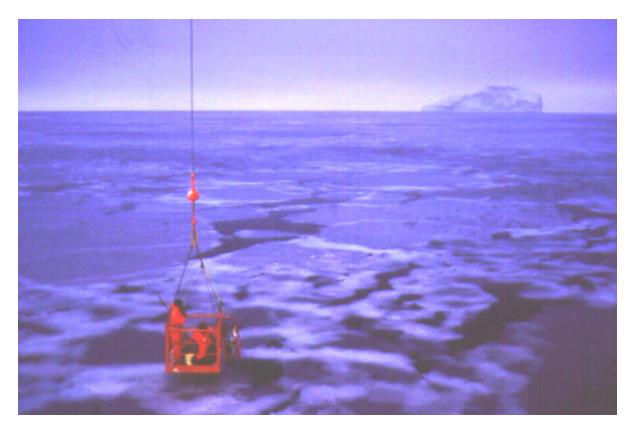
Sea ice processes in Antarctic polynyas

Kenneth M. Golden

Department of Mathematics University of Utah



Mertz Glacier Polynya, July 1999

AIMS Orlando 1 July 2012

ANTARCTICA

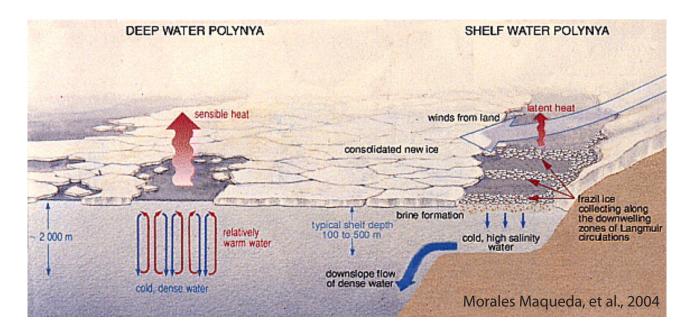
southern cryosphere

Polynyas

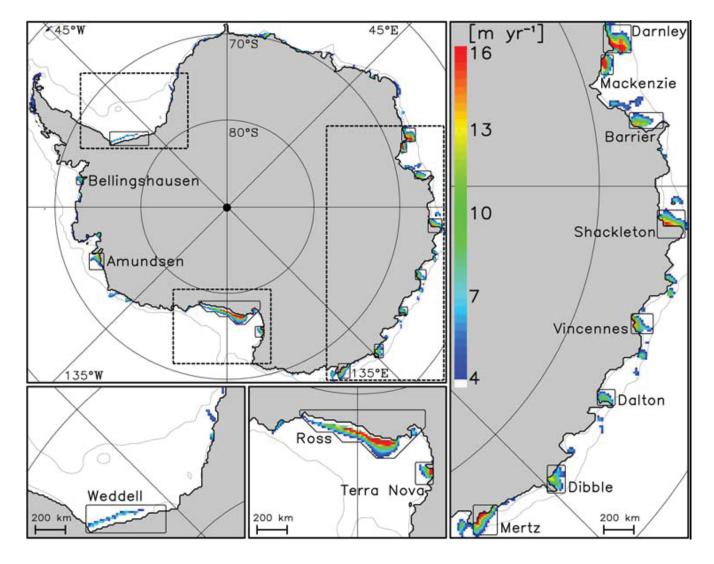
Size: 100 m - 1000 km

Two mechanisms can contribute to keeping polynyas open:

- 1. Latent heat (or coastal) polynyas: Mertz Glacier Polynya
 - Sea ice grows in open-water and is continually removed by winds and currents (e.g. katabatic winds)
 - latent heat released to the ocean during ice formation perpetuates the process
- 2. Sensible heat (or open-ocean) polynyas: Weddell Polynya Upwelling warm waters, vertical heat diffusion, or convection may provide enough oceanic heat flux to maintain ice-free region



Antarctic coastal polynyas = ice factories

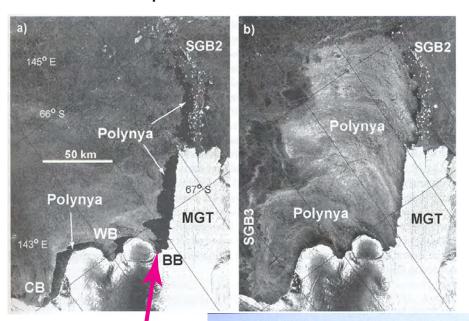


around 10% of Southern Ocean sea ice is produced in the major Antarctic coastal polynyas ice production in Ross Ice Shelf Polynya decreased by about 30% from the 1990's to the 2000's (caused by atmospheric warming or decreased polynya size from calving icebergs)

candidate for causing recent freshening of AABW

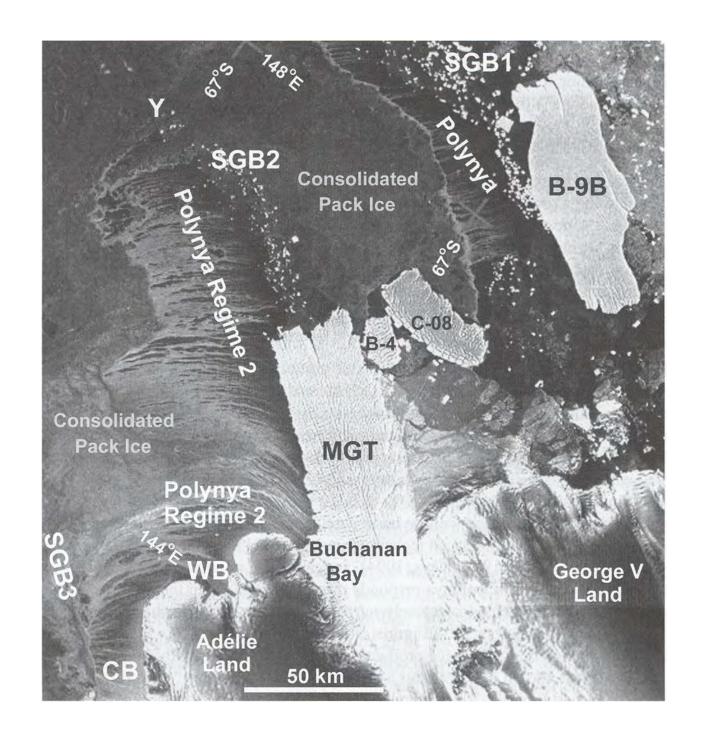
polynyas ice factories

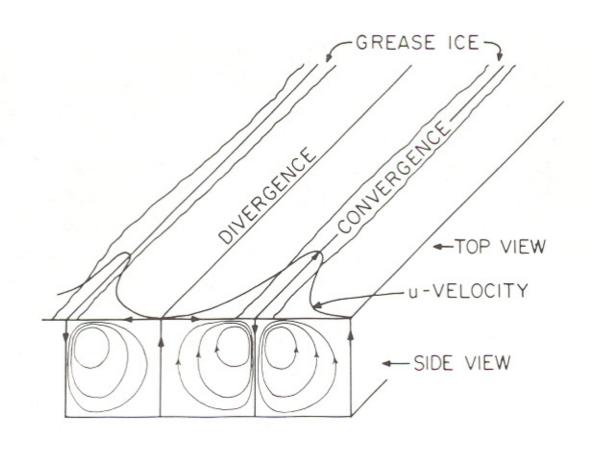
Mertz Glacier Polynya, located in East Antarctica, covers only 0.001% of the overall Antarctic sea ice zone at its maximum winter extent, but is responsible for 1% of the total sea ice production in the Southern Ocean.



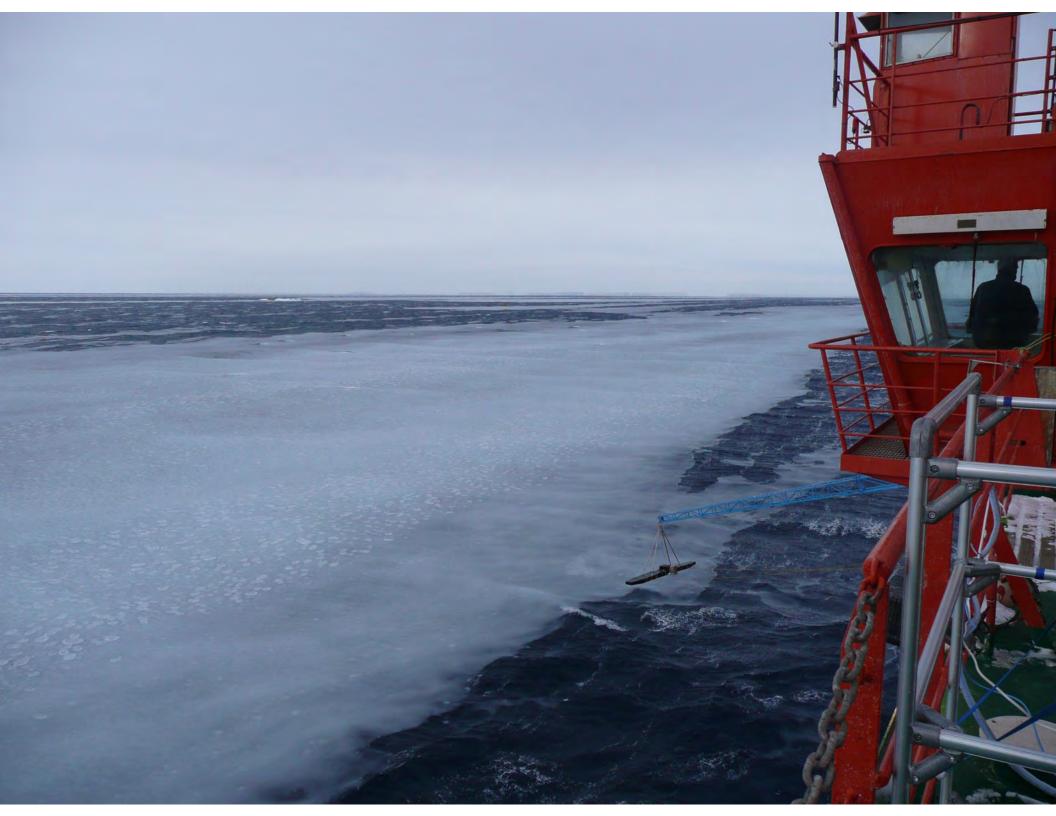
Buchanan Bay

Mertz Glacier Polynya -- third largest Antarctic sea ice producer

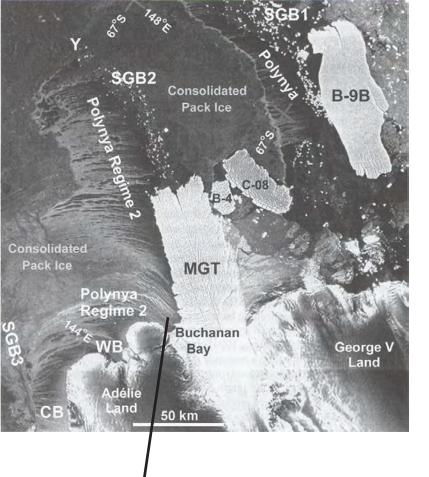




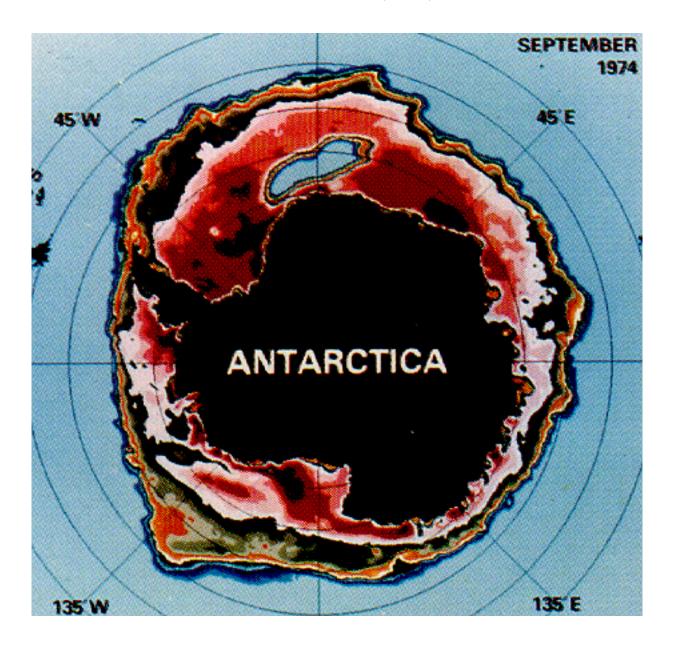
effect of Langmuir circulation on grease and pancake ice



pancake ice

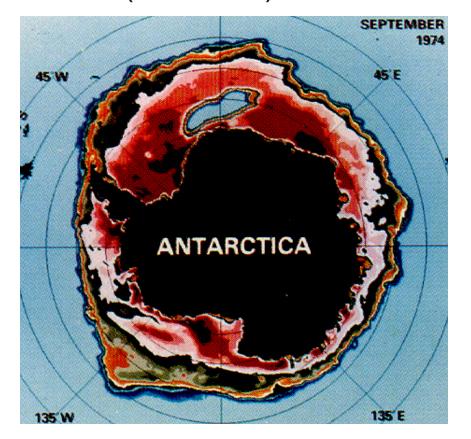


Weddell Polynya



Antarctic Zone Flux Experiment (ANZFLUX) 1994

Antarctic Zone Flux Experiment (ANZFLUX) 1994



dynamic equilibrium of sea ice thickness

snow loading during storms

surface flooding ->
snow-ice formation

controlled by ice permeability

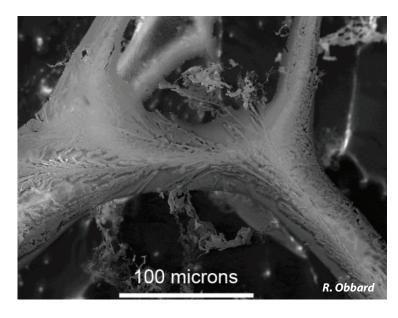
snow-ice growth a key process in Antarctic

may become more important in Arctic with thinning ice and increased precipitation

Ackley, Lytle, Golden, Darling, Kuehn, 1995 Maksym and Jeffries, 2001

Maksym and Markus, 2008 Maksym and Golden, 2012

brine inclusions in sea ice (mm)



micro - brine channel (SEM)

sea ice is a porous composite

pure ice with brine, air, and salt inclusions

brine channels (cm)

horizontal section

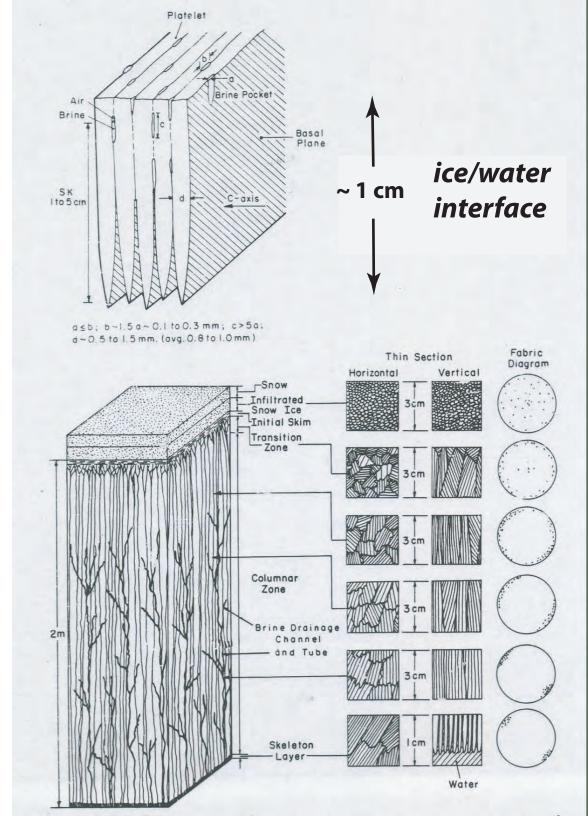
vertical section

cross-sections of sea ice structure

$$T_{freeze} = -1.8$$
° C

crystallographic texture

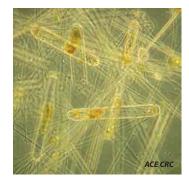
vertical thin section



fluid flow through porous sea ice mediates key processes in polar climate and ecosystems:

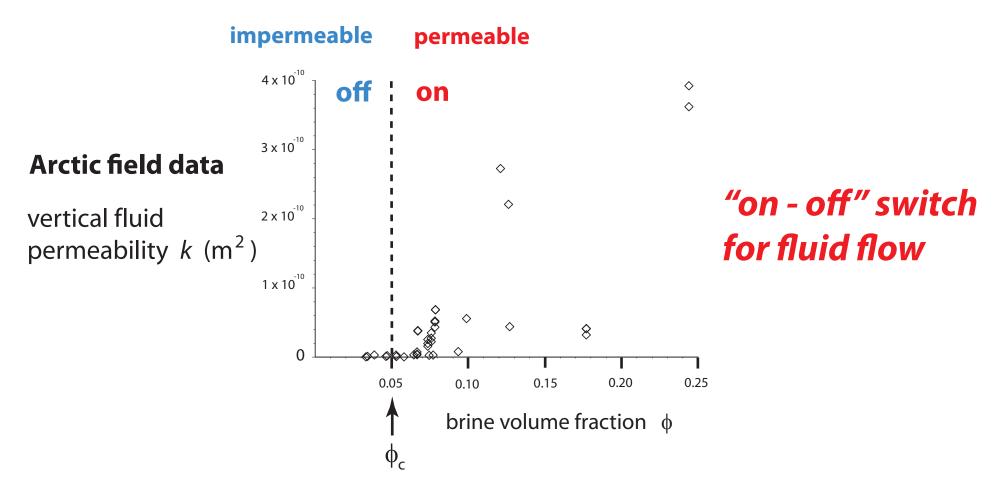
evolution of Arctic melt ponds and sea ice albedo

nutrient flux for algal communities



- formation and melting of sea ice
- drainage of brine and melt water
- ocean-ice-atmosphere exchanges of heat, brine, CO2
- growth and decline of microbial communities

Critical behavior of fluid transport in sea ice



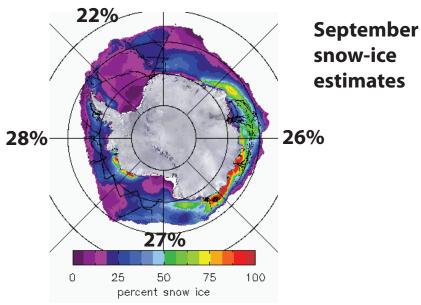
critical brine volume fraction
$$\phi_c \approx 5\%$$
 \longrightarrow $T_c \approx -5^{\circ} \text{C}$, $S \approx 5 \text{ ppt}$

RULE OF FIVES

Golden, Ackley, Lytle Science 1998 Golden, Eicken, Heaton, Miner, Pringle, Zhu Geophys. Res. Lett. 2007 Pringle, Miner, Eicken, Golden J. Geophys. Res. 2009

rule of fives constrains:

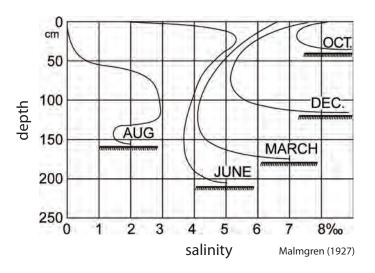
Antarctic surface flooding and snow-ice formation



Antarctic snow-to-ice conversion from passive microwave imagery

T. Maksym and T. Markus, 2008

evolution of salinity profiles



currently assumed constant in climate models

convection - enhanced thermal conductivity

Lytle and Ackley, 1996 Trodahl, et. al., 2000, 2001 Wang, Zhu, Golden, 2012

sea ice algal communities

D. Thomas 2004

nutrient replenishment controlled by ice permeability

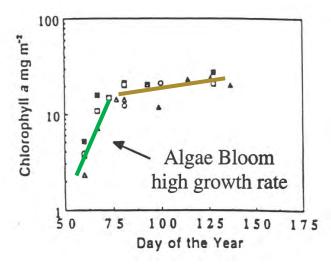
biological activity turns on or off according to rule of fives

Golden, Ackley, Lytle

Science 1998

Fritsen, Lytle, Ackley, Sullivan Science 1994

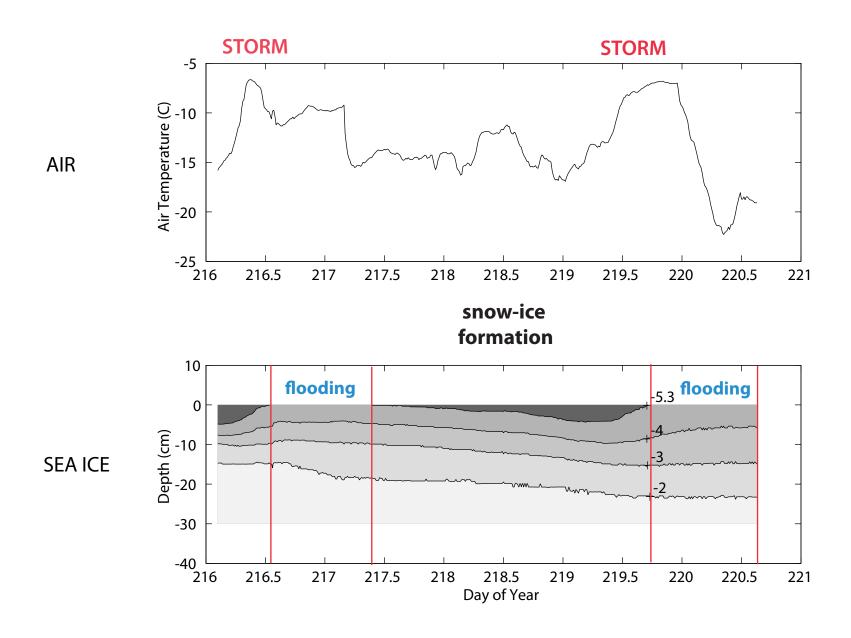
critical behavior of microbial activity



Convection-fueled algae bloom Ice Station Weddell

ANZFLUX drift camp

snow loading, surface flooding and subsequent snow-ice formation

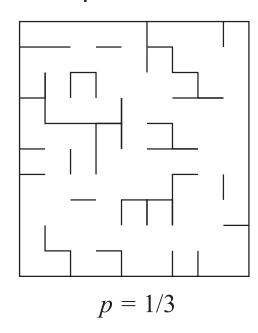


theoretical models explaining the rule of fives and fluid flow properties

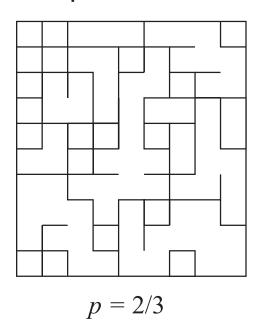
percolation theory

mathematical theory of connectedness

impermeable



permeable



a bond is open with probability p closed with probability 1-p

percolation threshold

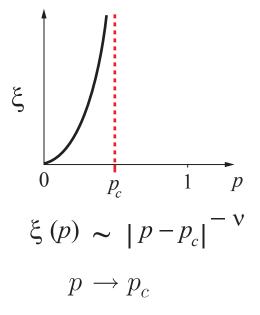
$$p_c = 1/2$$
 for $d = 2$

first appearance of infinite cluster

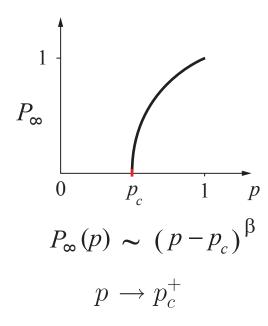
order parameters in percolation theory

geometry

characteristic scale of connectedness

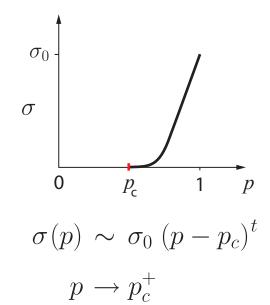


infinite cluster density probability the origin belongs to infinte cluster



transport

effective conductivity or fluid permeability



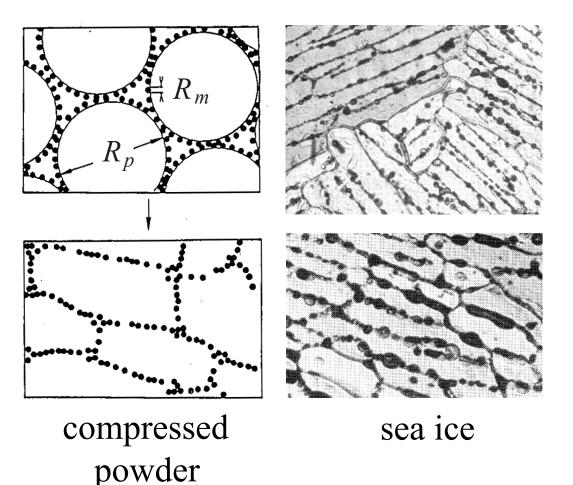
UNIVERSAL critical exponents for lattices -- depend only on dimension

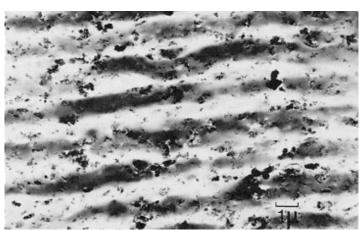
 $(1 \le t \le 2$, Golden, Phys. Rev. Lett. 1990; Comm. Math. Phys. 1992)

non-universal behavior in continuum

Continuum percolation model for stealthy materials applied to sea ice microstructure explains Rule of Fives and Antarctic data on ice production and algal growth

 $\phi_c \approx 5 \%$ Golden, Ackley, Lytle, *Science*, 1998





microstructure of radar absorbing composite

Geophysical Research Letters 28 AUGUST 2007 Volume 34 Number 16 American Geophysical Union A unified approach to understanding permeability in sea ice . Solving the mystery of booming sand dunes . Entering into the "greenhouse century": A case study from Switzerland

rigorous bounds percolation theory hierarchical model network model

field data

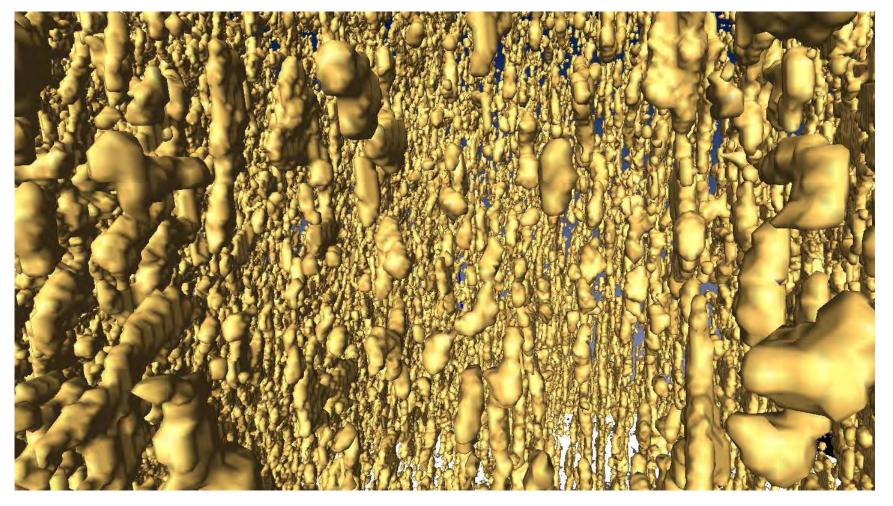
X-ray tomography for brine inclusions

unprecedented look at thermal evolution of brine phase and its connectivity

micro-scale controls macro-scale processes

X-ray computed tomography of brine inclusions in sea ice

~ 1 cm across

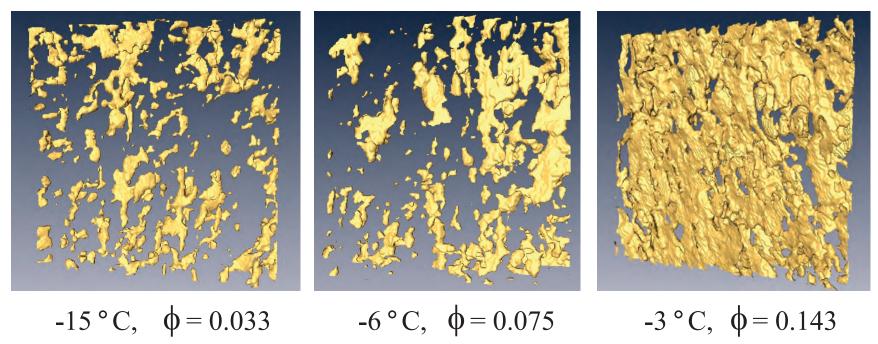


brine volume fraction $\phi = 5.7 \%$ $T = -8 ^{\circ}C$

Golden, Eicken, Heaton, Miner, Pringle, Zhu, Geophys. Res. Lett. 2007

brine connectivity (over cm scale)

 $8 \times 8 \times 2 \text{ mm}$



X-ray tomography confirms percolation threshold

3-D images pores and throats

3-D graph nodes and edges

analyze graph connectivity as function of temperature and sample size

- use finite size scaling techniques to confirm rule of fives
- order parameter data from a natural material

lattice and continuum percolation theories yield:

$$k (\phi) = k_0 (\phi - \phi_c)^2$$
 critical exponent
$$k_0 = 3 \times 10^{-8} \text{ m}^2$$

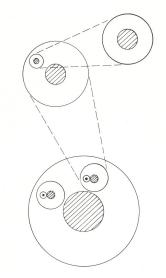
- exponent is UNIVERSAL lattice value $t \approx 2.0$ from general structure of brine inclusion distribution function (-- other saline ice?)
- sedimentary rocks like sandstones also exhibit universality
- critical path analysis -- developed for electronic hopping conduction -- yields scaling factor k_0
- no free parameters microstructural input only

hierarchical and network models

hierarchical model: y = 3 x - 7.5-7 percolation -8 theory $y = \log k$ -10 -11 -12 -13 -14 -15 -1.6 -1.4 -1.2 -0.8 -0.6 $x = \log \phi$

statistical best fit of data: y = 3.05 x - 7.50

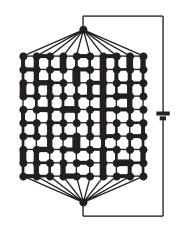
brine-coated spherical ice grains

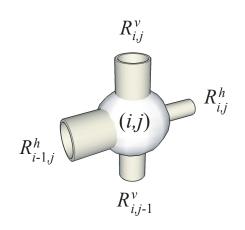


$$k\left(\phi\right) = k_0 \phi^3$$

self-similar model used for porous rocks

Sen, Scala, Cohen 1981 Sheng 1990 Wong, Koplick, Tomanic 1984





random pipe network with radii chosen from measured inclusion distributions, solved with fast multigrid method

Zhu, Jabini, Golden, Eicken, Morris, Annals of Glaciology, 2006 Golden et al., Geophysical Research Letters, 2007 Zhu, Golden, Gully and Sampson, Physica B, 2010

develop electromagnetic methods of monitoring fluid transport and microstructure

extensive measurements of fluid and electrical transport properties of sea ice:

2007 Antarctic SIPEX

2010 Arctic Barrow AK

2010 Antarctic McMurdo Sound

2011 Arctic Barrow AK

2012 Arctic Barrow AK

2012 Antarctic SIPEX II

electrical measurements

urements Wenner array



vertical conductivity

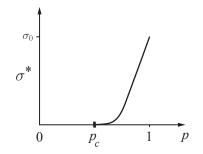
Zhu, Golden, Gully, Sampson *Physica B* 2010 Sampson, Golden, Gully, Worby *Deep Sea Research* 2011

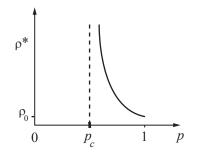
critical behavior of electrical transport in sea ice

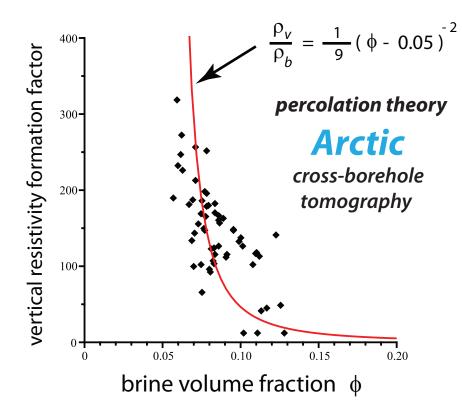
electrical signature of the on-off switch for fluid flow

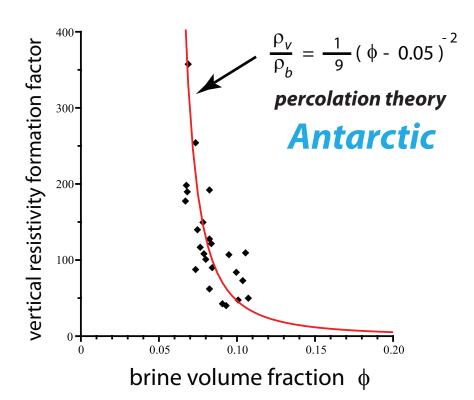
same universal critical exponent as for fluid permeability

studied for over 50 years but no previous observations or theory of critical behavior

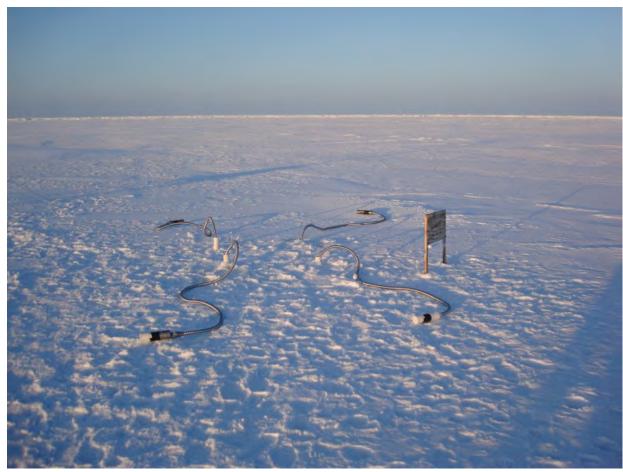




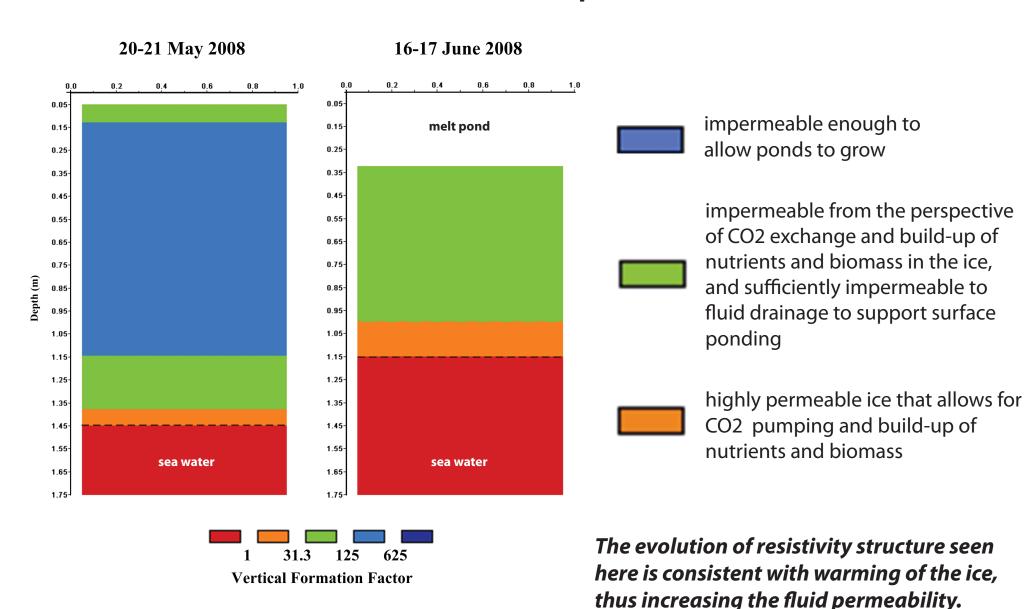




cross borehole tomography



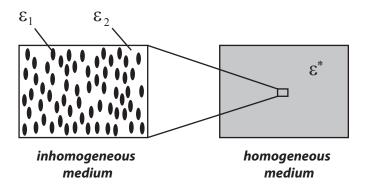
Cross-borehole tomographic reconstructions of the vertical resistivity formation factor for Arctic sea ice before and after melt pond formation



Golden, Eicken, Gully, Ingham, Jones, Lin, Reid, Sampson, and Worby 2012

multiscale homogenization

Theory of Effective Electromagnetic Behavior of Composites analytic continuation method



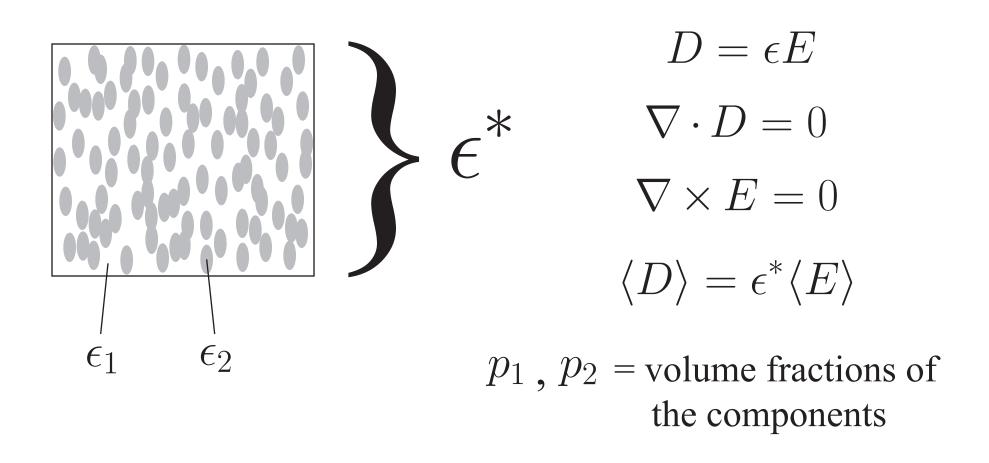
Forward Homogenization Bergman (1978), Milton (1979), Golden and Papanicolaou (1983)

integral representations, rigorous bounds, approximations, etc.

Inverse Homogenization Cherkaev and Golden (1998), Day and Thorpe (1999), Cherkaev (2001) (McPhedran, McKenzie, and Milton, 1982)

recover brine volume fraction, connectivity, etc.

Effective complex permittivity of a two phase composite in the quasistatic (long wavelength) limit



$$\epsilon^* = \epsilon^* \left(\frac{\epsilon_1}{\epsilon_2} \right)$$
, composite geometry

Stieltjes integral representation

$$F(s) = 1 - \frac{\epsilon^*}{\epsilon_2}$$
, $s = \frac{1}{1 - \epsilon_1/\epsilon_2}$ complex s-

$$F(s) = \int_0^1 \frac{d\mu(z)}{s-z} \; , \quad \mu \underset{\text{higher moments depend}}{\text{//}} \int_0^1 \frac{d\mu(z)}{s-z} \; , \quad \mu \underset{\text{higher moments depend}}{\text{//}} \int_0^1 \frac{d\mu(z)}{s-z} \; , \quad \mu \underset{\text{higher moments depend}}{\text{//}} \int_0^1 \frac{d\mu(z)}{s-z} \; , \quad \mu \underset{\text{higher moments depend}}{\text{//}} \int_0^1 \frac{d\mu(z)}{s-z} \; , \quad \mu \underset{\text{higher moments depend}}{\text{//}} \int_0^1 \frac{d\mu(z)}{s-z} \; , \quad \mu \underset{\text{higher moments depend}}{\text{//}} \int_0^1 \frac{d\mu(z)}{s-z} \; , \quad \mu \underset{\text{higher moments depend}}{\text{//}} \int_0^1 \frac{d\mu(z)}{s-z} \; , \quad \mu \underset{\text{higher moments depend}}{\text{//}} \int_0^1 \frac{d\mu(z)}{s-z} \; , \quad \mu \underset{\text{higher moments depend}}{\text{//}} \int_0^1 \frac{d\mu(z)}{s-z} \; , \quad \mu \underset{\text{higher moments depend}}{\text{//}} \int_0^1 \frac{d\mu(z)}{s-z} \; , \quad \mu \underset{\text{higher moments depend}}{\text{//}} \int_0^1 \frac{d\mu(z)}{s-z} \; , \quad \mu \underset{\text{higher moments depend}}{\text{//}} \int_0^1 \frac{d\mu(z)}{s-z} \; , \quad \mu \underset{\text{higher moments depend}}{\text{//}} \int_0^1 \frac{d\mu(z)}{s-z} \; , \quad \mu \underset{\text{higher moments depend}}{\text{//}} \int_0^1 \frac{d\mu(z)}{s-z} \; , \quad \mu \underset{\text{higher moments depend}}{\text{//}} \int_0^1 \frac{d\mu(z)}{s-z} \; , \quad \mu \underset{\text{higher moments depend}}{\text{//}} \int_0^1 \frac{d\mu(z)}{s-z} \; , \quad \mu \underset{\text{higher moments depend}}{\text{//}} \int_0^1 \frac{d\mu(z)}{s-z} \; , \quad \mu \underset{\text{higher moments depend}}{\text{//}} \int_0^1 \frac{d\mu(z)}{s-z} \; , \quad \mu \underset{\text{higher moments depend}}{\text{//}} \int_0^1 \frac{d\mu(z)}{s-z} \; , \quad \mu \underset{\text{higher moments depend}}{\text{//}} \int_0^1 \frac{d\mu(z)}{s-z} \; , \quad \mu \underset{\text{higher moments depend}}{\text{//}} \int_0^1 \frac{d\mu(z)}{s-z} \; , \quad \mu \underset{\text{higher moments depend}}{\text{//}} \int_0^1 \frac{d\mu(z)}{s-z} \; , \quad \mu \underset{\text{higher moments depend}}{\text{//}} \int_0^1 \frac{d\mu(z)}{s-z} \; .$$

spectral measure of

- on *n*-point correlations

representation separates

GEOMETRY μ from medium parameters in S

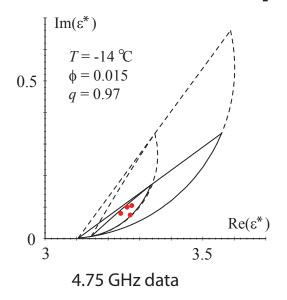
$$E = (s + \Gamma \chi)^{-1} e_k$$

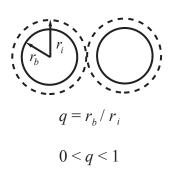
$$\Gamma = \nabla (-\Delta)^{-1} \nabla \cdot$$

 $\chi = \text{indicator function}$ of medium 1

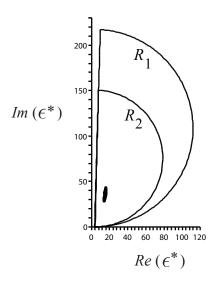
forward and inverse bounds for sea ice

matrix particle bounds





Golden 1997

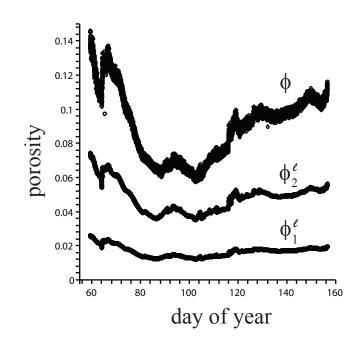


50 MHz capacitance probe data taken near Barrow, AK

inverse bounds and microstructural recovery

Gully, Backstrom, Eicken, Golden, Physica B, 2007

polycrystalline bounds *Gully, Lin, Cherkaev, Golden, 2012*

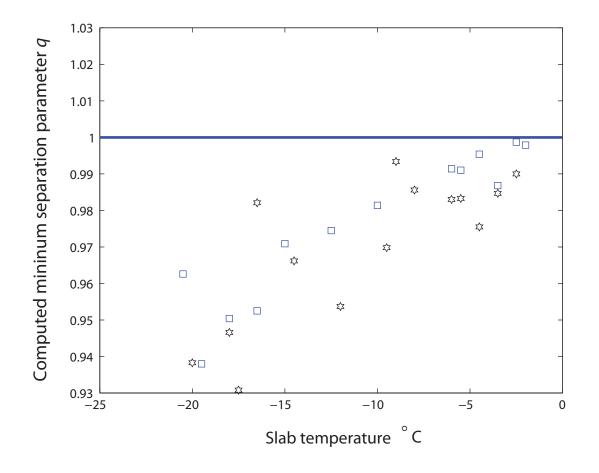


Recovery of inclusion separations in strongly heterogeneous composites from effective property measurements

Chris Orum, Elena Cherkaev, Ken Golden, Proc. Roy. Soc. A, 2012

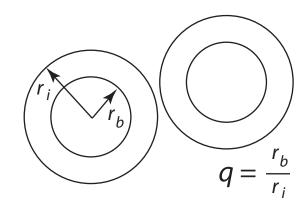
matrix particle composites (O. Bruno, 1991)

reduced spectral inversion -- construct algebraic curves which bound admissible region in (p,q)-space, q = separation parameter < 1

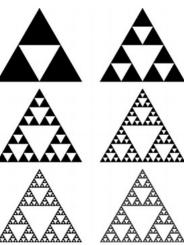


rigorous inverse bound on spectral gap

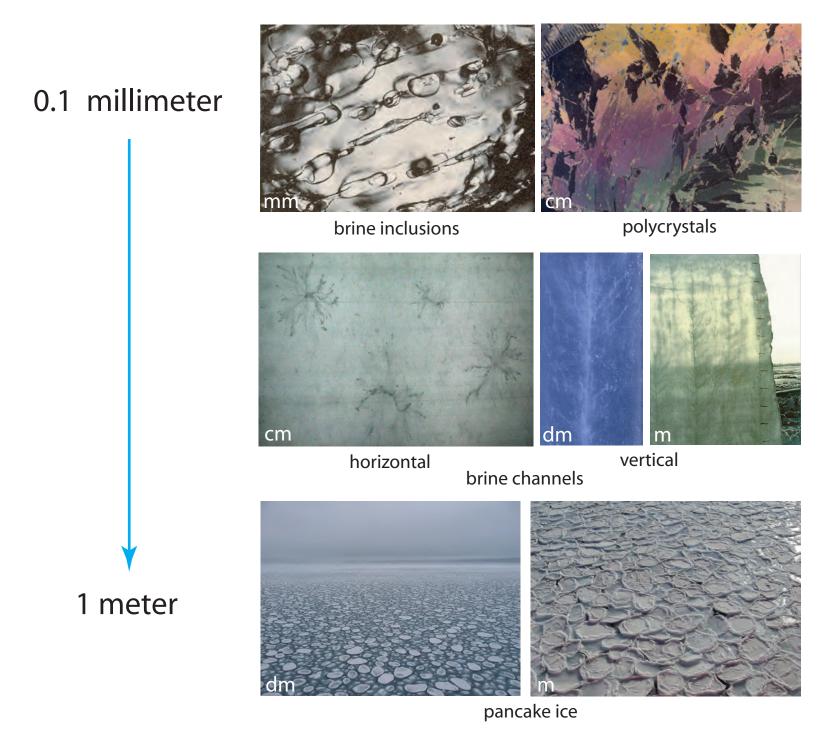
inversion for brine inclusion separations in sea ice from measurements of effective complex permittivity



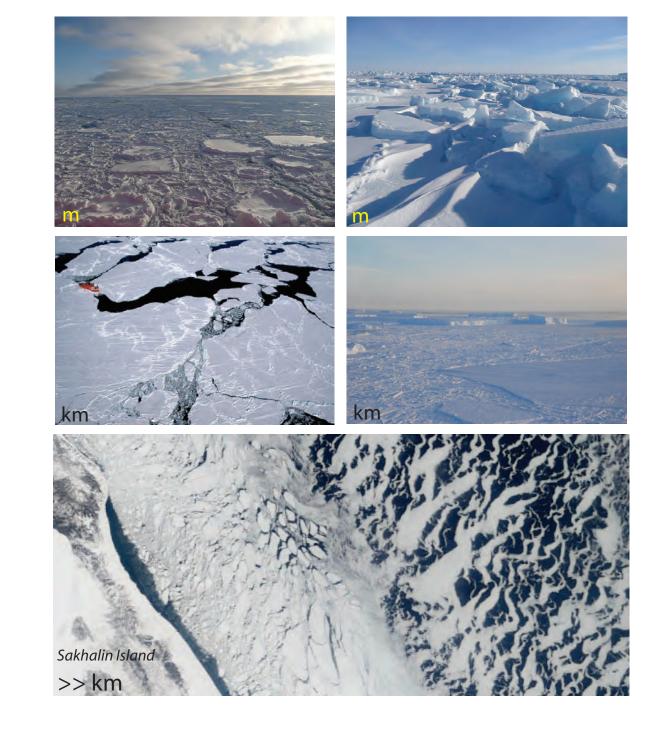
fractals and multiscale structure



sea ice displays *multiscale* structure over 10 orders of magnitude



1 meter



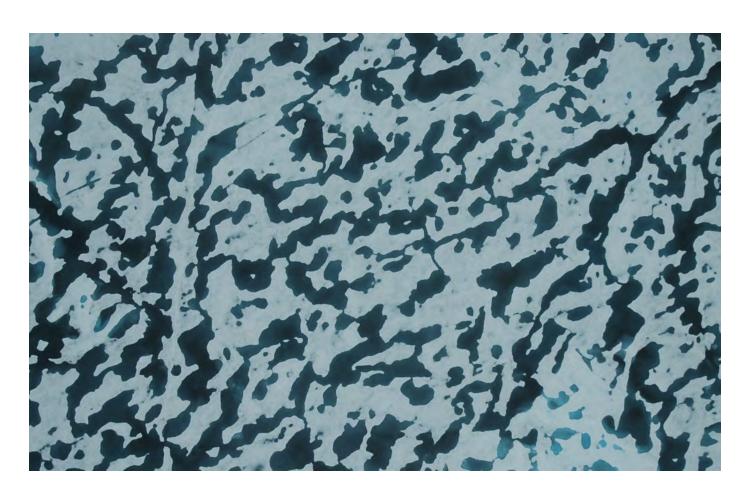
100 kilometers

melt pond formation and albedo evolution:

- major drivers in polar climate
- key challenge for global climate models

Do melt ponds exhibit interesting multiscale structure?

Are there universal features of the evolution similar to phase transitions in statistical mechanics?

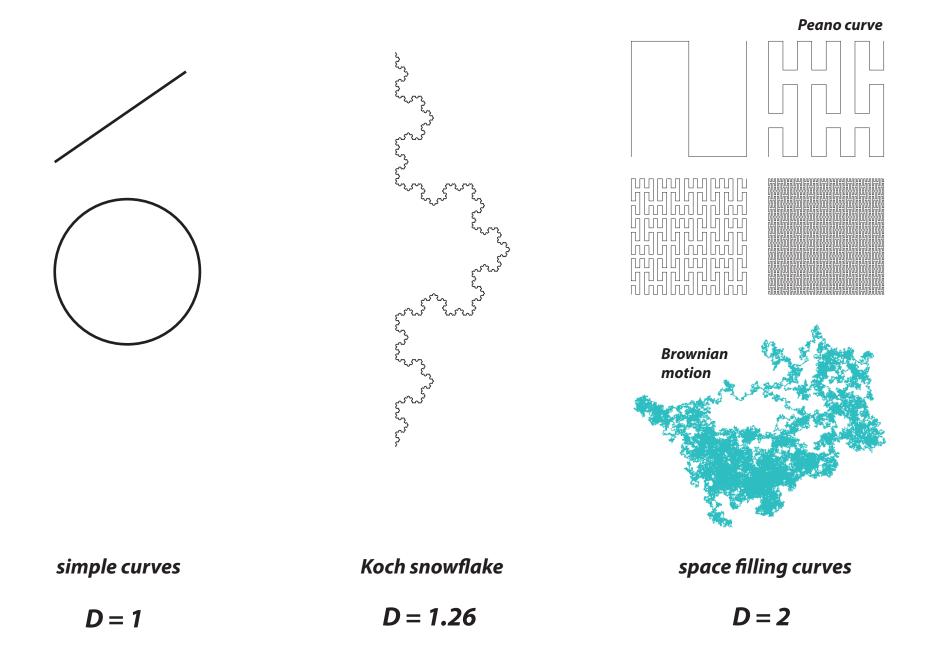


Transition in the fractal geometry of Arctic melt ponds

Christel Hohenegger, Bacim Alali, Kyle Steffen, Don Perovich, Ken Golden

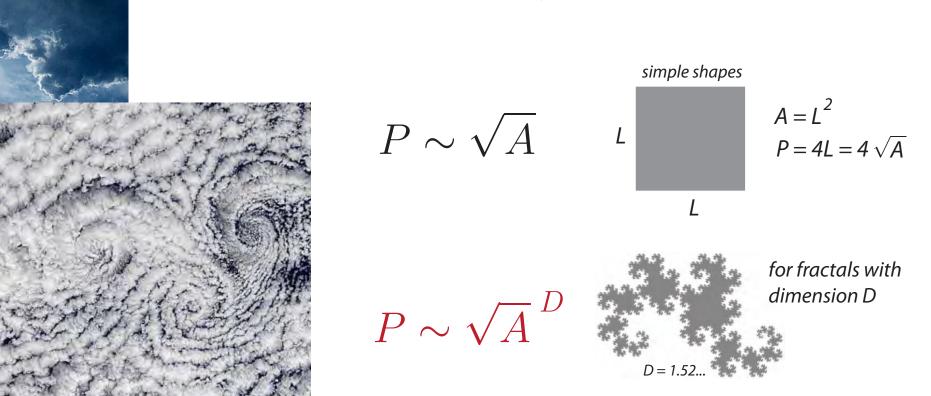
fractal curves in the plane

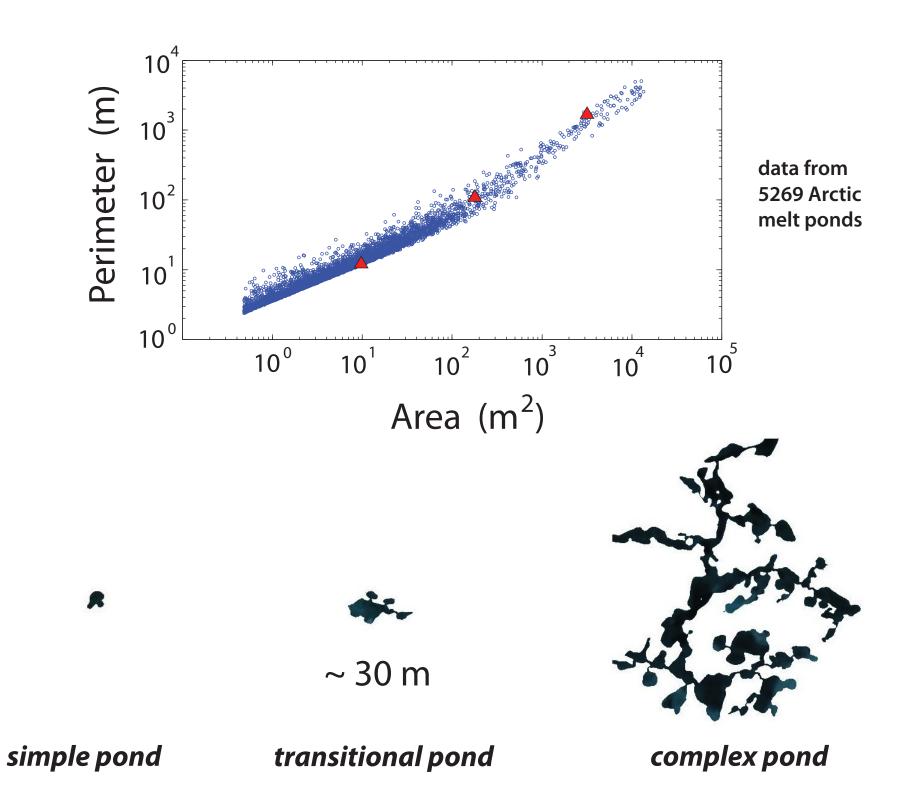
they wiggle so much that their dimension is >1



clouds exhibit fractal behavior from 1 to 1000 km

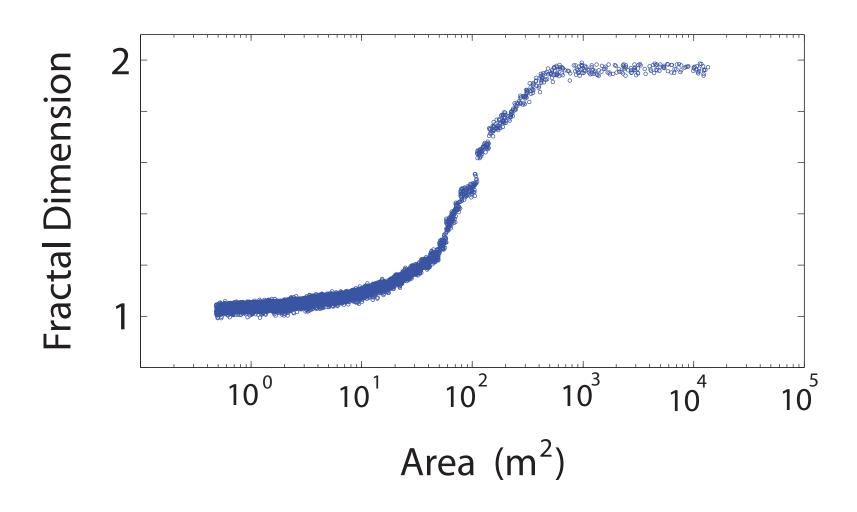
S. Lovejoy, Science, 1982





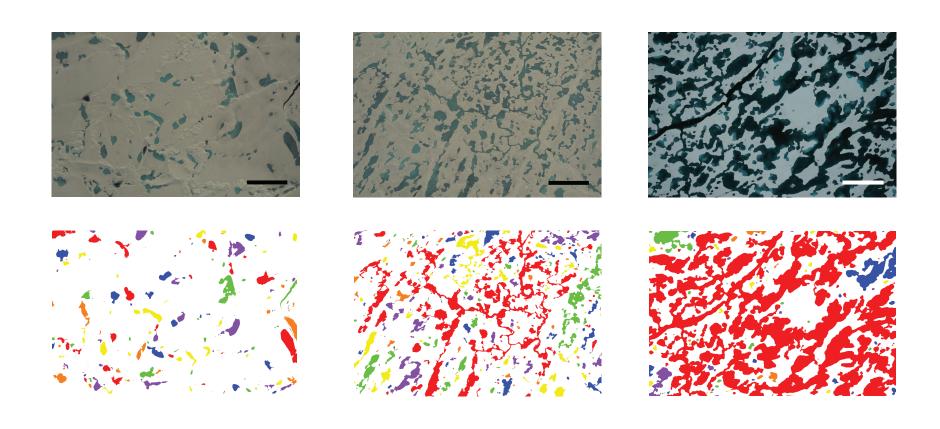
transition in the fractal dimension

complexity grows with length scale



compute "derivative" of area - perimeter data

small simple ponds coalesce to form large connected structures with complex boundaries



melt pond percolation

THANK YOU

National Science Foundation

Division of Mathematical Sciences
Arctic Natural Sciences
Office of Polar Programs

CMG Program

(Collaboration in Mathematical Geosciences)

VIGRE Program

REU Program

