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Abstract

We develop a network model for the electrical conductivity of sea ice, and obtain close agreement with the results

of experiments we conducted in Antarctica. Monitoring the thickness of sea ice is an important tool in assessing the

impact of global warming on Earth’s polar regions, and most methods of measuring ice thickness depend on detailed

knowledge of its electrical properties.
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1. Introduction

Sea ice is a sensitive indicator of climate change, as
well as a critical component of Earth’s climate sys-
tem. Determining the thickness distribution of the
polar sea ice packs is a central problem in monitor-
ing the impact of global warming. However, there is
significant uncertainty in our knowledge of the ice
thickness distribution and how it is changing. Not
only does this uncertainty affect assessments of how
the changing climate is impacting the polar regions,
but it also affects predictions of global climate mod-
els, where accurate knowledge of sea ice initial con-
ditions is essential for long term simulations.

Most methods of measuring sea ice thickness, and
interpretation of the data obtained, depend on de-
tailed knowledge of the electrical properties of the
ice. Since sea ice is a composite of pure ice with brine
inclusions [20,3], whose volume fraction and geome-
try depend strongly on temperature, understanding
its electrical properties is a challenging problem in
the theory of inhomogeneous materials. Here we de-
velop a network model for the electrical conductivity
of sea ice, and compare the results with direct mea-
surements of the vertical conductivity of first year
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sea ice we made during the 2007 Sea Ice Physics and
Ecosystem eXperiment (SIPEX) expedition off the
coast of East Antarctica, from the Australian ice-
breaker Aurora Australis.

Early DC resistivity measurements on sea ice were
aimed at determining ice thickness [5,18,19]. Initially
all these studies employed surface soundings using
4 electrodes in either the Wenner or Schlumberger
configurations, although Timco [19] later used ver-
tically arranged electrodes in the side of an ice pit.
Later measurements in the Antarctic were also re-
ported [2]. The anisotropic nature of the resistiv-
ity of sea ice, due to the preferential vertical align-
ment and connectivity of brine pores, leads to such
measurements significantly underestimating the ice
thickness.

More promising determinations of sea ice thick-
ness have been achieved using low frequency elec-
tromagnetic (EM) techniques [14,11,13,21,17]. The
technique relies on a time varying primary magnetic
field (generated by a transmitter coil) inducing eddy
currents in the seawater beneath the comparatively
resistive ice. The secondary magnetic field produced
is sensed by a receiver coil, determining an apparent
conductivity which results essentially from an inte-
gration over the vertical distance between the instru-
ment and induced currents. The thickness is found
using empirical relationships [12], with good results
for smooth ice and underestimates near ridges [12].
The technique is adaptable to continuous measure-
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ments being made either from a helicopter or ship
[11].

Previous measurements of the conductivity of sea
ice relied almost exclusively on indirect methods
which mix the horizontal and vertical components.
Moreover, these indirect means make it difficult to
accurately recover the dependence of the conduc-
tivity on the properties of the brine microstructure,
namely, its brine volume fraction φ, which depends
on the temperature T and salinity S of the ice
[4,20,3]. During the 2007 Australian SIPEX expedi-
tion, Golden and Gully extracted cylindrical cores
of sea ice and made vertical conductivity measure-
ments along these cores using metal probes attached
to a Yew Earth Resistance Tester, as described
in [9]. We also measured salinity and temperature
along each core in order to relate the electrical
measurements to microstructural data [15,7,8,16].

Part of our motivation for focusing on the verti-
cal component of the electrical conductivity is that
it is closely related to the vertical component of
the fluid permeability of sea ice. Fluid transport in
sea ice mediates a broad range of processes such
as the growth and decay of seasonal ice, the evolu-
tion of melt ponds which determine ice pack albedo,
and bio-mass build-up [8,6]. Our work here will help
lay the foundation for electrically monitoring fluid
transport in sea ice. In fact, the random resistor net-
work model we develop here is based on the random
pipe network we used previously to model the fluid
permeability of sea ice [22]. Statistical information
about the brine microstructure [15,7,8,16] is used to
determine the statistical distributions of the resis-
tors in the electrical network.

2. The Network Model for the Effective

Conductivity of Sea Ice

In this model, we consider a piece of sea ice with
an averaged brine volume fraction φ, and focus on
the effect of brine structure on the electric conduc-
tion of the material. The conducting property of a
medium can be summarized by its conductivity. Let
Φ be the electric potential, and σ the local conduc-
tivity tensor, which may depend on the local volume
fraction, temperature, and salinity. Since the current
density J is related to the electric potential through
J = σ∇Φ, using Kirkoff’s law and assuming the
material is free of electrical charge, the equation for
electrical conduction is

∇ · σ ∇Φ = 0, (1)

which is similar to the fluid pressure equation result-
ing from Darcy’s law

∇ · k ∇p = 0, (2)

where p is the the flow pressure and k is the perme-
ability tensor.

Here we intend to define an effective conductivity
that describes the behavior of conduction of the sea
ice structure in the direction that is of importance
to us. In particular, we are interested in the effective
vertical conductivity defined through

J∗ = σv

∆Φ

∆z
(3)

for the current density in z direction J∗, and the
potential difference ∆Φ over a thickness ∆z.

To simulate the electric field through the conduct-
ing microstructure of sea ice, consider an ice sheet
of depth D. We will model the medium in the way
that is analogous to our previous work [22]. Take
a thin vertical slice of horizontal thickness h and
length span L. We model this ice sheet by a two di-
mensional lattice of nodes connected by conducting
tubes. The slice has a rectangular L × D vertical
cross section, which is divided into a grid with m
equally spaced sections in the horizontal direction
and n equally spaced sections in the vertical direc-
tion, so that L/m = D/n = h, for some large inte-
gers m and n. The model parameter h can be viewed
as the dimension of a cell in which a typical brine in-
clusion is contained. In this network model, h will be
chosen according to the sea ice we simulate, its brine
volume fraction, and our computing capacities. The
tubes are assumed to have circular shapes with dif-
ferent radii, and the current through the medium is
induced by an electric potential drop Φb−Φt, where
Φb and Φt are the potentials at the bottom (liquid)
and the top (air) of the sea ice, with the assumption
that Φb > Φt so there is an upward current flow in
the medium. The cross sectional areas of the tubes
chosen below generate fluid pores comparable to the
brine inclusions found in young sea ice. The lattice
nodes are the vertices (i, j), 0 ≤ i ≤ m, 0 ≤ j ≤
n, of a rectangular grid, as in Figure ?? (a). Near-
est neighbors are connected by vertical and horizon-
tal tubes, with a potential Φi,j defined at each node
(i, j). To each node (i, j) with 0 ≤ i ≤ m − 1, 0 ≤
j ≤ n − 1, the horizontal tube to the right of (i, j)
has radius R = Rh

i,j, and the vertical tube on top
of (i, j) has radius R = Rv

i,j, as shown in Figure 1.
Along the right edge with i = m the nodes have one
vertical tube, and along the top edge the nodes have
one horizontal tube (except the last).

Since the brine conductivity is substantially
higher than the conductivity of the surrounding ice
(on an order of about 108), we can assume that elec-
trical conduction takes place mostly through the

2



R

R

R

v

v

h

i,j

i,j-1

i-1,j

Rh
i,j

(a) (b)

(i,j)

Fig. 1. (a) (b)

brine tubes. The effect of conduction through pure
ice will be modeled by adding a simple conducting
component to the system. Unlike the permeability
model, where the fluid flux depends only on the brine
geometry, the electric conduction in the microstruc-
ture would include a temperature dependent local
conductivity. For each tube of radius R connecting
two nodes, we assume an uniform conductivity σtube

for the brine, so an electric current within can be
established based on the voltage drop and the cross
sectional area. In our particular case we have

I = σtube A E = −σtube πR2 ∇Φ, (4)

where Φ is the electric potential. For each tube con-
necting two neighboring nodes, the potential gra-
dient can be well approximated by the difference
between the potentials at these nodes, divided by
the spacing h. Given the potentials at neighboring
nodes, different fluxes converging to the node (i, j)
can be easily computed, and they must balance due
to Kirkoff’s law. Let σh

i,j and σv
i,j denote the brine

conductivity for the tubes to the right and on the
top of node (i, j), respectively. This leads to the fol-
lowing equations,

σv
i,j(R

v
i,j)

2(Φi,j+1 − Φi,j) + σv
i,j−1(R

v
i,j−1)

2(Φi,j−1 − Φi,j) +

σh
i,j(R

h
i,j)

2(Φi+1,j − Φi,j) + σh
i−1,j(R

h
i−1,j)

2(Φi−1,j − Φi,j) = 0,

(5)

for i = 1, . . . , m − 1, and j = 1, . . . , n − 1, with
appropriate modifications on the edges of the lattice.
Notice that this equation is similar to the equation
derived for the fluid permeability model [22]:

(Rv
i,j)

4(pi,j+1 − pi,j) + (Rv
i,j−1)

4(pi,j−1 − pi,j) +

(Rh
i,j)

4(pi+1,j − pi,j) + (Rh
i−1,j)

4(pi−1,j − pi,j) = 0,

(6)

here pi,j is the pressure at node (i, j). We comment
that the current system has coefficients dependence
on the radius not as strong as that in the permeabil-
ity case, but they also have an extra dependence on
the local brine conductivity, which varies from one
location to another due to temperature and salinity
variations.

At the top of the region (j = n), we assume the
boundary condition

Φi,n = Φt, (7)

and at the bottom (j = 0) of the region

Φi,0 = Φb. (8)

Let Ii,j be the current through the vertical duct on
top of the (i, j) node. The total current through the
brine network system is therefore

Ibrine =

m
∑

i=0

Ii,n−1 = π

m
∑

i=0

σv
i,n−1(R

v
i,n−1)

2 Φi,n−1 − Φt

h
,

(9)

where Rv
i,n−1, i = 0, . . . , m are the radii of the tubes

connected to the top of the sea ice, and Φi,n−1 are the
potentials at the nodes just below the top surface.

The effect of conduction through pure ice can be
modeled as an additional current flow through an-
other medium, in parallel to the brine network. The
current through such a medium is
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Ipure ice = σice Lh(1 − β(φ))
Φt − Φb

D
. (10)

Here we introduce a function β(φ) that describes the
loss of ice surface for conduction due to the brine
inclusions.

When the piece of sea ice is viewed as a composite,
the effective vertical conductivity σv can be defined
through

J∗ = −σv

Φt − Φb

D
(11)

Where J∗ is the average current density through the
medium. We make the connection between J∗ and
the total current through

J∗ =
Ibrine + Ipure ice

Lh
(12)

where Lh is the horizontal cross sectional area of
the slice. Based on these assumptions, we have the
effective conductivity

σv =
πD

Lh2

m
∑

i=0

σv
i,n−1(R

v
i,n−1)

2 Φt − Φi,n−1

Φt − Φb

+(1−β)σice.

(13)

The cross section reduction form for the ice should
depend on the microstructure of the sea ice under
study. One possible model is to assume that half of
the tubes are vertical and contributing to the verti-
cal conduction. This leads to the following reduction
factor:

β =
1

2
φ. (14)

The multigrid algorithm to solve the system
Eq.(6) can be easily modified to solve the system
Eq.(5), and the convergence is faster due to the
coefficient dependence change from R4 to R2.

3. Sea Ice Microstructure and Numerical

Results

In this model, the microstructure of the sea ice
slice is described by an averaged brine conductiv-
ity σb, and a collection of tubes with cross sectional
area sampled from a log-normal distribution, with
parameters based on measurements of brine inclu-
sions in first year sea ice [15,?,1]. Specifically, we
sample the radius R so that logA = log(πR2) is nor-
mally distributed with mean µ and variance σ2. We
also assume that all the random radii are indepen-
dent from each other. Given a particular sample of
the tube radii, the volume fraction φ of the slice can
be readily computed by

φ =
π

LD





m−1,n
∑

i=0,j=0

(Rh
i,j)

2 +

m,n−1
∑

i=0,j=0

(Rv
i,j)

2



 . (15)

The goal of this study is to investigate the depen-
dence of the effective vertical conductivity σv, and
the form factor σv/σb, on the porosity φ, which is
connected to the microstructure through Eq.(15).
For consistency, it is necessary to choose the param-
eters µ and σ such that the desired volume fraction
is arrived, and that the statistical properties of the
actual sea ice are reasonably matched. To this end,
we first notice that the expected value of the cross
sectional area

E[A] = eµ+ 1

2
σ2

, (16)

given our assumption about the distribution of logA.
This expected value for the model should be matched
to an interpolationof measured averages for the cross
sectional area A as a function of brine volume frac-
tion φ [10]:

〈A〉 = θ(φ) = π(7×10−5+1.6×10−4φ)2 m2. (17)

This function approximates the dependence of the
mean cross sectional area on the brine volume frac-
tion φ observed by Perovich and Gow (1996) [15] in
horizontal thin sections of young, primarily colum-
nar sea ice. Since we have two parameters for the
model to be determined, the matching condition
leaves us with one free parameter σ, which we will
choose several different values to compare with the
measured sea ice data. It should be pointed out that
the tomography information on the microstructure
is rather insufficient and the distribution of the brine
inclusions as reflected through µ and σ still requires
substantial modeling. Therefore we will leave the
parameter σ open for further modeling. As observed
in [15], values of σ between 1 and 2 seem to be rea-
sonable for the available topography information.

Also as observed in [?], brine channels in the sea ice
become connected to a substantial level only when
the brine volume fraction reaches above 5%. To re-
flect this behavior, we allow some randomly selected
tubes to be disconnected from the system in an ef-
fort to simulate the disconnection of brine inclusions
along certain directions. The capability of the multi-
grid algorithm makes it possible to study the general
percolation problem from a new perspective. For the
numerical algorithm, we choose to develope a multi-
grid algorithm especially targeted at this unusual
linear system. Multigrid methods in general are very
powerful in dealing with large linear systems result-
ing from elliptic equations, and they are particularly
appropriate here to address different length scales
involved in the microstructure. Our numerical ex-
amples demonstrate that this algorithm is robust,
accurate, and efficient.

Similar to the work of fluid permeability, we will
focus on the form of dependence of the effective ver-
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Table 1

Tube Disconnection Probability

φ 0.025 0.05 0.075 0.1 0.0125

Prob(disconnection) 0.7 0.5 0.3 0.15 0

merical algorithm will encounter difficulties in some
of the random configurations.

In Figure 2, we show the calculated values of the
effective vertical conductivity according to Eq.(13),
with two different choices for the brine inclusion dis-
tribution parameter σ, as compared to the measured
vertical conductivity of the sea ice. Obviously the
numerical results from the choice σ = 1 agree much
better with the measurements than that of σ = 0.5.
This seems to agree with the findings about the ob-
served statistics of brine inclusions of Perovich and
Gow [15].

A more fundamental quantity for our study is
the form factor, the relative conductivity defined as
σb/σb. In Figure 3, we plot the values of the form fac-
tor for our computed vertical conductivity and our
measured sea ice conductivity in a log-log graph. Of
major interest from the graph is an estimate of the
exponent m and to see how our model agrees with
the measured quantities. From this graph, with the
choice of disconnect probability,we have achieved an
excellent agreement for m around 2. A fine tuning of
the various parameters to reflect the microstructure
if more detailed tomography information is available
should lead to more accurate predictions of the ex-
ponent m.

4. Conclusions
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