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Abstract

For packed i.e., “jammed”, hard and rough objects kinetic energy is a minor and ignorable
quantity, as is elastic strain. Hence in the static case, the stress equations need supplementing
by “missing equations” depending solely on con3gurations. A di4erent pathway of analysis
is the calculation of the probability distribution of interparticle forces. This paper presents the
mini-review of recently obtained results in this 3eld and poses a number of fundamental problems
which are yet to be solved.
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1. The problem

The crucial granular system concerns packed, hard and rough objects: packed means
no kinetic energy, hard means no elastic deformation and rough means all motion is
con3ned to sliding and rolling after friction threshold is overcome. A granular material
can have di4erent packing fractions according to its history of preparation, and the
application of external forces causes forces to exist between the grains. It has been
suggested that in appropriate circumstances the central concept of statistical mechan-
ics, namely entropy, can be applied to analysis of jammed granular packings [1–3].
Experiments done by Chicago [4,5] and Rennes groups [6] show that columns of (both
spherical and irregular shape) grains tapped with a 3xed number of taps but with an
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Fig. 1. Dependence of the packing fraction on the history of tapping amplitude. The parameter � = A=g is
the ratio of the recorded peak acceleration during a single tap A to the gravitational acceleration g. In the
Chicago experiments, � was varied by changing the amplitude of excitation A at 3xed frequency !=30 Hz.

increasing magnitude of tap remove initial voids and take one into the low density
packed limit, �= 0:59, but repeating the tapping now decreasing the magnitude takes
one to the maximum density, � = 0:64 (see Fig. 1. Thereafter the curve is reversible
and con3rms an “ergodic” condition, or at least we believe it does [7]. Recent experi-
ments in Cavendish, in which the electrical conductivity fraction of vibrated irregularly
shaped graphite grains is measured as a function of the tapping amplitude, con3rm
the existence of the reversible branch [8]. Computer simulations and analytical models
seem to provide support for this point of view [9–14].

2. Probability distributions

For in3nitely hard bodies there is no enthalpy and external forces have no e4ect on
distribution functions. This means that if P is the probability distribution of con3gura-
tions and of intergranular forces, it must separate into two parts

P = Pc(con3gurations)Pf(forces) : (1)

We now consider Pc which is the function of geometrical characteristics of the system.
Let us assume that the set of contact points C�� is the total geometrical speci3cation
for a static packing. We de3ne the centroid of contacts of grain � (see Fig. 2)

R� =

∑
� C��

z�
; (2)

where z� is the coordination number of grain �. The distance between particles � and
� is de3ned as the distance between their centroids of contacts

R�� = R� − R� = r�� − r�� ; (3)



S.F. Edwards et al. / Physica A 330 (2003) 61–76 63

Fig. 2. The centroids of two neighbouring grains in contact.

where r�� is the vector joining the centroid of contact with the contact point (see
Fig. 2) i.e.,∑

�

r�� = 0 : (4)

To complete the geometrical description of the 3rst coordination shell we introduce
vector Q��. This vector which characterises the relative position of neighbouring cen-
troid with respect to the contact point is de3ned by (see Fig. 2)

Q�� = −(r�� + r��) : (5)

For a spherical particle this vector characterises the deviation of the centroid of contacts
position from the geometrical centre of a sphere (e.g. for a honeycomb array of discs
Q��=0). One can see that these vectors de3ned in terms of contact points represent the
relative orientation of grains with respect to their nearest neighbours. The set of tensors
which describe topology and connectivity of the contact network can be introduced as
follows

F�
ij =

∑
�

R��
i R��

j ; (6)

G�
ij =

∑
�

Q��
i R��

j ; (7)

H�
ij =

∑
�

Q��
i Q��

j : (8)
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The number of contact positions for a con3guration of N grains in contact with an
average coordination number 〈z〉 is Nd〈z〉=2. It follows then from counting (which ne-
glects correlations between nearest neighbours) the number of independent components
of con3guration tensors that Eqs. (6)–(8) uniquely determine the positions of contact
points if 〈z〉=d(d+1) which approximately corresponds to the RCP limit of spherical
particles. These tensors characterise the relative arrangement of nearest neighbours in
the 3rst coordination shell of the reference particle �. In particular tensor F�

ij tells us
something about the second shell of contacts, and also about the volume V� occupied
by the grain �.

2.1. Con2gurations and entropy

In statistical mechanics entropy is de3ned by

S = k log
∫

�(E − H (p; q))DpDq ; (9)

where E is the energy and H (p; q) the Hamiltonian. Entropy S is function of internal
energy E, the number of particles N and volume V . The analogue of (9) for jammed
con3gurations is

S = log
∫

�(V − W ( ))!( )D ; (10)

where entropy is now function of number of particles N and volume V . For the granular
system with zero kinetic energy we postulate a phase space de3ned by collective
coordinates  , which are basically functions of the points where grains touch, via a
volume function W ( ) which takes the place of the Hamiltonian and the condition
E=H of the thermal system is replaced by V =W of the granular system. This system
is said to be “jammed”. The function !( ) insures that all grains are in locked positions
by touching their neighbours. For jammed con3gurations we 3nd S(N; V ) from (10),
and so we de3ne a canonical ensemble via Y which we call the e4ective volume, the
analogue of free energy:

Y = V − XS = V + X
9Y
9X ; (11)

where

e−(Y=X ) =
∫

e−(W ( )=X )!( )D : (12)

In general there are con3gurations of the powder which will not be described by this
ensemble, for example arched holes with “rattlers” (i.e., free grains which are not in
a stable contact with their nearest neighbours) in them. Nevertheless, the fruitful area
for commencing study is when (10) applies and we con3ne ourselves to such a case.
The contact points are the total speci3cation for static packings, thus their set must
de3ne W .
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Fig. 3. Two-dimensional continuous random network: a sketch of a packing of three-fold coordinated grains
of irregular shape. Black circles denote the contact points and dashed lines joining the centroids of contacts,
form the continuous random network.

How can one analytically express the volume function in terms of contact points
positions? Thus W is W (C��) where C�� is the point where grain � touches grain �.
One can see from Fig. 3 that vector R�� = R� − R� joins the centroids of contact of
grains � and � and the packing can be represented by the continuous random network
of connected branch vectors. Ball and Blumenfeld have shown [15] that the packing
area in two dimensions can be related to the antisymmetric part of the tensor C�

ij of a
grain �

C�
ij =

∑
l

R�l
i r�lj (13)

where vector R�l
i joins the centroid of contacts of the grain � with the centroid of loop

l and vector r�lj joins the contact points of the grain � which belong to this loop (see
Fig. 4). In two dimensions an exact theory of W has been given by Blumenfeld and
Edwards [16], but we continue with a cruder theory wherein a “3rst coordination shell”
theory is o4ered, knowing the success of conventional statistical mechanics when much
can be achieved with a Hamiltonian, H=

∑
H� that is additive over particles.

Since tensor F�
ij describes the con3guration of the 3rst coordination shell of a refer-

ence grain �, its invariants play a special role in our formalism. An approximation to
the volume function of a packing of N grains is

W =
N∑
�

W� =
N∑
�

√
Det F�

ij : (14)

This W� is the area or volume of the 3rst coordination shell, produced by grain � with
its nearest neighbours, but it does not accommodate complex topologies with multiple
contacts between the pairs of neighbouring grains. The addition of terms describing the
correlation between coordination shells, to the volume function, makes the integration
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Fig. 4. Vectors join contact points in neighbouring grains and form the loop l: vector R�l
i joins the centroid

of contacts of a grain � with the centroid of loop l and vector r�lj joins the contact points of the grain �
which belong to the loop l.

of (12) very diNcult to accomplish. Given that the volume function can be written in
terms of the eigenvalues of F�

ij, one can immediately see that integration with respect
to D actually implies integration in the space of eigenvalues. We argue that the
function !( ) can be written in terms of the second invariant of F�

ij, i.e., its trace so
that it provides the limits of integration in (12). The trace of the con3guration tensor
F�
ij is

Tr{F�
ij} =

∑
�

|R��|2 ; (15)

so that Tr{F�
ij}=z� gives the square of an average distance between the centroids of

contact within the 3rst coordination shell of grain �. The distance between the cen-
troids of contact of grains in contact has upper and lower bounds because particles are
impenetrable and are “jammed” in the cage formed by their nearest neighbours. It is
easy to see then that the presence of a step-function !(F�

ii) insures that in a packing of
hard grains in contact con3gurations which contain overlapping and “rattling” particles
are indeed forbidden. A crude theory (which has some justi3cation but we do not give
here) is

e−Y=X =
(∫ V1

V0

e−W=X dW
)N

(16)

which gives as a good approximation, exact at X = 0 and ∞:

V =
V0(V0 − V1) − X (V0 + V1)

V0 − V1 − 2X
: (17)

Note that the minimum volume is V0, and the maximum 1
2(V0 + V1) as is expected.
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2.2. Forces and stress tensor

Newton’s laws of force and couple balance for every grain give us the system of
Nd(d+ 1)=2 equations for

∑N
� z�d=2 interparticle forces {f��}∑

�

f��
i + g�

i = 0 ; (18)

f��
i + f��

i = 0 ; (19)

∑
�

'iklf
��
k r��l + c�i = 0 ; (20)

where i=1; : : : ; d is the Cartesian index, g�
i is the external body force acting on grain

� and c�i is the external body couple which we take to be zero.
The simplest statically determinate problem of stress transmission in a static granular

material is that where grains are considered to be perfectly hard, perfectly rough and
each grain � has a coordination number z�=d+1 (a more general case exists when an
average coordination number is Pz=d+1). A problem is said to be statically determinate
if the state of stress can be determined without knowledge of the displacement 3eld. Let
us now derive equations of stress propagation which depend only on the geometrical
characteristics of the packing. We construct the contact force probability functional

P{f��}=N
N∏

�= 1; �= n:n:

�


∑

�

f��
i + g�

i


 �


∑

�

'iklf
��
k r��l


 �(f��

i + f��
i ) ;

(21)

where the normalisation N, which is a function of a con3guration, is de3ned as

N−1 =
∫ N∏

�= 1 �= n:n:

P{f��}Df�� ; (22)

and
∏N

�=1;�=n:n: means the product of Newton’s equations for all grains; � = n:n. is a
nearest neighbour label for a reference grain �. It is still not clear how to construct
the macroscopic force 3eld given the set of intergranular contact forces (though we
present a crude model for the distribution of contact forces in Section 2.3) because of
the sign-oscillating nature of the latter. In order to pursue an analytical approach we
introduce a tensor which couples the set of intergranular contact forces {f��} to the
set of contact points {C��}. The tensorial force moment S�

ij for grain � is de3ned as

S�
ij =

∑
�

f��
i r��j : (23)

Since the external body couple c�i = 0 tensor S�
ij is symmetric and has

d(d + 1)=2 independent components. Tensor S�
ij has a well-de3ned macroscopic
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analogue

)ij(r) =

〈
N∑

�=1

S�
ij�(r − R�)

〉
; (24)

which is a smooth di4erentiable function. The method o4ered by the authors in [17]
was to consider the probability functional for the set {S�

ij}

P{S�
ij} =M

∫ N∏
�;�

�


S�

ij −
∑
�

f��
i r��j


 (25)

× P{f��}Df�� ; (26)

where the normalisation M is a function of contact network con3guration. The main
idea of this formalism (see Ref. [17] for mathematical details) is to transform (26)
into

P{S�
ij} = P{S�

ij| force}P{S�
ij|geometry} ; (27)

where P{S�
ij|force} gives the set of Nd stress–force equations∑

�

S�
ijM

�
jlR

��
l −

∑
�

S�
ijM

�
jlR

��
l + g�

i = 0 : (28)

The macroscopic version of these discrete equations is

∇j)ij(r) + gi(r) = 0 ; (29)

P{S�
ij|geometry} is given by

∫ N∏
�

�


S�

ij − 1
2

∑
�

(
��

i r
��
j + ��

j r
��
i

)
D�� (30)

so that it provides the Nd(d − 1)=2 constraints on {S�
ij} through the integration over

the set of Nd vector point 3elds ��
i [17]. The missing d(d − 1)=2 macroscopic stress-

geometry equations are hidden in the set of Nd(d − 1)=2 constraints on {S�
ij}

S�
ij =

1
2

∑
�

(
��

i r
��
j + ��

j r
��
i

)
: (31)

After eliminating {��} in Eq. (31) one will obtain a set of coupled Nd(d − 1)=2
constraints on {S�

ij}. This can be accomplished analytically by writing diagonal and
o4-diagonal components of N tensors {S�

ij} and vector 3eld {��} as N -dimensional
vectors and inverting matrices corresponding to the diagonal elements of {S�

ij} and
substituting the results into the equation for the o4-diagonal components. These linear
constraints on {S�

ij} can then be appropriately decoupled and averaged into d(d− 1)=2
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stress-geometry equations [17]. In the 3rst coordination shell approximation one can
write

��
i =  �r��i + ,�r��i : (32)

This gives us con3guration tensors which we introduced in Section 2 (6–7), namely
F�
ij, H

�
ij and the symmetric part of tensor G�

ij

G�S
ij =

∑
�

1
2

(
R��
i Q��

j + R��
j Q��

i

)
: (33)

Thus we have

S�
ij =  �(F�

ij − 2G�S
ij + H�

ij) + ,�(H�
ij − F�

ij) ; (34)

where G�S
ij is the symmetric part of the tensor G�

ij. After eliminating of  � and ,� we
obtain ∣∣∣∣∣∣∣∣

S�
11 H�

11 − G� S
11 H�

11 − F�
11

S�
12 H�

12 − G� S
12 H�

12 − F�
12

S�
22 H�

22 − G� S
22 H�

22 − F�
22

∣∣∣∣∣∣∣∣
= 0 : (35)

The simplest homogeneous form is a uniform powder under gravity for which the
missing equation gives average values of:

)xx = )yy; )xy = 0 ; (36)

)xx = /gx = )yy ; (37)

which is hydrostatic pressure. Thus we have found that Pc is Pc(F; r) and the whole
distribution is, in a schematic notation

P =N�(V − W )!P{S�
ij} : (38)

Here N is a normalization and the � and ! functions represent the constraints that
the volume W of the system is equal to V ; P{S�

ij} indicates that the stress obeys
Eqs. (28) and (31).

2.3. Distribution of forces

Although S�
ij can be averaged into a mean stress tensor, which does lead to im-

portant experimental 3ndings, at the grain level stress is perhaps not a helpful quan-
tity; it is forces at the surface that matter, and can be measured. Experiments at the
Cavendish Laboratory [18] use confocal microscopy to image a packing of emulsion
particles which have been compressed by ultracentrifugation. In Fig. 5 the particles are
shown in their initial packing under gravity (below the random close packing regime)
and after compression, i.e., at the onset of particle deformation away from spherical.
We have found the refractive index matched combination of the continuous and the
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Fig. 5. Confocal microscopy images of the emulsion system under gravity and after centrifugation. Upper
images are in the horizontal (x; y) plane; lower images are reconstructions of a slice in x; z.

Fig. 6. Probability distribution of contact forces in the compressed emulsion system (see Fig. 5).

dispersed phase appropriate for use in the confocal microscope. Due to the increased
Ruorescence of the deformed surfaces of particles in contact, the interparticle forces
could be extracted using the Princen model [19]. The probability distribution of the
forces is presented in Fig. 6 and is consistent with previous studies by Liu et al. [20]
which 3nd an exponential distribution of forces.
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Fig. 7. 2D Schematic of contact forces between packed grains.

Recent simulations also support this picture. The geometric complexity is such that
a full statistical ‘transport’ equation is very complex [21], but it is possible to produce
a simple but convincing equation for the distribution (Edwards and Grinev, 2003). To
be simple one wants a probability in one variable alone. A suitable variable is the
magnitude of the force between two grains (see Fig. 7).
Ignoring gravity we 3nd the relation

f = −(f1 + f2 + f3): (39)

Consider the scalar f

f = |f | = f · f
|f | : (40)

We now look at the components of f1; f2; f3 in the direction of f , and denote these 01f1,
etc.. We now argue that the probability of 3nding f, P(f), is related by Newton’s
second law to the other forces acting, hence (in two dimensions for simplicity)

P(f) =
∫

P(f1; 01)P(f2; 02)1(01; 02)�(f − 01f1 − 02f2) d01 d02 df1 df2 ;

(41)

where 1 is the weight factor which contains angles and does not allow grains 1,2 and
the grain studied, to overlap. The factor 1 is a tiresomely complicated function and its
behaviour is well modelled by just integrating 01, 02 between 0 and 1:

P(f) =
∫ 1

0
d01

∫ 1

0
d02

∫ ∞

0
df1P(f1)

∫ ∞

0
df2P(f2)�(f − 01f1 − 02f2) :

(42)
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This equation can be solved analytically by Fourier transform and gives

P(f) =
f
p
e−f=p ; (43)

where
∫
P df=1 and

∫
Pf df=p2. In three dimensions the front factor is replaced by

f1=2. A full analysis will need the insertion of (as yet unknown) correlation functions,
but could in principle discover how forces are correlated across the material, where it
has been claimed that force chains exist which resemble percolation paths. However
this simple treatment bears out the simplest experimental results and both experiment
and theory have obvious extensions. This concludes our discussion of static problems
and now we turn to the much more diNcult analysis of slow dynamics.

3. Slow dynamics

The basic movement is when two grains are subjected to suNcient force to overcome
friction when sliding and rolling result. The picture in Fig. 9 is a standard problem
in Ninteenth century dynamics textbooks and is very complex. Without friction it is
resolved by the Gibbs–Appell equations (Desloge [22], Pars [23]; Whittaker [24]); with
friction it involves putting Gibbs–Appell in Rayleighan form which we have not seen
in the textbooks. A progression of these ideas is given in Fig. 8.
The equations are much more complicated than statics (see Fig. 10) because:

(1) They involve tangents and normals to the surface which are often not well de3ned
and also require some law of friction which could be non-linear. We will assume

Fig. 8. Ninteenth century resolutions to standard dynamics problems.
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Fig. 9. A model for grain dynamics.

Fig. 10. Representation of normal and tangential forces between grains.

t and n exist and use the crudest friction law by replacing all normal forces by
an average so that the sliding force is 3v.

(2) The description of dynamics involves both slipping and rotation i.e., velocities v�

and rotations !�. However only v� can give rise to a macroscopic variable v(r), for
!� will vary from grain to grain, indeed for non slipping motion !�=−!� where
� and � are neighbours. It is like magnetism in an antiferromagnet. Although it is
straightforward to include it as the antisymmetric complement of Eq. (49) below,
we omit it for this reason, and the cruder reason that the size of algebra is vast,
so we simply omit !’s altogether.

(3) In general, forces cause particles to accelerate, but we can argue that inertia
is not signi3cant at a microscopic level and hence argue that the equation
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(now dropping vector notation)

mTx = fext − freaction = fext − 3ẋ (44)

will become fext = freaction and freaction = 3ẋ, i.e.,

3(v� − v�) = 3v�� = f�� − n��(f�� · n��) − f�� + n��(n�� · f��) (45)

f�� · n�� = f�� · n�� ; (46)

hence

v�� · n�� = v�� · n�� = 0 ; (47)

i.e., grains stay in contact along the normal but slide along the tangent.

Thus the equation for the forces f�� are as before sliding, but now the velocity dif-
ference v�� along the tangential directions is given by Eq. (45). (As we have recorded
one should supplement these equations for f and v with the equations for ! which
we here omit.) The basic variable in dynamics which takes the central position of )ij

in statics has to be the Row tensor which we shall label  ij (having already used f).
In normal rheology this is written as

1
2

(
9vi
9xj

+
9vj
9xi

)
(48)

but with our modi3cation and simpli3cation of the full equations we prefer to directly
3nd an equation for v(r). Thus given by Eq. (45) we de3ne averages which are related
to the static de3nition of stress

 �
ij =

1
2

∑
�

(R��
i v��j + R��

j v��i ) ; (49)

which is the analogue of Eq. (23) since v ˙ f and r ˙ R. Substituting for v from
Eq. (45) we get

 �
ij =

1
23

∑
�

(R��
i (f��

j − n��
j (f��

k n��
k ) − f��

j + n��
j (n��

k f��
k )) + (i ↔ j) : (50)

Proceeding now as in Ref. [17], covering the same ground that produced Eqs. (28)
and (23) we reach

9 ij
9rj

= 9ikf
(ext)
k ; (51)

where

9ik =
1
23

(�ik − 〈ni�nk�〉) (52)
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but a new ‘missing equation’ also emerges whose form is∑
ij

Lm
ij ij = 0 (53)

with m = 1 in two dimensions and 1,2,3 in three. As before  ij has d(d + 1)=2 com-
ponents and the velocity vs. force equation has only d components, so there must be
d(d − 1)=2 missing equations.
These equations are purely geometric in origin for incompressible grains. They have

a similar structure to Eq. (35), but new tensors appear in place of F , H and G that
have averages of the normals built into them. The details will appear in a subsequent
publication, but we must catalogue a large number of crudities in the present work.

3.1. Unresolved problems

Many problems are unresolved at the time of this conference.

• Thresholds: friction depends on normal forces and movement only starts when force
passes a threshold. In this paper we are far below or far above that threshold, but
many real problems have both situations, in say layered Row.

• The viscosities that arise are related in a complex renormalized way to the bare
values, and the averaging will involve the compactivity and also the accelerations
cannot be omitted.

• Rolling can be inserted, and resolves the fact that, in the treatment above, our ‘Row
tensor’ is not the classical symmetrical velocity gradient.

• We have not discussed Ructuation and not developed transport equations, like the
Boltzmann or Fokker–Planck equations, so we do not calculate the time and space
dependence of the compactivity in terms of the Row.

• The shape of the grains, for example elliptical grains, lead to a pulsation of the
modulus of R�� as one grain slides over another, and there will be no Row without
Reynolds dilatancy, but this has been omitted so far.

• Grain contacts are always being made and lost.

We o4er here the simplest picture of the Row of otherwise jammed systems. Although
there is no diNculty in visualizing the rolling and sliding of packed particles, and
indeed this is much the most familiar many body problem in everyday life, it is much
more diNcult to handle mathematically and requires a clean break with conventional
statistical mechanics based ultimately on mean free path ideas. We hope this paper is
a start on the problem.
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