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SEA ICE covers ~12% of Earth's ocean surface

e boundary between ocean and atmosphere

e mediates exchange of heat, gases, momentum
e global ocean circulation

e hostsrich ecosystem
e indicator of climate change



Sea lce is a Multiscale Composite Material
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What is this talk about? HOMOGENIZATION

What is the role of microstructure in determining effective properties?

Using methods of statistical physics and homogenization to
LINK SCALES in the sea ice system ... rigorously compute
effective behavior and improve climate models.

1. Sea ice microphysics and fluid transport
2. Analytic Continuation Method, integral representations

3. Extension of ACM to advection diffusion, waves in sea ice

4. Fractal geometry of melt pond evolution

Solving problems in physics of sea ice drives
advances in theory of composite materials.

cross - pollination



HOMOGENIZATION - Linking Scales in Composites
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inhomogeneous homogeneous
medium medium

find the homogeneous medium which
behaves macroscopically the same as
the inhomogeneous medium

Maxwell 1873 : effective conductivity of a dilute suspension of spheres
Einstein 1906 : effective viscosity of a dilute suspension of rigid spheres in a fluid

Wiener 1912 : arithmetic and harmonic mean bounds on effective conductivity
Hashin and Shtrikman 1962 : variational bounds on effective conductivity

widespread use of composites in late 20th century due in large part
to advances in mathematically predicting their effective properties



How do scales
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sea ice microphysics

fluid transport



fluid flow through the porous microstructure of sea ice
governs key processes in polar climate and ecosystems

evolution of Arctic melt ponds and sea ice albedo nutrient flux for algal communities

C.Haas

K. Golden

Antarctic surface flooding

September - evolution of salinity profiles
show-ice

estimates - ocean-ice-air exchanges of heat, CO,

0 25 50 75 100
percent snow ice

T. Maksym and T. Markus, 2008



fluid permeability of a porous medium

Darcy’s Law

for slow viscous flow in a porous medium

averaged pressure
fluid velocity gradient
Y
V=-——7-YV
n VP

/

ViIScosity
how much water gets

through the sample k = fluid permeability tensor
per unit time?

HOMOGENIZATION

mathematics for analyzing effective behavior of heterogeneous systems



Critical behavior of fluid transport in sea ice
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brine volume fraction and connectivity increase with temperature

T=-4°C, ¢=0.113
T=-15°C, ¢$=0.033 T=-6°C, $=0.075 T=-3°C, $=0.143

X-ray tomography for brine phase in sea ice Golden, Eicken, et al., Geophysical Research Letters 2007

PERCO LATION TH RESHOLD (I)C = 5 % Golden, Ackley, Lytle, Science 1998

impermeable permeable

L]

Lﬁirl BT

L\_III I [

=1/3 p=2/3 sea ice cbmpressed powder

Kusy, Turner
Nature 1971

lattice percolation continuum percolation



Thermal evolution of permeability and microstructure in sea ice
Golden, Eicken, Heaton, Miner, Pringle, Zhu, Geophysical Research Letters 2007
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rigorous bounds
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PIPE BOUNDS on vertical fluid permeability &

Golden, Heaton, Eicken, Lytle, Mech. Materials 2006
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Sea ice algae secrete extracellular polymeric substances (EPS)
affecting evolution of brine microstructure.

How does EPS affect fluid transport?
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® Bimodal lognormal distribution for brine inclusions

® Develop random pipe network model with bimodal distribution;
Use numerical methods that can handle larger variances in sizes.

® Results predict observed drop in fluid permeability k.

® Rigorous bound on k for bimodal distribution of pore sizes

. Zhu, Jabini, Golden,
Steffen, Epshteyn, Zhu, Bowler, Deming, Golden Eicken, Morris

Multiscale Modeling and Simulation, 2018 Ann. Glac. 2006

How does the biology affect the physics?



measuring
fluid permeability
of Antarctic seaice

SIPEX 2007



INVERSE PROBLEM

Recover sea ice

properties from

electromagnetic
(EM) data

E*

effective complex permittivity
(dielectric constant, conductivity)

Remote sensing of sea ice

sea ice thickness brine volume fraction
ice concentration brine inclusion connectivity



Effective complex permittivity of a two phase composite
in the quasistatic (long wavelength) limit

D =¢cFk
>k V-D=J0
VXE=0

e (D) = €(B)

P1, P2 = volume fractions of
the components

> X [ €1 :
€E =€ (6—2 , composite geometry)

What are the effective propagation characteristics
of an EM wave (radar, microwaves) in the medium?



Analytic Continuation Method for Homogenization

Bergman (1978), Milton (1979), Golden and Papanicolaou (1983), Theory of Composites, Milton (2002)

Stieltjes integral representation gseparates geometry

for homogenized parameter from parameters
geometry
€* : dp(z) “ 1
F(s)=1——=— = s =
€2 0 S — 2 1l —€/6€
\ material parameters
@ spectral measure of [ = V(— A)_lv-
/ self adjoint operator ['X
_ @ mass= P X = characteristic function
~ , of the brine phase
@ higher moments depend |
on n-point correlations F=s (S + FX)_ €l

| X : microscale — macroscale
['X links scales

Golden and Papanicolaou, Comm. Math. Phys. 1983



forward and inverse bounds on the complex permittivity of sea ice

forward bounds

matrix particle

0<qg<l

Golden 1995, 1997
Bruno 1991

4.75 GHz data

inverse bounds and
recovery of brine porosity

Gully, Backstrom, Eicken, Golden
Physica B, 2007
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rigorous inverse bound
on spectral gap

construct algebraic curves which bound
admissible region in (p,q)-space

Orum, Cherkaev, Golden
Proc. Roy. Soc. A, 2012



direct calculation of spectral measures

Murphy, Hohenegger, Cherkaev, Golden, Comm. Math. Sci. 2015

® depends only on the composite geometry

® discretization of microstructural image gives binary network

® fundamental operator becomes a random matrix

® spectral measure computed from eigenvalues and eigenvectors

once we have the spectral measure p it can be used in
Stieltjes integrals for other transport coefficients:

electrical and thermal conductivity, complex permittivity,
magnetic permeability, diffusion, fluid flow properties

Day and Thorpe 1996

earlier studies of spectral measures Helsing, McPhedran, Milton 2011



Spectral computations for sea ice floe conflguratlons
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Proc. Roy.Soc.A 8 Feb 2015
Bounds on the complex permittivity

of polycrystalline materials
by analytic continuation
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higher threshold for fluid flow in Antarctic granular sea ice

columnar granular

5% 10%

Golden, Sampson, Gully, Lubbers, Tison 2019



advection enhanced diffusion

-0.1 -0.2
effective diffusivity o 04
nutrient and salt transport in sea ice o 06 ’
heat transport in sea ice with convection
-0.4 -0.8

sea ice floes in winds and ocean currents
tracers, buoys diffusing in ocean eddies
diffusion of pollutants in atmosphere

‘ ‘ Wells etal. 2011
0 0.1 0.2 0.3 0.4

advection diffusion equation with a velocity field ©
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ﬁ u=0 i S ~ Drake
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= = AT
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k" effective diffusivity

Avellaneda and Majda, PRL 89, CMP 91

Murphy, Cherkaev, Xin, Zhu, Golden, Ann. Math. Sci. Appl. 2017 - ‘; =g - ‘ﬂ o4
Murphy, Cherkaev, Zhu, Xin, Golden, J. Math. Phys. 2019 | I i g T Masters, 1989 w1




tracers flowing through inverted sea ice blocks



Stieltjes Integral Representation for Advection Diffusion

Murphy, Cherkaev, Zhu, Xin, Golden, J. Math. Phys. 2019

e [0 A = [ )

@ L is a positive definite measure corresponding to the
spectral resolution of the self-adjoint operator /T HI'

@ H = stream matrix , k = local diffusivity
o :=-V(—A)"1V. |, A is the Laplace operator
@ /[ HI is bounded for time independent flows

o F(k) is analytic off the spectral interval in the x-plane

separation of material properties and flow field
spectral measure calculations



Rigorous bounds on convection enhanced thermal conductivity of sea ice

Kraitzman, Hardenbrook, Murphy, Zhu, Cherkaev, Strong, Golden 2019
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Floe Scale Model of Anomalous Diffusion in Sea Ice Dynamics
Huy Dinh, Elena Cherkaev, Court Strong, Ken Golden 2019

(x(t) = x(0) — {x(t) = x(0))[") ~t°
« = Hurst exponent, a measure of anomalous diffusion

Statistic of bouy position data. Detects ice pack crowding and advective forcing.

J.V. Lukovich, J.K. Hutchings, D.G. Barber Annals of Glaciology 2015

a = 1 Sparse packing, random advective forcing field.

a < 1 Dense packing, crowding dominates advection.
a = 5/4 Sparse packing, shear dominates advection.

a = 5/3 Sparse packing, vorticity dominates advection.

Model Approximations
Power Law Size Distribution: N(D) ~ D"

T. Toyota, S. Takatsuji, M. Nakayama  Geophysical Review Letters 2006

Floe-Floe Interactions: Linear Elastic Collisions oy o
jee Q Qm C

Advective Forcing: Passive, Linear Drag Law k =17 Concentration = 0.1




Model Results

Crowding in random advective forcing.
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Sparse Packing, Shear Dominated Drift
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wave propagation in the marginal ice zone

Stieltjes integral representations
bounds on effective viscoelastic parameters

Sampson, Murphy, Cherkaev, Golden 2019

quasistatic assumption
long wavelength



melt pond formation and albedo evolution:

e major drivers in polar climate
e key challenge for global climate models

. . . . Luthje, Feltham, Skyllingstad, Paulson,
numerical models of melt pond evolution, including  Tayior, worster 2006 Perovich 2009
topog raphy, drainage (permeability)’ etc. Flocco, Feltham 2007  Flocco, Feltham,

Hunke 2012

Perovich

Are there universal features of the evolution
similar to phase transitions in statistical physics?



Transition in the fractal geometry of Arctic melt ponds
Christel Hohenegger, Bacim Alali, Kyle Steffen, Don Perovich, Ken Golden

The Cryosphere, 2012

complexity grows with length scale
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Continuum percolation model for melt pond evolution
level sets of random surfaces
Brady Bowen, Court Strong, Ken Golden, J. Fractal Geometry 2018

random Fourier series representation of surface topography

intersections of a plane with the surface define melt ponds
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electronic transport in disordered media diffusion in turbulent plasmas Isichenko, Rev. Mod. Phys., 1992



fractal dimension curves depend on
statistical parameters defining random surface
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Saddle Points: The Key to Melt Pond Evolution

Ryleigh Moore, Jacob Jones, Dane Gollero, Court Strong, Ken Golden 2019

« Ponds connect through saddle points (Morse Theory).

- Red bond in lattice percolation theory ~ saddle point.




Evolution of Isoperimetric Quotient with Melt Pond Growth
(from real snow topography data)
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Ising Model for a Ferromagnet

+1 spinup blue
S H— .
W : { —1 spindown  white

applied
magnetic TH :_HZSZ_JZSS]

field <1,7>

= nearest neighbor Ising Hamiltonian
islands or n. ferromagnetic interaction J > 0
ponds of
like spms

magnetization

ﬁ'.‘-;l |-I.'.. M(T,H) = lim i<z:sj>

M EE ‘ N — 00 N -
J
homogenized parameter
like effective conductivity
Ol Stieltjes integral representation for M

Curie point
critical temperature Baker, PRL 1968



Ising model for ferromagnets =3 [sing model for melt ponds

W Ma, Sudakov, Strong, Golden, New J. Phys. 2019

2-D Ising Model

N N f +1 water  (spin up) random magnetic field
Hy =—J <Z> SiSj — ZHZ S Si = * 1 e (spin down) represents snow topography
1,9 1
o o ond coverage M+ 1) only nearest neighbor
magnetization M = lim — <; 3j> P ~ albedo J 5 patches interact

Starting with random initial configurations, as Hamiltonian energy is minimized
by Glauber spin flip dynamics, system “flows” toward metastable equilibria.

Melt ponds are metastable islands of like spins.
Order from Disorder

pond size distribution
exponent

observed
D A observed -1.5
model (Perovich, et al. 2002)
11 model -1.58

10°10' 10% 10° 10*
2
melt pond A (m?)
phOtO (Perovich)

ONLY MEASURED INPUT = LENGTH SCALE (GRID SIZE) from snow topography data



The distribution of solar energy
under ponded first-year sea ice

Horvat, Flocco, Rees Jones, Roach, Golden, in revision, 2019

e Model for 3D light field under ponded sea ice.

e Distribution of solar energy at depth influenced by shape
and connectivity of melt ponds, as well as area fraction.

e Aggregate properties of the sub-ice light field, such as a significant
enhancement of available solar energy under the ice, are controlled
by parameter closely related to pond fractal geometry.

e Model and analysis explain how melt pond geometry homogenizes
under-ice light field, affecting habitability.

Pond geometry affects the ecology of the Arctic Ocean.



The Melt Pond Conundrum:
How can ponds form on top of sea ice that is highly permeable?

C. Polashenski, K. M. Golden, D. K. Perovich, E. Skyllingstad, A. Arnsten, C. Stwertka, N. Wright

Percolation Blockage: A Process that Enables Melt Pond Formation on First Year Arctic Sea Ice

J. Geophys. Res. Oceans 2017

2014 Study of Under Ice Blooms in the Chuckchi Ecosystem (SUBICE)
aboard USCGC Healy



Conclusions

1. Seaice is a fascinating multiscale composite with structure
similar to many other natural and man-made materials.

2. Mathematical methods developed for sea ice advance the
theory of composites in general.

2. Homogenization and statistical physics help link scales in sea ice
and composites; provide rigorous methods for finding effective

behavior; advance sea ice representations in climate models.

3. Fluid flow through sea ice mediates melt pond evolution and many
processes important to climate change and polar ecosystems.

5. Field experiments are essential to developing relevant mathematics.

6. Our research will help to improve projections of climate change,
the fate of Earth’s sea ice packs, and the ecosystems they support.
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Arctic sea ice decline:
faster than predicted by climate models
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challenge

represent sea ice more realistically in climate models
account for key processes

such as melt pond evolution

How do patterns of
dark and light evolve?

Impact of melt ponds on Arctic seaice
simulations from 1990 to 2007

Flocco, Schroeder, Feltham, Hunke, JGR Oceans 2012

For simulations with ponds
September ice volume is nearly 40% lower.

... and other sub-grid scale structures and processes

linkage of scales
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