗1 + t⃗c2 + c⃗2 = Ac⃗1 + tAc⃗2 +

(
1
2

)
c⃗1 + c⃗2 = Ac⃗1 +

(
1
2

)
, c⃗2 = Ac⃗2

Solve for c⃗2 =

(
k
0

)
and insert into the first vector equation:

c⃗1 +

(
k
0

)
= Ac⃗1 +

(
1
2

)
, where k is to be determined.

(I −A)⃗c1 =

(
1− k
2

)
(
0 −2
0 2

)
c⃗1 =

(
1− k
2

)
, c⃗2 =

(
k
0

)
Choose k = 3 to find solutions c⃗1 =

(
0
1

)
, c⃗2 =

(
3
0

)
. Then

x⃗ = etc⃗1 + tetc⃗2 =

(
3tet

et

)
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# Exercise 13, Undetermined Coefficients

F:=t->exp(t)*<1,2>;

A:=Matrix([[1,2],[0,-1]]);

# Undetermined coefficients

trial:=exp(t)*<d1,d2> + t*exp(t)*<d3,d4>;

p:=map(diff,trial,t)-F(t)-A.trial;# Should equal zero

# Tools to match coefficients of atoms

# p:=simplify((1/exp(t))*p);# Cancel exp(t)

# q:=map(PolynomialTools[CoefficientList],p,t);convert(q,list);

solve([d3-1-2*d2, -2*d4, 2*d2+d4-2, 2*d4],{d1,d2,d3,d4});

# d1 = d1, d2 = 1, d3 = 3, d4 = 0 (let d1=0)

X:=exp(t)*<0,1> + t*exp(t)*<3,0>;# particular solution

map(diff,X,t)=A.X+F(t);# Check the answer

# Answer check scalar methods

des:=diff(u1(t),t)=u1(t)+2*u2(t)+exp(t),

diff(u2(t),t)= -u2(t)+2*exp(t);

dsolve({des},[u1(t),u2(t)]);

14. F⃗ (t) = 2

(
cos t
et

)
,

x⃗p =

(
2tet+sin(t)− cos(t)+e−t

et−e−t

)
Undetermined Coefficients

Let A =

(
2 0
0 3

)
. Solve x⃗ ′ = Ax⃗ + F⃗(t) by undetermined coefficients. Assume

x⃗h(t) =

(
c1e

2t

c2e
3t

)
.

15. F⃗ (t) = et
(
1
2

)
, x⃗p = et

(
−1
−1

)
Solution: Trial solution x⃗ = etc⃗ . Follow Exercise 13.

16. F⃗ (t) = 4

(
et

e−t

)
, x⃗p = e−t

(
−4
−1

)

17. F⃗ (t) = 10

(
cos t
et

)
,

x⃗p =

(
−4 cos(t) + 2 sin(t)

−5et

)
Solution: Trial solution x⃗ = cos(t)⃗c1 + sin(t)⃗c2 + etc⃗3, because the atoms

for F⃗ are cos t, sin t, et. Follow Exercise 13.
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18. F⃗ (t) = 2et
(
cos t
1

)
,

x⃗p = et
(
− cos(t) + sin(t)

−1

)
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11.8 Second Order Systems

Euler’s Substitution: u⃗ ′ = Cu⃗

1. Change variables: u⃗ = ertw⃗ . Answer: w⃗ ′ = (C − rI)w⃗

Solution: Differentiate the change of variable equation:

u⃗ ′ = rertw⃗ + ertw⃗ ′ by the product rule

Then u⃗ ′ = Cu⃗ becomes

rertw⃗ + ertw⃗ ′ = ertCw⃗

rw⃗ + w⃗ ′ = Cw⃗ divide by ert

Rearrange the equation

w⃗ ′ = (C − rI)w⃗ ■

2. Prove: (λ, v⃗ ) is an eigenpair of C if and only if (0, v⃗ ) is an eigenpair of
C − λI.

3. Let |C − λI| have factor λ2. Let u⃗ ′ = Cu⃗ have solution u⃗ = d⃗1 + td⃗2.

Prove: Cd⃗2 = 0⃗ , Cd⃗1 = d⃗2. Are d⃗1, d⃗2 eigenvectors of C? Discuss.

Solution:
Substitute u⃗ = d⃗1 + td⃗2 into the differential equation u⃗ ′ = Cu⃗ :

d⃗2 = Cd⃗1 + tCd⃗2

Match vector coefficients of the Euler solution atoms 1, t:

d⃗2 = Cd⃗1 and 0⃗ = Cd⃗2

Vector d⃗2 is an eigenvector if not zero, because zero is an eigenvalue of
C. Vector d⃗1 is computed from C and d⃗2 with combo, swap and mult
operations. There is no reason to think d⃗1 is an eigenvector of C. ■

4. Let C=

(
0 1
0 0

)
, u⃗ = d⃗1 + td⃗2. Let u⃗ solve u⃗ ′ = Cu⃗ . Find d⃗1, d⃗2 in terms

of arbitrary constants c1, c2.

Euler’s Substitution: x⃗ ′′ = Ax⃗

5. Change variables: x⃗ = erty⃗ . Answer: y⃗ ′′ + 2ry⃗ ′ = (A− r2I)y⃗

Solution:
Differentiate the change of variable equation twice:

x⃗ ′ = rerty⃗ + erty⃗ ′.

x⃗ ′′ = r2erty⃗ + 2rerty⃗ ′ + erty⃗ ′′.

Substitute into x⃗ ′′ = Ax⃗ :

698



11.8 Second Order Systems

r2erty⃗ + 2rerty⃗ ′ + erty⃗ ′′ = ertAy⃗

Cancel ert:

r2y⃗ + 2ry⃗ ′ + y⃗ ′′ = Ay⃗

Re-arrange the terms:

y⃗ ′′ + 2ry⃗ ′ = (A− r2I)y⃗

6. Prove: x⃗ = ertv⃗ is a nonzero solution of x⃗ ′′ = Ax⃗ if and only if (r2, v⃗ ) is
an eigenpair of A.

Solution: Suppose x⃗ = ertv⃗ is a nonzero solution of x⃗ ′′ = Ax⃗ . Apply
the previous exercise with y⃗ = constant = v⃗ . The left side is zero: 0⃗ =
(A − r2I)v⃗ . Then v⃗ is an eigenvector of A for eigenvalue λ = r2. The
second half of the proof is omitted.

Repeated Root: x⃗ ′′ = Ax⃗

Let A =

(
0 1
0 0

)
, eigenvalues 0, 0.

7. Verify: Matrix A is a Jordan block with generalized eigenvectors the columns
of I.

Solution: Let J = A, which is a Jordan block B(λ, 2) =

(
λ 1
0 λ

)
with λ = 0.

Let P = I. Then AP = AI = A = J = IJ = PJ , so the columns of P are
generalized eigenvectors (A is not diagonalizable). ■

8. Prove: x1 = c1 + c2t+ c3
t2

2
+ c4

t3

6
, x2 = c3 + c4t for arbitrary constants c1

to c4.

9. Prove: The solution of x⃗ ′′ = Ax⃗ is a vector linear combination of atoms
1, t, t2, t3.

Solution: The scalar equations are

x′′
1 = x2, x′′

2 = 0. Then x2 = c1 + c2t and x1 =
∫
(
∫
(c1 + c2t)dt)dt =∫

(c1t+ c2t
2/2 + c3)dt = c1t

2/2 + c2t
3/6 + c3t+ c4. Therefore,

x⃗ =

(
c1t

2/2 + c2t
3/6 + c3t+ c4

c1 + c2t

)
=

(
c4
c1

)
+ t

(
c3
c2

)
+ t2

(
c1/2
0

)
+ t3

(
c2/6
0

)
which is a vector linear combination of 1, t, t2, t3. ■
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10. Let x⃗ = d⃗1 + d⃗2t + d⃗3
t2

2
+ d⃗4

t3

6
. Assume x⃗ solves x⃗ ′′ = Ax⃗ . Prove:

Ad⃗3 = Ad⃗4 = 0⃗ , Ad⃗1 = d⃗3, Ad⃗2 = d⃗4. These are generalized eigenvector
chains for eigenvalue zero.

CHZ Method

11. Given a 3×3 matrix A, supply proof details for the Cayley-Hamilton-Ziebur
structure theorem.

Solution:
To prove for a real 3× 3 matrix A:

The solution x⃗ (t) of second order equation x⃗ ′′(t) = Ax⃗ (t) is a
vector linear combination of Euler solution atoms corresponding to
roots of the equation det(A− r2I) = 0.

Details: Expand |A − λI| = 0 to find the characteristic equation (−λ)3 +
a(−λ)2 + b(−λ) + c = 0, for some constants a, b, c. The Cayley-Hamilton
theorem says that −A3 + aA2 − bA + cI = 0. Let x⃗ be a solution of
x⃗ ′′(t) = Ax⃗ (t). Multiply the Cayley-Hamilton identity by vector x⃗ and
simplify to obtain

A2x⃗ + cAx⃗ + dx⃗ = 0⃗ ,

−A3x⃗ + aA2x⃗ − bAx⃗ + cx⃗ = 0

Using equation x⃗ ′′(t) = Ax⃗ (t) backwards, we compute A3x⃗ = A2(Ax⃗ ) =
A2x⃗ ′′ = Ax⃗ ′′′′ = x⃗ (6), A2x⃗ = Ax⃗ ′′ = x⃗ ′′′′. Replace the terms of the
displayed equation to obtain the relation

−x⃗ (6) + ax⃗ ′′′′ − bx⃗ ′′ + cx⃗ = 0

Each component y of vector x⃗ (t) then satisfies the 6th order linear homoge-
neous equation y(6)+ay(4)−by(2)+cy = 0, which has characteristic equation
−r6+ar4−br2+c = 0. This equation is the expansion of determinant equa-
tion |A− r2I| = 0. Therefore y is a linear combination of the Euler solution
atoms found from the roots of this equation. It follows then that x⃗ (t) is a
vector linear combination of the Euler solution atoms so identified. ■

12. Invent a non-diagonal 3× 3 example x⃗ ′′ = Ax⃗ and solve it by CHZ.

13. Solve x⃗ ′′ = Ax⃗ by CHZ for any 2×2 diagonal matrix with negative diagonal
elements.

Solution:
Expand |A − r2I| = (a − r2)(b − r2) for diagonal elements −a2,−b2 with
a > 0 and b > 0. By Theorem 11.52 (CHZ Method and Negative Eigenval-
ues), the Euler solution atoms are cos at, sin at, cos bt. sin bt and x⃗ (t) is a
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vector linear combination of these four atoms:

x⃗ = d⃗1 cos(at) + d⃗2 sin(at) + d⃗3 cos(bt) + d⃗4 sin(bt)

Then x⃗ ′′ = Ax⃗ gives

−a2d⃗1 cos(at)− a2d⃗2 sin(at)− b2d⃗3 cos(bt)− b2d⃗4 sin(bt) =

Ad⃗1 cos(at) +Ad⃗2 sin(at) +Ad⃗3 cos(bt) +Ad⃗4 sin(bt)
Match the coefficients of atoms left and right:

−a2d⃗1 = Ad⃗1, −a2d⃗2 = Ad⃗2, −b2d⃗3 = Ad⃗3, −b2d⃗4 = Ad⃗4

The eigenpairs of diagonal matrix A are:(
−a2,

(
1
0

))
,

(
−b2,

(
0
1

))
Equation −a2d⃗1 = Ad⃗1 implies vector d⃗1 is a multiple of the first eigen-
vector, similarly for the other three equations. Then

d⃗1 = c1

(
1
0

)
, d⃗2 = c2

(
1
0

)
, d⃗3 = c3

(
0
1

)
, d⃗4 = c4

(
0
1

)
x⃗ (t) = (c1 cos(at) + c2 sin(at))

(
1
0

)
+ (c3 cos(bt) + c4 sin(bt))

(
0
1

)
■

14. Solve x⃗ ′′ = Ax⃗ by CHZ for any 3×3 diagonal matrix with negative diagonal
elements.

Conversion

Given x⃗ ′′ = Ax⃗ , let u⃗ =

(
x⃗
x⃗ ′

)
. Display system u⃗ ′ = Cu⃗ .

15. A =

(
1 3

−1 2

)

Solution: Answer: C =

(
0 I
A 0

)
=

 0 0 1 0
0 0 0 1
1 3 0 0

−1 2 1 0


Details:

u⃗ ′ =

(
x⃗ ′

x⃗ ′′

)
=

(
x⃗ ′

Ax⃗

)
=

(
0 I
A 0

)(
x⃗
x⃗ ′

)
=

(
0 I
A 0

)
u⃗
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16. A =

(
1 1 0
0 1 1
2 −1 2

)

Eigenanalysis λ ≤ 0
Display the general solution of x⃗ ′′ = Ax⃗ .

17. A =

(
−3 3
1 −1

)
Solution:
Use Theorem 11.56 page 928 �:

Eigenpairs:

(
−4,

(
3

−1

))
,

(
0,

(
1
1

))
Solution:

x⃗ (t) = (c1 + c2t)

(
1
1

)
+ (c3 cos 2t+ c4 sin 2t)

(
3

−1

)
■

# Exercise 17, Eigenanalysis nonpositive lambda

A:=<-3,3|1,-1>^+;

Eigenvectors(A);# lambda = 0,-4

Determinant(A-r^2); # r^4+4*r^2

# atoms: 1, t, cos 2t, sin 2t

18. A =

(
−3 3 0
1 −1 0
5 0 −1

)
Solution:
Use Theorem 11.56 page 928 �, λ = 0,−1,−4.

Earthquakes
Apply formulas from the Earthquakes subsection page 929 � to find particular
solution x⃗p, the natural frequencies ωj and the amplitudes of x⃗p(t) near the
largest natural frequency. Assume F (t) = F0 cos(ωt).

19. Three-floor problem, k/m = 10.

Solution:

M =

 m1 0 0
0 m2 0
0 0 m3

 , x⃗ =

 x1

x2

x3

 , H⃗ =

 E1

E2

E3

 ,
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11.8 Second Order Systems

where m1,m2,m3 are the three masses of the floors at positions x1, x2, x3.
Symbol Ej = mjF

′′ = −mjF0ω
2 cos(ωt), 1 ≤ j ≤ 3. The Hooke’s matrix:

K =

 −k1 − k2 k2 0
k2 −k2 − k3 k3
0 k3 −k3 − k4


In the last row, k4 = 0 reflects the absence of a floor above the third floor.
The second order system:

M x⃗ ′′(t) = Kx⃗ (t) + H⃗(t)

Identical Floors
Assume that all floors have the same mass m and the same Hooke’s constant
k. Then M = mI and M x⃗ ′′(t) = Kx⃗ (t) + H⃗ (t) becomes:

x⃗ ′′=
1

m

−2k k 0
k −2k k
0 k −k

 x⃗−F0ω
2 cos(ωt)

1
1
1

(1)

Assume k/m = 10 then:

x⃗ ′′=

−20 10 0
10 −20 10
0 10 −10

 x⃗−F0ω
2 cos(ωt)

1
1
1

(2)

Particular Solution: Identical Floors
The method of undetermined coefficients predicts a trial solution x⃗ (t) =
c⃗ cosωt. Constant vector c⃗ is found by trial solution substitution. After
cancel of common factor cosωt:

−F0ω
2c⃗ =

−20 10 0
10 −20 10
0 10 −10

 c⃗ − F0ω
2

 1
1
1


The solution by maple:

c⃗ =
F0 ω2

ω6 − 50ω4 + 600ω2 − 1000

 (
ω2 − 30

) (
ω2 − 10

)
ω4 − 50ω2 + 500
ω4 − 50ω2 + 600


Natural Frequencies.
The frequencies are obtain by maple’s fsolve applied to ω6−50ω4+600ω2−
1000 = 0, because

B =

−20 10 0
10 −20 10
0 10 −10

+ ω2

 1 0 0
0 1 0
0 0 1


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and |B| = ω6 − 50ω4 + 600ω2 − 1000. The frequencies ω are:

−5.698227447 −3.943295744 −1.407345957
5.698227447 3.943295744 1.407345957

Amplitudes for x⃗p:
The amplitudes are the components of vector c⃗ near ω = 5.698227447. We
report

c⃗ |ω=5.698227447 = F0

 9.009688690 108

−1.123489801 109

5.000000010 108


Homogeneous Solution: Identical Floors
The equation to solve is

x⃗ ′′=

−20 10 0
10 −20 10
0 10 −10

 x⃗

Theorem 11.56 provides:

x⃗h(t) =

3∑
j=1

(aj cosωjt+ bj sinωjt)v⃗ j(3)

where r = ωj and v⃗ = v⃗ j ̸= 0⃗ satisfy the eigenpair equation:(
1

m
K + r2 I

)
v⃗ = 0⃗

Eigenpairs can be found numerically, a suitable online resource at

https://matrixcalc.org/en/

The answers:

λ1 = −32.470, v⃗ 1 =

 1.802
−2.247

1


λ2 = −15.550, v⃗ 2 =

−1.247
−0.555

1


λ3 = −1.981, v⃗ 3 =

0.445
0.802

1


Symbols ωj use in equation 3 satisfy

ω1 =
√
32.470 , ω2 =

√
15.550 , ω3 =

√
1.981. ■
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# Exercise 19, Earthquakes n=3

K1:=Matrix([[-20,10,0],[10,-20,10],[0,10,-10]]);

B:=K1+omega^2*IdentityMatrix(3);

ans1:=LinearSolve(B,F0*omega^2*<1,1,1>);

q:=Determinant(B);

fsolve(q=0,omega);# Frequencies

C:=K1-lambda*IdentityMatrix(3);Determinant(C);

subs(omega=5.698227447,ans1);

# eigenpairs of K1, calculator at https://matrixcalc.org/en/

lambda1:=-32.470; v1:=<1.802,-2.247,1>;

lambda2:=-15.550;v2:=<-1.247,-0.555,1>;

lambda3:=-1.981;v3:=<0.445,0.802,1>;

20. Four-floor problem, k/m = 10.

Two Masses
Assume MKS units. Let m1 = 2, m2 = 0.5, k1 = 75, k2 = 25 in system:

m1x
′′
1=− k1x1 + k2[x2 − x1]

m2x
′′
2=− k2[x2 − x1]

21. Convert the system to the form x⃗ ′′ = Ax⃗ .

Solution:

M =

(
m1 0
0 m2

)
,

K =

(
−k1 − k2 k2

k2 −k2

)
,

M x⃗ ′ = Kx⃗(
m1 0
0 m2

)
x⃗ ′ =

(
−k1 − k2 k2

k2 −k2

)
x⃗(

2 0
0 0.5

)
x⃗ ′ =

(
−100 25

25 −25

)
x⃗

■

22. Show details for finding the vector solution x⃗ (t).

Three Rail Cars: k=2m
Assume MKS units. Consider

x⃗ ′′ =

(
−2 2 0
2 −4 2
0 2 −2

)
x⃗
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23. Show eigenpair details for the 3× 3 matrix.

Solution:
Eigenvalues: −6, 0, 2

Eigenvectors:

 1
1

−1

 ,

 −2
1
0

 ,

 1
1
1


# Exercise 23, Three Rail Cars

A:=Matrix([[-2,2,0],[2,-4,2],[0,2,-2]]);

EigVals,EigVecs:=Eigenvectors(A);

24. Find the vector solution x⃗ (t).

Three Rail Cars: Disengagement
For x⃗ ′′ = Ax⃗ , assume FPS units and

A =

(
−4 4 0
6 −12 6
0 4 −4

)

Suppose the springs disengage upon full expansion. Let the cars engage at t = 0
with x1 = x2 = x3 = 0.

25. Verify A has eigenvalues λ = −16, 0,−4 and corresponding eigenvectors 1
−3
1

 ,

1
1
1

 ,

−1
0
1


Solution:
# Exercise 25, Three Rail Cars

A:=Matrix([[-4,4,0],[6,-12,6],[0,4,-4]]);

EigVals,EigVecs:=Eigenvectors(A);

26. For x1=x2=x3=0 at t=0, verify:
x1(t)=c1t+c2 sin(2t)−c3 sin(4t),
x2(t) = c1t+ 3c3 sin(4t),
x3(t)=c1t−c2 sin(2t)−c3 sin(4t)

27. Let x′
1 = 48, x′

2 = 0, x′
3 = 0 at t = 0. Verify disengagement time t1 = π/2

and determine the car velocities thereafter.

Solution:
Exercise 26 provides equations for the solution:

x1(t) = c1t+c2 sin(2t)−c3 sin(4t),
x2(t) = c1t+ 3c3 sin(4t),
x3(t) = c1t−c2 sin(2t)−c3 sin(4t)

706



11.8 Second Order Systems

Differentiate the equations and set t = 0 to obtain linear algebraic equations
for the constants c1, c2, c3:

0 = x′
1(0) = c1 + 2c2 cos(0)− 4c3 cos(0),

0 = x′
2(0) = c1 + 12c3 cos(0)

48 = x′
3(0) = c1 − 2c2 cos(0)− 4c3 cos(0)

In matrix form after setting cos(0) = 1: 1 2 −4
1 0 12
1 −2 −4

 c⃗ =

 48
0
0

 , c⃗ =

 c1
c2
c3


Then

c⃗ =

 18
12

−3/2

 and components x1, x2, x3 satisfy

x1(t) = 18t+ 12 sin(2t) + 3
2 sin(4t),

x2(t) = 18t− 9
2 sin(4t),

x3(t) = 18t− 12 sin(2t) + 3
2 sin(4t)

x′
1(t) = 18 + 24 cos(2t) + 6 cos(4t),

x′
2(t) = 18− 18 cos(4t),

x′
3(t) = 18− 24 cos(2t) + 6 cos(4t)

Car 1 moves (x′
1(0) = 48) into contact with two stationary cars (x′

2(0) =
x′
3(0) = 0) using equation x⃗ ′′ = Ax⃗ on 0 ≤ t ≤ t1. Model x⃗ ′′ = Ax⃗ is valid

for values of t such that x1 − x2 and x2 − x3 are positive (no contact). To
get intuition about disengagement, plot x1 − x2 and x2 − x3 on 0 ≤ t ≤ π.
The two graphs show a curve starting at (0, 0) with first crossing at t = π/2.
To confirm the root t = π/2, solve x1 − x2 = 0 for t = t1 = π/2 in maple.

The speeds at t = t1 = π/2 are:

x′
1(t1) = 18 + 24 cos(π) + 6 cos(2π),

x′
2(t1) = 18− 18 cos(2π),

x′
3(t1) = 18− 24 cos(π) + 6 cos(2π)

Simplify using cos(π) = −1, cos(2π) = 1:

x′
1(t1) = 18− 24 + 6 = 0,

x′
2(t1) = 18− 18 = 0,

x′
3(t1) = 18 + 24 + 6 = 48

The meaning: car 3 after impact continues on at speed 48, while cars 1 and
2 stop.
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# Exercise 25, Three Rail Cars

A:=Matrix([[-4,4,0],[6,-12,6],[0,4,-4]]);

EigVals,EigVecs:=Eigenvectors(A);

B:=Matrix([

[1,2*cos(2*t),-4*cos(4*t)],

[1,0,12*cos(4*t)],

[1,-2*cos(2*t),-4*cos(4*t)]]);

B1:=simplify(subs(t=0,B));

LinearSolve(B1,<48,0,0>);

x_1:= t-> 18*t + 12*sin( 2*t ) + 3/2*sin( 4*t );

x_2:=t -> 18 *t - 9/2*sin( 4* t );

x_3:=t -> 18* t -12*sin( 2* t ) + 3/2*sin( 4*t );

eq1:=x_1(t)-x_2(t);eq2:=x_2(t)-x_3(t);

plot(eq1,t=0..Pi);solve(eq1,t);

plot(eq2,t=0..Pi);solve(eq2,t);

28. Let x′
1(0) = 144, x′

2(0) = 48, x′
3(0) = 48. Verify disengagement time

t1 = π/2 and determine the car velocities thereafter.
Answer: Velocities 144, 48, 48 at t = t1.

Dynamic Dashpot
Assume conventions for Figure 26 and dynamic dashpot system

msX
′′ = −k1X − d1X

′ − k2(Y −X)
− d2(Y

′ −X ′) + F (t),
mbY

′′ = k2(Y −X) + d2(Y
′ −X ′)

See page 936 �.

29. Assume Y = 0, ideal suspension. Derive:

msX
′′ = −k1X − d1X

′ + F (t),
d2X

′ + k2X = 0

Solution:
Use the second differential equation mbY

′′ = k2(Y −X) + d2(Y
′ −X ′). Set

Y = Y ′ = 0. Then

0 = −k2X − d2X
′

which verifies equation 2: d2X
′ + k2X = 0.

Use the first differential equation msX
′′ = −k1X − d1X

′ − k2(Y − X) −
d2(Y

′ −X ′) + F (t). Set Y = Y ′ = 0. Then

msX
′′ = −k1X − d1X

′ + k2X − d2X
′ + F (t)

Replace d2X
′ in this result by −k2X using d2X

′ + k2X = 0. Then
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msX
′′ = −k1X − d1X

′ + F (t)

which claimed equation 1: msX
′′ = −k1X − d1X

′ + F (t). ■

30. Assume Y = 0, ideal suspension and X(0) = 0.015 meters. Find X(t) and
F (t).
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11.9 Numerical methods for Systems

Planar Methods
Apply the Euler, Heun and RK4 methods. Compare with the exact solution in
a table.

1. x′ = x, y′ = −y, x(0) = 2, y(0) = 2. h = 0.1, 10 steps

Solution:
Exact Solution.
The differential equations are growth-decay equations with solutions
x = 2et, y = 2e−t.

Numerical Solution.
Computation by maple following Example 11.20. The maple code infra
implements the algorithms, no library functions used. Values are rounded
to 6 digits. The answers:

t− Euler x(t) y(t) x− exact y − exact
0.000000 2.000000 2.000000 2.000000 2.000000
0.100000 2.200000 1.800000 2.210342 1.809675
0.200000 2.420000 1.620000 2.442806 1.637462
0.300000 2.662000 1.458000 2.699718 1.481636
0.400000 2.928200 1.312200 2.983649 1.340640
0.500000 3.221020 1.180980 3.297443 1.213061
0.600000 3.543122 1.062882 3.644238 1.097623
0.700000 3.897434 0.956594 4.027505 0.993171
0.800000 4.287178 0.860934 4.451082 0.898658
0.900000 4.715895 0.774841 4.919206 0.813139
1.000000 5.187485 0.697357 5.436564 0.735759

t−Heun x(t) y(t) x− exact y − exact
0.000000 2.000000 2.000000 2.000000 2.000000
0.100000 2.210000 1.810000 2.210342 1.809675
0.200000 2.442050 1.638050 2.442806 1.637462
0.300000 2.698465 1.482435 2.699718 1.481636
0.400000 2.981804 1.341604 2.983649 1.340640
0.500000 3.294894 1.214152 3.297443 1.213061
0.600000 3.640857 1.098807 3.644238 1.097623
0.700000 4.023147 0.994420 4.027505 0.993171
0.800000 4.445578 0.899951 4.451082 0.898658
0.900000 4.912364 0.814455 4.919206 0.813139
1.000000 5.428162 0.737082 5.436564 0.735759
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t−RK4 x(t) y(t) x− exact y − exact
0.000000 2.000000 2.000000 2.000000 2.000000
0.100000 2.210342 1.809675 2.210342 1.809675
0.200000 2.442805 1.637462 2.442806 1.637462
0.300000 2.699717 1.481637 2.699718 1.481636
0.400000 2.983648 1.340641 2.983649 1.340640
0.500000 3.297441 1.213062 3.297443 1.213061
0.600000 3.644236 1.097624 3.644238 1.097623
0.700000 4.027503 0.993171 4.027505 0.993171
0.800000 4.451079 0.898659 4.451082 0.898658
0.900000 4.919203 0.813140 4.919206 0.813139
1.000000 5.436559 0.735760 5.436564 0.735759

■
# Exercise 1, Planar Methods Euler

f:=(t,x,y) -> x;g:= (t,x,y) -> -y;

x_0:=2;y_0:=2;h:=0.1;n:=10;t_0:=0;L:=[t_0,x_0,y_0];

for i from 1 to n do

X := x_0+h*f(t_0,x_0,y_0);

Y := y_0+h*g(t_0,x_0,y_0);

t_0:=t_0+h:x_0:=X:y_0:=Y:L:=L,[t_0,x_0,y_0];

od:

x_exact:=t->2*exp(t):y_exact:=t->2*exp(-t):

tbl:=seq([seq(L[i][j],j=1..3),

x_exact(h*i-h),y_exact(h*i-h)],i=1..n+1);

# Exercise 1, Planar Methods Heun

f:=(t,x,y) -> x;g:= (t,x,y) -> -y;

x_0:=2;y_0:=2;h:=0.1;n:=10;t_0:=0;L:=[t_0,x_0,y_0];

for i from 1 to n do

X1 := x_0+h*f(t_0,x_0,y_0);Y1:= y_0+h*g(t_0,x_0,y_0);

X:= x_0+h*(f(t_0,x_0,y_0)+f(t_0+h,X1,Y1))/2;

Y:= y_0+h*(g(t_0,x_0,y_0)+g(t_0+h,X1,Y1))/2;

t_0:=t_0+h:x_0:=X:y_0:=Y:L:=L,[t_0,x_0,y_0];

od:

x_exact:=t->2*exp(t):y_exact:=t->2*exp(-t):

tbl:=seq([seq(L[i][j],j=1..3),

x_exact(h*i-h),y_exact(h*i-h)],i=1..n+1);
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# Exercise 1, Planar Methods RK4

f:=(t,x,y) -> x;g:= (t,x,y) -> -y;

x_0:=2;y_0:=2;h:=0.1;n:=10;t_0:=0;L:=[t_0,x_0,y_0];

for i from 1 to n do

k_1 := h*f(t_0,x_0,y_0);

m_1 := h*g(t_0,x_0,y_0);

k_2 := h*f(t_0+h/2,x_0+k_1/2,y_0+m_1/2);

m_2 := h*g(t_0+h/2,x_0+k_1/2,y_0+m_1/2);

k_3 := h*f(t_0+h/2,x_0+k_2/2,y_0+m_2/2);

m_3 := h*g(t_0+h/2,x_0+k_2/2,y_0+m_2/2);

k_4 := h*f(t_0+h,x_0+k_3,y_0+m_3);

m_4 := h*g(t_0+h,x_0+k_3,y_0+m_3);

X := x_0 + ( k_1+2*k_2+2*k_3+k_4 )/6;

Y := y_0 + ( m_1+2*m_2+2*m_3+m_4 )/6;

t_0:=t_0+h:x_0:=X:y_0:=Y:L:=L,[t_0,X,Y];

od:

x_exact:=t->2*exp(t):y_exact:=t->2*exp(-t):

tbl:=seq([seq(L[i][j],j=1..3),

x_exact(h*i-h),y_exact(h*i-h)],i=1..n+1);

2. x′ = −3x+ y, y′ = x− 3y, x(0) = 2, y(0) = 0, h = 0.1, 10 steps

3. x′ = −x+ y, y′ = −x− y, x(0) = 0, y(0) = 3, h = 0.2, 5 steps

Solution: The answers:

t− Euler x(t) y(t) x− exact y − exact
0.000000 0.000000 3.000000 0.000000 3.000000
0.100000 0.300000 2.700000 0.270999 2.700951
0.200000 0.540000 2.400000 0.487970 2.407232
0.300000 0.726000 2.106000 0.656780 2.123192
0.400000 0.864000 1.822800 0.783105 1.852217
0.500000 0.959880 1.554120 0.872359 1.596842
0.600000 1.019304 1.302720 0.929647 1.358861
0.700000 1.047646 1.070518 0.959727 1.139428
0.800000 1.049933 0.858701 0.966987 0.939152
0.900000 1.030810 0.667838 0.955431 0.758183
1.000000 0.994512 0.497973 0.928680 0.596298
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t−Heun x(t) y(t) x− exact y − exact
0.000000 0.000000 3.000000 0.000000 3.000000
0.100000 0.270000 2.700000 0.270999 2.700951
0.200000 0.486000 2.405700 0.487970 2.407232
0.300000 0.653913 2.121390 0.656780 2.123192
0.400000 0.779447 1.850399 0.783105 1.852217
0.500000 0.868038 1.595209 0.872359 1.596842
0.600000 0.924803 1.357564 0.929647 1.358861
0.700000 0.954503 1.138576 0.959727 1.139428
0.800000 0.961525 0.938813 0.966987 0.939152
0.900000 0.949866 0.758394 0.955431 0.758183
1.000000 0.923135 0.597067 0.928680 0.596298

t−RK4 x(t) y(t) x− exact y − exact
0.000000 0.000000 3.000000 0.000000 3.000000
0.100000 0.271000 2.700950 0.270999 2.700951
0.200000 0.487972 2.407230 0.487970 2.407232
0.300000 0.656782 2.123189 0.656780 2.123192
0.400000 0.783107 1.852213 0.783105 1.852217
0.500000 0.872361 1.596838 0.872359 1.596842
0.600000 0.929648 1.358856 0.929647 1.358861
0.700000 0.959728 1.139423 0.959727 1.139428
0.800000 0.966987 0.939146 0.966987 0.939152
0.900000 0.955431 0.758178 0.955431 0.758183
1.000000 0.928679 0.596293 0.928680 0.596298

■
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# Exercise 3, Planar Methods Euler

f:=(t,x,y) -> -x+y;g:= (t,x,y) -> -x-y;

x_0:=0;y_0:=3;h:=0.1;n:=10;t_0:=0;L:=[t_0,x_0,y_0];

# Exact solution

des:=diff(x(t),t)=f(t,x(t),y(t)),diff(y(t),t)=g(t,x(t),y(t));

ics:=x(0)=0,y(0)=3;

dsolve([des,ics],[x(t),y(t)]);

x_exact:=t->3*exp(-t)*sin(t):y_exact:=t->3*exp(-t)*cos(t):

# Numerical solution Euler

for i from 1 to n do

X := x_0+h*f(t_0,x_0,y_0);

Y := y_0+h*g(t_0,x_0,y_0);

t_0:=t_0+h:x_0:=X:y_0:=Y:L:=L,[t_0,x_0,y_0];

od:

tbl:=seq([seq(L[i][j],j=1..3),

x_exact(h*i-h),y_exact(h*i-h)],i=1..n+1);

# Exercise 3, Planar Methods Heun

for i from 1 to n do

X1 := x_0+h*f(t_0,x_0,y_0);Y1:= y_0+h*g(t_0,x_0,y_0);

X:= x_0+h*(f(t_0,x_0,y_0)+f(t_0+h,X1,Y1))/2;

Y:= y_0+h*(g(t_0,x_0,y_0)+g(t_0+h,X1,Y1))/2;

t_0:=t_0+h:x_0:=X:y_0:=Y:L:=L,[t_0,x_0,y_0];

od:

tbl:=seq([seq(L[i][j],j=1..3),

x_exact(h*i-h),y_exact(h*i-h)],i=1..n+1);

# Exercise 3, Planar Methods RK4

for i from 1 to n do

k_1 := h*f(t_0,x_0,y_0);

m_1 := h*g(t_0,x_0,y_0);

k_2 := h*f(t_0+h/2,x_0+k_1/2,y_0+m_1/2);

m_2 := h*g(t_0+h/2,x_0+k_1/2,y_0+m_1/2);

k_3 := h*f(t_0+h/2,x_0+k_2/2,y_0+m_2/2);

m_3 := h*g(t_0+h/2,x_0+k_2/2,y_0+m_2/2);

k_4 := h*f(t_0+h,x_0+k_3,y_0+m_3);

m_4 := h*g(t_0+h,x_0+k_3,y_0+m_3);

X := x_0 + ( k_1+2*k_2+2*k_3+k_4 )/6;

Y := y_0 + ( m_1+2*m_2+2*m_3+m_4 )/6;

t_0:=t_0+h:x_0:=X:y_0:=Y:L:=L,[t_0,X,Y];

od:

tbl:=seq([seq(L[i][j],j=1..3),

x_exact(h*i-h),y_exact(h*i-h)],i=1..n+1);

4. x′ = 2x− 4y, y′ = x− 3y, x(0) = 4, y(0) = 0, h = 0.1, 10 steps
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Vector Methods u⃗ ′ = Au⃗ , 2× 2
Apply vector Euler, Heun and RK4 methods for 10 steps with h = 0.1.

5. u⃗ ′ =

(
u1 + u2

−u1 + u2

)
, u⃗(0) =

(
2
2

)
.

Solution: The answers at t = 1:

Euler: x(1) = 7.58833504640000, y(1) = −0.924241606400000

Heun: x(1) = 7.53896384528113, y(1) = −1.61703014238029

RK4: x(1) = 7.51211873880302, y(1) = −1.637349161148920

Exact: x(1) = 7.512098455, y(1) = −1.637322695

■
# Exercise 5, Vectors Methods Euler

A:=Matrix([[1, 1],[-1 , 1]]):

F0:=unapply(A.<x,y>,(t,x,y));

F0(t,x,y);# Scalar variables

F:=(t,X)->F0(t,X[1],X[2]);# Vector variables

U0:=<2,2>;n:=10;h:=0.1;t0:=0;Vals:=U0; # Initialize

for j from 1 to n do

U:=U0+h*F(t0,U0);Vals:=Vals,U;

U0:=U;t0:=t0+h;

od:

ValsEuler:=Vals[n+1];

# Exact answer

des:=diff(x(t),t)=x(t)+y(t),diff(y(t),t)= -x(t)+y(t);

ics:=x(0)=2,y(0)=2;

qexact:=dsolve([des,ics],[x(t),y(t)]);

evalf(subs(t=1,qexact));

# Exercise 5, Vectors Methods Heun

U0:=<2,2>;n:=10;h:=0.1;t0:=0;Vals:=U0; # Initialize

for j from 1 to n do

w:=U0+h*F(t0,U0);

U:=U0+0.5*h*(F(t0,U0)+F(t0+h,w));

U0:=U;t0:=t0+h;Vals:=Vals,U0;

od:

ValsHeun:=Vals[n+1];
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# Exercise 5, Vectors Methods RK4

U0:=<2,2>;n:=10;h:=0.1;t0:=0;Vals:=U0; # Initialize

for j from 1 to n do

k1:=h*F(t0,U0);

k2:=h*F(t0+h/2,U0+k1/2);

k3:=h*F(t0+h/2,U0+k2/2);

k4:=h*F(t0+h,U0+k3);

U:=U0+(1/6)*(k1+2*k2+2*k3+k4);U0:=U;t0:=t0+h;Vals:=Vals,U0;

od:

ValsRK4:=Vals[n+1];

6. u⃗ ′ =

(
−3u1 + u2

u1 − 3u2

)
, u⃗(0) =

(
2
0

)
.

Solution:
# Exercise 6 Euler

A:=Matrix([[-3, 1],[1 , -3]]):

U0:=<2,0>;n:=10;h:=0.1;t0:=0;Vals:=U0; # Initialize

# Use code from Exercise 5

Vector Methods u⃗ ′ = Au⃗ + F⃗ (t)
Apply vector Euler, Heun and RK4 methods for 10 steps with t0 = 0, h = 0.1.
Compare results for the last step.

7. A =

(
1 2

−2 1

)
, F⃗ =

(
et

0

)
,

u⃗(0) =

(
1
1

)
.

Ans Euler: 3.81,−5.33

Solution: The answers at t = 1:

Euler: x(1) = 3.81345311556651, y(1) = −5.32607258418454

Heun: x(1) = 2.62373309709154, y(1) = −5.60474421071964

RK4: x(1) = 2.57616625457178, y(1) = −5.52765661055646

Exact: x(1) = 2.576385623, y(1) = −5.527674160

■
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# Exercise 7, Vectors Methods Euler

A:=Matrix([[1, 1],[-1 , 1]]):

F0:=unapply(A.<x,y>+<exp(t),0>,(t,x,y));

F0(t,x,y);# Scalar variables

F:=(t,X)->F0(t,X[1],X[2]);# Vector variables

U0:=<1,1>;n:=10;h:=0.1;t0:=0;Vals:=U0; # Initialize

for j from 1 to n do

U:=U0+h*F(t0,U0);Vals:=Vals,U;

U0:=U;t0:=t0+h;

od:

ValsEuler:=Vals[n+1];

# Exact answer

des:=diff(x(t),t)=x(t)+2*y(t)+exp(t),

diff(y(t),t)= -2*x(t)+y(t);

ics:=x(0)=1,y(0)=1;

qexact:=dsolve([des,ics],[x(t),y(t)]);

evalf(subs(t=1,qexact));

# Exercise 7, Vectors Methods Heun

U0:=<1,1>;n:=10;h:=0.1;t0:=0;Vals:=U0; # Initialize

for j from 1 to n do

w:=U0+h*F(t0,U0);

U:=U0+0.5*h*(F(t0,U0)+F(t0+h,w));

U0:=U;t0:=t0+h;Vals:=Vals,U0;

od:

ValsHeun:=Vals[n+1];

# Exercise 7, Vectors Methods RK4

U0:=<1,1>;n:=10;h:=0.1;t0:=0;Vals:=U0; # Initialize

for j from 1 to n do

k1:=h*F(t0,U0);

k2:=h*F(t0+h/2,U0+k1/2);

k3:=h*F(t0+h/2,U0+k2/2);

k4:=h*F(t0+h,U0+k3);

U:=U0+(1/6)*(k1+2*k2+2*k3+k4);U0:=U;t0:=t0+h;Vals:=Vals,U0;

od:

ValsRK4:=Vals[n+1];

8. A =

(
1 2 0

−2 1 0
0 0 5

)
, F⃗ =

et

0
0

,

u⃗(0) =

1
1
0


Ans RK4: 2.576,−5.528, 0.0
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Solution: Modify the maple code in Exercise 9.

Vector Methods u⃗ ′ = Au⃗ , 3× 3
Apply vector Euler, Heun and RK4 methods for 10 steps with h = 0.1.

9. A =

(
1 2 0

−2 1 0
0 0 5

)
, u⃗(0) =

1
1
0


Ans Heun: 1.36,−3.67, 0.00

Solution: The answers at t = 1:

Euler: x(1) = 3.81345311556651, y(1) = −5.32607258418454, z(1) = 0

Heun: x(1) = 1.36191852014674, y(1) = −3.66635681255906, z(1) = 0

RK4: x(1) = 1.34036497702700, y(1) = −3.60288223776972, z(1) = 0

Exact: x(1) = 1.340522288, y(1) = −3.602931054, z(1) = 0

■
# Exercise 9, Vectors Methods Euler

A:=Matrix([[1, 2,0],[-2 , 1,0],[0,0,5]]):

F0:=unapply(A.<x,y,z>,(t,x,y,z));

F0(t,x,y,z);# Scalar variables

F:=(t,X)->F0(t,X[1],X[2],X[3]);# Vector variables

U0:=<1,1,0>;n:=10;h:=0.1;t0:=0;Vals:=U0; # Initialize

for j from 1 to n do

U:=U0+h*F(t0,U0);Vals:=Vals,U;

U0:=U;t0:=t0+h;

od:

ValsEuler:=Vals[n+1];

# Exact answer

des:=diff(x(t),t)=x(t)+2*y(t),diff(y(t),t)= -2*x(t)+y(t),

diff(z(t),t)=5*z(t);

ics:=x(0)=1,y(0)=1,z(0)=0;

qexact:=dsolve([des,ics],[x(t),y(t),z(t)]);

evalf(subs(t=1,qexact));

# Exercise 9, Vectors Methods Heun

U0:=<1,1,0>;n:=10;h:=0.1;t0:=0;Vals:=U0; # Initialize

for j from 1 to n do

w:=U0+h*F(t0,U0);

U:=U0+0.5*h*(F(t0,U0)+F(t0+h,w));U0:=U;t0:=t0+h;Vals:=Vals,U0;

od:

ValsHeun:=Vals[n+1];
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# Exercise 9, Vectors Methods RK4

U0:=<1,1,0>;n:=10;h:=0.1;t0:=0;Vals:=U0; # Initialize

for j from 1 to n do

k1:=h*F(t0,U0);

k2:=h*F(t0+h/2,U0+k1/2);

k3:=h*F(t0+h/2,U0+k2/2);

k4:=h*F(t0+h,U0+k3);

U:=U0+(1/6)*(k1+2*k2+2*k3+k4);U0:=U;t0:=t0+h;Vals:=Vals,U0;

od:

ValsRK4:=Vals[n+1];

10. A =

(
1 3 0

−3 1 0
0 0 1

)
, u⃗(0) =

1
1
0


Ans RK4: −2.307,−3.075, 0.00

Solution: Because z(t) = 0 then the numerical solutions match Exercise 7.
The maple code in Exercise 9 can be modified to attack the problem directly.

# Exercise 10, Vector Methods 3x3

A:=Matrix([[1, 3,0],[-3 , 1,0],[0,0,1]]):

F0:=unapply(A.<x,y,z>,(t,x,y,z));

F0(t,x,y,z);# Scalar variables

F:=(t,X)->F0(t,X[1],X[2],X[3]);# Vector variables

U0:=<1,1,0>;n:=10;h:=0.1;t0:=0;Vals:=U0; # Initialize

# Exact answer

des:=diff(x(t),t)=x(t)+3*y(t),diff(y(t),t)= -3*x(t)+y(t),

diff(z(t),t)=1*z(t);

ics:=x(0)=1,y(0)=1,z(0)=0;

qexact:=dsolve([des,ics],[x(t),y(t),z(t)]);

evalf(subs(t=1,qexact));

# {x(1) = -2.307474660, y(1) = -3.074682568, z(1) = 0.}
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12.1 Review of Calculus Topics

Series Convergence
Find R, the radius of convergence.

1.
∑∞

k=2
xk

k ln(k)

Solution: The radius of convergence is R = 1.

Details.

Let cn =
1

n ln(n)
. Then

cn
cn+1

=

1

n ln(n)
1

(n+ 1) ln(n+ 1)
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=
(n+ 1) ln(n+ 1)

n ln(n)

limn→∞
cn

cn+1
= limn→∞

(
1 + 1

n

)
limn→∞

ln(n+ 1)

ln(n)

= 1 · 1 = 1

# Exercise 1, Series Convergence

c:=k -> 1/(k*ln(k));

limit(c(k)/c(k+1),k=infinity); ■

2.
∑∞

k=1 ak x
k, a2n = 2, a2n+1 = 4.

Series Properties
Compute the series given by the indicated operation(s).

3. d
dx

∑∞
k=2

xk

k ln(k)

Solution: Apply term-by-term differentiation. Let S =
∑∞

k=2
xk

k ln(k)

dS

dx
=

∞∑
k=2

d

dx

(
xk

k ln(k)

)

=

∞∑
k=2

xk−1

ln(k)

■

4. 4
∑∞

k=1
1

1+k xk +
∑∞

k=2
1

1+k2 x
k

Maclaurin Series
Find the Maclaurin series expansion.

5. f(x) = 1
1+x3 for |x| < 1.

Solution: Answer:

∞∑
n=0

(−x3)n for |x| < 1.

The geometric series expansion
1

1− r
=

∞∑
n=0

rn is applied with r = −x3. It

is known that the radius of convergence is |r| < 1 (R = 1). The series must

match the Maclaurin series obtained from f(x) =
1

1 + x3 with identical

radius of convergence. Calculus texts discuss this shortcut in detail. ■

6. f(x) = arctan(x), using
d
dx arctan(x) = 1

1+x2 .
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7. f(x) =
(
3
2

)x
for all x.

Solution: Write f(x) = eax with a = ln(3/2). Then the Maclaurin expansion
of ex applies:

ex =

∞∑
n=0

xn

n!

eax =

∞∑
n=0

anxn

n!
substitute ax for x

=

∞∑
n=0

(x ln(3/2))n

n!
substitute a = ln(3/2)

■

8. f(x) =
∫ x

0
sin t
t dt, called the Sine Integral.

9. f(x) is the solution of f ′ = 1 + xf , f(0) = 0.

Solution: Computer assist is expected t0 confirm the answer f (x) = (x +
1
3x

3 + 1
15x

5 +O
(
x6
)
).

Details by hand.
Assume f(x) is a Maclaurin series f(x) =

∑∞
n=0 cnx

n, which has to agree
with the Taylor series at x = 0: cn = f (n)(0)/n!. Use the differential
equation to find the constants cn as follows.

c0 = f(0)/0! = 0

f ′(0) = 1 + (0)f(0) = 1 Substitute x = 0 in the differential equation.

Then c1 = f ′(0)/1! = 1.

f ′′(0) = (1 + xf(x))′|x=0 Differentiate the equation and set x = 0.

f ′′(0) = (0 + f(x) + xf ′(x))|x=0 = 0

Then c2 = f ′′(0)/2! = 0.

The process continues to obtain

f (x) = (x+ 1
3x

3 + 1
15x

5 · · ·
# Exercise 9, Maclaurin series answer check

dsolve([diff(f(x),x)=1+x*f(x),f(0)=0],f(x),series);

■

10. The first 4 terms, f(x) = tanx.

Taylor Series
Find the series expansion about the given point.
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11. f(x) = ln |1− x|, at x = 0.

Solution: The plan: use the Taylor expansion of ln |1 + u| at u = 0 then
replace u = −x, because x = 0 gives u = 0

ln |1 + u| =
∞∑

n=1

(−1)n+1un

n

ln |1 + (−x)| =
∞∑

n=1

(−1)n+1(−x)n

n

ln |1− x| =
∞∑

n=1

(−1)n+1(−1)nxn

n

ln |1− x| = −
∞∑

n=1

xn

n
Because (−1)n(−1)n = 1.

■

12. f(x) = 1
x2 , at x = 1.
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12.2 Algebraic Techniques

Differentiation
Verify using term–by–term differentiation. Document all series and calculus
steps.

1. d
dx

∑∞
n=1

1
n xn =

∑∞
n=0 x

n.
Is this valid for x = −1?

Solution: The left side is differentiated term-by-temr:
d
dx

∑∞
n=1

1
n xn =

∑∞
n=1 xn−1

=
∑∞

k=01 xk using index change k = n− 1.

The geometric series on the right side converges for |x| < 1. Substitution of
x = −1 gives alternating terms for which the nth term (−1)n does not have
limit zero at ∞, therefore the series does not converge at x = −1, violating
the

Theorem. If a series
∑

n cn converges, then limn→∞ |cn| = 0.

■

2. d
dx

∑∞
n=0(−1)n x2n+1=∑∞

n=0(−1)n x2n.

Subscripts
Perform a change of variables to verify the identity.

3.
∑∞

n=0 cnx
n+2=

∑∞
k=2 ck−2 x

k

Solution: The change of index is determined by matching xn+2 and xk:
n + 2 = k. Then n = 0 to n = ∞ becomes k = 2 to k = ∞. The other
changes in the summation are made via the two equations n + 2 = k and
n = k − 2. Then∑∞

n=0 cnx
n+2 =

∞∑
k=2

cnx
n+2 Change summation limits.

=

∞∑
k=2

ck−2x
k Change inside the summation.

■

4.
∑∞

n=2 n(n− 1)cn(x− x0)
n−2=∑∞

k=0(k + 2)(k + 1)ck+2 (x− x0)
k

5. −1+x+
∑∞

n=2(−1)n+1 xn=∑∞
k=0(−1)k+1 xk
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Solution: No change of index is needed inside the summations, because
matching xn and xk is unnecessary. The orphan terms −1 + x can be
written as

∑1
n=0(−1)n+1xn. Then

LHS = −1+x+
∑∞

n=2(−1)n+1 xn

=

1∑
n=0

(−1)n+1xn +

∞∑
n=2

(−1)n+1 xn

=

∞∑
n=0

(−1)n+1 xn Collect summations into one sum.

=
∞∑
k=0

(−1)k+1 xk Change index variable n → k.

= RHS
■

6.
∑∞

n=0
1

n+1 x
n+
∑∞

m=1
1

m+2 x
m=

1 +
∑∞

k=1
2k+1

(k+1)(k+2) x
k

Linearity
Find the power series of the given function.

7. cos(x) + 2 sin(x)

Solution: Assemble series identities for cosx and sinx from the Library of
Maclaurin Series page 951 �:

cosx =

∞∑
n=0

(−1)nx2n

(2n)!
, Converges for all x.

sinx =

∞∑
n=0

(−1)nx2n+1

(2n+ 1)!
, Converges for all x.

Then

cos(x) + 2 sin(x) =

∞∑
n=0

(−1)nx2n

(2n)!
+ 2

∞∑
n=0

(−1)nx2n+1

(2n+ 1)!

=

∞∑
n=0

(−1)nx2n

(2n)!
+

∞∑
n=0

2
(−1)nx2n+1

(2n+ 1)!

=

∞∑
k=0

ckx
k, for ck defined by
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ck =


(−1)n

(2n)!
when k = 2n is even,

2(−1)2n+1

(2n+ 1)!
when k = 2n+ 1 is odd

It is sometimes possible to find a compact formula for ck, but in this case
there is little to simplify. ■

8. ex + sin(x)

Cauchy Product
Find the power series.

9. (1 + x) sin(x)

Solution: Let S1 = 1 + x, S2 = sinx =

∞∑
n=0

(−1)nx2n+1

(2n+ 1)!
from Exercise 7.

Both S1 and S2 are power series that converge for all x. Then

S1S2 = (1 + x)S2

= S2 + xS2

= S2 + x

∞∑
n=0

(−1)nx2n+1

(2n+ 1)!

= S2 +

∞∑
n=0

(−1)nx2n+2

(2n+ 1)!
, Constant x moves inside the summation.

=

∞∑
n=0

(−1)nx2n+1

(2n+ 1)!
+

∞∑
n=0

(−1)nx2n+2

(2n+ 2)!

=

∞∑
k=0

ckx
k, where ck is defined by

ck =


0 when k = 0
(−1)n

(2n+ 2)!
when k = 2n+ 2 is even,

(−1)n

(2n+ 1)!
when k = 2n+ 1 is odd

■

10. sin(x)
ex

Recursion Relations
Solve the given recursion.
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11. xk+1 = 2xk

Solution:
Let’s solve it by ad-hoc methods. For comparison, we will afterwards apply
the general solution product formula for first order recursions found on page
957 �.

Ad-Hoc Method.
Let k = 0 in recursion xk+1 = 2xk:

x0+1 = 2x0 or x1 = 2x0.

Let k = 1 in recursion xk+1 = 2xk:

x1+1 = 2x1 or x2 = 2x1. Then

x2 = 2x1 = 2(2x0) = 22x0.

Let k = 2 in recursion xk+1 = 2xk:

x2+1 = 2x2 or x3 = 2x2. Then

x3 = 2x2 = 2(4x0) = 23x0.

Conclusion: xk+1 = 2k+1x0

Consider the recursion xk+1 = 2xk as the general recursion

xk+1 = akxk + bk, k ≥ 0

where ak = 2 and bk = 0. Then the textbook general solution is

xk+1 =
(
Πk

r=0ar
)
x0 +

∑k
n=0

(
Πk

r=n+1ar
)
bn

=
(
Πk

r=0(2)
)
x0 +

∑k
n=0

(
Πk

r=n+1ar
)
(0)

=
(
Πk

r=0(2)
)
x0

=
(
2k+1

)
x0

■

12. xk+1 = 2xk + 1

13. xk+2 = 2xk + 1

Solution:
The ad-hoc method follows the ideas in Exercise 11 by dividing the problem
into two first order recursions corresponding to k = 2n and k = 2n+ 1:

x2n+2 = 2x2n + 1 and
x2n+1+2 = 2x2n+1 + 1

The textbook formulas for second order recursions win the contest of which
method is easier and more accurate. First of all, symbols x0 and x1 act like
the free variable symbols t1, t2 in linear algebra: the solution is in terms of
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these two symbols. Therefore, the recursion solution on page 957 � only
shows indices k ≥ 2 (k = 2n+ 2, k = 2n+ 3 for n ≥ 0).

Details:
Given: Recursion xk+2 = 2xk + 1, to be solved.
Given: General recursion xk+2 = akxk + bk, k ≥ 0 (ck replaced by xk).

Let ak = 2 and bk = 1 in the general recursion to match xk+2 = 2xk + 1.
Then general recursion solution

x2n+2 = (Πn
r=0a2r)x0 +

n∑
k=0

(
Πn

r=k+1a2r
)
b2r, n ≥ 0,

x2n+3 = (Πn
r=0a2r+1)x1 +

n∑
k=0

(
Πn

r=k+1a2r+1

)
b2r+1, n ≥ 0

becomes for ar = 2 and br = 1 the equations

x2n+2 = (Πn
r=02)x0 +

n∑
k=0

(
Πn

r=k+12
)
(1), n ≥ 0,

x2n+3 = (Πn
r=02)x1 +

n∑
k=0

(
Πn

r=k+12
)
(1), n ≥ 0

which simplify to

x2n+2 = 2n+1x0 +

n∑
k=0

2n+1

2k+1
, n ≥ 0,

x2n+3 = 2n+1x1 +

n∑
k=0

2n+1

2k+1
, n ≥ 0.

A further simplification is
∑n

k=0

2n+1

2k+1
= −1 + 2n+1. ■

14. xk+3 = 2xk + 1
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First Order Series Method
Solve by power series.

1. y′ − 4y = 0

Solution:

Trial solution: y =

∞∑
n=0

cnx
n, a Maclaurin series. Then

y′ =

∞∑
n=0

n cnx
n−1

=

∞∑
k=0

(k + 1) ck+1x
k, using index change k = n− 1.

Let LHS stand for the left side of differential equation y′ − 4y = 0. Expand
LHS with the trial solution series:

LHS = y′ − 4y

=

∞∑
k=0

(k + 1) ck+1x
k − 4

∞∑
n=0

cnx
n

=

∞∑
k=0

(k + 1) ck+1x
k − 4

∞∑
k=0

ckx
k, change index k = n

=

∞∑
k=0

((k + 1) ck+1 − 4ck)x
k, add series

Then LHS = RHS = 0 means LHS is the zero Maclaurin series, so all
coefficients are zero, giving the recursion relation (k + 1) ck+1 − 4ck = 0,
k ≥ 0

The recursion is solved by the general solution product formula for first
order recursions found on page 957 �:

ck+1 =
4k

(k + 1)!
c0

Then the trial solution becomes

y =

∞∑
n=0

cnx
n

= c0 + c0

∞∑
k=0

4k

(k + 1)!
xk+1, using index n = k + 1

■
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2. y′ − xy = 0

Second Order Series Method
Solve by power series using the Airy equation example.

3. y′′ = 4y

Solution:

Trial solution: y =

∞∑
n=0

cnx
n, a Maclaurin series. Following Exercise 1, or

using formulas on page 954 �,

y′ =

∞∑
k=0

(k + 1) ck+1x
k

y′′ =

∞∑
k=0

(k + 1)(k + 2) ck+2x
k

Write the differential equation as y′′−4y = 0. Substitute the series formulas
into the left side LHS of the differential equation. Then

LHS = y′′ − 4y

=

∞∑
k=0

(k + 1)(k + 2) ck+2x
k − 4

∞∑
n=0

cnx
n

=

∞∑
k=0

(k + 1)(k + 2) ck+2x
k − 4

∞∑
k=0

ckx
k, re-index n = k

=

∞∑
k=0

((k + 1)(k + 2) ck+2 − 4ck)x
k, add series

Then LHS = RHS = 0 gives the second order recursion relation

(k + 1)(k + 2) ck+2 − 4ck = 0, k ≥ 0

Formulas on page 957 � give the recursion answers

c2k+2 =

(
Πk

r=0

4

(2r + 3) (2r + 4)

)
c0,

c2k+3 =

(
Πk

r=0

4

(2r + 4) (2r + 5)

)
c1.

The products can be written in terms of the Gamma function, Γ(n+1) =

n! for integers n ≥ 0. For instance, c2k+3 = c1
2(4k+1)

(2k + 4)!
.

4. y′′ + y = 0
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Taylor Series Method
Solve by Taylor series about x = 0, finding the first 8 terms.

5. y′ = 16y

Solution: The exact solution is y = y0e
16x. Taylor expansion should give

the series

y(x) = y0 + 16 y0x+ 128 y0x
2 +

2048 y0
3

x3 +
8192 y0

3
x4 + · · ·

Taylor method details.

y(x) =

n∑
k=0

ckx
k +Rn where ck =

f (k)(0)

k!
.

We find the first 8 terms, so n = 7.

c0 = y(0) = y0, symbol y0 being the initial value of y(x) at x = 0.

c1 = y′(0)/1! = 16y0

c2 = y′′(0)/2! = 16y′(0)/2 = 162y0/2

c3 = y′′′(0)/3! = 16y′′(0)/3! = 163y0/(3! · 2!)
Continue:

y(x) = y0 + 16y0x+ 128y0x
2 + 2048

3 y0x
3 + 8192

3 y0x
4

+ 131072
15 y0x

5 + 1048576
45 y0x

6 +R8

# Exercise 5, Tayor series method

de:=diff(y(x),x)=16*y(x);dsolve([de,y(0)=y[0] ],y(x));

dsolve([de,y(0)=y[0] ],y(x),series);

taylor(y[0]*exp(16*x), x=0, 7);

6. y′′ = y

7. y′ = (1 + x)y

Solution:

y(x) = y0 + y0x+ y0x
2 +

2 y0
3

x3 +
5 y0
12

x4 +
13 y0
60

x5 +
19 y0
180

x6 + · · ·

# Exercise 7, Tayor series method

de:=diff(y(x),x)=(1+x)*y(x);dsolve([de,y(0)=y[0] ],y(x));

dsolve([de,y(0)=y[0] ],y(x),series);

taylor(y[0]*exp((1/2)*x*(x+2)), x=0, 7);

8. y′′ = (2 + x)y
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Standard Form
Convert to form y′′+p(x)y′+ q(x)y = 0. Find the singular points and ordinary
points.

1. (x+ 1)y′′ + xy′ + y = 0

Solution:
Singular points: x = −1, because a(x) = x+1 is zero at x = −1, preventing
division into standard form.

Ordinary points: all points x ̸= −1 are ordinary points, because p(x) =
x

x+ 1
and q(x) =

1

x+ 1
have power series expansions about x = x0 for

x0 ̸= −1. ■

2. x2y′′ + 3xy′ + 4y = 0

3. x(1 + x)y′′ + xy′ + (1 + x)y = 0

Solution:
Singular points: x = −1 and x = 0, because a(x) = x(x + 1) is zero at
x = −1 or x = 0, preventing division into standard form.

Ordinary points: all points x ̸= −1 and x ̸= 0 are ordinary points, because

p(x) =
1

x+ 1
and q(x) =

1

x
have power series expansions about x = x0 for

x0 ̸= −1 and x ̸= 0. ■

4. xy′′ = (1 + x)y′ + exy

Ordinary Point Method
Find a power series solution, following the method in the text for y′′−2xy′+y =
0. Use a CAS or mathematical workbench to check the answer.

5. y′′ + xy′ = 0

Solution:
The series answers by maple answer check should be

y1 = 1,

y2 = x− 1
6x

3 + 1
40x

5 − 1
336x

7 + 1
3456x

9 +O
(
x10
)
.

Details.
Let LHS = y′′+xy′, RHS = 0. Assume trial solution y =

∑∞
n=0 cnx

n. Then
formulas on pages 954 � imply

LHS = y′′ + xy′
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=

∞∑
n=0

(n+ 1)(n+ 2)cn+2x
n + x

∞∑
n=0

(n+ 1)cn+1x
n

=

∞∑
n=0

(n+ 1)(n+ 2)cn+2x
n +

∞∑
n=0

(n+ 1)cn+1x
n+1

=

∞∑
n=0

(n+ 1)(n+ 2)cn+2x
n +

∞∑
k=1

(k)ckx
k Index change:

k = n+ 1.

= 2c2 +

∞∑
k=1

(k + 1)(k + 2)ck+2x
k +

∞∑
k=1

(k)ckx
k Split off term

for n = 0.
Re-index.

= 2c2 +

∞∑
k=1

((k + 1)(k + 2)ck+2x
n + (k)ck)x

k Add, then
Collect on xk.

Power series LHS equals RHS, the zero power series, which gives rise to the
recursion relations 2c2 = 0, (k+ 1)(k+ 2)ck+2 + (k)ck = 0, c0 and c1 given,
k ≥ 1, or more succinctly the two-termed second order recursion

ck+2 +
−k

(k + 1)(k + 2)
ck, k ≥ 1, c2 = 0, c0, c1 given.

All even coefficients c2, c4, . . . are zero because c2 = 0. The odd coefficients
are obtained from recursion

ck+2 +
−k

(k + 1)(k + 2)
ck, k ≥ 0, k odd, c0, c1 given,

Using the formulas on page 957 � with ak =
−k

(k + 1)(k + 2)
, bk = 0, then

the recursion answers are

c2k = 0, k ≥ 1,

c2k+3 =
(
Πk

r=0a2r+1

)
c1 =

(
Πk

r=0

(−1)(2r + 1)

(2r + 2)(2r + 3)

)
c1, k ≥ 0.

Taking c0 = 1, c1 = 0 gives y1 and taking c0 = 0, c1 = 1 gives y2:

y1(x) = 1,

y2(x) = x+

∞∑
k=0

(
Πk

r=0

(−1)(2r + 1)

(2r + 2)(2r + 3)

)
x2k+3

= x− 1

6
x3 +

1

40
x5 − x7

336
+

x9

3456
− x11

42240
+ · · ·
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12.4 Ordinary Points

The two solutions have Wronskian 1 at x = 0: they are independent and
form a basis for the solution space of the differential equation.

Coefficient c2k+3 can be simplified to

c2k+3 =
(−1)k+1

2k+1 (2k + 3)

1

(k + 2)!

# Exercise 5, Ordinary points

de:=diff(y(x),x,x)=(-x)*diff(y(x),x);

dsolve([de,y(0)=y[0],D(y)(0)=y[1] ],y(x));

p:=dsolve([de,y(0)=y[0],D(y)(0)=y[1] ],y(x),series);

subs(y[0]=1,y[1]=0,p);subs(y[0]=0,y[1]=1,p);

# Simplification

q:=k->product((-1)*(2*r+1)/((2*r+2)*(2*r+3)),r=0..k):

q(k);simplify(q(k));

sum(q(k)*x^(2*k+3),k=0..8);

6. y′′ + x2y′ + y = 0
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12.5 Regular Singular Points

Regular Singular Point
Test the equation for regular singular points.

1. x2y′′ + xy′ + y = 0

Solution: Regular singular point at x = 0.

2. x2(x− 1)y′′ + sin(x)y′ + y = 0

3. x3(x2 − 1)y′′ − x(x+ 1)y′ + (1− x)y = 0

Solution: Regular singular points at x = 0,−1, 1.

4. x3(x− 1)y′′ + (x− 1)y′ + 2xy = 0

Indicial Equation
Each equation is an Euler differential equation ax2y′′+bxy′+cy = 0 with a, b, c
replaced by power series. Find the Euler differential equation and the indicial
equation.

5. x2y′′ − 2x(x+ 1)y′ + (x− 1)y = 0
Ans: x2y′′ − 2xy′ − y = 0, r(r − 1)− 2r − 1 = 0.

Solution: The equation in standard Frobenius form is ax2y′ + bxy′ + cy = 0
with power series a = 1, b = −2− 2x, c = 1− x, all with a finite number of
power series terms.

The regular singular point is x = 0. Substitute x = 0 into a, b, c to get the
Cauchy-Euler equation (1)x2y′′+(−2)xy′+(1)y = 0. The indicial equation is
the characteristic equation for the associated constant-coefficient equation
(1)(D − 1)Dz + (−2)Dz + (1)z = 0. Simplify the constant equation to
z′′ − 3z′ + z = 0 and report indicial equation r2 − 3r + 1 = 0.

Shortcut: Report indicial equation (1)(r−1)r+(−2)r+(1) = 0 by replacing
D by r. ■

6. x2y′′ − 2xy′ + y = 0
Ans: The same equation, r(r − 1)− 2r + 1 = 0.

7. xy′′ + (1− x)y′ + 2y = 0

Solution: Multiply by x to get a Frobenius equation x2y′′+x(1−x)y′+2xy =
0. The associated Cauchy-Euler equation is x2y′′ + x(1)y′ + (0)y = 0. The
indicial equation (r − 1)r + r = 0 is obtained from the constant-coefficient
operator form (D − 1)Dz +Dz = 0 by replacement D → r. ■
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8. x2y′′ − 2xy′ + (2 + sinx)y = 0

Solution:
Let a = 1, b = −2, c = 2+ sinx to identify the Frobenius equation ax2y′′ +
bxy′ + cy = 0 with associated Cauchy-Euler equation x2y′′ − 2xy′ + 2y = 0
(replace x = 0 in a, b, c). Remaining details and answers omitted.

Frobenius Solutions
Find two linearly independent solutions. Follow Examples 1, 2, 3 for cases (a),
(b), (c) in the Frobenius Theorem page 970 �. Examples: (a) page 971 �,
(b) page 973 �, (c) page 977 �.

9. 2x2y′′ + xy′ − y = 0

Solution: This is a Frobenius equation and also a Cauchy-Euler equation.
There is an exact solution:

y1 = x, y2 = x−1/2.

It is not necessary to apply the Frobenius theorem.

# Exercise 9, Frobenius solutions

de:=2*x^2*diff(y(x),x,x)+x*diff(y(x),x)-y(x)=0;

dsolve(de,y(x));# Exact solution

Order:=10;dsolve(de,y(x),series);# Series solution

■

10. 4x2y′′ + (2x− 7)y′ + 6y = 0

11. 4x2(x+ 1)y′′ + x(3x− 1)y′ + y = 0

Solution:
There is a regular singular point at x = −1 and also at x = 0. Let’s focus on
x = 0 for simplicity. Define a = 4(x+1), b = 3x−1, c = 1 to form Frobenius
equation ax2y′′ + bxy′ + cy = 0. The associated Cauchy-Euler equation is
4x2y′′ − xy′ + y = 0 and then the indicial equation is 4r(r − 1)− r + 1 = 0
with larger root r1 = 1 and smaller root r2 = 1

4 . The problem falls into

case (a) of the Frobenius theorem page 971 �: r1 ̸= r2 and r1 − r2 not an
integer. There are two Frobenius series solutions.

y1 = x

(
1− 3

7
x+

9x2

77
− 9x3

385
+

27x4

7315
+ · · ·

)
y2 = 4

√
x

(
1− 3

4
x+

9x2

32
− 9x3

128
+

27x4

2048
+ · · ·

)
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The length details follow Example 12.1 page 971 �.

# Exercise 11, Frobenius solutions, type (a)

de:=4*x^2*diff(y(x),x,x)+x*(3*x-1)*diff(y(x),x)+y(x)=0;

solve(4*r*(r-1)-r+1=0,r);

dsolve(de,y(x));# Exact solution

Order:=10;dsolve(de,y(x),series);# Series solution

■

12. 3x2y′′ + xy′ − (1 + x)y = 0

Solution: Roots 1, −1/3. Case (a) of the Frobenius theorem. Details omit-
ted.

13. x2y′′ + 3xy′ + (1 + x)y = 0

Solution: There is a regular singular point at x = 0. Define a = 1, b = 3,
c = 1+x to form Frobenius equation ax2y′′+ bxy′+ cy = 0. The associated
Cauchy-Euler equation is x2y′′+3xy′+y = 0 and then the indicial equation
is r(r−1)+3r+1 = 0 with equal roots r1 = −1 and r2 = −1. The problem
falls into case (c) of the Frobenius theorem page 971 �: r1 = r2. There are
two Frobenius series solutions.

y1 =
1

x

(
1− x+

1

4
x2 − 1

36
x3 +

x4

576
+ · · ·

)
y2 =

ln |x|
x

(
1− x+

1

4
x2 − 1

36
x3 +

x4

576
+ · · ·

)
+

1

x

(
2x− 3

4
x2 +

11x3

108
− 25x4

3456
+ · · ·

)
The details follow Example 12.3 page 977 �.

# Exercise 13, Frobenius solutions, type (c)

de:=x^2*diff(y(x),x,x)+3*x*diff(y(x),x)+(1+x)*y(x)=0;

solve(r*(r-1)+3*r+1=0,r);

dsolve(de,y(x));# Exact solution

Order:=10;dsolve(de,y(x),series);# Series solution

■

14. xy′′ + (1− x)y′ + 3y = 0

Solution: Roots 0, 0. Case (c) of the Frobenius theorem. Details omitted.
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15. x2y′′ + x(x− 1)y′ + (1− x)y = 0

Solution:
There is a regular singular point at x = 0. Define A = 1, B = −1, C = 1
to form Cauchy-Euler equation Ax2y′′ + Bxy′ + Cy = 0, which is x2y′′ −
xy′ + y = 0. Then the indicial equation is r(r − 1) − r + 1 = 0 with equal
roots r1 = 1 and r2 = 1. The problem falls into case (c) of the Frobenius
theorem page 977 �: r1 = r2. The exact solution involves the exponential
integral function Ei(x), not discussed in the textbook, and not discussed
here either.

There are two Frobenius series solutions:

y1 = x

y2 = x ln |x| 1 + x

(
−x+ 1/4x2 − 1/18x3 +

x4

96
+ · · ·

)
The details follow Example 12.3 page 977 �.

# Exercise 15, Frobenius solutions, type (c)

de:=x^2*diff(y(x),x,x)+x*(x-1)*diff(y(x),x)+(1-x)*y(x)=0;

solve(r*(r-1)-r + 1=0,r);

dsolve(de,y(x));# Exact solution

Order:=10;dsolve(de,y(x),series);# Series solution

■

16. xy′′ + (2x+ 3)y′ + 4y = 0

Solution: Roots 0 and −2, which are unequal and differ by an integer. Case
(b) of the Frobenius theorem. The details are especially involved but follow
case (b) Example 12.2 page 973 �.

The answers:

y1 = 1− 4

3
x+ x2 − 8x3

15
+

2

9
x4 + · · ·

y2 =
1

x2

(
−2 + 4x2 − 16

3
x3 + 4x4 + · · ·

)
The exact answer: y =

c1
x2

+
c2 e−2 x (2x+ 1)

x2

# Exercise 16, Frobenius solutions, type (b)

de:=x^2*diff(y(x),x,x)+x*(2*x+3)*diff(y(x),x)+4*x*y(x)=0;

solve(r*(r-1)+3*r + 0=0,r);

dsolve(de,y(x));# Exact solution

Order:=5;dsolve(de,y(x),series);# Series solution

■
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12.6 Bessel Functions

Values of J0 and J1
Use series representations and identities to find an identity for values of the
following functions. Use a computer algebra system to compute the answers.

1. J0(1)

Solution:
Identity for J0.
Let p = 0 in the series identities. Because J0(−x) = J0(x) (J0 is even), then
only even term are present in the series:

J0(x) =

∞∑
n=0

(−1)n(x/2)2n

(n!)2

Then

J0(1) =

∞∑
n=0

(−1)n(1/2)2n

(n!)2

= 0.7651976866 by the maple code infra.

Most computer systems support GNU C library functions, which includes
the Bessel functions with function names J0, J1, Jn. A convenient online
site is https://www.wolframalpha.com/, which provides a free online calcu-
lator for Bessel functions. The Wolfram answer:

J0(1) ≈ 0.7651976865579665514497175261026632209092742897553252418615475491

# Exercise 1, Values of J[0] and J[1]

J[0](1)=evalf(BesselJ(0,1));

sum((-1)^n * (1/2)^(2*n) / (n!)^2,n=0..infinity);

# Reported: BesselJ(0, 1)

■

2. J1(1)

3. J0(1/2)

Solution: Answer: J0(1/2) = .9384698072

# Exercise 3, Values of J[0] and J[1]

J[0](1/2)=evalf(BesselJ(0,1/2));

sum((-1)^n * (1/4)^(2*n) / (n!)^2,n=0..infinity);

■

4. J1(1/2)

Bessel Function Properties
Prove the following relations by expanding LHS and RHS in series.
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5. J ′
0(x) = −J1(x)

Solution:

LHS = J ′
0(x)

=
d

dx

∞∑
n=0

(−1)n(x/2)2n

(n!)2

=

∞∑
n=1

(2n)(1/2)
(−1)n(x/2)2n−1

(n!)2
because d

dx erases the n = 0 term

=

∞∑
n=1

(−1)n(x/2)2n−1

(n− 1)! (n!)
cancel common factors n and 2

RHS = −J1(x)

= −
∞∑
k=0

(−1)k(x/2)1+2k

k!(1 + k)!
by the Jp identity page 981 �.

=

∞∑
k=0

(−1)k+1(x/2)1+2k

k!(1 + k)!
move minus sign inside summation

=

∞∑
n=1

(−1)n(x/2)2n−1

(n− 1)!(n)!
index change 2n− 1 = 1 + 2k (n− 1 = k)

Then LHS = RHS, proving the identity. ■

6. J ′
1(x) = J0(x)−

1

x
J1(x)

7. (xpJp(x))
′
= xpJp−1(x),

p ≥ 1

Solution: Assume p ≥ 1. The Jp identity:

Jp =

∞∑
n=0

(−1)n(x/2)p+2n

n!(n+ p)!

Then the left side of the claimed identity is

LHS = (xpJp(x))
′

=
d

dx

∞∑
n=0

(−1)n(x/2)2p+2n 2p

n!(n+ p)!
move xp inside summation

=

∞∑
n=0

(2p+ 2n)(1/2)(−1)n(x/2)2p+2n−1 2p

n!(n+ p)!
d
dx term-by-term

=

∞∑
n=0

(−1)n(x/2)2p+2n−1 2p

n!(n+ p− 1)!
cancel common factors
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RHS = xpJp=1(x)

= xp
∞∑

n=0

(−1)n(x/2)2p−1+2n

n!(n+ p− 1)!
by the Jp identity

=

∞∑
n=0

(−1)n(x/2)2p−1+2n 2p

n!(n+ p− 1)!
move xp inside summation

Then LHS = RHS, proving the identity. ■

8.
(
x−pJp(x)

)′
= −x−pJp+1(x),

p ≥ 0

Bessel Function Recursion Proofs
Add and subtract the expanded equations of the previous exercises.

9. Jp+1 =
2p

x
Jp(x)− Jp−1(x),

p ≥ 1

Solution:
1 Given (xpJp(x))

′
= xpJp−1(x), p ≥ 1 from Exercise 7. Expand and

divide by xp:

J ′
p + (p/x)Jp = Jp−1

2 Given
(
x−pJp(x)

)′
= −x−pJp+1(x), p ≥ 0 from Exercise 8. Expand

and divide by x−p:

−(p/x)Jp + J ′
p = −Jp+1

Subtract 2 from 1 :

(p/x)Jp + (p/x)Jp = Jp−1 + Jp+1

(p/x)Jp + (p/x)Jp − Jp−1 = Jp+1

which proves the claimed identity. ■

10. Jp+1(x) = −2J ′
p(x) + Jp−1(x),

p ≥ 1

Recurrence Relations
Use results of the previous exercises.

11. Express J3 and J4 in terms of J0 and J1.

Solution:

Given Jp+1 =
2p

x
Jp(x)−Jp−1(x) from Exercise 9, insert p = 1, p = 2, p = 3

to get identities
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J2 =
2

x
J1(x)− J0(x)

J3 =
4

x
J2(x)− J1(x)

=
4

x
(
2

x
J1(x)− J0(x))− J1(x)

=

(
8

x2
− 1

)
J1(x)−

4

x
J0(x)

J4 =
6

x
J3(x)− J2(x)

=
6

x

((
8

x2
− 1

)
J1(x)−

4

x
J0(x)

)
− J2(x)

=
6

x

((
8

x2
− 1

)
J1(x)−

4

x
J0(x)

)
− 2

x
J1(x) + J0(x)

=

(
48

x3
− 8

x

)
J1(x) +

(
1− 24

x2

)
J0(x)

■

12. Prove by induction that Jp(x) = c1(1/x)J0(x)+ c2(1/x)J1(x) where c1 and
c2 are polynomials.

Laplace Transform

Assume Laplace identity L(Jn(t)) =
(
√
s2+1−s)

n

√
s2+1

holds for s ≥ 0. Prove the

following results.

13.
∫∞
0

Jn+1(x)dx =
∫∞
0

Jn−1(x)dx

for integers n > 0.

Solution: The integrals left and right are obtained from the corresponding
Laplace integral

∫∞
0

f(t)e−stdt by setting f(t) = Jn+1(t) or f(t) = Jn−1(t)
and then s = 0. In the Laplace identity for Jn, power n → n+1 or n → n−1
is applied to ((0 + 1)− 0)n to give factor 1, then both sides of the proposed
identity match.

The identity may also be proved from Exercise 10 by integrating the identity
therein. The catch: the additional result limx→∞ Jp(x) = 0 is required along
with integrability of all functions appearing in Exercise 10. ■

14.

∫ ∞

0

Jn(x)dx

x
=

1

n

for integers n > 0

Solution: Hint: Use the details from Exercise 13.
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Bessel Function Bounds
Assume L. J. Landau’s result Jp(x) ≤ c|x|−1/3 for all x and p > 0, where
c = 0.78574687 . . . is the best possible constant. Prove the following results.

15. limx→∞ J1(x) = 0

Solution: Limit x → ∞ across Landau’s inequality.

16. limx→∞ J ′
0(x) = 0
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12.7 Legendre Polynomials

Equivalent Legendre Equations
Prove the following are equivalent to
(1−x2)y′′−2xy′+n(n+1)y=0

1. ((1− x2)y′)′ + n(n+ 1)y = 0

Solution:
Expand by the calculus product rule

((1− x2)y′)′ = (1− x2)′y′ + (1− x2)y′′

= −2xy′ + (1− x2)y′′

■

2. Let x = cos θ, ′ = d
dθ , then

sin θy′′+cos θy′+n(n+1) sin θy=0.

Solution:
Use dy

dx = dy
dθ

dx
dθ = −y′ sin(θ) and similarly for d2y

dx2 = d
dx

dy
dx . Details omitted.

Proof of Bonnet’s Recursion

3. Define cn = 1
n!2n .

Prove cm = 2(m+ 1)cm+1.

Solution:
This is Lemma A in the proof of Bonnet’s recursion by Rodrigues’ formula.

2(m+ 1)cm+1 =
2(m+ 1)

(m+ 1)!2m+1

=
2(m+ 1)

2(m+ 1)m!2m

=
1

m!2m

= cm ■

4. Let D = d
dx , u = x2 − 1. Verify D2u2 = 12x2 − 4 using D and the binomial

theorem.

Solution:
D2(u2) = D2((x2 − 1)2)

= D2
∑2

r=0

(
2
r

)
x2r(−1)2−r by the binomial theorem

=
∑2

r=0

(
2
r

)
D2(x2r)(−1)2−r
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=
(
2
0

)
(0)(−1)2 +

(
2
1

)
(2)(−1) +

(
2
2

)
(4)(3)(x2)(−1)0

= 0 + (2)(2)(−1) + (1)(4)(3)(x2)

= 12x2 − 4 ■

5. Prove Bonnet’s recursion from the generating function equation

1√
1− 2xt+ t2

=

∞∑
n=0

Pn(x)t
n

Solution:
Historically, Bonnet’s recursion was discovered by differentiation of the gen-
erating function on t to obtain

(x− t)

∞∑
n=0

Pn(x)t
n=

1√
1− 2xt+ t2

=(1− 2xt+ t2)

∞∑
n=1

nPn(x)t
n−1(1)

Then match coefficients of tn to find Bonnet’s recursion. Reference:

https://en.wikipedia.org/wiki/Legendre polynomials

Series techniques are used to re-write each side of equation (1) as one series
indexed on tk. This step is subject to error. The maple code below can
check the work.

Coefficient matching gives the following equations:

P1 = xP0

2P2 = 3xP1 − P0

3P3 = 5xP2 − 2P1

4P4 = 7xP3 − 3P2

The pattern is Bonnet’s recursion

(n+ 1)Pn+1 = (2n+ 1)xPn − nPn−1

Bonnet’s recursion can be proved by other means. The text proves the
recursion using Rodrigues’ formula for Pn. ■

# Exercise 5, Proof of Bonnet’s recursion

# Check coefficient matching, first 10 terms

A:=n->(t^2-2*x*t+1)*n*P[n]*t^(n-1);

B:=n->(x-t)*P[n]*t^n;

q := N->-sum(A(n),n=1..N)+sum(B(n),n=0..N);

seq([coeff(q(10),t,j)],j=0..10);
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6. Prove that Pn(1) = 1 directly from Rodrigues’ formula.

Solution:
The trick is write (x2−1)n = vw where v = (x−1)n, w = (x+1)n. Expand
with the Leibnitz rule

Dn(vw) =

n∑
r=0

(
n

r

)
(Drv)(Dn−rw)

Then Drv at x = 1 is zero except for r = n, so the expansion at
x = 1 has a single term. Evaluate the single term to prove Pn(1) =

1
n!2n Dn((x2 − 1)n)

∣∣
x=1

= 1. ■

Boundary Data at x = ±1
Use these identities:
(1) (a+ b)k=

∑k
r=0

(
k
r

)
arbk−r

(2) (uv)(n)=
∑n

r=0

(
n
r

)
u(r)v(n−r)

7. In Rodrigues’ formula, let Let y = x− 1 to prove

Pn(y + 1)= 1
n!2n

(
d

dy

)n (
y2 + 2y

)n
Solution:
Let u = x2 − 1, D = d

dx , cn = 1
n!2n . Then u == (y + 1)2 − 1 = y2 + y and

d
dy = d

dx . The calculus chain rule then implies

n!2nPn(y + 1) = Dnun = ( d
dy )

n(y2 + y)n. ■

8. Verify from identity (1):(
y2+2y

)n
=
∑n

r=0

(
n
r

)
2ry2n−r

9. Prove Pn(1) = 1 from Bonnet’s recursion.

Solution:
Proceed by induction. Cases P0(1) = 1 and P1(1) = 1 are proved by iden-
tities P0(x) = 1, P1(x) = x. Assume n > 1 and induction hypothesis
Pk(1) = 1 for all 0 ≤ k ≤ n. Then

(n+ 1)Pn+1(1) = (2n+ 1)Pn(1)− nPn−1(1) = (2n+ 1(1)− 2n(1) = 1.

The induction is complete. ■

10. Assume Pn(−x)=(−1)nPn(x) and P ′
n(1) =

n(n+ 1)

2
. Prove

Pn(−1) = (−1)n and

P ′
n(−1) = (−1)n

n(n+ 1)

2
.
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Legendre Integrals
Use Legendre properties page 986 �.

11. Use (2n+ 1)Pn = P ′
n+1 − P ′

n−1 to prove
∫ 1

0
Pn(x)dx = 0 for n > 0 even.

Solution:
Exercise 9 proves Pk(1) = 1 for all k ≥ 0. For k odd, Pk has only odd powers
in its series, therefore Pk(0) = 0. The fundamental theorem of calculus gives

(2n+ 1)
∫ 1

0
Pn(x)dx =

∫ 1

0
(P ′

n+1(x)− P ′
n−1(x))dx

= Pn+1(1)− Pn(0)− Pn−1(1) + Pn−1(0)

= 1− 1− 0+0 because n− 1 and n− 1 are both odd
when n is even. ■

12. Use Bonnet’s recursion to show that
∫ 1

0
Pn(x)dx = Pn−1(0)

n+1 for n > 0.
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Legendre series. Establish the following results.

1. Prove using orthogonality that
∫ 1

−1
Pn(x)F (x)dx = 0 for any polynomial

F (x) of degree less than n.

Solution: Let F have degree m < n. Orthogonality makes P0, . . . , Pn−1 in-
dependent, a basis for the vector space of all polynomials of degree less than
n. Because m < n then F (x) =

∑n−1
k=0 ckPk(x) holds for some coefficients

{ck}. Use orthogonality of Pn with P0, . . . , Pn−1:∫ 1

−1

Pn(x)F (x)dx =
n−1∑
k=0

ckPn(x)Pk(x)dx = 0

■

2. Use identity
xP ′

n(x)− P ′
n−1(x) = nPn(x)

to prove
∫ 1

−1
|Pn(x)|2dx = 2

2n+1 .

Solution: The provided identity is derived from the two basic Legendre
identities involving derivatives of Pn, found in section 12.7 page 986 �.

Let I =
∫ 1

−1
P 2
ndx. Integrate by parts using u = P 2

n , dv = dx to find an
equation with I on both sides, then solve for I, which depends on Pn and P ′

n.
Replace factor xP ′

n in the expression for I by using the provided identity.
Use Exercise 1 to eliminate the term involving P ′

n−1. Identities Pn(1) = 1
and Pn(−1) = (−1)n are required. Details omitted. ■

3. Let ⟨f, g⟩ =
∫ π

0
f(x)g(x) sin(x)dx. Show that the sequence {Pn(cosx)} is

orthogonal on 0 ≤ x ≤ π with respect to inner product ⟨f, g⟩.
Solution:
The plan: change variables x = cos t in inner product ⟨f, g⟩.
⟨f, g⟩ =

∫ π

0
f(t)g(t) sin(t)dt

=
∫ −1

1
f(arccosx)g(arccosx)(−dx)

=
∫ 1

−1
f(arccosx)g(arccosx)dx

= (f(arccosx), g(arccosx)) where (F,G) =
∫ 1

−1
FGdx

Let f(t) = Pn(cos t), g(t) = Pm(cos t). Then f(arccosx) = Pn(x),
g(arccosx) = Pm(x) and

⟨f, g⟩ = (Pn, Pm)
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which is zero for n ̸= m by orthogonality of the Legendre polynomials. The
sequence {Pn(cosx)} is orthogonal. ■

4. Let F (x) = sin3(x)− sin(x) cos(x). Expand F as a Legendre series
F (x) =

∑∞
n=0 cnPn(cosx).

Solution: The coefficients are shadow projections using the inner product in
Exercise 3. Details omitted.

Chebyshev Series. TheChebyshev polynomials are Tn(x) = cos(n arccos(x))

with inner product (f, g) =
∫ 1

−1
f(x)g(x)(1− x2)−1/2dx.

5. Show that T0(x) = 1, T1(x) = x, T2(x) = 2x2 − 1.

Solution:
The identities are proved from trig identities.

T0(x) = cos(0 arccos(x))

= cos(0)

= 1

T1(x) = cos((1) arccos(x))

= x

T2(x) = cos(2 arccos(x))

= cos(2θ) where x = cos θ

= 2 cos2 θ − 1 by identity cos(2θ) = 2 cos2 θ − 1

= 2x2 − 1 ■

6. Show that T3(x) = 4x3 − 3x.

7. Prove that (f, g) satisfies the abstract properties of an inner product.

Solution: Singularities of the integrand present a problem, because of the
division by

√
1− x2. Let’s find another expression for the inner product

where f , g are restricted to remove the singularities.

(f, g) =
∫ 1

−1
f(x)g(x)(1− x2)−1/2dx

=
∫ 0

π
f(cos t)g(cos t)(1− cos2 t)−1/2(− sin t)dt where x = cos t

=
∫ π

0
f(cos t)g(cos t)(sin2 t)−1/2 sin t dt by cos2 t+ sin2 t = 1

=
∫ π

0
F (t)G(t)| sin t|−1 sin t dt where F (t) = f(cos t), G(t) = g(cos t)

=
∫ π

0
F (t)G(t) dt because sin t > 0 on 0 < t < π.

There is an issue at t = 0 and t = π: the singularity is removable by
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examination of limits. However, the resulting integral is a known inner
product on the vector space of continuous functions.

To be proved: the inner product is defined when f , g are continuous. Let
ρ(x) = (1 = x2)−1/2 on −1 < x < 1 and ρ(±1) = 0. Let |f(x)| ≤ M1,
|g(x)| ≤ M2 on −1 ≤ x ≤ 1. Then Details:∣∣∣∫ 1

−1
fgρ dx

∣∣∣ ≤ |
∫ 1

−1
|f ||g|ρ dx

≤ |
∫ 1

−1
M1M2ρ dx

= πM1M2

The integral exists for f , g continuous and (f, g) makes sense on the vector
space of continuous functions on [−1, 1]. Because compositions of continuous
functions are continuous then F,G are continuous and (f, g) is an inner
product satisfying the abstract properties. ■

8. Show that Tn is a solution of the Chebyshev equation
(1− x2)y′′ − xy′ + n2y = 0.

9. Prove that {Tn} is orthogonal relative to the weighted inner product (f, g).

Solution:
Let ρ(x) = (1− x2)−1/2. To be proved:

(1)
∫ 1

−1
TnTmρ dx = 0 for n ̸= m

(2)
∫ 1

−1
T0T0ρ dx = π

(3)
∫ 1

−1
TnTnρ dx = π

2 for n > 0

Exercise 7 provides this formula:∫ 1

−1
fgρ dx =

∫ π

0
F (t)G(t) dt where F (t) = f(cos t), G(t) = g(cos t)

Let f = Tn, g = Tm. Then

F (t) = Tn(cos t)

= cos(n arccos(cos t))

= cos(nt). Then:∫ 1

−1
fgρ dx =

∫ π

0
cos(nt) cos(mt) dt

Proof of (1)
Orthogonality of the trig functions cosnt, sinnt on [−π, π] implies∫ 1

−1
fgρ dx =

∫ π

0
cos(nt) cos(mt) dt

= 1
2

∫ π

−π
cos(nt) cos(mt) dt because of an even integrand
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= 0 for n ̸= m

Proof of (2)
The integral of 1 over [0, π] is π.

Proof of (3)
The problem reduces to the integral over [0, π] of cos2(nx), which is π/2 for
integers n > 0. ■

10. Prove: Tn(x) is an even function for n even and an odd function for n odd.

Hermite Polynomials. Define the Hermite polynomials by H0(x) = 1,

Hn(x) = (−1)nex
2 dn

dxn

(
e−x2

)
.

Define the inner product
(f, g) =

∫∞
−∞ f(x)g(x)e−x2

dx.

11. Verify: H1(x) = 2x, H2(x) = 4x2 − 2, H3(x) = 8x3 − 12x, H4(x) =
16x4 − 48x2 + 12.

Solution:

Let u = e−x2

, D =
d

dx
. Then

Du = −2xu and H1 = (−1)
1

u
Du = 2x.

D2u = D(−2xu) = −2u− 2x(−2xu) = (4x2 − 2)u. Then

H2 = (−1)2
1

u
D2u = 4x2 − 2

D3u = D(D2u) = D((4x2−2)u) = 8xu+(4x2−2)(−2xu) = (−8x3+12x)u.
Then

H3 = (−1)3
1

u
(8x− 8x3 + 4x)u = 8x3 − 12x

D4u = D((−8x3 + 12x)u) = (−24x2 + 12)u+ (−8x3 + 12x)(−2x)u

H4 = (−1)4
1

u
((−24x2+12)u+(−8x3+12x)(−2x)u) = −48x2+12+16x4 ■

# Exercise 11, Answer check

seq(simplify(HermiteH(i,x)),i=0..4);

12. Prove: Hn(−x) = (−1)nHn(x).

13. Prove H ′
n(x)=2xHn(x)−Hn+1(x).

Then use recursion Hn+1(x) = 2xHn(x) − 2nHn−1(x) to show H ′
n(x) =

2nHn−1(x).

Solution:

Let u = e−x2

, D =
d

dx
. Then
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H ′
n = (−1)nD(u−1Dnu)

= (−1)n
(
(−1)u−2(−2xu)Dnu+ u−1Dn+1u

)
because Du = −2xu

= 2x(−1)nu−1Dnu+ (−1)nu−1Dn+1u

= 2xHn −Hn+1

Recursion identity Hn+1(x) = 2xHn(x) − 2nHn−1(x) is inserted into the
preceding identity to give

H ′
n(x) = 2xHn(x)−Hn+1(x)

= 2xHn(x)− (2xHn(x)− 2nHn−1(x))

= 2nH(n− 1)(x) ■

14. Let y = H5 = 32x5 − 160x3 +120x. Show y satisfies Hermite’s equation
y′′ − 2xy′ + 2ny = 0 with n = 5.

Solution: Answer check:

# Exercise 14, Answer check

de:=diff(y(x),x,x) -2*x*diff(y(x),x) + 2*n*y(x)=0;

p:=subs(n=5,y(x)=32*x^5-160*x^3+120*x,de);

simplify(p);

15. Prove recursion
Hn+1(x) = 2xHn(x)− 2nHn−1(x).

Solution:

Let u = e−x2

, D =
d

dx
. Then Hn+1 = (−1)n+1u−1Dn+1u

= (−1)n+1u−1DnDu

= (−1)n+1u−1Dn(−2xu) because Du = −2xu

= 2(−1)nu−1Dn(xu)

= 2(−1)nu−1

n∑
r=0

(
n

r

)
DrxDn−ru by the Leibnitz rule

= 2(−1)nu−1

((
n

0

)
xDnu+

(
n

1

)
(1)Dn−1u

)
= 2x(−1)nu−1u−1Dnu+ 2n(−1)nu−1Dn−1u

= 2xHn + 2nHn−1 ■

16. Show that the sequence {Hn(x)} is orthogonal with respect to (f, g).

Alternate Laguerre Polynomials. Define the alternate Laguerre polynomials
by Ln(x) = ex dn

dxn (xne−x). Define (f, g) =
∫∞
0

f(x)g(x)e−xdx. A warning:

Laguerre polynomials in the literature are 1
n!Ln.
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17. Prove: L1(x) = 1− x and
L2(x) = 2− 4x+ x2.

Solution:
L1 = ex(xe−x)′

= ex(e−x − xe−x) = 1− x

L2 = ex(x2e−x)′′

= ex(2e−x − 4xe−x + x2e−x)

= 2− 4x+ x2

■

18. Prove:
L3(x) = 6− 18x+ 9x2 − x3.

19. Prove that (f, g) satisfies the abstract properties for an inner product.

Solution:
Non-negativity: (f, f) =

∫∞
0

|f(x)|2e−xdx ≥ 0

Uniqueness: (f, f) =
∫∞
0

|f(x)|2e−xdx = 0 implies integrand f = 0

Symmetry: (f, g) =
∫∞
0

f(x)g(x)e−xdx = (g, f) because fg = gf .

Homogeneity:
k(f, g) =

∫∞
0

kf(x)g(x)e−xdx

(kf, g) =
∫∞
0

(kf(x))g(x)e−xdx

Therefore k(f, g) = (kf, g).

Additivity:
(f + g, h) =

∫∞
0

(f(x) + g(x))h(x)e−xdx

=
∫∞
0

f(x)h(x)e−xdx+
∫∞
0

g(x)h(x)e−xdx

= (f, h) + (g, h)
■

20. Show that L0, L1, L2, L3 are orthogonal with respect to the inner product
(f, g), using direct integration methods.

Solution: By definition, L0 = 1. Use Exercises 17 and 18.

21. Prove:
Ln(x) =

∑n
k=0

(−1)k (n!)2

(n−k)!(k!)2x
k.

Solution: The method of proof is direct expansion of the formula for Ln

using the Leibnitz formula

Dn(vw) =

n∑
r=0

(
n

r

)
(Drv)(Dn−rw), D =

d

dx
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Let v = xn and w = e−x. Then

Dn(vw) =

n∑
r=0

(
n

r

)
(Drv)(Dn−rw)

=

n∑
r=0

n!

r!(n− r)!

(
n!

(n− r)!
xn−r

)(
(−1)n−re−x

)
Change index with k = n− r. Then

Dn(vw) =

n∑
k=0

n!

(n− k)!(k)!

(
n!

(k)!
xk

)(
(−1)ke−x

)
=

n∑
k=0

(n!)2

(n− k)!(k!)2
(−1)kxke−x

Multiply by ex:

exDn(vw) =

n∑
k=0

(n!)2

(n− k)!(k!)2
(−1)kxk

Then Ln = exDn(vw) =

n∑
k=0

(n!)2

(n− k)!(k!)2
(−1)kxk.

■

22. Show that {Ln} is an orthogonal sequence with respect to (f, g).

Solution: Hint: Use Laguerre’s differential equation and the same integra-
tion tricks as for Legendre’s equation.

23. Find an expression for a polynomial solution to Laguerre’s equation
xy′′ + (1− x)y′ + ny = 0 using Frobenius theory.

Solution:
The standard form is x2y′′+x(1−x)y′+nxy = 0, where n ≥ 0 is an integer.
The indicial equation is r(r − 1) + (1)r + 0 = 0 with double root 0, 0. The
equation falls into case (c) of the Frobenius Theorem page 970 �: there are
two series solutions

y1 = = x0
∑∞

k=0 ckx
k, c0 ̸= 0,

y2 = = y1(x) ln |x|+
∑∞

k=1 dkx
k.

Solution y2 is not a polynomial, it will not be used.

To be proved: Assume trial solution y = xr
∑∞

k=0 ckx
k with r = 0 the

largest root of the indicial equation. It will be shown that the recursion
relation is

ck+1 =
k − n

(k + 1)2
ck
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with solution

ck =
(−1)k(n!)2

(k!)2(n− k)!
, for choice c0 = n!

Find a formula for ck. The method substitutes the trial series y into the
differential equation and then resolve the coefficients. The details:

x2y′′ = x2
∞∑
k=2

k(k − 1)ckx
k−2

=

∞∑
j=0

j(j − 1)cjx
j

x(1− x)y′ = x(1− x)

∞∑
k=1

kckx
k−1

=

∞∑
k=1

kckx
k −

∞∑
k=1

kckx
k+1

=

∞∑
j=1

jcjx
j −

∞∑
j=2

(j − 1)cj−1x
j

=

∞∑
j=1

(jcj − (j − 1)cj−1)x
j 1

nxy = x

∞∑
k=0

nckx
k

=

∞∑
k=0

nckx
k+1

=

∞∑
j=1

ncj−1x
j

An indexing trick was used at step 1 :

∞∑
j=2

(j − 1)cj−1x
j =

∞∑
j=1

(j − 1)cj−1x
j

The trick works because the j = 1 term is zero.

Substitute the trial solution into x2y′′ + x(1− x)y′ + nxy = 0:
∞∑
j=0

j(j − 1)cjx
j +

∞∑
j=1

(jcj − (j − 1)cj−1)x
j +

∞∑
j=1

ncj−1x
j = 0

∞∑
j=1

(j(j − 1)cj + jcj − (j − 1)cj−1 + ncj−1 = 0)xk = 0
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The recursion is obtained by setting all coefficients on the left to zero, then
simplify:

j(j − 1)cj + jcj − (j − 1)cj−1 + ncj−1 = 0

j2cj + (n− j + 1)cj−1 = 0, k ≥ 2

Solve for cj to find the recursion:

cj = −n− j + 1

j2
cj−1, j ≥ 1, with c0 given

Replace j = k + 1:

ck+1 =
k − n

(k + 1)2
ck, k ≥ 0, with c0 given

Solve the recursion.
Apply the first order recursion formulas page 957 �:

xk = ck, ak = k−n
(k+1)2 , bk = 0

ck+1 = x0

∏k
r=0 ak

= c0
∏k

r=0
r−n

(r+1)2 for k ≥ 0 and k < n

= c0
(−1)k(n!)

(k!)2(n− k)!
for 0 ≤ k < n.

Choose c0 = n!, then a polynomial solution to Laguerre’s equation of order
n is given by

y(x) =
∑n

k=0

(−1)k(n!)2

(k!)2(n− k)!
xk

The alternate Laguerre polynomials are labeled L0, L1, . . ., the first few given
by equations in Exercise 25.

# Exercise 23, Solve by Frobenius theory

# Laguerre’s equation answer check

de:=x^2*diff(y(x),x,x)+x*(1-x)*diff(y(x),x)+N*x*y(x);

c0:=n!:C:=(k,n)->(n!)*product((r-n)/(r+1)^2,r=0..k);

Y:=(x,n)->n!+sum(C(k,n)*x^(k+1),k=0..n);

N:=3;Y(x,N);

# Check de solution.

Q:=simplify(expand(subs(y(x)=Y(x,N),de)));

# High to low coefficients

koeffs:=seq(C(N-1-i,N),i=0..N-1),N!;

B:=(k,n)->(n!)*(-1)^k*(n!)/(k!)^2/(n-k)!;

Z:=(x,n)->sum(B(k,n)*x^(k),k=0..n);

Z(x,N);

■
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24. Show that y = ex dn

dxn (x
ne−x) satisfies Laguerre’s equation: xy′′ + (1 −

x)y′ + ny = 0.

25. Verify by computer the Laguerre formulas

L0(x)=1
L1(x)=− x+ 1
L2(x)=x2 − 4x+ 2
L3(x)=− x3 + 9x2 − 18x+ 6

Solution:
# Exercise 25, Compute Laguerre polynomials

altLaguerreL:=(n,x)->factorial(n)*LaguerreL(n,x);

for k from 0 to 4 do

simplify(altLaguerreL(k,x)) od;

■

26. Find to 6 digits by computer the roots of L4(x).

Solution: The roots are used in Gauss-Laguerre Quadrature. Reference:
https://mathworld.wolfram.com/Laguerre-GaussQuadrature.html

27. Prove: Up to a constant, Ln is the only polynomial solution of xy′′ + (1−
x)y′ + ny = 0, n ≥ 0 an integer.

Solution:
The Frobenius method in Exercise 23 produces two independent solutions
y1, y2:

y1 = = x0
∑∞

k=0 ckx
k, c0 ̸= 0,

y2 = = y1(x) ln |x|+
∑∞

k=1 dkx
k.

Let y be another polynomial solution of Laguerre’s equation. Then y =
d1y1 + d2y2 for some constants d1, d2. Because y(0) is finite (y is a poly-
nomial) then d2 = 0. Therefore, y is a constant multiple of the Frobenius
polynomial solution y1, which can be selected to equal Ln. ■

28. Assume standard Laguerre polynomials {Ln} satisfy recurrence
(n+1)Ln+1(x)=(2n+1−x)Ln(x)

−nLn−1(x).
Prove: The alternate Laguerre polynomials {Ln} satisfy recurrence
Ln+1(x)=(2n+1−x)Ln(x)

−n2Ln−1(x).

Solution: Use Ln = (n!)Ln.
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Text, Solutions and Corrections

Author: Grant B. Gustafson, University of Utah, Salt Lake City 84112.
Paperback Textbook: There are 12 chapters on differential equations
and linear algebra, book format 7 x 10 inches, 1077 pages. Copies of the
textbook are available in two volumes at Amazon Kindle Direct Publish-
ing for Amazon’s cost of printing and shipping. No author profit. Volume
I chapters 1-7, ISBN 9798705491124, 661 pages. Volume II chapters 8-
12, ISBN 9798711123651, 479 pages. Both paperbacks have extra pages
of backmatter: background topics Chapter A, the whole book index and
the bibliography.

Textbook PDF with Solution Manual: Packaged as one PDF (13
MB) with hyperlink navigation to displayed equations and theorems.
The header in an exercise set has a blue hyperlink � to the same section
in the solutions. The header of the exercise section within a solution
Appendix has a red hyperlink � to the textbook exercises. Solutions
are organized by chapter, e.g., Appendix 5 for Chapter 5. Odd-numbered
exercises have a solution. A few even-numbered exercises have hints and
answers. Computer code can be mouse-copied directly from the PDF.
Free to use or download, no restrictions for educational use.

Sources at Utah:

https://math.utah.edu/g̃ustafso/indexUtahBookGG.html

Sources for a Local Folder No Internet: The same PDF can be
downloaded to a tablet, computer or phone to be viewed locally. After
download, no internet is required. Best for computer or tablet using a
PDF viewer (Adobe Reader, Evince) or web browser with PDF support
(Chrome, FireFox). Smart phones can be used in landscape mode.

Sources at GitHub and GitLab Projects: Utah sources are dupli-
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cated at

https://github.com/ggustaf/github.io and mirror
https://gitlab.com/ggustaf/answers.

Communication: To contribute a solution or correction, ask a question
or request an answer, click the link below, then create a GitHub issue
and post. Contributions and corrections are credited, privacy respected.

https://github.com/ggustaf/github.io/issues
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