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[1] Characterizing the diffusive exchange of solutes between bulk water in an aquifer and
water in the intragranular pores of the solid phase is still challenging despite decades of
study. Many disparities between observation and theory could be attributed to low
connectivity of the intragranular pores. The presence of low connectivity indicates that a
useful conceptual framework is percolation theory. The present study was initiated to
develop a percolation-based finite difference (FD) model, and to test it rigorously against
both random walk (RW) simulations of diffusion starting from nonequilibrium, and data on
Borden sand published by Ball and Roberts (1991a,b) and subsequently reanalyzed by
Haggerty and Gorelick (1995) using a multirate mass transfer (MRMT) approach. The
percolation-theoretical model is simple and readily incorporated into existing FD models.
The FD model closely matches the RW results using only a single fitting parameter, across
a wide range of pore connectivities. Simulation of the Borden sand experiment without pore
connectivity effects reproduced the MRMT analysis, but including low pore connectivity
effects improved the fit. Overall, the theory and simulation results show that low
intragranular pore connectivity can produce diffusive behavior that appears as if the solute
had undergone slow sorption, despite the absence of any sorption process, thereby
explaining some hitherto confusing aspects of intragranular diffusion.

Citation: Ewing, R. P., C. Liu, and Q. Hu (2012), Modeling intragranular diffusion in low-connectivity granular media, Water Resour.
Res., 48, W03518, doi:10.1029/2011WR011407.

1. Introduction
[2] Characterizing the diffusive exchange of solutes

between bulk water in an aquifer and water in the intragra-
nular pores of the solid phase is still challenging despite
decades of study. For organic solutes, the exchange is com-
plicated by such issues as partitioning into various kinds of
organic matter [Huang et al., 2003; Warren et al., 2003;
Ten Hulscher et al., 2005], bioavailability and biological ac-
tivity [Reichenberg and Mayer, 2006], and nonlinear iso-
therms [McGinley et al., 1996; Ran et al., 2002]. Exchange
of inorganic solutes such as contaminant uranium is compli-
cated by multiple redox states, precipitation in multiple min-
erals, and interaction with other solutes [Zachara et al.,
2007; Liu et al., 2008]. Common to both organic and inor-
ganic solutes is retardation and sequestration via diffusion
into intragranular pores in the solid phase [e.g., Neretnieks,
1980; Ball and Roberts, 1991a; Werth and Reinhard, 1997;
Gouze et al., 2008].

[3] Diffusion into and out of a porous sphere was
described analytically by Crank [1975]. A simple system’s
dynamics might therefore be approximated by considering

the granular aquifer to be composed of spheres, accounting
for their size distribution, and using a reasonable value for
the diffusion coefficient D. Of course, real systems are more
complex: the particles are not spherical, intragranular prop-
erties may vary with particle size, the particle size distribu-
tion may vary in space, large-scale heterogeneities come
into play, and so on. Nonetheless, a persistent deviation seen
between theory and well-controlled experiments is that,
when porous spheres supposedly at equilibrium with a solute
are placed in solute-free fluid, early desorption is more rapid
than predicted by the analytical solution, and D appears to
slowly decrease over time. As examples see Pedit and Miller
[1994, Figures 2 and 4], Harmon and Roberts [1994, Figures
4–6], Haggerty and Gorelick [1995, Figure 4a], Cornelissen
et al. [1997, Figures 1 and 2], Fleming and Haggerty [2001,
Figure 6], and Werth and Hansen [2002, Figures 1–4]. Linear
sorption would present as simple retardation, or a decrease
in the diffusion coefficient [Crank, 1975], so it cannot
explain the change in shape of the curves. The phenomenon
has been called ‘‘slow sorption’’ [Pignatello and Xing, 1996;
Huang et al., 2003; Warren et al., 2003], because an early
explanation for it was that solute sorption gradually becomes
stronger with long-term contact [Steinberg et al., 1987].

[4] Some portion of the disparity between observation
and model may be explained by the particles having a non-
uniform size distribution [Cunningham and Roberts, 1998].
Other explanations that have been advanced for these dis-
parities include different mineralogies [e.g., Liedl and Ptak,
2003], complex sorption/desorption mechanisms [e.g., Ran
et al., 2002], and specific kinds or arrangements of intragra-
nular pores [e.g., Cunningham et al., 1997; Haggerty and
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Gorelick, 1998]. While the diffusion may be non-Fickian
[e.g., Dentz and Berkowitz, 2003; Gouze et al., 2008], rea-
sons for the anomalous behavior are rarely identified. In a
previous paper [Ewing et al., 2010] we reviewed some of
the explanations, noting that (as pointed out by Bas�a�gao�glu
et al. [2004]) the disparities could imply that accessible
intragranular porosity (that is, intragranular porosity that
connects with the exterior) decreases with increasing dis-
tance from the exterior. We hypothesized that the underly-
ing cause was low connectivity of the intragranular pores.
Using a pore network model of a porous sphere, we con-
firmed that at low pore connectivity, accessible intragranu-
lar porosity decreased with increasing distance from the
sphere’s surface, while tortuosity increased. Modeling diffu-
sion using random walks (RW) [e.g., Ewing and Horton,
2002], we saw that at low intragranular pore connectivity,
solute diffused out qualitatively differently from the analy-
sis of Crank [1975], deviating similarly to the observations
mentioned above.

[5] The RW model was extremely slow, useful for
fundamental investigations but not for practical use. We
[Ewing et al., 2010] developed equations for accessible
porosity �a and tortuosity � as functions of both pore con-
nection probability p, and distance l from the sphere’s exte-
rior, for use in a finite difference (FD) model. From
tortuosity and accessible porosity, the diffusion coefficient
as a function of l was calculated by the commonly used
[e.g., Epstein, 1989] formalism

DpmðlÞ ¼Daq
�aðlÞ
�2ðlÞ ; (1)

where the subscript pm denotes porous medium, and aq
denotes free aqueous solution. For p < 1, the output of this
FD model differed from the Crank [1975] analytical solu-
tion in the right way: early solute release was faster, and
late release slower, than that given by the analytical solu-
tion. However, these differences from the analytical model

were not great enough to give good agreement with the
RW model, and the diffusion coefficient had to be empiri-
cally adjusted to sustain agreement with the RW results
over the range of connectivities (1.0 > p > pc) examined.

[6] It was unclear why the FD did not better match the
RW results. Perhaps the diffusion formulation (equation
(1)) is simply incorrect, and a percolation formulation
would work better. Within the sphere itself there is no dif-
fusive exchange between the infinite cluster (note: percola-
tion concepts and terminology are presented in section 2)
and the finite (edge) clusters, so perhaps it is necessary to
calculate diffusion and solute concentrations separately for
the two distinct pore spaces (a ‘‘split’’ model) rather than
treating them as a single computational unit at each depth
within the sphere (a ‘‘merged’’ model). This might be im-
portant because near the percolation threshold, most of the
accessible pore volume near the sphere’s exterior belongs
to finite clusters ; only a small fraction belongs to the infi-
nite cluster (Figure 1). Accessible pores on the finite clus-
ters (denoted �f), not being connected to the deeper
interior, would presumably desorb fairly quickly. But
because there is so little pore volume belonging to the infi-
nite cluster (denoted �i) near the sphere’s surface, solute on
the infinite cluster would enter and leave more slowly, con-
strained by a porosity bottleneck at the edge.

[7] A further motivation for this study was the recogni-
tion that considering diffusion starting only from equilib-
rium constitutes a relatively weak test both of the FD
model, and of our underlying conjecture that the slow sorp-
tion phenomenon may be diffusion mediated. A more rigor-
ous test would involve (net) in-diffusion followed by (net)
out-diffusion at multiple progressive steps toward equilib-
rium, such that diffusion is examined starting from several
different initial conditions.

[8] Finally, it was clear that the FD model would not be
useful unless it required few adjustable parameters, and
unless it could work with real data (e.g., multiple grain sizes)
as well as with theoretical parameters from the RW model.

Figure 1. Accessible pore volume as a function of distance l from the sphere’s exterior. In this exam-
ple, R ¼ 500 and � ¼ 250, and approximately 67% of the total accessible pore volume is on finite clus-
ters. (a) Local accessible pore volume (infinite þ finite clusters), normalized to the accessible volume of
the outermost ‘‘shell.’’ (b) Accessible pore volumes, normalized to total accessible pore volume, cumula-
tive from the exterior. Values were calculated using equations (2), (4), and (5).

W03518 EWING ET AL.: MODELING INTRAGRANULAR DIFFUSION W03518

2 of 14



We therefore reanalyze the classical Ball and Roberts
[1991b] data on perchloroethene (PCE) sorption in Borden
sand, which has also been analyzed with the multirate mass
transfer (MRMT) model of Haggerty and Gorelick [1995].

[9] Our objectives in this study were therefore to (1)
parameterize a FD model using percolation theory con-
cepts, modeling �i and �f both separately and together, (2)
test the FD model against complex RW simulations, and
(3) evaluate the utility of various formulations of the FD
model in analyzing data from a classical experiment on
PCE uptake into Borden sand.

2. Background and Model Development
2.1. Percolation Theory

[10] A system of pores that have low interconnectivity is
best approached as a percolation problem [Sahimi, 1994;
Hunt and Ewing, 2009]. Unfortunately, few hydrologists
and soil scientists (the authors included) learned percolation
theory as students, so the topic often seems a confusing
morass from which we do not know how to extract the rela-
tionships we want. Here we present some basic concepts of
percolation theory, as background for applying it to diffusive
exchange between a porous sphere and the surrounding fluid.

[11] Percolation theory [Stauffer and Aharony, 1994] is a
mathematical framework for describing the macroscopic
properties that emerge in a system composed of many
roughly equivalent parts, given the local degree of connec-
tion between those parts. In the context of this study, the
parts are the individual pores within a single particle (grain,
cobble, etc.), and the macroscopic properties of chief inter-
est are the accessible porosity and the intragranular diffusion
coefficient. Ewing et al. [2010] discussed why it is reasona-
ble to expect that many geological media have low pore
connectivity; here we will briefly discuss how some proper-
ties emerge as a consequence of low connectivity. Extensive
presentations of percolation theory in the context of porous
materials are given in the work of Berkowitz and Balberg
[1993], Sahimi [1994], and Hunt and Ewing [2009].

[12] Consider a large two-dimensional lattice, for example
a brick wall, and suppose that individual sites (e.g., bricks)
are colored black with probability p, or white with probabil-
ity 1 � p. As p increases from 0, black sites change from
being rare and isolated, to occurring in clusters of black sites.
Further increases in p increase the mean size of the black
clusters, and eventually a threshold is crossed: the black
clusters merge to form an ‘‘infinite cluster’’ that spans the
entire brick wall, however large it may be. The value of p at
which the percolation threshold is reached (the infinite clus-
ter forms) is called pc, the critical probability. When p > pc,
the white sites occur as disconnected clusters, and further
increasing p will decrease the mean size of the white clusters
until they become rare and isolated. Much of percolation
theory can be developed from this simple sketch.

[13] When p ¼ 1.0, all sites are black, so all sites are
on the infinite cluster. When p < pc, no black site are on the
infinite cluster because there is no infinite cluster. The frac-
tion of black sites that belong to the infinite cluster (denoted
P, the ‘‘power’’ of the infinite cluster) therefore goes from 0
for p < pc, to 1 at p ¼ 1. As it happens, P is described by a
simple power law: when p > pc, P� (p – pc)

�. This behavior
is independent of (most) details of the lattice: even though

square, triangular, cubic, and irregular lattices have different
values for pc, the same power law behavior is seen in all of
them, a phenomenon known as universality. The value of �
is different in different dimensions, but values are known for
both two and three dimensions (Table 1). A consequence of
universality is that relationships developed for an easy case,
say a square two-dimensional lattice, can then be applied
(with some care) to irregular three-dimensional problems.

[14] A useful parameter is the correlation length, �. For
p < pc, � is essentially the mean radius of the finite clus-
ters, while for p > pc, � is the mean radius of the holes in
the infinite cluster. This has practical implications: if only
the black phase is conducting, then pathways through the
black infinite cluster are on average separated by a distance
� ; this is why � is also called the ‘‘mean separation of
paths.’’ � is known to scale as � � jp – pcj��, and the pres-
ence of the percolation exponent � (Table 1) generally indi-
cates some form of size scaling. � functions as a characteristic
length, and we find that systems behave homogeneously at
length scales L � �, while behavior at scales less than � is
typically scale dependent. Because � ! 1 as p ! pc, the
only operational length scale at pc is the system size.

[15] Suppose a system is near pc, and we want to know
the length of a path between two given sites on the same
cluster. The straight line or Euclidean distance, l, can be cal-
culated trivially, but the connecting pathway, proceeding
from site to connected site, is more complex. The length of
this path is called the chemical distance, �, because in a po-
rous medium, with sites corresponding to pores, this is the
shortest path available to a molecule traveling between the
two sites. The path is fractal at scales greater than the scale
of individual sites but less than � ; for these distances � is
related to the Euclidean distance as � � lDmin (Table 1).
The ratio �/l is therefore the tortuosity � , the value of which
must be scale dependent at scales greater than a single pore
and less than � [Ewing et al., 2010].

[16] As a final illustration, consider conduction through
the infinite cluster. If p ¼ 1, the system’s conductivity, g, is
clearly determined by the distribution of conductivities.
But as p decreases toward pc, the individual conducting
pathways become more tortuous (with Dmin), while the
separation between individual pathways becomes greater
(with �). At some point [Hunt, 2004; Ewing and Hunt,
2006] the topological considerations become more impor-
tant than the conductivity distribution, and the system’s

Table 1. Fundamental Percolation Exponents Discussed in This
Study

Exponent
Value
in 2-D

Value
in 3-D Meaning

� 5/36a 0.41 Defines the fraction of the medium that
is on the infinite cluster (the ‘‘power’’
of the infinite cluster).

� 4/3 0.88 Defines �, the fundamental length
scale near pc. Indicates size-scaling.

Dmin 1.13 1.34 Fractal dimension of the chemical path
between two points on the same
cluster; related to tortuosity.

� 1.31 2.0 Describes conductivity near pc in an
infinite medium.

aValues that are known analytically are given as fractions; decimal
values are numerical estimates.
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conductivity is found to scale with proximity to the perco-
lation threshold as g � (p – pc)

� (Table 1).
[17] Instead of having sites be black with probability p

(‘‘site percolation’’), we could have had bonds (the connec-
tions between adjacent sites) being active with probability
p (‘‘bond percolation’’). The values of the critical probabil-
ities, and of the prefactors needed to convert the scaling
relationships to equalities, are specific to the lattice used
(square, honeycomb, etc.), and whether it is site or bond
percolation that obtains. However, the scaling relationships
we have shown hold generally across these as well as other
considerations. Our RW model uses bond percolation on a
simple cubic lattice, so we know that pc � 0.2488 [Stauffer
and Aharony, 1994]. In a physical system (e.g., Borden
sand), we do not know either p or pc, so different methods
must be found to work with percolation concepts. Both
conceptual and physical systems are considered in this
study.

2.2. Model Development

[18] When accessible porosity is not uniform, a FD
model needs local values of accessible porosity in order
to convert between concentration (the driving force) and
solute mass. Our FD model therefore requires equations
giving local values of both accessible porosity, �a, and the
diffusion coefficient, Dpm. When the sphere has low pore
connectivity, these parameters vary as functions of both the
proximity to the percolation threshold (i.e., with p – pc),
and the intragranular distance l to the sphere’s exterior. We
address the accessible porosity first. Recall that the percola-
tion exponent � gives the fraction of active sites that are on
the infinite cluster, and in an infinite system, only sites on
the infinite cluster would be accessible over great distances.
Meanwhile, scaling with distance occurs for distances l < �.
The value of � for a system above the percolation threshold
is given by � ¼ a (p – pc)

��, with a being a system-specific
prefactor. The � and � exponents combine to give an expo-
nent –�/�, which governs how accessible porosity varies
with distance from the exterior. If p and pc are known (e.g.,
when comparing the FD model with the RW model) then a
is a fitting parameter; for a physical system (e.g., the Borden
sand) we instead consider � to be a fitting parameter.

[19] At distances l > �, �a takes a constant plateau value
which we designate �p. Closer to the exterior, �a decreases
with an exponent –�/�. Equating these at l ¼ � defines a
prefactor b : �p �

�/�, so

�aðlÞ ¼
b l��=� l < �

�p l � �
;

(
(2)

where the scaling with distance shows up through both the
exponent �, and the crossover in scaling at l ¼ � (Figure 1).
With these relationships, and given � and �p for a sphere of
radius R, then �a for the whole sphere can be calculated as

�a ¼
�p

R3

"
ðR� �Þ3 þ 3��=�

ZR

R��

½R� r���=�r2dr

#
; (3)

and given any three of [R, �, �p, �a], we can calculate the
fourth.

[20] When modeling the sphere without distinguishing
between the infinite and finite clusters (the ‘‘merged’’ model),
equation (2) suffices to describe the porosity distribution. But
when modeling the infinite and finite clusters as separate sys-
tems operating in parallel (the ‘‘split’’ model), their accessible
porosities must be treated separately. All accessible porosity
must be on either the infinite cluster (�i) or those finite clus-
ters intersecting the edge (�f): �a ¼ �i þ �f. Accessible po-
rosity on the infinite cluster varies with intragranular distance
l to the grain’s exterior as

�iðlÞ ¼
�pðl=�Þ�=� l < �

�p l � �
:

(
(4)

[21] By definition, all accessible pores at distances l > �
belong to the infinite cluster (Figure 1). Consequently, acces-
sible porosity due to the finite clusters, �f, is nonzero only
for l < �, and is given by the difference between equations
(2) and (4):

�f ðl < �Þ ¼ �p

�

l

� ��=�
� l

�

� ��=�" #
: (5)

When the sphere is small relative to the correlation length
(i.e., when R < �), there is no infinite cluster. In this case
we consider that the split and merged models are identical.

[22] The FD model also requires a percolation-based
estimate of the diffusion coefficient, Dpm. As with �a, two
distinct scaling issues apply: scaling with distance l from
the sphere’s exterior, and scaling with p – pc, the proximity
to the percolation threshold. As with porosity, diffusion
scaling with distance has a crossover at l ¼ �, and is known
to take the form [Stauffer and Aharony, 1994]

DpmðlÞ � minðl;�Þ�#; (6)

where the exponent # : (� – �)/� � 1.807 in 3-D. As we
would expect, this distance-scaling exponent has the expo-
nent � in the denominator.

[23] The second kind of scaling, scaling with p – pc for
distances l > �, was seen by Ewing et al. [2010] to follow

DpmðpÞ � ðp� pcÞ : (7)

They gave the exponent  � 1.42 in 3-D, and conjectured
that  : (2 þ #)/2 Dmin. On the other hand, Havlin and
Ben-Avraham [2002] and Stauffer and Aharony [1994] give
the exponent  : 2� – � (�1.35 in 3-D) for p < pc, which
is to say, for finite clusters near criticality. This exponent
can be interpreted as meaning that diffusion is restricted to
a single pathway (on average) through each area �2

(because the mean distance between paths scales with the
exponent –�), and is directly proportional to the fraction of
the porosity that is on the infinite cluster (controlled by the
� exponent). For comparisons against the RW model, we
ran the FD model with both values of  .

[24] Because diffusion and conductivity are related, one
might expect that the relevant exponent would be � rather
than  . The short explanation is that in our porous spheres
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we have diffusion on both the infinite cluster and the finite
clusters ; when diffusion is restricted to the infinite cluster,
the � exponent is appropriate. A fuller explanation [e.g.,
Stauffer and Aharony, 1994] is beyond the scope of this
paper.

[25] Equation (7) is problematic in terms of actual
implementation, most obviously because the endpoints are
wrong. For example, we may want Dpm at p ¼ 1.0 to
take some known value (denoted Dk), and can easily nor-
malize to obtain it. But equation (7) would also give Dpm

¼ 0 at p ¼ pc, which is only asymptotically true for infi-
nite systems, in contrast to the finite spheres we are con-
sidering. Specifically, if we are working with a grain of
size R � �, all intragranular pores lie within the region of
decreasing porosity and increasing tortuosity (Figure 1).
Within this region, all values of p between pc at the low
end, and pc þ (R/a)�1/� at the high end, should give iden-
tical values of the diffusion coefficient (combining both
the infinite and finite clusters) : all of these systems
behave essentially identically within a distance l < � of
the exterior [Ewing et al., 2010, Figure 10]. We therefore
modify equation (7) to

DpmðpÞ � ðp	 � pcÞ ; (8a)

where

p	 
 max p; pc þ
R

a

� ��1=�
" #

: (8b)

This modification is further justified in section 5. Combin-
ing the two kinds of scaling (equations (6) and (8)) and nor-
malizing to the known Dk at p ¼ 1.0 gives

Dpmðp; lÞ ¼Dk
p	 � pc

1� pc

� � l�# l < �

��# l � �
:

(
(9)

[26] The above discussion involves an artificial system
for which p – pc is known. In contrast, a physical system’s
proximity to the percolation threshold is not generally
known. In this case we combine the several unknowns,
defining

D0 
Dk
p	 � pc

1� pc

� � 
; (10)

which allows us to treat D0 as our second fitting parameter
(after �). The local diffusion coefficient is then simply
given as

DpmðlÞ ¼D0

l�# l < �

��# l � �
:

(
(11)

3. Methods
3.1. Random Walk Simulations

[27] Ewing et al. [2010] used a random walk (RW)
model to simulate diffusion of a solute from a porous
sphere of radius R lattice units. The random walkers were

initially emplaced randomly and then allowed to diffuse
out, modeling the case in which a saturated porous sphere
is initially at diffusive equilibrium with the surrounding
fluid (i.e., solute concentrations are the same everywhere,
both inside and outside the sphere), then is moved to a sol-
ute-free fluid. The RW model agreed with Crank’s [1975]
solution at high connectivity (p ¼ 1.0), and with percola-
tion theory at low connectivity (p ¼ pc), giving it credence
as a standard against which to test the FD model.

[28] In this work we extended the RW model to simulate
the case of a water-saturated but initially solute-free po-
rous sphere (initial internal concentration C ¼ 0) being
immersed in an infinite reservoir of a solution of concen-
tration C0 > 0, then returned to a solution with C ¼ 0
before equilibrium is reached (i.e., while mean intragranu-
lar C/C0 < 1.0). As realized in the RW model, the intra-
granular porespace is initially free of random walkers: all
walkers start outside the sphere. At mean intragranular rel-
ative concentrations C/C0 ¼ 10%, 20%, 50%, and 90%,
the model takes a ‘‘snapshot,’’ recording the number of
elapsed time steps and the location of all walkers, then dif-
fusion continues until C/C0 > 90%. (Note that in contrast
to normal usage for breakthrough curves, here C/C0 refers
to the mean relative solute concentration ratio inside the
porous sphere.) Afterward, for each of these concentrations,
the system is restored to the snapshot configuration, but
walkers currently outside the sphere are removed, as are all
remaining walkers upon exiting the sphere. Diffusion pro-
ceeds until all random walkers have exited the sphere. This
way, one in-diffusion episode is used to initialize out-diffu-
sion episodes from four different nonequilibrium ‘‘flip
points.’’ Despite this efficiency, each realization took much
more time than a simple out-diffusion simulation with iden-
tical parameters. Simulations with R < 500 were run on a
personal computer, but the more CPU-intensive R ¼ 500
simulations were run on the parallel supercomputer spokane
at the Environmental Molecular Sciences Laboratory
(EMSL), Pacific Northwest National Laboratory (PNNL).
100 realizations were run for each combination of R and p.

3.2. Finite Difference Model For Comparison
With RW Model

[29] Diffusion in spherical coordinates is usually
described by

@C

@t
¼D

@2C

@r2
þ 2

r

@C

@r

� �
; (12)

where r : R – l is the distance from the sphere’s center.
Making the substitution c : rC/C0 [Crank, 1975] normal-
izes the concentration to our reference concentration, and
changes equation (12) to

@c

@t
¼D

@2c

@r2
; (13)

the same form as the simpler one-dimensional diffusion
equation. We discretize the sphere into shells of thickness
Dr, and time into periods of duration Dt. Putting equation
(13) into finite difference (FD) form and making the
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substitution d : DDt/(Dr)2, we rearrange it to obtain
[Crank, 1975; Press et al., 1992]

� dcj�1;tþ1 þ ð2þ 2dÞcj;tþ1 � dcjþ1;tþ1 ¼ dcj�1;t

þ ð2� 2dÞcj;t þ dcj�1;t;
(14)

where the subscript j denotes radial position, and t time.
Note that all terms on the left-hand side are at time t þ 1;
while the right-hand side is all at time t. These equations
form a tridiagonal matrix, which is readily solved with the
Thomas algorithm [e.g., Press et al., 1992].

[30] Where the diffusion coefficient D changes with
position (equation (9)), a mean value is calculated by inte-
grating Dpm(l) over the thickness of the shell, and dividing
by Dr to get an effective mean value. Porosity enters into
equation (14) indirectly, because solute concentration
inside the sphere is solute mass per unit pore volume. The
intragranular porosity changes with distance from the exte-
rior, so the model tracks solute mass and intragranular pore
volume as distinct variables at each location, calculating
concentration from them as needed. The simulation starts
with a large concentration gradient at time t ¼ 0, but gra-
dients decrease to near zero as equilibrium is approached,
so we used a small initial time step Dt ¼ 1.0, and obtained
subsequent time steps by multiplying the previous time
step by 1.01.

[31] The initial condition was C ¼ 0 at t ¼ 0 and l > 0.
The exterior boundary condition was C ¼ C0 at t > 0,
changing to C ¼ 0 after the flip time. Solute uptake and
release were expressed in terms of the mean intragranular
concentration, C/C0. The merged model calculated porosity
via equation (2), while the split model used equations (4)
and (5). Model inputs were the sphere radius R, the shell
thickness Dr, the connection probability p, the critical
probability pc, the known diffusion coefficient for p ¼ 1.0
(Dk ¼ 1=6 (lattice units)2 (time steps)�1; Ewing and
Horton [2002]), and the prefactor a, the model’s sole fitting
parameter. The value of �p was estimated from � and the
value of �a at l ¼ 1 and p ¼ pc (0.744 in the RW model).

3.3. Borden Sand Data

[32] The experiment analyzed here is described in the
work of Ball and Roberts [1991a, 1991b], with additional
details given in Ball’s [1989] dissertation. Briefly, unconta-
minated Borden sand was sieved into 7 size classes; a bulk
nonsieved sample was also retained. Replicates of these
eight samples were placed in batch reactors and exposed to
aqueous PCE, uptake of which was measured over some
100 days. For each size class they measured the particle
size range, intragranular porosity, solid/liquid ratio (S/L),
and long-time ‘‘ultimate fractional uptake’’ Kult

d . They also
measured uptake at intermediate times, from which they
calculated apparent uptake Kapp

d . Solute uptake was pre-
sented in terms of Kapp

d =Kult
d , which (assuming no instanta-

neous uptake) can be calculated from the initial (C0),
equilibrium (Ce), and intermediate time (C(t)) reservoir con-
centrations as (see their equations (9a) and (9b)):

Kapp
d

Kult
d

¼ ½C0=CðtÞ� � 1

ðC0=CeÞ � 1
: (15)

A useful parameter in analyzing these data is Crank’s
[1975] 	 parameter, the ratio of the reservoir (batch reactor)
fluid volume to the (accessible) intragranular pore volume
as adjusted for sorption: 	 ¼ 1/[Kult

d � (S/L)]. The reservoir
concentration asymptotically approaches an equilibrium
value Ce ¼ C0 	/(1 þ 	). The Borden sand’s sorption iso-
therm was linear within the experimental range of PCE con-
centrations [Ball and Roberts, 1991a].

[33] We digitized uptake (Kapp
d =Kult

d ) data from appendix
E of Ball [1989]. For each size class we used the geometric
mean of the maximum and minimum radii as the character-
istic radius. Experimental values of the S/L ratio ranged
from 0.22 to 2.0 g mL�1 [Ball and Roberts, 1991a]; to cal-
culate 	 for each size class we used the midpoint of the
range given for that class. Uptake data for the bulk sand
were provided by W. P. Ball (personal communication,
2011). The mean of the absolute values of the differences
between our digitized bulk sand data and those provided by
Ball, relative to Ball’s values, was less than 1% for both
time and Kapp

d =Kult
d . Parameter optimization was done for

each size class at the mean 	 that Ball and Roberts [1991b]
reported for that size class. Bulk sand predictions were gen-
erated by making an uptake curve for each size class at the 	
reported for bulk sand (approximately 0.932), and combining
these curves as described by Haggerty and Gorelick [1995].

3.4. Finite Difference Model for Analysis of Borden
Sand Data

[34] For analysis of the Borden sand data, the finite dif-
ference (FD) model was modified in a few significant ways.
We used only the merged model, and calculated the local
diffusion coefficient using equation (11). Time was in sec-
onds rather than unitless ‘‘time steps,’’ and distance in mm
rather than ‘‘lattice units.’’ Because Ball and Roberts’
[1991a, 1991b] reactors had finite fluid volume, the reser-
voir concentration was iteratively adjusted within each
time step to maintain mass balance. Where porosity was
not uniformly distributed, the FD model treated sorption as
being locally proportional to accessible pore volume, in
contrast to analytical solutions which assume spatially uni-
form properties.

[35] Analysis of the Borden sand data used several mod-
els differing in number and handling of the fitting parame-
ters (Table 2). The Ball and Roberts [1991b] single-sphere
approximation, denoted 1DBR, treats the bulk sand as hav-
ing a single characteristic particle radius given by the Sauter
mean particle radius, and fits a single diffusion coefficient
to the bulk sand data using Crank’s [1975] finite-reservoir
series solution. The other six models used the published par-
ticle size and intragranular porosity data in a separate FD
solution for each of the size classes. These FD models
ranged from forcing � ¼ 0 and fitting a value of D0 simul-
taneously to all seven size classes (model 1D), to fitting a
unique D0 and � for each of the seven size classes (model
7D7�). Model 7D is equivalent to Haggerty and Gore-
lick’s [1995] MRMT model, and this model gave identical
results when implemented using Crank’s [1975] solution
and the FD model.

4. Results
[36] Our previous work [Ewing et al., 2010] favored the

interpretation  : (2 þ #)/(2 Dmin) � 1.42 in 3-D, but the

W03518 EWING ET AL.: MODELING INTRAGRANULAR DIFFUSION W03518

6 of 14



more rigorous tests of the present study support  : 2� –
� � 1.35 in 3-D. This more standard value [Havlin and Ben
Avraham, 2002; Stauffer and Aharony, 1994] gives a better
match to the RW results for diffusion starting from none-
quilibrium, especially as p ! pc (comparison not shown).
For brevity, only the  : 2�–� results are reported and
discussed.

4.1. Comparison With RW Model

[37] The best overall match between the FD and RW out-
put was seen when a ¼ 0.095, slightly greater than Ewing
et al.’s [2010] a ¼ 0.07 for porosity, but less than the
a ¼ 0.21 that they used for tortuosity. Note that a is adjust-
able only within fairly constrained bounds, because it has a
clear physical meaning, and its value can be estimated in-
dependently of simulations such as these. All subsequent
comparisons of the RW and FD models use  � 1.35 and
a ¼ 0.095.

[38] With no other adjustable parameters, the FD model
results closely matched the RW results across all values of
p, and for both net in-diffusion and net out-diffusion.
We first examine results for the case of p ¼ 1.0, for which
� � 0 and so the merged and split models are identical.
This is shown (Figure 2) in all combinations of linear and
logarithmic axes, to acquaint the reader with the various
forms in which these data can be displayed. With both axes
linear (Figure 2a), the plot of C/C0 over time resembles a
breakthrough curve (BTC) with a pulse input of several
pore volumes [e.g., Brusseau et al., 1997]. Recall that the
concentrations being plotted are the mean concentration
inside the sphere, rather than effluent concentrations. At
low pore connectivity, extremely long times can be
required to attain internal mean concentrations C/C0 �
90%, so it can be useful to use logarithmic time axes (Fig-
ure 2b). When plotted with linear time and logarithmic rel-
ative concentration (Figure 2c), out-diffusion limbs starting
from all four flip points appear parallel ; we shall make use
of this later. Finally, when both axes are logarithmic (Fig-
ure 2d), the entire range is visible, and larger-scale patterns
emerge. While each alternative presentation in Figure 2 has
advantages, in the interest of brevity we present further
results only in the log-log format.

[39] The agreement between RW and FD models
remains quite good for p < 1.0 (Figure 3), with all curves
matching well in shape. There is little visible difference
between the merged and split models, except for slight sep-
aration in the net out-diffusion legs in Figures 3b and 3c.
With no substantive difference between the two models,

the merged model is to be preferred for the sake of simplic-
ity. Again, we emphasize that the only change in input
between FD runs was the value of p ; there are no empiri-
cally adjusted parameters beyond a, which was held con-
stant in Figures 2 and 3.

[40] The main difference between the RW and FD mod-
els (Figure 3) involves the timing of the flip points, so we
compared the FD flip times to the RW flip time distribu-
tions (Figure 4). FD flip times range between the 75th and
95th percentiles for p ¼ 1.0 (Figure 4a), showing that the
FD model is in reasonable agreement with the RW model
(as also seen in Figure 2). For p ¼ 0.255 (Figure 4b) the
first FD flip point is quite late, but the last two are early. At
p ¼ 0.25 (Figure 4c), the merged model performs slightly
better than the split model on the timing of the first two flip
points. Finally, when p ¼ pc (Figure 4d), the agreement is
quite good. The overall pattern is that the FD model per-
forms quite well at p ¼ 1.0 and p ¼ pc, but is less accurate
slightly above the threshold. We suspect that the underlying
cause of this timing mismatch is that the discrete nature of
the models introduces some artifacts. Ewing et al. [2010]
mentioned artifacts due to the cubic connectivity of the
RW model; analogous issues arise in the FD model. The
greatest difference in flip points is found at values of p for
which � takes quite small values: at p ¼ 0.27, � ¼ 2.8, and
at p ¼ 0.255, � ¼ 8.3. Our implementation of the FD
scheme used uniform layer thicknesses, and rounding these
small values of � could introduce significant changes.

[41] As noted above, the out-diffusion limbs in Figure 2c
appear to have the same slope, showing that the diffusion
coefficient appears to follow approximately the same trajec-
tory in each case. This slope can be used to calculate an
apparent diffusion coefficient Dapp that applies to the sphere
as a whole:

Dapp ¼ �
R2


2

�ln ðC=C0Þ
�t

: (16)

As discussed in the work of Ewing et al. [2010], Dapp is
expected to decrease with time, asymptotically approaching
the ‘‘correct’’ value. The calculated Dapp shows nearly iden-
tical behavior for both the RW and FD models when shown
as a function of time from the flip points (Figure 5), further
confirming that the FD model captures the essentials of the
RW model. For p ¼ 1.0 (Figure 5a), when starting from an
earlier flip time (say, C/C0 ¼ 10% versus 90%), Dapp

decreases more quickly after the first few hundred time
steps, but the same final value, approximately 1/6, is reached

Table 2. Summary of Models Used to Simulate the Borden Sand Experiment

Model
Number of

Sphere Sizes

Number of Fitting Parameters
Error Sum of Squares

for 7 Size Classes
Error Sum of Squares

for Bulk SandD0 � Total

1DBRa 1 1 0 1 – 0.1551
1D 7 1 0 1 4.0484 0.1377
7Db 7 7 0 7 1.8650 0.1376
1D1� 7 1 1 2 3.8345 0.1494
7D1� 7 7 1 8 1.3191 0.1344
1D7� 7 1 7 8 2.8345 0.1331
7D7� 7 7 7 14 1.2975 0.1327

aEquivalent to the Ball and Roberts [1991b] single-sphere fit.
bEquivalent to the Haggerty and Gorelick [1995] seven sphere composite MRMT prediction.
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regardless of flip point. But for p ¼ pc (Figure 5b), later flip
points yield lower final estimates of Dapp. In other words, as
the solute distribution inside the sphere approaches equilib-
rium, the sphere’s apparent diffusion coefficient decreases,
because late-time diffusion is controlled by the lower diffu-
sion coefficient deeper inside the sphere. This decrease in
the final value of Dapp with increasing time is characteristic
of the ‘‘slow sorption’’ phenomenon.

[42] The issue of the extent to which a nonequilibrium
starting condition affects the progress of the out-diffusion
is further examined in Figure 6, in which the concentra-
tions at the flip times have all been normalized to 1.0; the
in-diffusion is also shown. For the high-connectivity case
(Figure 6a), the 10% flip point line differs from the later
flip point lines mainly in the middle section; all the lines
begin and end together. In contrast, the low-connectivity
case (Figure 6b) shows a much stronger separation, with
the lines rejoining (if at all) much later, at C/C0 < 10�6.
Now consider Figure 6b in the context of slow sorption:
let the various out-diffusion lines all represent the same
quantity of solute that, having aged in place, is increas-
ingly close to internal equilibrium. Because the curves are

similar, appearing to have been simply shifted to the right
on the time axis with increasing time, they could reasonably
be interpreted as differing only in the diffusion coefficient.
That is, in a medium having intragranular pore connectivity
near the percolation threshold, the closer the system is to
equilibrium when out-diffusion starts, the lower its apparent
diffusion coefficient. Alternatively, because sorption with a
linear isotherm presents as a simple decrease in the diffusion
coefficient, the lines could also be interpreted as showing a
sorption coefficient that increases with time. In other words,
Figures 5b and 6b show that low intragranular pore connec-
tivity is a possible explanation for the aging or ‘‘slow sorp-
tion’’ phenomenon.

4.2. Comparison With Borden Sand Data

[43] The Ball [1989] bulk sand data are noisy for meas-
urements after the first month (Figure 7), so every model’s
bulk sand prediction error term is dominated by late-time
data scatter. As Figure 7a (similar to Haggerty and Gore-
lick’s [1995, Figure 4a]) shows, the 1DBR fit differs from
the 7D prediction primarily at times earlier than 30 days:
the models agree well at later times. But despite model

Figure 2. Comparison of finite difference (FD) and random walk (RW) simulations of relative internal
concentration (C/C0, the mean relative solute concentration ratio inside the porous sphere) as a function
of time, for a sphere of R ¼ 500 and p ¼ 1.0. All plots show the same data, with (a) both axes linear, (b)
a logarithmic time axis, (c) a logarithmic concentration axis, and (d) both axes logarithmic.
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7D’s improved accord with the data at early times, its error
term is only 11% less than the 1DBR single-sphere fit
(Table 2). So because of late-time scatter, even an appreci-
able improvement in prediction may yield only a small
reduction in the error term. For this reason we also present
an error term for the fitting runs (Table 2), representing the
sum of squared residuals for the 154 observations across all
7 size classes. According to the AICc [Hurvich and Tsai,
1995], the best model using the bulk sand error term is 1D ;
using the size class error term, the best model is 7D1�.

[44] All models that permitted � > 0 converged to a non-
zero value for �. The fitted values of � from model 7D7�
were quite small, between 3 and 10 mm (from about 1% to
11% of a particle’s radius), but finite cluster pore volume
contributed 9.6% (largest size class) to 41.7% (smallest size
class) of the accessible pore volume. The effect of nonzero
values of � on early PCE uptake was striking (Figure 7).
The best matches, both visually and according to their error
terms, were given by models 7D1� and 7D7� (Table 2),
which were indistinguishable from each other (Figure 7b)
and had error terms lower than the 1DBR model by 13.3%
and 14.5%, respectively.

[45] With � > 0, early-time uptake is greater, without
forcing equilibrium to be reached unreasonably early.
Adding a fitted � to a model always resulted in a lower

fitting error sum of squares, and generally decreased the
bulk sand prediction error as well (Table 2). Ball and
Roberts’ [1991b] analysis of individual size classes
allowed some fraction of the solute (up to 31%) to sorb
instantaneously, in less than 0.01 day. This effectively
added an additional fitting parameter to each size class,
and increased early Kapp

d =Kult
d values, but provided no

mechanism. As an alternative explanation, using fitted val-
ues of � from our 7D7� model, we see that for each size
class, the fraction of total accessible volume that is within
1.5 mm of the particle’s exterior is essentially (r2 ¼ 0.97)
the same percent instantaneous sorption found by Ball and
Roberts [1991b]. The point is not the specific distance we
used, but rather that the value of the ‘‘instantaneous frac-
tion’’ may be a consequence of that fraction of the total
uptake capacity being within some distance or diffusion
time from the exterior.

[46] The model improvement due to including connec-
tivity nicely illustrates the persistent deviation between de-
sorption measurements and theory discussed in section 1,
although for sorption rather than desorption. Because the
experiment involves sorption rather than desorption, chem-
ical arguments regarding changes in the strength of the
sorption are less convincing; pore connectivity issues pro-
vide a simple and coherent explanation.

Figure 3. Comparison of random walk (RW) simulations, and both merged and split finite difference
(FD) models, of relative internal concentration C/C0 as a function of time for a sphere of R ¼ 500 and
p ¼ (a) 0.27, (b) 0.255, (c) 0.25, and (d) pc.
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5. Discussion
[47] We now address more directly the issue raised by

modifying equation (7) to account for finite-size effects.
Clearly some modification was needed, because we cannot
have Dpm ¼ 0 at p ¼ pc in finite-size media. Ewing et al.

[2010] observed (their Figure 10) that spheres having dif-
ferent radii behaved similarly over a range of connectivity
values if � < R, but differences emerged when � > R.
Comparing the mean flip times given by the RW model to
those predicted by the FD model (Figure 8), we find that

Figure 4. Finite difference (FD) flip times (times at which, during net in-diffusion, C/C0 first reaches
10, 20, 50, and 90%) in comparison with selected percentiles of the distribution of flip times from the
RW model. Connection probabilities are p ¼ (a) 1.0, (b) 0.255, (c) 0.25, and (d) pc.

Figure 5. Apparent diffusion coefficient Dapp as a function of time since the flip point, from RW simu-
lations and the merged FD model, for (a) p ¼ 1.0, and (b) p ¼ pc.
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the closest match, across all values of R, p, and C/C0 com-
pared, is always at � ¼ R. Notice further that equation (8)
describes the diffusion coefficient of the infinite cluster at
distances l > � ; at this distance there is no contribution
from the finite clusters. But where � > R, such as for a fi-
nite sphere at pc, the relevant length scale must be the sys-
tem size R rather than the correlation length. This essentially
forces all clusters to be finite, which requires modifying the
percolation scaling; we conclude therefore that our modifi-
cation (equation (8)) is reasonable and justified.

[48] It is instructive to compare the progress of diffusion
in the two separate porosities (Figure 9). This figure uses
the same properties used for Figure 1: R ¼ 500 and � ¼
250. The finite clusters contribute about 2/3 of the total ac-
cessible pore volume, but C/C0 of the whole sphere closely
tracks C/C0 in the finite clusters. The concentration in the
infinite cluster lags far behind during net in-diffusion, indi-
cating a lower diffusion coefficient—in fact, the apparent
diffusion coefficient (via equation (16)) for the finite
clusters is 3.5 to 80 times greater than that for the infinite

cluster. But at any intragranular distance l, we expect the
diffusion coefficient to be the same for the infinite cluster as
it is for the finite clusters. What causes the slower response
is a combination of two geometrical factors: first, the finite
cluster pores are closer to the edge. For example, in the
R ¼ 500 sphere analyzed in Figure 1, 50% of the finite clus-
ter accessible pore volume is within l ¼ 25 of the edge,
while getting to 50% of the infinite cluster accessible pore
volume requires going into the sphere a distance l ¼ 147.
And second, most of the accessible pores at the edge belong
to finite clusters, while the infinite cluster faces a bottleneck
at that location. The excellent performance of the merged
model suggests that this bottleneck effect, while an appeal-
ing argument, does not actually reflect what is happening in
the sphere itself. A likely explanation is that those parts of
the infinite cluster that are converted to finite clusters by the
presence of the edge are dangling ends rather than the back-
bone itself.

[49] We now examine the common formalism for the
diffusion coefficient, equation (1), in percolation terms for

Figure 6. Comparison of RW and FD diffusion curves, all normalized to start at a mean internal con-
centration of 1.0. The in-diffusion curve, reversed as shown here, represents the case of starting at equi-
librium. Spheres have R ¼ 500 and p ¼ (a) 1.0, and (b) pc.

Figure 7. PCE uptake data from Ball [1989], and sorption modeled by (a) the � ¼ 0 models and
1D1�, and (b) the � > 0 models and 1DBR. See Table 2 for model definitions and abbreviations.
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distances l > �. At these distances, the accessible porosity
�a is entirely due to the infinite cluster, so it is given by
(p – pc)

�. Meanwhile, the tortuosity � scales as the correla-
tion length � raised to the power Dmin –1 [Ewing et al.,
2010]. Incorporating these relationships into an expression
for Dpm gives

DpmðpÞ �
�a

�2
� ðp� pcÞ��
½ðp� pcÞ� � �Dmin�1

� 2 ¼ ðp� pcÞ�þ2�ðDmin�1Þ:

(17)

The resulting exponent has a value of approximately 1.008
in 3-D. That value is only about 3=4 of the value  : 2� –
� � 1.35 which gives the consistently strong match with the
RW results seen in Figures 3–6. If we had not squared the
tortuosity term, the exponent would be only about 0.71,
barely half the correct value. This analysis emphasizes the
importance of using equations with the correct exponents:
an incorrect equation may perform adequately within a lim-
ited range, but its deviation from the correct response may
become extreme as some limit (such as the percolation
threshold) is unwittingly approached. Nonetheless, equation

Figure 8. Ratio of FD flip time to RW median flip time, as a function of the ratio of the correlation
length � to the sphere radius R. Correlation lengths were altered by changing p	 (equation (8)). The best
match of FD flip time to RW flip time was always obtained at � ¼ R.

Figure 9. Internal concentration C/C0 as a function of time for R ¼ 500 and � ¼ 250, shown separately
for the finite clusters, the infinite cluster, and the sphere as a whole. The merged model (not shown) is
essentially identical to the split model.
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(1) still provides a fine intuitive explanation of why we
expect Dpm to decrease with distance l into the rock.

[50] The concepts and methods developed here explain
some heretofore puzzling aspects of diffusive mass trans-
fer. Because this mass transfer can be a significant contrib-
utor to dispersion [Haggerty and Gorelick, 1995; Gouze
et al., 2008], non-Fickian behavior can significantly alter
the long-term dispersion. We have shown that low intragra-
nular pore connectivity is a plausible basis for non-Fickian
mass transfer ; this physical basis will improve understand-
ing and aid development of new measurement and model-
ing methods. The concepts and methods presented here can
be used directly as shown in analyzing the Borden sand
data, used in a larger-scale simulation with individual
spheres [e.g., Tartakovsky et al., 2007], or applied to gener-
ate a memory function to inform mobile-immobile (MIM)
or CTRW models [Dentz and Berkowitz, 2003; Gouze
et al., 2008]. While we have exclusively dealt with spheri-
cal geometry, the percolation relationships could also be
used, e.g., to describe changes in a rock’s accessible poros-
ity and diffusion coefficient with distance from a fracture.
The values of p – pc cannot be directly measured in a real
rock, but its emergent macroscopic parameter � is meas-
ureable. Several approaches to quantifying � in natural
rock have been pursued in our ongoing research.

6. Conclusions
[51] We develop a percolation-based FD model, test it

against a rigorous set of RW simulations, and examine its
use with real data. We conclude that :

[52] 1. The percolation relationships describing accessi-
ble porosity and diffusion coefficient (equation (2), and
equation (9) or (11)) are fairly simple, and easily incorpo-
rated into an existing FD model.

[53] 2. Split and merged FD models give almost identical
results. Parsimony therefore recommends the simpler merged
model, although there may be cases where distinguishing
between the infinite and finite components is useful.

[54] 3. The FD model produces results that compare well
with the RW results, with a single fitting parameter and
comparing over many orders of magnitude.

[55] 4. The FD model with two fitting parameters (� and
D0) performed well in modeling a physical system. Incor-
porating percolation effects into the FD model improved
model predictions of PCE sorption into the Borden sand.

[56] 5. Comparison with the conventional formalism
(equation (1)) shows why a percolation-based model is
superior near pc.

[57] 6. The exponent  for diffusion scaling with prox-
imity to the percolation threshold is 2�–� (�1.35 in 3-D).

[58] 7. Low intragranular pore connectivity, if initiated at
different degrees of diffusive nonequilibrium, can cause de-
sorption to appear as if the solute has undergone slow sorption.
That is, a solute’s slow approach to intragranular equilibrium
can present as progressively stronger sorption of the solute to
the solid, even in the absence of any sorption process.

Notation

a prefactor for calculating �, L.
b prefactor for calculating �a.

C solute concentration, M L�3.
D diffusion coefficient, L2 T�1.

Dmin percolation exponent.
FD finite difference (model).
Kd sorption coefficient, L3 M�1.

l distance from exterior of sphere, L.
PCE perchloroethene (tetrachloroethene).

p connection probability.
pc critical connection probability.
p	 modified connection probability.
P fraction of sites belonging to the infinite cluster.
R sphere radius, L.
r distance from sphere center, L.

RW random walk (model).
S/L solid to liquid ratio for batch reactor, M L�3.

Greek
	 ratio of the volume of bulk solution in the batch re-

actor reservoir to the accessible intragranular vol-
ume, adjusted for sorption.

� percolation exponent.
D finite difference in value.
� crossover length, L.
� porosity.
� chemical distance between two points, L.
� tortuosity.
� percolation exponent.
� percolation exponent.
# percolation exponent.
 percolation exponent.

Subscripts and Superscripts
a accessible from outside the particle.

app apparent and/or instantaneous; via macroscopic
measurement.

aq aqueous.
c critical.
e at equilibrium.
f on the finite cluster(s).
i on the infinite cluster.
j index for radial position.
k known value.
p plateau, for distances l > �.

pm porous medium.
t index for time.

ult ultimate (at equilibrium).
0 initial or reference value.
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