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Packing problems have been a source of fascination for millennia and their study has produced
a rich literature that spans numerous disciplines. Investigations of hard-particle packing models
have provided basic insights into the structure and bulk properties of condensed phases of matter,
including low-temperature states (e.g., molecular and colloidal liquids, crystals, and glasses), mul-
tiphase heterogeneous media, granular media, and biological systems. The densest packings are of
great interest in pure mathematics, including discrete geometry and number theory. This perspective
reviews pertinent theoretical and computational literature concerning the equilibrium, metastable,
and nonequilibrium packings of hard-particle packings in various Euclidean space dimensions. In the
case of jammed packings, emphasis will be placed on the “geometric-structure” approach, which pro-
vides a powerful and unified means to quantitatively characterize individual packings via jamming
categories and “order” maps. It incorporates extremal jammed states, including the densest pack-
ings, maximally random jammed states, and lowest-density jammed structures. Packings of identical
spheres, spheres with a size distribution, and nonspherical particles are also surveyed. We close this
review by identifying challenges and open questions for future research. Published by AIP Publishing.

® CrossMark
¢

https://doi.org/10.1063/1.5036657

. INTRODUCTION

We will call a packing a large collection of nonoverlap-
ping (i.e., hard) particles in either a finite-sized container or
d-dimensional Euclidean space RY. Exclusion-volume effects
that often arise in dense many-particle systems in physi-
cal and biological contexts are naturally captured by sim-
ple packing models. They have been studied to help under-
stand the symmetry, structure, and physical properties of
condensed matter phases, including liquids, glasses, and crys-
tals, as well as the associated phase transitions.'"'® Packings
also serve as excellent models of the structure of multi-
phase heterogeneous materials,'*% colloids,'>?*?* suspen-
sions,?>% and granular media,?”-*® which enables predictions
of their effective transport, mechanical, and electromagnetic
properties.”’

Packing phenomena are also ubiquitous in biological con-
texts and occur in systems across a wide spectrum of length
scales. This includes DNA packing within the nucleus of a
cell,? the “crowding” of macromolecules within living cells,
the packing of cells to form tissues,”%*!33 the fascinating spi-
ral patterns seen in plant shoots and flowers (phyllotaxis),*3>
and the competitive settlement of territories.?0-¢

Understanding the symmetries and other mathematical
properties of the densest sphere packings in various spaces
and dimensions is a challenging area of long-standing interest
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in discrete geometry and number theory>’~” as well as coding

theory.3”404! Packing problems are mathematically easy to
pose, but they are notoriously difficult to solve rigorously. For
example, in 1611, Kepler was asked the following question:
What is the densest way to stack equal-sized cannon balls?
His solution, known as “Kepler’s conjecture,” was the face-
centered-cubic (fcc) arrangement (the way your green grocer
stacks oranges). Gauss*? proved that this is the densest Bra-
vais lattice packing (defined below). Remarkably, nearly four
centuries passed before Hales proved the general conjecture
that there is no other sphere packing in three-dimensional (3D)
Euclidean space whose density can exceed that of the fcc pack-
ing.*3 Even the proof that the densest packing of congruent
(identical) circles in the plane is the triangular-lattice packing
appeared only 80 years ago; see Refs. 37 and 39 for the history
of this problem.

One objective of this perspective is to survey recent devel-
opments concerning the simplest but venerable packing model:
identical frictionless spheres in the absence of gravity sub-
ject only to a nonoverlap constraint; i.e., the spheres do not
interact for any nonoverlapping configuration. This “stripped-
down” hard-sphere model can be viewed as the particle-system
analog of the idealized Ising model for magnetic systems,**
which is regarded as one of the pillars of statistical mechan-
ics.**7 More complex packing models can include interac-
tions that extend beyond hard-core distances, but our main
concern here is the aforementioned classic version. This model
enables one to uncover unifying principles that describe a
broad range of phenomena, including the nature of equilibrium
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states of matter (e.g., liquids and crystals), metastable and
nonequilibrium states of matter (e.g., supercooled liquids and
structural glasses), and jamming phenomena.

Jammed sphere packings represent an important subset of
hard-sphere configurations and have attracted great attention
because they capture salient characteristics of crystals, glasses,
granular media, and biological systems>’-324448-53 and nat-
urally arise in pure mathematical contexts.’”>*>> Jammed
packings are those in which each particle has a requisite
number of contacting particles in order for the packing to
achieve a certain level of mechanical stability. This review
focuses on the so-called “geometric-structure” approach to
jammed particle packings, which provides a powerful and uni-
fied means to quantitatively understand such many-particle
systems. It incorporates not only the maximally dense pack-
ings and disordered jammed packings but also a myriad of
other significant jammed states, including maximally random
jammed (MRJ) states,***’ which can be regarded to be proto-
typical structural glasses, as well as the lowest-density jammed
packings.”®

Importantly, the simplified hard-sphere model embodies
the primary structural attributes of dense many-particle sys-
tems in which steep repulsive interparticle interactions are
dominant. For example, the densest sphere packings are inti-
mately related to the (zero-temperature) ground states of such
molecular systems®’ and high-pressure crystal phases. Indeed,
the equilibrium hard-sphere model'? also serves as a natural
reference system in the thermodynamic perturbation theory of
liquids characterized by steep isotropic repulsive interparticle
interactions at short distances as well as short-range attrac-
tive interactions.”>® Moreover, the classic hard-sphere model
provides a good description of certain classes of colloidal
systems.?>3°-62 Note that the hard-core constraint does not
uniquely specify the hard-sphere model; there are an infinite
number of nonequilibrium hard-sphere ensembles, some of
which will be surveyed.

We will also review work that describes generalizations of
this simplified hard-sphere model to include its natural exten-
sion to packings of hard spheres with a size distribution. This
topic has relevance to understanding dispersions of techno-
logical importance (e.g., solid propellant combustion,®* flow
in packed beds,%* and sintering of powders®), packings of bio-
logical cells, and phase behavior of various molecular systems.
For example, the densest packings of hard-sphere mixtures
are intimately related to high-pressure phases of compounds
for a range of temperatures.®®%’ Another natural extension
of the hard-sphere model that will be surveyed is hard non-
spherical particles in two and three dimensions. Asphericity
in particle shape is capable of capturing the salient features
of phases of molecular systems with anisotropic pair interac-
tions (e.g., liquid crystals) and is also a more realistic charac-
teristic of real granular media. In addition, we will review
the aspects of dense sphere packings in high-dimensional
Euclidean spaces, which provide useful physical insights
and are relevant to error-correcting codes and information
theory.?740

We begin this perspective by introducing relevant defi-
nitions and background (Sec. II). This is followed by a sur-
vey of work on equilibrium, metastable, and nonequilibrium
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packings of identical spheres and polydisperse spheres in one,
two, and three dimensions (Sec. III). The geometric struc-
ture approach to jammed and unjammed packings, includ-
ing their classification via order maps, is emphasized. Sub-
sequently, the corresponding results for sphere packings in
high Euclidean and non-Euclidean space dimensions (Sec. [V)
and packings of nonspherical particles in low-dimensional
Euclidean spaces (Sec. V) are reviewed. Finally, we describe
some challenges and open questions for future research
(Sec. VI).

Il. DEFINITIONS AND BACKGROUND

A packing P is a collection of nonoverlapping solid objects
or particles of general shape in d-dimensional Euclidean space
RY. Packings can be defined in other spaces (e.g., hyper-
bolic spaces and compact spaces, such as the surface of a
d-dimensional sphere), but our primary focus in this review
is RY. A saturated packing is the one in which there is no
space available to add another particle of the same kind to the
packing. The packing fraction ¢ is the fraction of space R?
covered by the particles.

A d-dimensional particle is centrally symmetric if it has
a center C that bisects every chord through C connecting
any two boundary points of the particle; i.e., the center is
a point of inversion symmetry. Examples of centrally sym-
metric particles in RY include spheres, ellipsoids, and super-
balls (defined in Sec. V). A triangle and a tetrahedron are
examples of non-centrally symmetric 2D and 3D particles,
respectively. A d-dimensional centrally symmetric particle for
d > 2 is said to possess d equivalent principal axes (orthogo-
nal directions) associated with the moment of inertia tensor
if these directions are two-fold rotational symmetry axes.
Whereas a d-dimensional superball has d equivalent direc-
tions, a d-dimensional ellipsoid generally does not. The reader
is referred to Ref. 44 for further discussion concerning particle
symmetries.

A lattice A in RY is a subgroup consisting of the integer
linear combinations of vectors that constitute a basis for R?.
In the physical sciences, this is referred to as a Bravais lat-
tice. The term “lattice” will refer here to a Bravais lattice only.
Every lattice has a dual (or reciprocal) lattice A* in which
the lattice sites are specified by the dual (reciprocal) lattice
vectors.>” A lattice packing Py is the one in which the cen-
troids of the nonoverlapping identical particles are located at
the points of A, and all particles have a common orientation.
The set of lattice packings is a subset of all possible packings
in RY. In a lattice packing, the space R? can be geometrically
divided into identical regions F called fundamental cells, each
of which has volume Vol(F) and contains the centroid of just
one particle of volume v;. Thus, the lattice packing fraction
is

U1

= NolF)

ey

Common d-dimensional lattices include the hypercubic 7,
checkerboard D,;, and root A lattices; see Ref. 37. Follow-
ing Conway and Sloane,?” we say two lattices are equivalent
or similar if one becomes identical to the other possibly by
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a rotation, reflection, and change of scale, for which we use
the symbol =. The A; and D, lattices are d-dimensional gen-
eralizations of the face-centered-cubic (fcc) lattice defined by
A3 = Ds; however, for d > 4, they are no longer equivalent.
In two dimensions, Ay = A; is the triangular lattice. In three
dimensions, A3 = D5 is the body-centered-cubic (bec) lattice.
In four dimensions, the checkerboard lattice and its dual are
equivalent, i.e., D4 = D;. The hypercubic lattice 74 =74 and
its dual lattice are equivalent for all d.

A periodic packing of congruent particles is obtained by
placing a fixed configuration of N particles (where N > 1) with
arbitrary orientations subject to the nonoverlapping condition
in one fundamental cell of a lattice A, which is then peri-
odically replicated. Thus, the packing is still periodic under
translations by A, but the N particles can occur anywhere in
the chosen fundamental cell subject to the overall nonoverlap
condition. The packing fraction of a periodic packing is given
by
_ N U1 _
~ Vol(F)

¢ put, 2
where p = N/Vol(F) is the number density, i.e., the number of
particles per unit volume.

For simplicity, consider a packing of N identical
d-dimensional spheres of diameter D centered at the positions
r¥ ={ry,ry,...,ry} inaregion of volume V in d-dimensional
Euclidean space R?. Ultimately, we will pass to the thermody-
namic limit, i.e., N — co, V — oo such that the number density
p = N/V is a fixed positive constant and its corresponding
packing fraction is given by

¢ = pvi(D/2), 3
where
) /2 ;
v1(R) = mR 4

is the volume of a d-dimensional sphere of radius R and I'(x)
is the gamma function. For an individual sphere, the kissing
or contact number Z is the number of spheres that may simul-
taneously touch this sphere. In a sphere packing, the mean
kissing or contact number per particle, Z, is the average of
Z over all spheres. For lattice packings, Z = Z. For sta-
tistically homogeneous sphere packings in R?, the quantity
p"g,(x") is proportional to the probability density associ-
ated with simultaneously finding n sphere centers at locations
r"={r,ry ..., r,}in R?: see Ref. 12 and the references
therein. With this convention, each n-particle correlation func-
tion g, approaches unity when all particles become widely
separated from one another for any system without long-range
order. Statistical homogeneity implies that g, is translationally
invariant and therefore only depends on the relative displace-
ments of the positions with respect to some arbitrarily chosen
origin of the system, i.e., g, = g,(r12, 13, ..., I'1,), where
rj=r;—r.

The pair correlation function g,(r) is of basic interest in
this review. If the system is also rotationally invariant (sta-
tistically isotropic), then g» depends on the radial distance
r = Irl only, i.e., g2(r) = g2(r). The fotal correlation function
is defined by A(r) = g»(r) — 1. Importantly, we focus in this
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review on disordered packings in which Ah(r) decays to zero
for large Irl sufficiently rapidly so that its volume integral over
all space exists.%®

As usual, we define the non-negative structure factor S(k)
for a statistically homogeneous packing as

S(k) = 1+ ph(k), ®)

where A(K) is the Fourier transform of (r) and k is the wave
vector. The non-negativity of S(k) for all k follows physi-
cally from the fact that it is proportional to the intensity of the
scattering of incident radiation on a many-particle system.'?
The structure factor S(k) provides a measure of the density
fluctuations in particle configurations at a particular wave vec-
tor k. For any point configuration in which the minimal pair
distance is some positive number, such as a sphere packing,
g2(r=0)=0, and A(r = 0) = —1, the structure factor obeys the
following sum rule:®

1
Q2n)?
For a single-component system in thermal equilibrium at num-
ber density p and absolute temperature 7, the structure factor at

the origin is directly related to the isothermal compressibility
k7 via the relation!?

/R IS0~ 11dk = —p. ©6)

pkBTKT = S(O), (7)

where kp is the Boltzmann constant.

It is well known from Fourier transform theory that if
a real-space radial function f(r) in R? decreases sufficiently
rapidly to zero for large r such that all of its even moments exist,
then its Fourier transform f (k), where k = Ikl is a wavenumber,
is an even and analytic function at £ = 0. Hence, S(k), defined
by (5), has an expansion about k = 0 in any space dimension d
of the general form

S(k) = So + Sok* + Ok, ®)
where Sy and S, are the d-dependent constants, defined by
So=1 +dps](1)/ rh(rdr > 0 ©)
0
and 0y
S = _%;) i r h(rdr, (10)
where 2 1
d n%“R%~
Ry ———— 11
SR = Tan+ an

is the surface area of the d-dimensional sphere of radius R. This
behavior is to be contrasted with that of maximally random
jammed sphere packings,*® which possess a structure factor
that is nonanalytic at k = 0 (Ref. 70), as discussed in greater
detail in Sec. IIT E.

A hyperuniform’! point configuration in R? is the one in
which the structure factor S(k) tends to zero as the wavenumber
tends to zero, i.e.,

|11<1|To S(k) =0, 12)

implying that single scattering of incident radiation at infi-
nite wavelengths is completely suppressed. Equivalently, a
hyperuniform system is the one in which the number variance
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0% (R) = (N(R)?) — (N(R))* of particles within a spherical
observation window of radius R grows more slowly than the
window volume, i.e., R, in the large-R limit. Point configura-
tions of this class include perfect crystals, many perfect qua-
sicrystals, and special disordered many-particle systems.”!~73
Note that the structure-factor definition (5) and the hyper-
uniformity requirement (12) dictate that the following sum
rule involving h(r) that a hyperuniform point process must
obey

p/ h(r)dr = —1. (13)
Rd

This sum rule implies that /(r) must exhibit negative correla-
tions, i.e., anticorrelations, for some values of r.

The hyperuniformity concept was generalized to incorpo-
rate two-phase heterogeneous media (e.g., composites, porous
media, and dispersions).”>’* Here the phase volume fraction
fluctuates within a spherical window of radius R and hence can
be characterized by the volume-fraction variance a‘z/(R). For
typical disordered two-phase media, the variance o-%,(R) for
large R goes to zero like R™¢. However, for hyperuniform dis-
ordered two-phase media, o-%,(R) goes to zero asymptotically
more rapidly than the inverse of the window volume, i.e., faster
than R~¢, which is equivalent to the following condition on the
spectral density gy (Kk):"*

III(I\I—I}O yvk) =0. (14)

The spectral density is proportional to the scattered intensity
associated with “mass” (volume) content of the phases.75

lll. SPHERE PACKINGS IN LOW DIMENSIONS

The classical statistical mechanics of hard-sphere systems
has generated a huge collection of scientific publications, dat-
ing back at least to Boltzmann;’® see also Refs. 12 and 77-79.
Here we focus on packings of frictionless congruent spheres
of diameter D in one, two, and three dimensions in the absence
of gravity.

It is important to observe that the impenetrability con-
straint alone of this idealized hard-sphere model does not
uniquely specify the statistical ensemble. Hard-sphere sys-
tems can be in thermal equilibrium (as discussed in Sec. III A)
or derived from one of an infinite number of nonequilibrium
ensembles”’ (see Sec. ITI B for examples).

A. Equilibrium and metastable phase behavior

The phase behavior of hard spheres provides powerful
insights into the nature of liquid, crystal, and metastable states
as well as the associated phase transitions in molecular and
colloidal systems. It is well known that the pressure p of a
stable thermodynamic phase in RY at packing fraction ¢ and
temperature 7 is simply related to the contact value of the pair
correlation function, g»(D*),%°

p

e 1+2 g (D). (15)

Away from jammed states, it has been proved that the
mean nearest-neighbor distance between spheres, A, is
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bounded from the above by the pressure,*®

A< 1+1/[2d(p/(pksT) — 1].

Figure 1 schematically shows the 3D phase behavior in the
¢—p plane. At sufficiently low densities, an infinitesimally slow
compression of the system at constant temperature defines a
thermodynamically stable liquid branch for packing fractions
up to the “freezing” point (¢ = 0.49). Increasing the density
beyond the freezing point putatively results in an entropy-
driven first-order phase transition’”-%" to a crystal branch that
begins at the melting point (¢ ~ 0.55). While there is no rig-
orous proof that such a first-order freezing transition occurs
in three dimensions, there is overwhelming simulational evi-
dence for its existence, beginning with the pioneering work
of Alder and Wainwright.”” Slow compression of the system
along the crystal branch must end at one of the optimal (maxi-
mally dense) sphere packings with ¢ = 7/V18 = 0.74048 . . .,
each of which is a jammed packing in which each particle
contacts 12 others (see Sec. III D). This equilibrium state has
an infinite pressure and is putatively entropically favored by
the fcc packing.®! Tt is noteworthy that the melting mecha-
nism of the corresponding equilibrium 2D hard-disk system
has been poorly understood over the last fifty years. A rela-
tively recent Monte Carlo study capable of thermalizing suf-
ficiently large systems (as required) reveals that melting in
such systems proceeds in two steps: a first-order liquid-hexatic
phase transition and then a continuous hexatic-solid phase
transition.'®

Importantly, compressing a hard-sphere liquid rapidly,
under the constraint that significant crystal nucleation is sup-
pressed, can produce a range of metastable branches whose
density end points are disordered “jammed” packings,!-20-82

namely,

To disordered
jammed
packings

rapid /

compression

4

. N\
freezing slow

point . compréssion
melting 1

point

[
-
3
7
(2]
[
-
o

‘\\
liquid

Packing Fraction —»

FIG. 1. The isothermal phase behavior of the 3D hard-sphere model in the
pressure-packing fraction plane, as adapted from Ref. 44. Three different
isothermal densification paths by which a hard-sphere liquid may jam are
shown. An infinitesimal compression rate of the liquid traces out the thermo-
dynamic equilibrium path (shown in green), including a discontinuity resulting
from the first-order freezing transition to a crystal branch that ends at a maxi-
mally dense infinite-pressure jammed state. Rapid compressions of the liquid
while suppressing some degree of local order (blue curves) can avoid crystal
nucleation (on short time scales) and produce a range of amorphous metastable
extensions of the liquid branch that jam only at their density maxima. Adapted
with permission from S. Torquato and F. H. Stillinger, Rev. Mod. Phys. 82,
2633 (2010). Copyright 2010 American Physical Society.
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which can be regarded to be glasses. A rapid compression leads
to a lower random jammed density than that for a slow com-
pression. The most rapid compression ending in mechanically
stable packing is presumably the maximally random jammed
(MRYJ) state® with ¢ ~ 0.64. Accurate approximate formu-
las for the pressure along such metastable extensions up to
the jamming points have been obtained.’*3* This ideal amor-
phous state is described in greater detail in Sec. III E. Note
that rapid compression of a hard-sphere system is analogous
to supercooling of a molecular liquid.

Pair statistics are exactly known only in the case of 1D
“hard-rod” systems.®* For d > 2, approximate formulas for
g2(r) are known along liquid branches.!?> Approximate clo-
sures of the Ornstein-Zernike integral equation linking the
direct correlation function c(r) to the total correlation func-
tion h(r),% such as the Percus-Yevick (PY) and hypernetted
chain schemes,>”'>8¢ provide reasonably accurate estimates
of g»(r) for hard-sphere liquids. Because g,(r) decays to unity
exponentially fast for liquid states, we can conclude that it
must have a corresponding structure factor S(k) that is an even
function and analytic at £k = 0; see Eq. (8). Also, since the
leading-order term So must be positive because the isother-
mal compressibility is positive [cf. (7)], classic hard-sphere
liquids are not hyperuniform. Figure 2 shows g»(r) and the
corresponding structure factor S(k) in three dimensions at
¢ =0.35 as obtained from the PY approximation. Note that the
Percus-Yevick approximations for 2D and 3D systems do not
exhibit structural precursors to the respective freezing transi-
tions, as manifested by “shoulders” in the second peak of g»(r)
observed in computer simulations.'”

It is noteworthy that one can create “stealthy” hyper-
uniform hard-sphere packings®’ by decorating points derived
from stealthy equilibrium configurations®® with nonoverlap-
ping spheres.

B. Nonequilibrium disordered packings

Here we briefly discuss three different nonequilib-
rium sphere packings: random sequential addition (RSA),
“ghost” random sequential addition, and random close packing
(RCP).

1. Random sequential addition

Perhaps one of the most well-known nonequilibrium
packing models is the random sequential addition (RSA)
packing procedure, which is a time-dependent process that
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generates disordered sphere packings in R?; see Refs. 89-97.
The RSA packing process in the first three space dimen-
sions has been used to model a variety of different con-
densed phases, including protein adsorption,’® polymer oxi-
dation,”® particles in cell membranes,’' and ion implantation
in semiconductors.”

In its simplest rendition, an RSA sphere packing is pro-
duced by randomly, irreversibly, and sequentially placing
nonoverlapping objects into a large volume in R¢ that at some
initial time is empty of spheres. If an attempt to add a sphere at
some time # results in an overlap with an existing sphere in the
packing, the attempt is rejected and further attempts are made
until it can be added without overlapping existing spheres. One
can stop the addition process at any finite time ¢, obtaining
an RSA configuration with a time-dependent packing frac-
tion ¢(t), but this value cannot exceed the maximal saturation
packing fraction ¢; = ¢(co) that occurs in the infinite-time
and thermodynamic limits. Even at the saturation state, the
spheres are never in contact and hence are not jammed in the
sense described in Sec. III C; moreover, the pair correlation
function g»(r) decays to unity for large r super-exponentially
fast.!%° The latter property implies that the structure factor
S(k) of RSA packings in R? must be an even and analytic
function at k = 0,°® as indicated in Eq. (8). It is notable that
saturated RSA packings are not hyperuniform for any finite
space dimension.”*?

In the one-dimensional case, also known as the “car-
parking” problem, the saturation packing fraction was obtained
analytically: ¢, = 0.7475979202. . .8 However, for d > 2,
¢; in the thermodynamic limit has only been estimated via
numerical simulations. The most precise numerical study to
date”” has yielded ¢; = 0.5470735 + 0.000002 8 for d = 2
and ¢; = 0.384 1307 = 0.000 002 1 for d = 3. Estimates of ¢;
in higher dimensions are discussed in Sec. IV. RSA packings
have also been examined for spheres with a size distribution'%!
and other particle shapes, including squares,’>!'%>1%3 rectan-
gles,'™ ellipses,'® superdisks,'?> and polygons'%®!97 in R?
and spheroids,'% spherocylinders,'? and cubes'?!10 in R3.

2. “Ghost” random sequential addition

There is a generalization of the aforementioned stan-
dard RSA process, which can be viewed as a “thinning”
process of a Poisson distribution of sphere and is param-
eterized by the positive constant « that lies in the closed
interval [0, 1]; see Ref. 111. When « = 0, one recovers the
standard RSA process, and when « = 1, one obtains the “ghost”

FIG. 2. Pair statistics for an equilibrium hard-sphere
fluid in three dimensions at ¢ = 0.35 as obtained from the
PY approximation.>!> Left panel: Pair correlation func-
tion go(r) versus r/D, where D is the sphere diameter.
Right panel: The corresponding structure factor S(k) as
a function of the dimensionless wavenumber kD, which
clearly shows nonhyperuniformity.
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random sequential addition (RSA) process that enables one to
obtain exactly not only the time-dependent packing fractions
but all of the n-particle correlation functions g,, for any n and d.
The reader is referred to Ref. 111 for details about the general
model.

In the ghost RSA process, one attempts to place spheres
into an initially empty region of space randomly, irreversibly,
and sequentially. However, here one keeps track of any rejected
sphere, which is called a “ghost” sphere. No additional spheres
can be added whenever they overlap an existing sphere or a
ghost sphere. The packing fraction at time ¢ for spheres of
unit diameter is given by ¢(¢) = [1 — exp(—v;(1)1)] /24, where
v1(R) is the volume of sphere of radius R. Thus, we see that as
t — +00, ¢ =2~ which is appreciably smaller than the RSA
saturation packing fraction ¢; in low dimensions; see Fig. 3
for 2D examples. Nonetheless, it is notable that the ghost RSA
process is the only hard-sphere packing model that is exactly
solvable for any dimension d and all realizable densities, which
has implications for high-dimensional packings, as discussed
in Sec. IV.

3. Random close packing

The “random close packing” (RCP) notion was pioneered
by Bernal®~ to model the structure of liquids and has been one
of the more persistent themes with a venerable history.!'?-11?
Two decades ago, the prevailing notion of the RCP state was
that it is the maximum density that a large random collection
of congruent (identical) spheres can attain and that this density
is a well-defined quantity. This traditional view has been sum-
marized as follows: “Ball bearings and similar objects have
been shaken, settled in oil, stuck with paint, kneaded inside
rubber balloons—and all with no better result than (a packing
fraction of) ...0.636”; see Ref. 113.

Torquato, Truskett, and Debenedetti** have argued that
this RCP-state concept is actually ill-defined because “ran-
domness” and “closed-packed” were never defined and, even
if they were, are at odds with one another. Using the
Lubachevsky-Stillinger (LS)'?° molecular-dynamics growth
algorithm to generate jammed packings, it was shown*’ that
fastest particle growth rates generated the most disordered
sphere packings with ¢ ~ 0.64, but that by slowing the growth
rates larger packing fractions could be continuously achieved
up to the densest value ¢nax = 0.74048... such that the
degree of order increased monotonically with ¢. These results
demonstrated that one can increase the packing fraction by

an arbitrarily small amount at the expense of correspondingly
small increases in order, and thus, the notion of RCP is ill-
defined as the highest possible density that a random sphere
packing can attain. To remedy these flaws, Torquato, Truskett,
and Debenedetti*’ replaced the notion of “close packing”
with “jamming” categories (defined precisely in Sec. III C)
and introduced the notion of an “order metric” to quantify
the degree of order (or disorder) of a single packing con-
figuration. This led them to supplant the concept of RCP
with the maximally random jammed (MRJ) state, which is
defined, roughly speaking, to be that jammed state with a min-
imal value of an order metric (see Sec. III C 4 for details).
This work pointed the way toward a quantitative means of
characterizing all packings, namely, the geometric-structure
approach.

We note that whereas the LS packing protocol with a
fast growth rate typically leads to disordered jammed states
in three dimensions, it invariably produces highly crystalline
“collectively” jammed packings in two dimensions. Figure 4
vividly illustrates the differences between the textures pro-
duced in three and in two dimensions (see Sec. III B for further
remarks).

C. Geometric-structure approach
to jammed packings

A “jammed” packing is the one in which each particle is
in contact with its nearest neighbors such that the mechani-
cal stability of a specific type is conferred to the packing, as
detailed below. Two conceptual approaches for their study have
emerged. One is the “ensemble” approach,>-27-30-52,122-129
which for a given packing protocol aims to understand
typical configurations and their frequency of occurrence.
The other more recent one is the “geometric-structure”
approach,*%-36:12L.130-134 which emphasizes quantitative char-
acterization of single-packing configurations without regard
to their occurrence frequency in the protocol used to produce
them. Here we focus on the latter approach, which enables
one to enumerate and classify packings with a diversity of
order/disorder and packing fractions, including extremal pack-
ings, such as the densest sphere packing and MRJ packings.

1. Jamming categories

Three broad and mathematically precise ‘“‘jamming” cat-
egories of sphere packings can be distinguished depending on
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the nature of their mechanical stability.”"!3* In the order of
increasing stringency (stability), for a finite sphere packing,
these are the following:

1. Local jamming: Each particle in the packing is locally
trapped by its neighbors (at least d + 1 contacting par-
ticles, not all in the same hemisphere); i.e., it cannot
be translated, while fixing the positions of all other
particles.

2. Collective jamming: Any locally jammed configuration
is collectively jammed if no subset of particles can be
simultaneously displaced so that its members move out
of contact with one another and with the remainder
set.

3. Strict jamming: Any collectively jammed configuration
that disallows all uniform volume-nonincreasing strains
of the system boundary.

These hierarchical jamming categories are closely related
to the concepts of “rigid” and “stable” packings found in
the mathematics literature'?> and imply that there can be
no “rattlers” (i.e., movable but caged particles) in the pack-
ing. The jamming category of a given packing depends
on the boundary conditions employed; see Refs. 44 and
130 for specific examples. Rigorous and efficient linear-
programming (LP) algorithms have been devised to assess
whether a particular sphere packing is locally, collectively,
or strictly jammed.'?!:136 These jamming categories can now
be ascertained in real-system experiments by applying the
LP tests to configurational coordinates of a packing deter-
mined via a variety of imaging techniques, including tomog-
raphy,’3” confocal microscopy,'*® and magnetic resonance
imaging. '3

2. Polytope picture and pressure in jamming limit

A packing of N hard spheres of diameter D in a jammed
framework in R? is specified by an Nd-dimensional config-
urational position vector R = rV = {ry, ..., ry}. Isostatic
jammed packings possess the minimal number of contacts
for a jamming category and boundary conditions.'*? The
relative differences between isostatic collective and strict
jammed packings diminish as N becomes large, and since
the number of degrees of freedom is essentially equal to
Nd, an isostatic packing has a mean contact number per

J. Chem. Phys. 149, 020901 (2018)

FIG. 4. Typical protocols, used to generate disordered
sphere packings in three dimensions, produce highly
crystalline packings in two dimensions. Left panel:
A highly ordered collectively jammed configuration
(Sec. IIT C 1) of 1000 disks with ¢ ~ 0.88 produced using
the Lubachevsky-Stillinger (LS) algorithm'?? with a fast
expansion rate.'2! Right panel: A 3D MRJ-like configu-
ration of 500 spheres with ¢ = 0.64 produced using the
LS algorithm with a fast expansion rate.*

particle, Z equal to 2d in the large-N limit. Packings
having more and fewer contacts than the isostatic ones
are hyperstatic and hypostatic, respectively. Sphere pack-
ings that are hypostatic cannot be collectively or strictly
jammed.'3*

Consider decreasing the density slightly in a sphere pack-
ing that is at least collectively jammed by reducing the particle
diameter by AD so that the packing fraction is lowered to
¢ = ¢;(1-06), where § = AD/D < 1 is called the jam-
ming gap or distance to jamming. There is a sufficiently
small ¢ that does not destroy the jamming confinement prop-
erty. For fixed N and sufficiently small ¢, it can be shown
asymptotically, through first order in ¢, that the set of dis-
placements accessible to the packing approaches a convex
limiting polytope (a high-dimensional polyhedron) .87 This
polytope P is determined from the linearized impenetrabil-
ity equations'?"136 and is necessarily bounded for a jammed
configuration.

Now consider adding thermal kinetic energy to a nearly
jammed sphere packing in the absence of rattlers. While the
system will not be globally ergodic over the full system con-
figuration space and thus not in thermodynamic equilibrium,
one can still define a macroscopic pressure p for the trapped
but locally ergodic system by considering time averages as
the system executes a tightly confined motion around the par-
ticular jammed configuration Ry. The probability distribution
P (f) of the time-averaged interparticle forces f has been rig-
orously linked to the contact value r = D of the pair correlation
function g(r).!*? Moreover, the available (free) configuration
volume scales with the jamming gap ¢ such that the reduced
pressure is asymptotically given by the free-volume equation
of state,3:79:140

p 1 d

o4 16
pksT 6 1-¢/¢; (16)

where T is the absolute temperature and p is the number
density. Relation (16) is remarkable, since it enables one to
determine accurately the true jamming density of a given pack-
ing, even if the actual jamming point has not quite yet been
reached, just by measuring the pressure and extrapolating to
p = +oo. This free-volume form has been used to estimate the
equation of state along “metastable” extensions of the hard-
sphere fluid up to the infinite-pressure endpoint, assumed to
be disordered jammed states (see Fig. 1 and Sec. IIT A).2%83
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Kamien and Liu'#! assumed the same free-volume form to fit
data for the pressure of “metastable” hard-sphere states.

3. Hard-particle jamming algorithms

For many years, the Lubachevsky-Stillinger (LS)
algorithm'?® has served as the premier numerical scheme
to generate a wide spectrum of dense jammed hard-sphere
packings with variable disorder in both two and three dimen-
sions.*>13L142 This is an event-driven or a collision-driven
molecular-dynamics algorithm: an initial configuration of
spheres of a given size within a periodic cell are given initial
random velocities and the motion of the spheres are followed
as they collide elastically and also grow uniformly until the
spheres can no longer expand. The final density is generally
inversely related to the particle growth rate. This algorithm
has been generalized by Donev, Torquato, and Stillinger 43144
to generate jammed packings of smoothly shaped nonspher-
ical particles, including ellipsoids,'**!** superdisks,'*> and
superballs.'*® Event-driven packing protocols with growing
particles, however, do not guarantee jamming of the final pack-
ing configuration, since jamming is not explicitly incorporated
as a termination criterion.

The task of generating dense packings of particles of gen-
eral shape within an adaptive periodic fundamental cell has
been posed by Torquato and Jiao'4714% as an optimization
problem called the adaptive-shrinking cell (ASC) scheme. The
negative of the packing fraction, —¢ (which can be viewed as
an “energy”), is to be minimized subject to constraints. The
design variables are the centroids and orientations of the par-
ticles as well as the shape and size of the deformable periodic
fundamental cell, which is completely specified by a strain
tensor. For nonspherical particles, the nonoverlap constraints
are generally highly nonlinear and so the ASC optimization
problem is solved using a Monte Carlo procedure.'*”:143 The
so-called Torquato-Jiao (TJ) sphere-packing algorithm'4? is
a sequential linear-programming (SLP) solution of the ASC
optimization problem for the special case of packings of
spheres with a size distribution for which linearization of the
design variables is exact. The deterministic SLP solution in
principle always leads to strictly jammed packings up to a
high numerical tolerance with a wider range of densities and
degree of disorder than packings produced by the LS algo-
rithm. From an initial configuration, the TJ algorithm leads to
a mechanically stable local “energy” minimum (local density
maximum), which in principle is the inherent structure associ-
ated with the starting initial many-particle configuration; see
Fig. 5. A broad range of inherent structures can be obtained
across space dimensions, including locally maximally dense
and mechanically stable packings, such as MRJ states,4°-152
disordered hyperstatic packings,'>® and the globally maxi-
mally dense inherent structures,'*>1>*157 with very small
computational cost, provided that the system sizes are not too
large.

It is notable that the TJ algorithm creates disordered
jammed sphere packings that are closer to the ideal MRJ state
than previous algorithms.'>? It was shown that the rattler con-
centration of these packings converges toward 1.5% in the
infinite-system limit, which is markedly lower than previous
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FIG. 5. A schematic diagram of inherent structures (local density maxima)
for sphere packings of N spheres, as taken from Ref. 149. The horizontal axis
labeled XV stands for the entire set of centroid positions and —¢ (“energy”)
decreases downward. The jagged curve is the boundary between the accessible
configurations (yellow) and inaccessible ones (blue). The deepest point of the
accessible configurations corresponds to the maximal density packings of hard
spheres. Reprinted with permission from S. Torquato and Y. Jiao, Phys. Rev.
E 82, 061302 (2010). Copyright 2010 American Physical Society.

estimates for the MRJ state using the LS protocol (with about
3% rattlers).

4. Order metrics

The enumeration and classification of both ordered and
disordered sphere packings is an outstanding problem. Since
the difficulty of the complete enumeration of packing con-
figurations rises exponentially with the number of particles,
it is desirable to devise a small set of intensive parameters
that can characterize packings well. One obvious property of
a sphere packing is the packing fraction ¢. Another important
characteristic of a packing is some measure of its “random-
ness” or degree of disorder. Devising such measures is a highly
nontrivial challenge, but even the tentative solutions that have
been put forth during the last two decades have been fruitfully
applied to characterize not only sphere packings*®7!-131:142
but also simple liquids, 16142138159 glagses, 14%160 water, 161162
disordered ground states,*® random media,'®® and biological
systems.32

It is quite reasonable to consider “entropic” measures to
characterize the randomness of packings. However, as pointed
out by Kansal ef al.,'’! a substantial hurdle to overcome in
implementing such an order metric is the necessity to generate
all possible jammed states or, at least, a representative sample
of such states in an unbiased fashion using a “universal” pro-
tocol in the large-system limit, each of which is an intractable
problem. Even if such a universal protocol could be developed,
however, the issue of what weights to assign the resulting con-
figurations remains. Moreover, there are other basic problems
with the use of entropic measures as order metrics, as we will
discuss in Sec. III E, including its significance for certain 2D
hard-disk packings.

We know that a many-body system of N particles is com-
pletely characterized statistically by its N-body probability
density function P(R; ¢) that is associated with finding the
N-particle system with configuration R at some time ¢. Such
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complete information is virtually never available for large
N and, in practice, one must settle for reduced information,
such as a scalar order metric . Any order metric y conven-
tionally possesses the following three properties: (1) it is a
well-defined scalar function of a configuration R; (2) it is sub-
ject typically to the normalization 0 < ¢ < 1; and (3) for any
two configurations R4 and Rp, ¥(Ry4) > ¢(Rp) implies that
configuration Ry is to be considered as more ordered than
configuration Rp. The set of order metrics that one selects
is unavoidably subjective, given that there appears to be no
single universally applicable scalar metric capable of describ-
ing order across all length scales. However, one can construct
order metrics that lead to consistent results, as will be discussed
below.

Many relevant order metrics have been devised. While a
comprehensive discussion of this topic is beyond the scope
of this article, it is useful here to note some order metrics
that have been identified, including bond-orientational order
metrics in two!%* and three dimensions,!®° translational order
metrics,**3%142 and hyperuniformity order metrics.”!’> These
specific order metrics have both strengths and weaknesses.
This raises the question of what are the characteristics of a
good order metric? It has been suggested that a good scalar
order metric should have the following additional proper-
ties:*131 (1) sensitivity to any type of ordering without bias
toward any reference system; (2) ability to reflect the hierarchy
of ordering between prototypical systems given by common
physical intuition (e.g., perfect crystals with high symmetry
should be highly ordered, followed by quasicrystals, corre-
lated disordered packings without long-range order, and finally
spatially uncorrelated or Poisson distributed particles); (3)
incorporation of both the variety of local coordination pat-
terns as well as the spatial distribution of such patterns should
be included; and (4) the capacity to detect translational and
orientational order at any length scale. Moreover, any useful
set of order metrics should consistently produce results that
are positively correlated with one another.”>** The develop-
ment of improved order metrics deserves continued research
attention.

Order metrics and maps have been fruitfully extended to
characterize the degree of structural order in condensed phases
in which the constituent particles (jammed or not) possess
both attractive and repulsive interactions. This includes the
determination of the order maps of models of simple liquids,
glasses, and crystals with isotropic interactions, 6142158159
models of water,'®"19? disordered ground states of long-
ranged isotropic pair potentials,®® and models of amorphous
polymers. %

D. Order maps and extremal packings

The geometric-structure classification naturally empha-
sizes that there is a great diversity in the types of attainable
packings with varying magnitudes of overall order, pack-
ing fraction ¢, and mean contact number per particle, Z,
among many other intensive parameters. Any attainable hard-
sphere configuration, jammed or not, can be mapped to a
point in this multidimensional parameter space that we call an
order map. The use of “order maps” in combination with the
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mathematically precise “jamming categories” enables one to
view and characterize individual packings, including the dens-
est sphere packing (e.g., Kepler’s conjecture in 3D) and MRJ
packings as extremal states in the order map for a given jam-
ming category. Indeed, this picture encompasses not only these
special jammed states but also an uncountably infinite num-
ber of other packings, some of which have only recently
been identified as physically significant, e.g., the jamming-
threshold states>® (least dense jammed packings) as well as
states between these and MRJ.

The simplest order map is the one that maps any hard-
sphere configuration to a point in the ¢—y plane. This two-
parameter description is but a very small subset of the relevant
parameters that are necessary to fully characterize a configu-
ration, but it nonetheless enables one to draw important con-
clusions. Figure 6 shows such an order map that delineates the
set of strictly jammed packings*®%121:13! from non-jammed
packings in three dimensions. The boundaries of the jammed
region delineate extremal structures (see Fig. 7). The dens-
est sphere packings,* which lie along the locus B-B’ with
bmax = 1/V18 ~ 0.74, are strictly jammed.'2"-13% Point B cor-
responds to the face-centered-cubic (fcc) packing; i.e., it is the
most ordered and symmetric densest packing, implying that
their shear moduli are infinitely large.'>> The most disordered
subset of the stacking variants of the fcc packing is denoted
by point B’. In two dimensions, the strictly jammed triangular
lattice is the unique densest packing'¢” and so the line B-B’ in
IR? collapses to a single point B in R>.

The least dense strictly jammed packings are conjec-
tured to be the “tunneled crystals” in R? with Omin = 2Pmax/3
=0.49365. . ., corresponding to the locus of points A — A’.%°
These infinitely degenerate sparse structures were analyti-
cally determined by appropriate stackings of planar “hon-
eycomb” layers of spheres. These constitute a set of zero
measure among the possible packings with the same density
and thus are virtually impossible to discover using packing

1.0

A
Strictly Jammed
Packings

0.0
0.0 0.2 0.4 0.6 0.74

¢

FIG. 6. Schematic order map of sphere packings in R? in the density-order
(¢—¢) plane. White and blue regions contain the attainable packings, blue
regions represent the jammed subspaces, and dark shaded regions contain no
packings. The boundaries of the jammed region delineate extremal structures.
The locus of points A-A’ correspond to the lowest-density jammed packings.
The locus of points B-B’ correspond to the densest jammed packings. Points
MR represent the maximally random jammed states, i.e., the most disordered
states subject to the jamming constraint.
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FIG. 7. Three different extremal strictly jammed packings in R identified in Fig. 6, as taken from Ref. 44. Left panel: A tunneled crystal with Z =7 corresponding
to point A in Fig. 6. Middle panel: MRJ packing with Z = 6 (isostatic) corresponding to point MRJ in Fig. 6. Right panel: fcc packing with Z = 12 corresponding
to point B in Fig. 6. Reprinted with permission from S. Torquato and F. H. Stillinger, Rev. Mod. Phys. 82, 2633 (2010). Copyright 2010 American Physical

Society.

algorithms, illustrating the importance of analyzing individ-
ual packings, regardless of their frequency of occurrence in
the space of jammed configurations, as advocated by the
geometric-structure approach. The tunneled crystals are sub-
sets of the densest packings but are permeated with infinitely
long chains of particle vacancies.’® Every sphere in a tun-
neled crystal contacts 7 immediate neighbors. Interestingly,
the tunneled crystals exist at the edge of mechanical stabil-
ity, since removal of any one sphere from the interior would
cause the entire packing to collapse. The tunneled crystals are
magnetically frustrated structures and Burnell and Sondhi'®®
showed that their underlying topologies greatly simplify the
determination of their antiferromagnetic properties. In R, the
“reinforced” kagomé packing with exactly four contacts per
particle (isostatic value) is evidently the lowest density strictly
jammed packing'?! with ¢, = V37/8 =0.68017... and so
the line A-A’ in R? collapses to a single point A in R2.

E. Maximally random jammed states

Among all strictly jammed sphere packings in RY, the
one that exhibits maximal disorder (minimizes some given
order metric ) is of special interest. This is called the max-
imally random jammed (MRI) state;** see Fig. 6. The MRJ
state is automatically compromised by passing either to the
maximal packing fraction (fcc and its stacking variants) or
the minimal possible density for strict jamming (tunneled
crystals), thereby causing any reasonable order metric to rise
on either side. A variety of sensible order metrics produce
a 3D MRIJ state with a packing fraction ¢ymry = 0.64 (see
Ref. 131), close to the traditionally advocated density of the
RCP state, and with an isostatic mean contact number Z = 6
(see Ref. 140). This consistency among the different order
metrics speaks to their utility, even if a perfect order metric
has not yet been identified. However, the density of the MRJ
state is not sufficient to fully specify it. It is possible to have a
rather ordered strictly jammed packing at this very same den-
sity,!3! as indicated in Fig. 6. The MR state refers to a single
packing that is maximally disordered subject to the strict jam-
ming constraint, regardless of its probability of occurrence in
some packing protocol. Thus, the MRJ state is conceptually
and quantitatively different from random close packed (RCP)
packings,>™ which, more recently, have been suggested to be
the most probable jammed configurations within an ensem-
ble.’! The differences between these states are even starker
in two dimensions; e.g., MRJ packings of identical circular

disks in R? have been shown to be dramatically different from
their RCP counterparts, including their respective densities,
average contact numbers, and degree of order,’! as detailed
below.

The MRJ state under the strict-jamming constraint is
a prototypical glass®® in that it is maximally disordered
(according to a variety of order metrics) without any long-
range order (Bragg peaks) and perfectly rigid (i.e., the elas-
tic moduli are unbounded**!3?). Its pair correlation function
can be decomposed into a Dirac-delta-function contribution
from particle contacts and a continuous-function contribution

85" (),

&(r) = 6(r — D) + 85" (), a7

psi(D)
where s1(R) is given by (11), 6(r) is a radial Dirac delta func-
tion, and Z = 2d. The corresponding structure factor in the
long-wavenumber limit is

27 (27\T
Stk ~ 1+ m(k—D) cos[kD — (d — D)r/4]  (k — o).
(18)

For d = 3, g5”"(r) possesses the well-known feature of a split
second peak,'®” with a prominent discontinuity at twice the
sphere diameter, as shown in Fig. 8. Interestingly, an inte-
grable power-law divergence (1/r® with @ =~ 0.4) exists for
near contacts.””!*? Moreover, an MRJ packing in R? has a
structure factor S(k) that tends to zero linearly in Ikl (within
numerical error) in the limit Ikl — 0 and hence is hyperuniform
(see Fig. 8), belonging to the same class as Fermi-sphere point
processes!’? and superfluid helium in its ground state.!”!!7?
This nonanalytic behavior at [kl = 0 implies that MRJ pack-
ings are characterized by negative “quasi-long-range” (QLR)
pair correlations in which the total correlation function A(r)
decays to zero asymptotically like —1/Irl?*!; see Refs. 69,
70, 152, and 173-175. The QLR hyperuniform behavior dis-
tinguishes the MRIJ state strongly from that of the equilib-
rium hard-sphere fluid,'”® which possesses a structure factor
that is analytic at k = 0 [cf. (8)], and thus, its A(r) decays
to zero exponentially fast for large r; see Ref. 44. Interest-
ingly, the hyperuniformity concept enables one to identify a
static nonequilibrium growing length scale in overcompressed
(rapidly compressed) hard-sphere systems as a function of ¢ up
to the jammed glassy state.!”*!7> This led to the identification
of static nonequilibrium growing length scales in supercooled
liquids on approaching the glass transition.'”’
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4 — Linear fit

1 5 2
kD/27)

FIG. 8. Pair statistics for packings of spheres of diameter D in the immediate neighborhood of the 3D MRI state with ¢ ~ 0.64. Left panel: The pair correlation
function g, (r) versus r/D — 1, as taken from Ref. 140. The split second peak, the discontinuity at twice the sphere diameter, and the divergence near contact are
clearly visible. Right panel: The corresponding structure factor S(k) as a function of the dimensionless wavenumber kD/(27) for a million-particle packing, as
taken from Ref. 70. The inset shows that S(k) tends to zero (within numerical error) linearly in k; hence, an MRJ packing is effectively hyperuniform. Reprinted
with permission from A. Donev ef al., Phys. Rev. E 71, 011105 (2005). Copyright 2005 American Physical Society.

The following is a general conjecture from the work of
Torquato and Stillinger’! concerning the conditions under
which certain strictly jammed packings are hyperuniform:

Conjecture. Any strictly jammed saturated infinite pack-
ing of identical spheres in RY is hyperuniform.

To date, there is no rigorously known counterexam-
ple to this conjecture. Its justification and rigorously known
examples are discussed in Refs. 69 and 152.

A recent numerical study of necessarily finite disordered
packings calls into question the connection between jamming
and perfect hyperuniformity.!”® It is problematic to try to
test this conjecture using current packing protocols to con-
struct supposedly disordered jammed states for a variety of
reasons. First, we stress that the conjecture eliminates pack-
ings that may have a rigid backbone but possess “rattlers”—a
subtle point that has not been fully appreciated in numeri-
cal investigations.!78~!180 Current numerically generated dis-
ordered packings that are putatively jammed tend to contain a
small concentration of rattlers;>170:14%-150.181 ecauge of these
movable particles, the entire packing cannot be deemed to be
“jammed.” Moreover, it has recently been shown that various
standard packing protocols struggle to reliably create pack-
ings that are jammed for even modest system sizes, and yet
large system sizes are required in order to access the small-
wavenumber regime of the structure factor.'>> Although these
packings appear to be jammed by conventional tests, rigor-
ous linear-programming jamming tests!>!:13 reveal that they
are not. Recent evidence has emerged that suggests that devia-
tions from hyperuniformity in putative MRJ packings also can
in part be explained by a shortcoming of current numerical pro-
tocols that attempt to generate exactly jammed configurations
as a result of a type of “critical slowing down:”!>? the pack-
ing’s collective rearrangements in configuration space become
locally confined by high-dimensional “bottlenecks” through
which escape is a rare event. Thus, a critical slowing down
implies that it becomes increasingly difficult numerically to
drive the value of S(0) exactly down to its minimum value
of zero if a true jammed critical state could be attained; typ-
ically,’” S(0) ~ 10~*. Moreover, the inevitable presence of
even a small fraction of rattlers generated by current pack-
ing algorithms destroys perfect hyperuniformity. In summary,

the difficulty of ensuring jamming in sufficiently large disor-
dered packings as well as the presence of rattlers that degrade
hyperuniformity makes it extremely challenging to test the
Torquato-Stillinger jamming-hyperuniformity conjecture on
disordered jammed packings via current numerical protocols.
This raises the possibility that the ideal MRJ packings have no
rattlers and provides a challenge to develop packing algorithms
that produce large disordered strictly jammed packings that are
rattler-free.

A variety of different attributes of MRJ packings gener-
ated via the TJ packing algorithm have been investigated in
separate studies. In the first paper of a three-part series, Klatt
and Torquato'®? ascertained Minkowski correlation functions
associated with the Voronoi cells of such MRJ packings and
found that they exhibited even stronger anti-correlations than
those shown in the standard pair-correlation function.'®? In the
second paper of this series,'®* a variety of different correlation
functions that arise in rigorous expressions for the effective
physical properties of MRJ sphere packings were computed.
In the third paper of this series,'®* these structural descriptors
were used to estimate effective transport and electromagnetic
properties of composites composed of MRJ sphere packings
dispersed throughout a matrix phase and showed, among other
things, that electromagnetic waves in the long-wavelength
limit can propagate without dissipation, as generally predicted
in Ref. 185. In a separate study, Ziff and Torquato'®® deter-
mined the site and bond percolation thresholds of TJ gener-
ated MRJ packings to be p. = 0.3116(3) and p. = 0.2424(3),
respectively.

Not surprisingly, ensemble methods that produce the
“most probable” configurations typically miss interesting
extremal points in the order map, such as the locus of points
A-A’ and the rest of the jamming-region boundary. However,
numerical protocols can be devised to yield unusual extremal
jammed states. For example, disordered jammed packings can
be created in the entire non-trivial range of packing fraction
0.6 < ¢ < 0.74048. . ..4%131133 Thys, in Fig. 6, the locus of
points along the boundary of the jammed set to the left and
right of the MRJ state are achievable. The TJ algorithm '
was applied to yield disordered strictly jammed packings'>3
with ¢ as low as 0.60, which are overconstrained with Z =~ 6.4,
and hence are more ordered than the MRJ state.
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It is well known that lack of “frustration”?>!!% in 2D
analogs of 3D computational and experimental protocols that
lead to putative RCP states results in packings of identical
disks that are highly crystalline, forming rather large triangular
coordination domains (grains). Such a 1000-particle packing
with ¢ ~ 0.88 is depicted in the right panel of Fig. 4 and is
only collectively jammed at this high density. Because such
highly ordered packings are the most probable outcomes for
these typical protocols, “entropic measures” of disorder would
identify these as the most disordered, a misleading conclusion.
Recently, Atkinson et al.'>! applied the TJ algorithm to gen-
erate relatively large MRJ disk packings with exactly isostatic
(Z = 4) jammed backbones and a packing fraction (including
rattlers) of ¢yry ~ 0.827. Uncovering such disordered jammed
packings of identical hard disks challenges the traditional
notion that the most probable distribution is necessarily corre-
lated with randomness and hence the RCP state. An analytical
formula was derived for MRJ packing fractions of more gen-
eral 2D packings,'®’ yielding the prediction ¢ygr; = 0.834 in
the monodisperse-disk limit, which is in very good agreement
with the aforementioned recent numerical estimate. '

F. Packings of spheres with a size distribution

Sphere packings with a size distribution (polydispersity),
sometimes called hard-sphere mixtures, exhibit intriguing
structural features, some of which are only beginning to be
understood. Our knowledge of sphere packings with a size dis-
tribution is very limited due in part to the infinite-dimensional
parameter space, i.e., all particle size ratios and relative con-
centrations. It is known, for example, that a relatively small
degree of polydispersity can suppress the disorder-order phase
transition seen in monodisperse hard-sphere systems (see
Fig. 1).!88 Size polydispersity constitutes a fundamental fea-
ture of the microstructure of a wide class of dispersions of
technological importance, including those involved in com-
posite solid propellant combustion,®> flow in packed beds,**
sintering of powders,® colloids,?* and transport and mechan-
ical properties of particulate composite materials.”’ Packings
of biological cells in tissues are better modeled by assuming
that the spheres have a size distribution.3>33

Generally, we allow the spheres to possess a continuous
distribution in radius R, which is characterized by a probabil-
ity density function f(R). The average of any function w(R)
is defined by (w(R)) = f0°° w(R)f(R)dR. The overall packing
fraction ¢ is then defined as

¢ = p(v1(R)), (19)

where p is the total number density and v;(R) is given by (4).
Two continuous probability densities that have been widely
used are the Schulz'®® and log-normal'®° distributions. One
can obtain the corresponding results for spheres with M
discrete different sizes from Eq. (19) by letting

M
FR) =Y ELsR - Ry), 20)
iz1 P
where p; and R; are the number density and radius of type-

i particles, respectively, and p is the fotal number density.
Therefore, the overall volume fraction using (19) is given by
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¢= Zf}i] @, where ¢ = p;v1(R;) is the packing fraction of
the ith component.

1. Equilibrium and metastable behavior

The problem of determining the equilibrium phase behav-
ior of hard sphere mixtures is substantially more challeng-
ing and richer than that for identical hard spheres, includ-
ing the possibilities of metastable or stable fluid-fluid and/or
solid-solid phase transitions (apart from stable fluid or crystal
phases). While much research remains to be done, consider-
able progress has been made over the years,51:6%191-212 which
we only briefly touch upon here for both additive and nonaddi-
tive cases; see Ref. 62 for an overview. In additive hard-sphere
mixtures, the distance of closest approach between the centers
of any two spheres is the arithmetic mean of their diameters.
By contrast, in nonadditive hard-sphere mixtures, the distance
of closest approach between any two spheres is generally no
longer the arithmetic mean.

Additive mixtures have been studied both theoretically
and computationally. Lebowitz exactly obtained the pair cor-
relation functions of such systems with M components within
the Percus-Yevick approximation.'”! Accurate approximate
equations of state under liquid conditions have been found
for both discrete!**2%¢ and continuous'*>!3 size distributions
with additive hard cores. We note that Lado devised an effi-
cient numerical procedure to solve integral equations for the
pair correlation function of polydisperse suspensions, yielding
the corresponding thermodynamics.?'* Fundamental measure
theory can provide useful insights about the phase behavior of
hard-sphere mixtures.!°’?!? This theory predicts the existence
of stable fluid-fluid coexistence for sufficiently large size ratios
in additive binary hard-sphere systems, while numerical sim-
ulations®! indicate that such phase separation is metastable
with respect to fluid-crystal coexistence and also shows sta-
ble solid-solid coexistence. Nonetheless, there is currently
no mathematical proof that precludes a fluid-fluid demixing
transition in a binary mixture of additive hard spheres for
any size ratio and relative composition. In order to quantify
fluid-crystal phase coexistence, one must know the densest
crystal structure, which is highly nontrivial, especially for
large size ratios, although recent progress has been made; see
Sec. IT F 2.

The Widom-Rowlinson model is an extreme case of non-
additivity in which like species do not interact and unlike
species interact via a hard-core repulsion.'> As the density
is increased, this model exhibits a fluid-fluid demixing tran-
sition in low dimensions and possesses a critical point that is
in the Ising universality class.????% More general nonadditive
hard-sphere mixtures in which all spheres interact have been
studied. Mixtures of hard spheres with positive nonadditivity
(unlike-particle diameters greater than the arithmetic mean of
the corresponding like-particle diameters) can exhibit a fluid-
fluid demixing transition®!204205-207 that belongs to the Ising
universality class,"® while those with negative nonadditivity
have tendencies to form alloyed (mixed) fluid phases.'*® For
certain binary mixtures of hard sphere fluids with nonadditive
diameters, the pair correlation function has been determined
in the Percus-Yevick approximation. 9319
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Fluid phases of hard sphere mixtures, like their monodis-
perse counterparts, are not hyperuniform. However, multicom-
ponent equilibrium plasmas consisting of nonadditive hard
spheres with Coulombic interactions enable one to generate
a very wide class of disordered hyperuniform as well as “mul-
tihyperuniform”3? systems at positive temperatures.?!>216

2. Maximally random jammed states

The study of dense disordered packings of 3D poly-
disperse additive spheres has received considerable atten-
tion.”!7-222 However, these investigations did not consider
their mechanical stability via our modern understanding of
jamming. Not surprisingly, the determination of the MRJ state
for an arbitrary polydisperse sphere packing is a challenging
open question, but some progress has been made recently, as
described below.

Jammed states of polydisperse spheres, whether disor-
dered or ordered, will generally have higher packing fractions
when “alloyed” than their monodisperse counterparts. The
first investigation that attempted to generate 3D amorphous
jammed sphere packings with a polydispersity in size was
carried out by Kansal e al.>?® using the LS packing algo-
rithm. It was applied to show that disordered binary jammed
packings with a small-to-large size ratio @ and relative con-
centration x can be obtained whose packing fractions exceeds
0.64 and indeed can attain ¢ = 0.79 for @ = 0.1 (the small-
est value considered). Chaudhuri er al.?** numerically gen-
erated amorphous 50-50 binary packings with packing frac-
tions in the range 0.648 < ¢ < 0.662 for @ = 1.4. It is
notable that Clusel et al.>>> carried out a series of exper-
iments to visualize and characterize 3D random packings
of frictionless polydisperse emulsion droplets using confocal
microscopy.

Until recently, packing protocols that have attempted to
produce disordered binary sphere packings have been limited
in producing mechanically stable isostatic packings across a
broad spectrum of packing fractions. Many previous simula-
tion studies of disordered binary sphere packings have pro-
duced packings that are not mechanically stable?'®222226 and
report coordination numbers as opposed to contact numbers.
Whereas a coordination number indicates only proximity of
two spheres, a contact number reflects mechanical stability
and is derived from a jammed network.*!36

Using the TJ linear programming packing algorithm, '
Hopkins et al.??’ were recently able to generate high-fidelity
strictly jammed, isostatic disordered binary packings with
an anomalously large range of packing fractions, 0.634 < ¢
< 0.829, with the size ratio restriction @ > 0.1. These pack-
ings are MRJ-like due to the nature of the TJ algorithm and
the use of RSA initial conditions. Additionally, the pack-
ing fractions for certain values of @ and x approach those
of the corresponding densest known ordered packings.!>*133
These findings suggest that these high-density disordered
packings should be good glass formers for entropic reasons
and hence may be easy to prepare experimentally. The iden-
tification and explicit construction of binary packings with
such high packing fractions could have important practical
implications for the design of improved solid propellants,
concrete, and ceramics. In this connection, a recent study of
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MRI binary sphere packings under confinement is particularly
relevant.??8

The LS algorithm has been used successfully to generate
disordered strictly jammed packings of binary disks?* with
¢ ~0.84 and @~ ! = 1.4. By explicitly constructing an exponen-
tial number of jammed packings of binary disks with densities
spanning the spectrum from the accepted amorphous glassy
state to the phase-separated crystal, it has been argued??%->3°
that there is no “ideal glass transition.”?*! The existence of
an ideal glass transition remains a hotly debated topic of
research.

Simulational>*?>-23* as well as experimental?*>>3¢ studies
of disordered jammed spheres with a size distribution reveal
that they are effectively hyperuniform. In such cases, it has
been demonstrated that the proper means of investigating hype-
runiformity is through the spectral density ¢y (k),>3>%3* which
is defined by condition (14).

3. Densest packings

The densest packings of spheres with a size distribu-
tion are of great interest in crystallography, chemistry, and
materials science. It is notable that the densest packings of
hard-sphere mixtures are intimately related to high-pressure
phases of molecular systems, including intermetallic com-
pounds®® and solid rare-gas compounds®” for a range of
temperatures.

Except for trivial space-filling structures, there are no
provably densest packings when the spheres possess a size dis-
tribution, which is a testament to the mathematical challenges
that they present. We begin by noting some rigorous bounds
on the maximal packing fraction of packings of spheres with
M different radii R;, R3, ..., Ry In R, Specifically, the over-
all maximal packing fraction ¢fﬁ2 of such a general mixture
in R? [where ¢ is defined by (19) with (20)] is bounded from
the above and below in terms of the maximal packing frac-
tion ¢§§gx for a monodisperse packing in the infinite-volume
limit,?°

s < Shan < 1= (1= g™ 1)
The lower bound corresponds to the case when the M compo-
nents completely demix, each at the density ¢1(111;x. The upper
bound corresponds to an ideal sequential packing process
for arbitrary M in which one takes the limits Ri/R, — O,
Ry/R3 = 0, ..., Ryr—1/Ry — 0.20 Specific nonsequential pro-
tocols (algorithmic or otherwise) that can generate structures
that approach the upper bound (21) for arbitrary values of M
are currently unknown, and thus, the development of such pro-
tocols is an open area of research. We see that in the limit
M — oo, the upper bound approaches unity, corresponding to
space-filling polydisperse spheres with an infinitely wide sep-
aration in sizes**’ or a continuous size distribution with sizes
ranging to infinitesimally small.?°

Even the characterization of the densest jammed binary
sphere packings offers great challenges and is very far from
completion. Here we briefly review some work concerning
such packings in two and three dimensions. Ideally, it is
desired to obtain ¢max as a function of o and x. In practice,
we have a sketchy understanding of the surface defined by

dmax(@, X).
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Among the 2D and 3D cases, we know most about
the determination of the maximally dense binary packings
in R2. Fejes T6th'®’ reported a number of candidate maxi-
mally dense packings for certain values of the radii ratio in
the range a > 0.154701.... Maximally dense binary disk
packings have been also studied to determine the stable crys-
tal phase diagram of such alloys.”*® The determination of
¢max for sufficiently small @ amounts to finding the opti-
mal arrangement of the small disks within a fricusp: the
nonconvex cavity between three close-packed large disks. A
particle-growth Monte Carlo algorithm was used to generate
the densest arrangements of a fixed number of small iden-
tical disks within such a tricusp.>*® All of these results can

be compared to a relatively tight upper bound on ¢, given
by240

na? +2(1 - a?)sin”! (L)

1+a
2a(1 +2a)'/?

Pmax < QU = (22)

Inequality (22) also applies to general multicomponent pack-
ings, where « is taken to be the ratio of the smallest disk radius
to the largest one.

There is great interest in finding the densest binary sphere
packings in R® in physical sciences because of their rela-
tionship to binary crystal alloys found in molecular systems;
see Refs. 155 and 241 as well as the references therein for
details and some history. Past efforts to identify such opti-
mal packings have employed simple crystallographic tech-
niques (filling the interstices in uniform 3D tilings of space
with spheres of different sizes) and algorithmic methods,
e.g., Monte Carlo calculations and a genetic algorithm.?#>243
However, these methods have achieved only limited success,
in part due to the infinite parameter space that is involved.
When using traditional algorithms, difficulties result from
the enormous number of steps required to escape from local
minima in the “energy” (negative of the packing fraction).
Hopkins et al.'>*!5 have presented the most comprehensive
determination to date of the “phase diagram” for the dens-
est binary sphere packings via the TJ linear-programming
algorithm.'*® In Ref. 155, 19 distinct crystal alloys (com-
positions of large and small spheres spatially mixed within
a fundamental cell) were identified, including 8 that were
unknown at the time. Using the TJ algorithm, they were
always able to obtain either the densest previously known
alloy or the denser ones. These structures may correspond to
currently unidentified stable phases of certain binary atomic
and molecular systems, particularly at high temperatures and
pressures.®®¢7 Reference 155 provides details about the struc-
tural characteristics of these densest-known binary sphere
packings.

IV. PACKING SPHERES IN HIGH DIMENSIONS

Sphere packings in four- and higher-dimensional
Euclidean spaces are of great interest in the physical and math-
ematical sciences; see Refs. 38, 44, 52, 68, 111, 156, 157,
173, and 244-259. Physicists have studied high-dimensional
packings to gain insight into liquid, crystal, and glassy states
of matter in lower dimensions,32-173:243,246,248,251,252,255,256,260
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Finding the densest packings in arbitrary dimension in
Euclidean and compact spaces is a problem of long-standing
interest in discrete geometry.3”-38261.262 Remarkably, the opti-
mal way of sending digital signals over noisy channels cor-
responds to the densest sphere packing in a high-dimensional
space.’”0 These “error-correcting” codes underlie a variety
of systems in digital communications and storage, including
compact disks, cell phones, and the Internet.

A. Equilibrium and metastable phase behavior

The properties of equilibrium and metastable states
of hard spheres have been studied both theoretically
and computationally in spatial dimensions greater than
three.!73-243,255-257,263.264 Thjs includes the evaluation of var-
ious virial coefficients across dimensions,20320% as well
as the pressure along the liquid, metastable, and crystal
branches,!3231:235-257 especially for d = 4, 5, 6, and 7. Using
the LS packing algorithm, Skoge et al.'”® numerically esti-
mated the freezing and melting packing fractions for the
equilibrium hard-sphere fluid-solid transition, ¢ ~ 0.32 and
om = 0.39, respectively, for d = 4, and ¢r =~ 0.19 and
du = 0.24, respectively, for d = 5. These authors showed that
nucleation appears to be strongly suppressed with increasing
dimension. The same conclusion was subsequently reached in
a study by van Meel et al.”>° Finken, Schmidt, and Lowen”%
used a variety of approximate theoretical methods to show that
equilibrium hard spheres have a first-order freezing transition
for dimensions as high as d = 50.

Any disordered packing in which the pair correlation func-
tion at contact, g,(D%), is bounded (such as equilibrium hard
spheres) induces a power-law decay in the structure factor S(k)
in the limit £ — oo for any dimension d given by

(1 +d/2)pga(D*
(A +d/268207) 4> — (@ + /4 .
Vr (kD)=
(23)

There is a remarkable duality between the equilibrium
hard-hypersphere (hypercube) fluid system in R and the con-
tinuum percolation model of overlapping hyperspheres (hyper-
cubes) in RY. In particular, the pair connectedness function of
the latter is to a good approximation equal to the negative of
the total correlation function of the former evaluated at nega-
tive density.?*® This mapping becomes exact for d = 1 and in
the large-d limit.

S(k)~1—2

B. Nonequilibrium disordered packings
via sequential addition

In Sec. I1I B 2, we noted that the “ghost” RSA packing!!!
is a disordered but unsaturated packing construction whose
n-particle correlation functions are known exactly and rigor-
ously achieves the infinite-time packing fraction ¢ = 2~ for
any d; see Fig. 3 for a 2D realization of such a packing.

Saturated RSA sphere packings have been numerically
generated and structurally characterized for dimensions up
through d = 6 (Ref. 96). A more efficient numerical proce-
dure was devised to produce such packings for dimensions
up through d = 8 (Ref. 97). The current best estimates of the
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maximal saturation packing fraction ¢ ford =4, 5, 6, 7, and
8 are 0.260078 1 + 0.0000037, 0.170776 1 + 0.000004 6,
0.109 302 + 0.000019, 0.068 404 + 0.000016, and 0.042 30
+ 0.000 21, respectively.”” These are lower than the corre-
sponding MRJ packing fractions in those dimensions (see
Sec. IV C). The quantity ¢, apparently scales as d -2~ or
possibly d - In(d) - 2~¢ for large d; see Refs. 96 and 97. While
saturated RSA packings are nearly but not exactly hype-
runiform,’® as d increases, the degree of hyperuniformity
increases and pair correlations markedly diminish,”’ consis-
tent with the decorrelation principle,®® which is described in
Sec. IV E.

C. Maximally random jammed states

Using the LS algorithm, Skoge et al.'”® generated and

characterized MRJ packings in four, five, and six dimensions.
In particular, they estimated the MRJ packing fractions, find-
ing ¢Mry = 0.46,0.31, and 0.20 ford =4, 5, and 6, respectively.
To a good approximation, the MRJ packing fraction obeys the
scaling form ¢yry = ¢127¢ + cad - 274, where ¢; = —2.72 and
¢y = 2.56, which appears to be consistent with a high-
dimensional asymptotic limit, albeit with different coeffi-
cients. The dominant large-d density scaling d-27¢ is sup-
ported by theoretical studies.®®>38:267:268 Skoge er al.'” also
determined the MRIJ pair correlation function g»(r) and struc-
ture factor S(k) for these states and found that short-range
ordering appreciably decreases with increasing dimension,
consistent with the decorrelation principle.®® This implies
that, in the limit d — oo, g>(r) tends to unity for all r outside
the hard-core, except for a Dirac delta function at contact due
to the jamming constraint.%® As for d = 3 (where ¢pry ~ 0.64),
the MRJ packings were found to be isostatic and hyperuniform
and have a power-law divergence in g>(r) at contact, g»(r) ~
1/(r — D)® with @ ~ 0.4 as r tends to D*. Across dimensions, the
cumulative number of neighbors was shown to equal the kiss-
ing (contact) number of the conjectured densest packing close
to where g,(7) has its first minimum. Disordered jammed pack-
ings were also simulated and studied in dimensions 7-10; see
Ref. 269.

D. Maximally dense sphere packings

The sphere packing problem seeks to answer the fol-
lowing question:*” Among all packings of congruent spheres
in Rd, what is the maximal packing fraction ¢max and the
corresponding arrangements of the spheres? Until 2017, the
optimal solutions were known only for the first three space
dimensions.*> For d = 2 and d = 3, these are the triangu-
lar lattice (A7) with ¢max = 7/VI2 = 0.906899... and
checkerboard (fcc) lattice (D3) and its stacking variants with
Omax = 7/ V18 = 0.74048 . . ., respectively. We now know the
optimal solutions in two other space dimensions; namely, the
Eg and Ay4 lattices are the densest packings among all possi-
ble packings in R3 and R24, respectively; see Refs. 261 and
262. For 4 < d <9, the densest known packings are (Bravais)
lattice packings.’” The “checkerboard” lattice D, is believed
to be optimal in R* and R®. Interestingly, the non-lattice (peri-
odic) packing Pjo. (with 40 spheres per fundamental cell)
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is the densest known packing in R'?, which is the lowest
dimension in which the best known packing is not a (Bravais)
lattice.

Table I lists the densest known or optimal sphere packings
in R? for selected d. For the first three space dimensions, the
optimal sphere-packing solutions (or their “dual” solutions)
are directly related to the best known solutions of the number-
variance problem’’’? as well as of two other well-known
problems in discrete geometry: the covering and quantizer
problems,*”-?’% but such relationships may or may not exist
for d > 4, depending on the peculiarities of the dimensions
involved.?’!

The TJ linear-programming packing algorithm was
adapted by Marcotte and Torquato'>® to determine the dens-
est lattice packing (one particle per fundamental cell) in some
high dimension. These authors applied it for 2 < d < 19 and
showed that it was able to rapidly and reliably discover the
densest known lattice packings without a priori knowledge of
their existence. It was found to be appreciably faster than the
previously known algorithms at that time.?’>?”3 The TJ algo-
rithm was used to generate an ensemble of isostatic jammed
hard-sphere lattices and study the associated pair statistic and
force distributions. !>’ It was shown that this special ensemble
of lattice-sphere packings retains many of the crucial structural
features of the classical hard-sphere model.

It is noteworthy that for sufficiently large d, lattice pack-
ings are most likely not the densest (see Fig. 9), but it
becomes increasingly difficult to find explicit dense packing
constructions as d increases. Indeed, the problem of finding
the shortest lattice vector in a particular lattice packing grows
super-exponentially with d and is in the class of NP-hard
(nondeterministic polynomial-time hard) problems.?’*

For large d, the best that one can do theoretically is to
devise upper and lower bounds on ¢max.37 The nonconstruc-
tive lower bound of Minkowski””> established the existence of

TABLE I. The densest known or optimal sphere packings in R< for selected
d. For each packing, we provide the packing fraction ¢ and kissing number Z.
Except for the non-lattice packing Pjq. in RR'°, all of the other densest known
packings listed in this table are lattice packings: Z is the integer lattice, A, is
the triangular lattice, D is the checkerboard lattice (a generalization of the
fcc lattice), E; is one of the root lattices, and A, is the laminated lattice. For
d = 8 and d = 24, it has recently been proved that Eg and A4 are optimal
among all packings, respectively; see Refs. 261 and 262. The reader is referred
to Ref. 37 for additional details.

d Packing Packing fraction, ¢ Kissing number, Z
1 Z 1 2
2 A, 7/V12 =0.9068. .. 6
3 D; /Y18 = 0.7404 . .. 12
4 Dy 72/16 = 0.616 8. . . 24
5 Ds 272 /(30V2) = 0.4652 . .. 40
6 Eg 372/(144V3) = 0.3729. .. 72
7 E; 731105 =0.2952. .. 126
8 Eg 74384 = 0.2536. ... 240
9 Ag 274/(945v2) = 0.1457 . ... 272
10 Pioc 73/3072=0.09961. .. 372
16 INF; 78645120 = 0.014 70. . . 4320
24 Aoy 712/479001 600 = 0.001 929. . . 196 360
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FIG. 9. Lattice packings in sufficiently high dimensions are not dense because the “holes” (space exterior to the spheres) eventually dominates the space RY
and hence become unsaturated.>’ For illustration purposes, we consider the hypercubic lattice 74 Left panel: A fundamental cell of 74 represented in two
dimensions. The distance between the point of intersection of the longest diagonal in the hypercube with the hypersphere boundary and the vertex of the cube
along this diagonal is given by Vd —1fora sphere of unit radius. This means that z4 already becomes unsaturated at d = 4. Placing an additional sphere in 74
doubles the density of Z* and yields the four-dimensional checkerboard lattice packing Dy, which is believed to be the optimal packing in R*. Right panel: A
schematic “effective” distorted representation of the hypersphere within the hypercubic fundamental cell for large d, illustrating that the volume content of the
hypersphere relative to the hypercube rapidly diminishes asymptotically. Indeed, the packing fraction of 74 is given by ¢ = n¢2/(C(1 + d/2)2%). Indeed, the
checkerboard lattice Dy with packing fraction ¢ = 74/2/(U(1 + d/2)2(2+2/2) becomes suboptimal in relatively low dimensions because it also becomes dominated
by larger and larger holes as d increases. Reprinted with permission from S. Torquato and F. H. Stillinger, Rev. Mod. Phys. 82, 2633 (2010). Copyright 2010

American Physical Society.

reasonably dense lattice packings. He found that the maximal
packing fraction ¢% . among all lattice packings for d > 2
satisfies

{(d)

Pmax 2 S5 @4)

where {(d) = Y7, k= is the Riemann zeta function. Note that
for large values of d, the asymptotic behavior of the Minkowski
lower bound is controlled by 27¢. Since 1905, many exten-
sions and generalizations of the lower bound (24) have been
derived,”276-278 but none of these investigations have been
able to improve upon the dominant exponential term 2~¢; they
instead only improve on the latter by a factor linear in d.

It is trivial to prove that the packing fraction of a saturated
packing of congruent spheres in RY satisfies!!!

1
02 (25)

for all d. This “greedy” bound (25) has the same dominant
exponential term as Minkowski’s bound (24).

Nontrivial upper bounds on ¢may in R? for any d have
been derived.’®39279-281 The linear-programming (LP) upper
bounds from the work of Cohn and Elkies® provides the basic
framework for proving the best known upper bounds on ¢,
for dimensions in the range 4 < d < 36. Recently, these LP
bounds have been used to prove that no packings in R? and R*
have densities that can exceed those of the Eg (Ref. 261) and
Lo4 (Ref. 262) lattices, respectively. Kabatiansky and Leven-
shtein®®! found the best asymptotic upper bound, which in the
limit d — oo yields ¢ax < 27939907 proving that the maximal
packing fraction tends to zero in the limit d — oco. This rather
counterintuitive high-dimensional property of sphere packings
can be understood by recognizing that almost all of the volume
of a d-dimensional sphere for large d is concentrated near the
sphere surface.

E. Are disordered packings the densest
in high dimensions?

Since 1905, many extensions and generalizations of
Minkowski’s bound have been derived,3’ but none of them

have improved upon the dominant exponential term 2~¢. The
existence of the unjammed disordered ghost RSA packing!!!
(Sec. III B 2) that rigorously achieves a packing fraction of
274 strongly suggests that Bravais-lattice packings (which are
almost surely unsaturated in sufficiently high d) are far from
optimal for large d.

Torquato and Stillinger® employed a plausible conjecture
that strongly supports the counterintuitive possibility that the
densest sphere packings for sufficiently large d may be dis-
ordered or at least possess fundamental cells whose size and
structural complexity increase with d. They did so using the
so-called g>-invariant optimization procedure that maximizes
¢ associated with a radial “test” pair correlation function
g2(r) to provide the putative exponential improvement on
Minkowski’s 100-year-old bound on ¢n,x. Specifically, a g»-
invariant process*®’ is the one in which the functional form
of a “test” pair correlation g(r) function remains invariant as
density varies, for all r, over the range of packing fractions
0 < ¢ < ¢, subject to the satisfaction of the non-negativity of
the structure factor S(k) and g>(r). When there exist sphere
packings with a g, satisfying these conditions in the interval
[0, ¢.], then one has the lower bound on the maximal packing
fraction given by

Pmax = P (26)

Torquato and Stillinger®® conjectured that a test function g, (r)
is a pair-correlation function of a translationally invariant dis-
ordered sphere packing in R? for 0 < ¢ < ¢, for sufficiently
large d if and only if the non-negativity conditions on S(k) and
g2(r) are satisfied. The decorrelation principle,®® among other
results,**?332% provides justification for the conjecture. This
principle states that unconstrained correlations in disordered
sphere packings vanish asymptotically in high dimensions and
that the g, for any n > 3 can be inferred entirely (up to small
errors) from the knowledge of p and g,.°® This is vividly exhib-
ited by the exactly solvable ghost RSA packing process'!!
as well as by computer simulations of high-dimensional
MRJ'3 and RSA?" packings. Interestingly, this optimization
problem is the dual of the infinite-dimensional linear program
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(LP) devised by Cohn and Elkies**° to obtain upper bounds
on ¢max~

Using a particular test pair correlation corresponding
to a disordered sphere packing, Torquato and Stillinger®
found a conjectural lower bound on ¢« that is controlled
by 270778654 thys providing the first putative exponen-
tial improvement on Minkowski’s lower bound (24). Scardic-
chio, Stillinger, and Torquato253 studied a wider class of test
functions (corresponding to disordered packings) that lead
to precisely the same putative exponential improvement on
Minkowski’s lower bound, and therefore, the asymptotic form
2~(0-77865.)d i much more general and robust than previously
surmised.

Zachary and Torquato~°~ studied, among other quan-
tities, pair statistics of high-dimensional generalizations of
the periodic 2D kagomé and 3D diamond crystal structures.
They showed that the decorrelation principle is remarkably
already exhibited in these periodic crystals in low dimensions,
suggesting that it applies for any sphere packing in high dimen-
sions, whether disordered or not. This conclusion was bol-
stered in a subsequent study by Andreanov, Scardicchio, and
Torquato®® who showed that strictly jammed lattice sphere
packings visibly decorrelate as d increases in relatively low
dimensions.

282

F. Remarks on packing problems
in non-Euclidean spaces

Particle packing problems in non-Euclidean (curved)
spaces arise in a variety of fields, including physics,?83-28
biology,>*?8%-28  communication theory,>” and geome-
try.3741:33:290.291 While a comprehensive overview of this topic
is beyond the scope of this review, it is useful to highlight here
some of the developments for the interested reader. We will
limit the discussion to sphere packings on the positively curved
unit sphere $%~! ¢ R?. The reader is referred to the review by
Torquato and Stillinger** for some discussion of negatively
curved hyperbolic space H.

Recall that the kissing number Z is the number of spheres
of unit radius that simultaneously touch a unit sphere 4137
The kissing number problem asks for the maximal kissing
number Z,,,, in R?. The determination of the maximal kiss-
ing number in R? spurred a famous debate between Issac
Newton and David Gregory in 1694. The former correctly
thought the answer was 12, but the latter wrongly believed
that it was 13. The maximal kissing number Z,,,, for d > 3
is only known in dimensions four,>*? eight,?%>>°* and twenty
four 293294

A packing of congruent spherical caps on the unit sphere
§4-1in RY yields a spherical code consisting of the centers of
the caps.’” A spherical code is optimal if the minimal distance
(smallest angular separation between distinct points in the
code) is as large as possible. The reader is referred to the paper
by Cohn and Kumar*' and the references therein for some
developments in the mathematics literature. Interestingly, the
jamming of spherical codes in a variety of dimensions has
been investigated.> It is noteworthy that some optimal spheri-
cal codes”® are related to the densest local packing of spheres
around a central sphere.>?%2%7

J. Chem. Phys. 149, 020901 (2018)

V. PACKINGS OF NONSPHERICAL PARTICLES

The packing characteristics of equilibrium phases
and jammed states of packings of nonspherical parti-
cles are considerably richer than their spherical counter-
parts,80:133,134,130,143,144,147,148,272.298-336 T i due to the fact
that nonsphericity of the particle shape introduces rotational
degrees of freedom not present in sphere packings. Our pri-
mary interest is in simple 3D convex shapes, such as ellip-
soids, superballs, spherocylinders, and polyhedra, although we
remark on more complex shapes, such as concave particles
as well as congruent ring tori, which are multiply connected
nonconvex bodies of genus 1. Organizing principles to char-
acterize and classify very dense possibly jammed packings
of nonspherical particles in terms of shape symmetry of the
particles>*!47321 are discussed in Sec. VD 5.

A. Simple nonspherical convex shapes
1. Ellipsoids

One simple generalization of the sphere is an ellipsoid,
the family of which is a continuous deformation of a sphere.
A d-dimensional ellipsoid in Réisa centrally symmetric body
occupying the region

AV (x)? R
(_)+(_)+”+(—)gl, @7
aj as aq

where x; (i =1, 2, ..., d) are the Cartesian coordinates and a;
are the semi-axes of the ellipsoid. Thus, we see that an ellipsoid
is an affine (linear) transformation of the sphere.

2. Superballs

A d-dimensional superball in RY is a centrally symmetric
body occupying the region

e 1% + ol + - x| <1, (28)

where x; (i = 1, ..., d) are the Cartesian coordinates and
p > 0 1is the deformation parameter (not pressure, as denoted
in Sec. IIT A), which controls the extent to which the parti-
cle shape has deformed from that of a d-dimensional sphere
(p = 1). Thus, superballs constitute a large family of both con-
vex (p > 1/2) and concave (0 < p < 1/2) particles (see Fig. 10).
A “superdisk,” which is the designation in the 2D case, pos-
sesses square symmetry. As p moves away from unity, two
families of superdisks with square symmetry can be obtained
depending on whether p < 1 or p > 1. When p < 1/2, the
superdisk is concave; see Ref. 145.

3. Spherocylinder

A d-dimensional spherocylinder in R consists of a cylin-
der of length L and radius R capped at both ends by hemi-
spheres of radius R and therefore is a centrally symmetric
convex particle. Its volume V¢ for d > 2 is given by

pld=1)/2pd~1 xdI2pd
= L .
TA+d-D/2)  T+d2)

Vsc (29)
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When L = 0, a d-dimensional spherocylinder reduces to
a d-dimensional sphere of radius R. Figure 11 shows 3D
examples.

4. Polyhedra

The Platonic solids (mentioned in Plato’s Timaeus) are
convex polyhedra with faces composed of congruent con-
vex regular polygons. There are exactly five such solids: the
tetrahedron (P1), icosahedron (P2), dodecahedron (P3), octa-
hedron (P4), and cube (P5) (see Fig. 12). Note that viral
capsids often have icosahedral symmetry; see, for example,
Ref. 289.

An Archimedean solid is a highly symmetric semi-regular
convex polyhedron composed of two or more types of reg-
ular polygons meeting in identical vertices. The thirteen
Archimedean solids are depicted in Fig. 13. This typical enu-
meration does not count the chiral forms (not shown) of the
snub cube (A3) and snub dodecahedron (A4). The remain-
ing 11 Archimedean solids are non-chiral (i.e., each solid is
superposable on its mirror image), and the only non-centrally
symmetric one among these is the truncated tetrahedron.

It is noteworthy that the tetrahedron (P1) and the trun-
cated tetrahedron (A1) are the only Platonic and non-chiral
Archimedean solids, respectively, which are not centrally sym-
metric. We will see that the central symmetry of the majority
of the Platonic and Archimedean solids (P2—-P5, A2-A13) dis-
tinguish their dense packing arrangements from those of the
non-centrally symmetric ones (P1 and Al) in a fundamental
way.

B. Equilibrium and metastable phase behavior

Hard nonspherical particles exhibit a richer phase dia-
gram than that of hard spheres because the former can possess
different degrees of translational and orientational order; see
Refs. 62, 80, 298, 300, 302, 306, 308, 310, 316, 317, 319,
323, 324, 327-329, 331, 334, and 337-343. Nonspherical
particle systems can form isotropic liquids, a variety of liquid

7

FIG. 11. Three-dimensional spherocylinders composed of a cylinder with
length L, caped at both ends with hemispheres with radius R. Left panel: A
spherocylinder with aspect ratio L/R = 1. Right panel: A spherocylinder with
aspect ratio L/R = 5.

J. Chem. Phys. 149, 020901 (2018)

FIG. 10. Superballs with different val-
ues of the deformation parameter p. We
note that p = 0, 1/2, 1, and oo corre-
spond to a 3D cross, regular octahedron,
sphere, and cube, respectively.

p—>0

crystal phases, rotator crystals, and solid crystals. Particles in
liquid phases have neither translational nor orientational order.
Examples of liquid crystal states include a nematic phase in
which the particles are aligned (i.e., with orientational order),
while the system lacks any long-range translational order and
a smectic phase in which the particles have ordered orien-
tations and possess translational order in one direction. A
rotator (or plastic) phase is the one in which particles pos-
sess translational order but can rotate freely. Solid crystals
are characterized by both the translational and orientational
order.

Ordering transitions in systems of hard nonspherical par-
ticles are entropically driven; i.e., the stable phase is deter-
mined by acompetition between translational and orientational
entropies. This principle was first established in the pioneer-
ing work of Onsager,”’® where it was shown that needle-like
shapes exhibit a liquid-nematic phase transition at low den-
sities because in the nematic phase the drop in orientational
entropy is offset by the increase in translational entropy, i.e.,
the available space for any needle increases as the needle tends
to align.

The stable phase formed by systems of hard-nonspherical
particles is influenced by its symmetry and surface smooth-
ness, which in turn determines the overall system entropy.
Here we briefly highlight 3D numerical studies that use
Monte Carlo methods and/or free-energy calculations to deter-
mine the phase diagrams. Spheroids exhibit not only fluid,
solid crystal, and nematic phases for some aspect ratios but
also rotator phases for nearly spherical particle shapes at
intermediate densities.’?®37 Hard “lenses” (common vol-
ume to two overlapping identical spheres) have a qualita-
tively similar phase diagram to hard oblate spheroids, but
differences between them are more pronounced in the high-
density crystal phase up to the densest-known packings.’3*
Spherocylinders exhibit five different possible phases, depend-
ing on the packing fraction and aspect ratio: isotropic fluid,
smectic, nematic, rotator, and solid crystal phases.’*® Apart
from fluid and crystal phases, superballs can form rotator
phases at intermediate densities.>'3?’ Systems of tetrago-
nal parallelepipeds can exhibit liquid-crystalline and cubatic
phases, depending on the aspect ratio and packing frac-
tion.3% Various convex space-filling polyhedra (including
truncated octahedron, rhombic dodecahedron, and two types
of prisms and cube) possess unusual liquid-crystalline and
rotator-crystalline phases at intermediate packing fractions.?!”
Interestingly, vacancies in hard cube systems can stabilize the
crystal phase.**> Truncated cubes exhibit a rich diversity in
crystal structures that depend sensitively on the amount of
truncation.” A study of a wide class of polyhedra revealed
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P1

that entropy maximization favors mutual alignment of particles
along their facets.*?* By analytically constructing the densest
known packings of congruent Archimedean truncated tetra-
hedra (which nearly fill all of space), the melting properties
of such systems were examined by decompressing this dens-
est packing and equilibrating them.?'” A study of the entire
phase diagram of truncated tetrahedra showed that the sys-
tem undergoes two first-order phase transitions as the density
increases: first a liquid-solid transition and then a solid-solid
transition. 33!

C. Maximally random jammed states

The fact that M&M candies (spheroidal particles with
aspect ratio @ =~ 1.9) were shown experimentally to randomly
pack more densely than spheres (¢ ~ 0.66) motivated the
development of a modified LS algorithm'#*1%* to obtain fric-
tionless MRJ-like packings with even higher densities for other
aspect ratios. This included nearly spherical ellipsoids with
¢ ~ 0.74,13313% j e | packing fractions approaching those of
the densest 3D sphere packings. Note that these other densest
MRYJ packings are realizable experimentally.'*°

Figure 14 shows separate plots of ¢ and mean con-
tact number Z as a function of « as predicted by the more
refined simulations of Donev e al.'3* Each plot shows a cusp
(i.e., non-differentiable) minimum at the sphere point, and ¢
versus aspect ratio a possesses a density maximum. The exis-
tence of a cusp at the sphere point runs counter to the con-
ventional expectation that for “generic” (disordered) jammed
frictionless particles, the total number of (independent)
constraints equals the total number of degrees of freedom dy,

A12

A11 A13

@ /3 '
P3 P4 P5
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FIG. 12. The five Platonic solids: tetrahedron (P1),
icosahedron (P2), dodecahedron (P3), octahedron (P4),
and cube (P5).

which has been referred to as the isostatic conjecture.>** This
conjecture implies a mean contact number Z = 2dy, where
dy =2 for disks, dy = 3 for ellipses, dy = 3 for spheres, dr = 5
for spheroids, and dy = 6 for general ellipsoids. Since
dy increases discontinuously with the introduction of rotational
degrees of freedom as one makes the particles nonspherical, the
isostatic conjecture predicts that Z should have a jump increase
at aspect ratio @ = 1 to a value of Z = 12 for a general ellipsoid.
Such a discontinuity was not originally observed by Donev
et al.,' rather, they found that jammed ellipsoid packings are
hypostatic (or sub-isostatic), Z < 2dy, near the sphere point,
and only become nearly isostatic for large aspect ratios. In fact,
the isostatic conjecture is only rigorously true for amorphous
sphere packings after removal of rattlers; generic nonspherical-
particle packings should generally be hypostatic.'3*343 It has
been rigorously shown that packings of nonspherical particles
are generally not jammed to first order in the “jamming gap”
o [see Sec. III C 2] but are jammed to second order in ¢ due
to curvature deviations from the sphere.!* In striking contrast
with MRJ sphere packings, the rattler concentrations of the
MR ellipsoid packings appear practically to vanish outside of
some small neighborhood of the sphere point.'** The reader
is referred to recent work on hypostatic jammed 2D packings
of noncircular particles.?*¢

Jiao, Stillinger, and Torquato®'! have computed the pack-
ing fraction ¢nry of MRJ packings of binary superdisks in R?
and identical superballs in R>. They found that ¢yg; increases
dramatically and nonanalytically as one moves away from
the circular-disk or sphere point (p = 1). Moreover, these
disordered packings were shown to be hypostatic. Hence,

FIG. 13. The thirteen Archimedean solids: truncated
tetrahedron (A1), truncated icosahedron (A2), snub cube
(A3), snub dodecahedron (A4), rhombicosidodecahe-
dron (A5), truncated icosidodecahedron (A6), truncated
cuboctahedron (A7), icosidodecahedron (AS8), rhom-
bicuboctahedron (A9), truncated dodecahedron (A10),
cuboctahedron (A11), truncated cube (A12), and trun-
cated octahedron (A13).

A10
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FIG. 14. Packing fraction ¢ versus aspect ratio @ for MRJ packings of
10000 ellipsoids, as obtained in Ref. 134. The semi-axes here are 1, aP,
and a. The inset shows the mean contact number Z as a function of a. Neither
the spheroid (oblate or prolate) nor general ellipsoid cases attain their isostatic
values of Z = 10 or Z = 12, respectively. Reprinted with permission from
A. Donev et al., Phys. Rev. E 75, 051304 (2007). Copyright 2007 American
Physical Society.

the local particle arrangements are necessarily nontrivially
correlated to achieve strict jamming and hence “nongeneric,”
the degree of which was quantified. MRJ packings of binary
superdisks and of ellipses are effectively hyperuniform.34¢
Note that the geometric-structure approach was used to derive
a highly accurate formula for the packing fraction ¢yry of
MRJ binary packings of convex superdisks'8” that is valid for
almost all size ratios, relative concentrations, and deforma-
tion parameter p > 1/2. For the special limit of monodisperse
circular disks, this formula predicts ¢pry = 0.837, which is in
very good agreement with the recently numerically discovered
MR isostatic state!>! with ¢yry = 0.827.

3D MRIJ packings of the four non-tiling Platonic solids
(tetrahedra, octahedra, dodecahedra, and icosahedra) were
generated using the ASC optimization scheme.?'® The MRJ
packing fractions for tetrahedra, octahedra, dodecahedra, and
icosahedra are 0.763 + 0.005, 0.697 + 0.005, 0.716 + 0.002,
and 0.707 + 0.002, respectively. It was shown that as the num-
ber of facets of the particles increases, the translational order in
the packings increases, while the orientational order decreases.
Moreover, such MRJ packings were found to be hyperuni-
form with a total correlation function A(r) that decays to zero
asymptotically with the same power law as MRJ spheres, i.e.,
like —1/r.* These results suggest that hyperuniform quasi-long-
range correlations are a universal feature of MRJ packings of
frictionless particles of general shape. However, unlike MRJ
packings of ellipsoids, superballs, and superellipsoids, which
are hypostatic, MRJ packings of the non-tiling Platonic solids
are isostatic.’'® In addition, 3D MRIJ packings of truncated
tetrahedra with an average packing fraction of 0.770 were also
generated.?’!

D. Maximally dense packings

We focus here mainly on exact constructions of the densest
known packings of nonspherical particles in which the lat-
tice vectors as well as particle positions and orientations are
expressible analytically. Where appropriate, we also cite some
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work concerning packings obtained via computer simulations
and laboratory experiments.

Rigorous upper bounds on the maximal packing fraction
®max of packings of nonspherical particles of general shape in
R¢ can be used to assess their packing efficiency. However,
it has been highly challenging to formulate upper bounds for
non-tiling particle packings that are nontrivially less than unity.
It has recently been shown that ¢, of a packing of congruent
nonspherical particles of volume vp in R is bounded from the
above according to

. v
brmax < Py = mm[i B3 1], (30)

where vg is the volume of the largest sphere that can be
inscribed in the nonspherical particle and ¢S5, is the maxi-
mal packing fraction of a packing of d-dimensional of iden-
tical spheres'*”'* (e.g., ¢3. = n/V12 for d = 2 and
¢S« = 7/V18 for d = 3). The upper bound (30) will be
relatively tight provided that the asphericity y (equal to the
ratio of the circumradius to the inradius) of the particle is
not large. Since bound (30) cannot generally be sharp (i.e.,
exact) for a non-tiling particle, any packing whose density is
close to the upper bound (30) is nearly optimal, if not optimal.
Interestingly, a majority of the centrally symmetric Platonic
and Archimedean solids have relatively small asphericities,
explaining the corresponding small differences between ¢{ .
and ¢k, the packing fraction of the densest lattice pack-
ing.147:148.275.303 A5 discussed below, these densest lattice
packings are conjectured to be the densest among all pack-
ings.'#""148 Upper bound (30) will also be relatively tight for
superballs (superdisks) for deformation parameters p near the
sphere (circle) point (p = 1). Dostert et al.>> recently obtained
upper bounds on ¢, of translative packings of superballs
and 3D convex bodies with tetrahedral symmetry.

1. Ellipsoids

The fact that MRJ-like packings of nearly spherical ellip-
soids exist with ¢ = 0.74 (see Refs. 133 and 134) suggested
that there exist ordered ellipsoid packings with appreciably
higher densities. The densest known packings of identical 3D
ellipsoids were obtained analytically by Donev et al.;® see
Fig. 15. These are exact constructions and represent a family
of non-Bravais lattice packings of ellipsoids with a packing
fraction that always exceeds that of the corresponding densest
Bravais lattice packing (¢ =0.74048. . .) with a maximal pack-
ing fraction of ¢ =0.7707. . ., for a wide range of aspect ratios
(@ < 1/V3 and @ > V3). In these densest known packings,
each ellipsoid has 14 contacting neighbors and there are two
particles per fundamental cell.

While a convex “lens” fits snugly within an oblate
spheroid of the same aspect ratio, the densest known lens pack-
ings are denser for general aspect ratios (except for a narrow
range of intermediate values) than their spheroid counterparts,
achieving the highest packing fraction of ¢ = /4 =0.7853. ..
in the “flat-lens” limit.3*

2. Superballs

Exact analytical constructions for candidate maximally
dense packings of 2D superdisks were recently proposed
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FIG. 15. The packing fraction of the “laminated” non-Bravais lattice pack-
ing of ellipsoids (with a two-particle basis) as a function of the aspect ratio
a, as obtained from Ref. 305. The point @ = 1 corresponding to the face-
centered cubic lattice sphere packing is shown, along with the two sharp
maxima in the packing fraction for prolate ellipsoids with @ = V3 and oblate
ellipsoids with @ = 1/ V3, as shown in the insets. For both @ < 1/v3 and
a > V3,the packing fraction drops off precipitously holding the particle orien-
tations fixed (blue lines). The presently maximal achievable packing fraction
¢ = 0.7707. .. is highlighted with a thicker red line and is constant for
@ < 1/V3 and @ > V3; see Ref. 305. Reprinted with permission from A.
Donev et al., Phys. Rev. Lett. 92, 255506 (2004). Copyright 2004 American
Physical Society.

for all convex and concave shapes.'* These are achieved
by two different families of Bravais lattice packings
such that ¢mn,x is nonanalytic at the “circular-disk” point
(» = 1) and increases significantly as p moves away from
unity. The broken rotational symmetry of superdisks influ-
ences the packing characteristics in a non-trivial way that is
distinctly different from ellipse packings. For ellipse pack-
ings, no improvement over the maximal circle packing fraction
(dmax = 7/V12 = 0.906899...) is possible, since the for-
mer is an affine transformation of the latter.** For superdisks,
one can take advantage of the four-fold rotationally symmetric
shape of the particle to obtain a substantial improvement on
the maximal circle packing fraction. By contrast, one needs
to use higher-dimensional counterparts of ellipses (d > 3) in
order to improve on ¢y for spheres. Even for 3D ellipsoids,
¢max increases smoothly as the aspect ratios of the semi-axes
vary from unity®*> and hence has no cusp at the sphere point.
In fact, 3D ellipsoid packings have a cusp-like behavior at the
sphere point only when they are randomly jammed. '3

Jiao et al.'*® showed that increasing the dimensionality
of a superball from two to three dimensions imbues the opti-
mal packings with structural characteristics that are richer than
their 2D counterparts. They obtained analytical constructions
for the densest known superball packings for all convex and
concave cases, which are certain families of Bravais lattice
packings in which each particle has 12 contacting neighbors.
For superballs in the cubic regime (p > 1), the candidate opti-
mal packings are achieved by two families of Bravais lattice
packings (Cy and C; lattices) possessing two-fold and three-
fold rotational symmetry, respectively. For superballs in the
octahedral regime (0.5 < p < 1), there are also two families
of Bravais lattices (Qy and O, lattices) obtainable from con-
tinuous deformations of the fcc lattice, which are apparently
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optimal in the vicinity of the sphere point and the octahedron
point, respectively.

The exact maximal packing fraction ¢m.x as a function
of deformation parameter p for convex superballs (p > 1/2)
is plotted in Fig. 16. As p increases from unity, the initial
increase in ¢, is linear in (p — 1) and subsequently ¢pax
increases monotonically with p until it reaches unity as the
particle shape tends to the cube. These characteristics stand
in contrast to those of the densest known ellipsoid packings
(see Fig. 15) whose packing fraction as a function of aspect
ratios has zero initial slope and is bounded from the above by
a value of 0.7707. . ..3% As p decreases from unity, the initial
increase of ¢y is linear in (1 — p). Thus, ¢nax is a nonanalytic
function of p at p = 1.143146 However, the behavior of ¢max as
the superball shape moves off the sphere point is distinctly
different from that of optimal spheroid packings, for which
®max increases smoothly as the aspect ratios of the semi-axes
vary from unity and hence has no cusp at the sphere point.3%
These distinctions between the superball versus ellipsoid pack-
ings result from differences in which rotational symmetries
in these two packings are broken.'*® For the small range
0.79248 < p < 1, Ni et al.*?® numerically found lattice pack-
ings that are very slightly denser than those of the theoretically
predicted Q) lattices of Ref. 146. Figure 17 plots the packing
fraction versus deformation parameter for concave superballs
(p < 1/2), as obtained in Ref. 146. All of these results for
convex superballs support the Torquato-Jiao conjecture that
the densest packings of all convex superballs are their densest
lattice packings.'*®

3. Spherocylinders

The role of curvature in determining dense packings of
smoothly shaped particles is still not very well understood.
While the densest packings of 3D ellipsoids are (non-Bravais)
lattice packings,’®® the densest packings of superballs appear
to be lattice packings.!*®!'47 For 3D spherocylinders with
L > 0, the optimal Bravais-lattice packing is very dense
and might be one of the actual densest packings. This is
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FIG. 16. Packing fraction versus deformation parameter p for the packings of
convex superballs, as taken from Ref. 146. Inset: Around p: = 1.1509 .. ., the
two curves are almost locally parallel to each other. Reprinted with permission
from Y. Jiao er al., Phys. Rev. E 79, 041309 (2009). Copyright 2009 American
Physical Society.
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FIG. 17. Packing fraction versus deformation parameter p for the lattice
packings of concave superballs, as taken from Ref. 146. Inset: a concave
superball with p = 0.1, which will becomes a 3D cross at the limit p — 0.
Reprinted with permission from Y. Jiao et al., Phys. Rev. E79, 041309 (2009).
Copyright 2009 American Physical Society.

because the local principal curvature of the cylindrical surface
is zero along the spherocylinder axis (i.e., a “flat” direction),
and thus, spherocylinders can have very dense lattice pack-
ings by an appropriate alignment of the spherocylinders along
their axes. The packing fraction of the densest Bravais lattice
packing is given by

n L+%R

b= o= ——,
Vi2 [+ 2R

where L is the length of the cylinder and R is the radius of
the spherical caps. This lattice packing corresponds to stack-
ing layers of aligned spherocylinders in the same manner as
fce spheres and hence there are a uncountably infinite number
of non-Bravais-lattice packings of spherocylinders (in corre-
spondence to the Barlow stackings of spheres**) with the same
packing densities (31). Thus, the set of dense nonlattice pack-
ings of spherocylinders is overwhelmingly larger than that of
the lattice packing. We will see that these dense packings are
consistent with Conjecture 3 described in Sec. V D 5.

(3D

4. Polyhedra

About a decade ago, very little was known about the dens-
est packings of polyhedral particles. The difficulty in obtaining
dense packings of polyhedra is related to their complex rota-
tional degrees of freedom and to the non-smooth nature of
their shapes. It was the investigation of Conway and Torquato
of dense packings of tetrahedra’” that spurred the flurry of
activity over several years to find the densest packings of
tetrahedra,!47-148.310.312-315.347 \which in turn led to studies
of the densest packings of other polyhedra and many other
nonspherical convex and concave particles.3!7-321,323,324,329,334

Torquato and Jiao'#”-!*8 employed a Monte Carlo imple-
mentation of the ASC optimization scheme to determine dense
packings of the non-tiling Platonic solids and of all of the
Archimedean solids. For example, they were able to find the
densest known packings of the octahedra, dodecahedra, and
icosahedra (three non-tiling Platonic solids with central sym-
metry) with densities 0.947. . .,0.904. . ., and 0.836. . ., respec-
tively. Unlike the densest tetrahedron packing, which must be
anon-Bravais lattice packing, the densest packings of the other

J. Chem. Phys. 149, 020901 (2018)

non-tiling Platonic solids found by the algorithm are their pre-
viously known densest (Bravais) lattice packings;>’>*% see
Fig. 18. These simulation results as well as other theoreti-
cal considerations led them to general organizing principles
concerning the densest packings of a class of nonspherical
particles, which are described in Sec. V D 5.

We note that the “floppy-box” (FB) method?*? is simi-
lar in spirit to the Monte Carlo implementation of the ASC
method in that they both allow the periodic simulation box
to change shape and size via MC moves. However, the two
methods implement the box deformation differently. In the
FB method, each lattice vector defining the box can be
independently perturbed, implying that jamming cannot be
ensured. In the ASC method, the box deformation is achieved
by applying a symmetric strain tensor, which (under non-
volume-increasing strains) ensures jamming in the final state.
Moreover, the FB method has been used to predict crystal
structures at zero and positive temperatures for systems with
hard or soft interactions,?*3-34% while the ASC method has
been employed to generate jammed ordered or disordered
hard-particle packings,!47-149,153,156,318

Conway and Torquato®®’ showed that the maximally
dense packing of regular tetrahedra cannot be a Bravais lat-
tice. Among other non-Bravais lattice packings, they obtained
a simple uniform packing of “dimers” (two particles per funda-
mental cell) with packing fraction ¢ = 2/3. A uniform packing
has a symmetry (in this case a point inversion symmetry)
that takes one tetrahedron to another. A dimer is composed
of a pair of regular tetrahedra that exactly share a common
face. They also found non-Bravais lattice (periodic) pack-
ings of regular tetrahedra with ¢ ~ 0.72, which doubled the
density of the corresponding densest Bravais-lattice packing
(¢ = 18/49 = 0.367...), which was the record before 2006.
This work spurred many studies that improved on this den-
sity, 147:148,310.312-315.347 Kallus et al.3'3 found a remarkably
simple “uniform” packing of tetrahedra with high symmetry
consisting of only four particles per fundamental cell (two
“dimers”) with packing fraction ¢ = 100/117 = 0.854 700. . ..
Torquato and Jiao**’ subsequently presented an analytical
formulation to construct a three-parameter family of dense
uniform dimer packings of tetrahedra again with four parti-
cles per fundamental cell. Making an assumption about one of
these parameters resulted in a two-parameter family, includ-
ing those with a packing fraction as high as ¢ = 12 250/14 319
= 0.855506. ... Chen et al.>'* used the full three-parameter
family to obtain the densest known dimer packings of
tetrahedra with the very slightly higher packing fraction
¢ = 4000/4671 = 0.856347... (see Fig. 19). Whether this
is the optimal packing is an open question for reasons given
by Torquato and Jiao.>'?> The fact that the first nontrivial
upper bound on the maximal packing fraction is infinitesimally
smaller that unity®’? (@max < 1 —2.6 X 1072) is a testament to
the difficulty in accounting for the orientations of the tetrahedra
in a dense packing.

5. Organizing principles for convex
and concave particles

Torquato and Jiao'#”-'4® showed that substantial face-to-

face contacts between any of the centrally symmetric Platonic
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FIG. 18. Portions of the densest lattice packings of three of the centrally symmetric Platonic solids found by the ASC optimization scheme,

J. Chem. Phys. 149, 020901 (2018)

147.148 a5 taken from

Ref. 148. Left panel: Icosahedron packing with packing fraction ¢ = 0.8363. ... Middle panel: Dodecahedron packing with packing fraction ¢ = 0.9045. . ..
Right panel: Octahedron packing with packing fraction ¢ = 0.9473. . .. Reprinted with permission from S. Torquato and Y. Jiao, Phys. Rev. E 80, 041104 (2009).

Copyright 2009 American Physical Society.

and Archimedean solids allow for a higher packing fraction.
They also demonstrated that central symmetry enables maxi-
mal face-to-face contacts when particles are aligned, which is
consistent with the densest packing being the optimal lattice
packing. The aforementioned simulation results, upper bound,
and theoretical considerations led to three conjectures concern-
ing the densest packings of polyhedra and other nonspherical
particles in R3; see Refs. 147, 148, and 312.

Conjecture 1. The densest packings of the centrally sym-
metric Platonic and Archimedean solids are given by their
corresponding optimal (Bravais) lattice packings.

Conjecture 2. The densest packing of any convex congru-
ent polyhedron without central symmetry generally is not a
(Bravais) lattice packing; i.e., the set of such polyhedra whose
optimal packing is not a lattice is overwhelmingly larger than
the set whose optimal packing is a lattice.

Conjecture 3. The densest packings of congruent cen-
trally symmetric particles that do not possess three equivalent

FIG. 19. A portion of the densest three-parameter family of tetrahedron pack-
ings with 4 particles per fundamental cell’?! and packing fraction ¢ = %
=0.856347 ... obtained by Chen et al.; see Ref. 312 for a general treatment.
Reprinted with permission from S. Torquato and Y. Jiao, Phys. Rev. E 86,

011102 (2012). Copyright 2012 American Physical Society.

principle axes (e.g., ellipsoids) are generally not (Bravais)
lattice packings.

Conjecture 1 is the analog of Kepler’s sphere conjecture
for the centrally symmetric Platonic and Archimedean solids.
On the experimental side, it has been shown??? that such silver
polyhedral nanoparticles self-assemble into the conjectured
densest lattice packings of such shapes. Torquato and Jiao'*®
have also commented on the validity of Conjecture 1 to poly-
topes in four and higher dimensions. The arguments leading
to Conjecture 1 also strongly suggest that the densest packings
of superballs and other smoothly shaped centrally symmetric
convex particles having surfaces without “flat” directions are
given by their corresponding optimal lattice packings.'*® Con-
sistent with Conjecture 2, the densest known packing of the
non-centrally symmetric truncated tetrahedron is a non-lattice
packing with packing fraction ¢ = 207/208 = 0.995192. .,
which is amazingly close to unity and strongly implies its
optimality.’!” We note that non-Bravais-lattice packings of
elliptical cylinders (i.e., cylinders with an elliptical basal
face) that are denser than the corresponding optimal lattice
packings for any aspect ratio greater than unity have been
constructed,>*!*? which is consistent with Conjecture 3. A
corollary to Conjecture 3 is that the densest packings of con-
gruent centrally symmetric particles that possess three equiv-
alent principle axes (e.g., superballs) are generally Bravais
lattices. !4

Subsequently, Torquato and Jiao®?! generalized the afore-
mentioned three conjectures in order to guide one to ascer-
tain the densest packings of other convex nonspherical parti-
cles as well as concave shapes. These generalized organizing
principles are explicitly stated as the following four distinct
propositions:

Proposition 1. Dense packings of centrally symmetric
convex congruent particles with three equivalent axes are
given by their corresponding densest lattice packings, pro-
viding a tight density lower bound that may be optimal.

Proposition 2. Dense packings of convex congruent poly-
hedra without central symmetry are composed of centrally
symmetric compound units of the polyhedra with the inversion-
symmetric points lying on the densest lattice associated with
the compound units, providing a tight density lower bound that
may be optimal.
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Proposition 3. Dense packings of centrally symmetric
concave congruent polyhedra are given by their corresponding
densest lattice packings, providing a tight density lower bound
that may be optimal.

Proposition 4. Dense packings of concave congruent
polyhedra without central symmetry are composed of centrally
symmetric compound units of the polyhedra with the inversion-
symmetric points lying on the densest lattice associated with
the compound units, providing a tight density lower bound that
may be optimal.

Proposition 1 originally concerned polyhedra. It is gener-
alized here to include any centrally symmetric convex congru-
ent particle with three equivalent axes to reflect the arguments
put forth by Torquato and Jiao.'47-3?!

All of the aforementioned organizing principles in the
form of conjectures and propositions have been tested in
Ref. 321 against a comprehensive set of both convex and con-
cave particle shapes, including but not limited to the Platonic
and Archimedean solids,’*!47-*17 Catalan solids,**° prisms and
antiprisms,350 Johnson solids,**° cylinders,30l’349 lenses,334
truncated cubes,’?” and various concave polyhedra.’>° These
general organizing principles also enable one to construct
analytically the densest known packings of certain convex
nonspherical particles, including spherocylinders, and square
pyramids and rhombic pyramids.?! Moreover, it was shown
how to apply these principles to infer the high-density equi-
librium crystalline phases of hard convex and concave par-
ticles.*?! We note that the densest known 2D packings of a
large family of 2D convex and concave particles (e.g., crosses,
curved triangles, and moon-like shapes) fully adhere to the
aforementioned organizing principles.?

Interestingly, the densest known packing of any identical
3D convex particle studied to date has a density that exceeds
that of the optimal sphere packing value ¢, = 7/ Vi8
= 0.7408 . ... These results are consistent with a conjecture
of Ulam, who proposed to Gardner,?! without any justifica-
tion, that the optimal packing fraction for congruent sphere
packings is smaller than that for any other convex body. There
is currently no proof of Ulam’s conjecture.

6. Dense packings of tori

We have seen that the preponderance of studies of dense
packings of nonspherical shapes in R3 have dealt with con-
vex bodies that are simply connected and thus topologically
equivalent to a sphere. However, much less is known about
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FIG. 20. The densest known packing of
tori of radii ratio 2 with a packing frac-
tion ¢ ~ 0.7445, as taken from Ref. 330.
The images show four periodic units
viewed from different angles, each con-
taining four tori. Reprinted with permis-
sion from R. Gabbrielli ez al., Phys. Rev.
E 89, 022133 (2014). Copyright 2014
American Physical Society.

dense packings of multiply connected solid bodies. Gabbrielli
et al.**" investigated the packing behavior of congruent ring
tori in R?, which are multiply connected non-convex bodies
of genus one, as well as horn and spindle tori. Guided by the
aforementioned organizing principles, they analytically con-
structed a family of dense periodic packings of individual tori
and found that the horn tori as well as certain spindle and ring
tori can achieve a packing density not only higher than that
of spheres (i.e., 7/V18 = 0.7404 . . .) but also higher than the
densest known ellipsoid packings (i.e., 0.7707. . .). Moreover,
they studied dense packings of clusters of pair-linked ring tori
(i.e., Hopf links), which can possess much higher densities
than the corresponding packings consisting of unlinked tori;
see Fig. 20 for a specific example.

VI. CHALLENGES AND OPEN QUESTIONS

Packing problems are fundamental and their solutions are
often profound. This perspective provides only a glimpse into
the richness of packing models and their capacity to capture
the salient structural and physical properties of a wide class of
equilibrium and nonequilibrium condensed phases of matter
that arise across the physical, mathematical, and biological
sciences as well as technological applications.

Not surprisingly, there are many challenges and open
questions. Is it possible to prove a first-order freezing transi-
tion in 3D hard-sphere systems? Is the fcc lattice provably the
entropically favored state as the maximal density is approached
along the stable crystal branch in this same system? Can one
devise numerical algorithms that produced large disordered
strictly jammed isostatic sphere packings that are rattler-free?
Is the true MRI state rattler-free in the thermodynamic limit?
Can one prove the Torquato-Stillinger conjecture that links
strictly jammed sphere packings to hyperuniformity? Can one
identify incisive order metrics for packings of nonspherical
particles as well as a wide class of many-particle systems that
arise in molecular, biological, cosmological, and ecological
systems? What are the appropriate generalizations of the jam-
ming categories for packings of nonspherical particles? Is it
possible to prove that the densest packings of the centrally
symmetric Platonic and Archimedean solids are given by their
corresponding optimal lattice packings? Upon extending the
geometric-structure approach to Euclidean space dimensions
greater than three, do periodic packings with arbitrarily large
unit cells or even disordered jammed packings ever provide the
highest attainable densities? Can one formulate a disordered
sphere-packing model in R? that can be rigorously shown to
have a packing fraction that exceeds ¢ = 1/2¢, the maximal
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value achievable by the ghost RSA packing? In view of the
wide interest in packing problems across the sciences, it seems
reasonable to expect that substantial conceptual advances are
forthcoming.
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