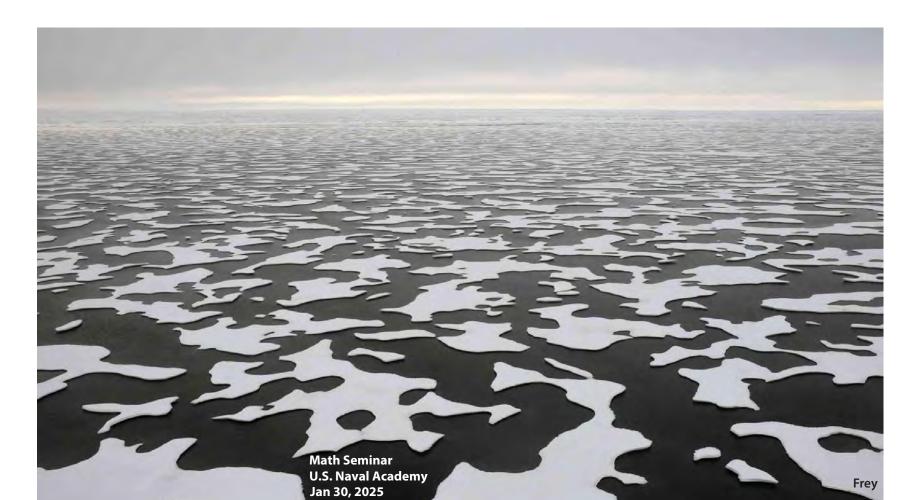


From Micro to Macro in Modeling Sea Ice

Ken Golden, University of Utah



Sea Ice is a Multiscale Composite Material *microscale*

brine inclusions

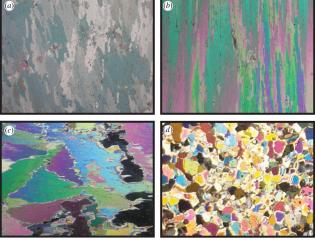
H. Eicken

Golden et al. GRL 2007

Weeks & Assur 1969

millimeters

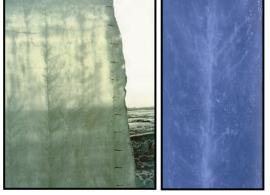
polycrystals



Gully et al. Proc. Roy. Soc. A 2015

centimeters

brine channels



D. Cole

K. Golden

mesoscale

macroscale

Arctic melt ponds

Antarctic pressure ridges

sea ice floes

sea ice pack

K. Golden

J. Weller

kilometers

NASA

meters

Central theme:

How do we use "small scale" information to find effective behavior on larger scales relevant to climate and ecological models?

OBJECTIVE: advance how sea ice is represented in climate models improve projections of fate of SEA ICE and its ECOSYSTEMS

HOMOGENIZATION for Composite Materials

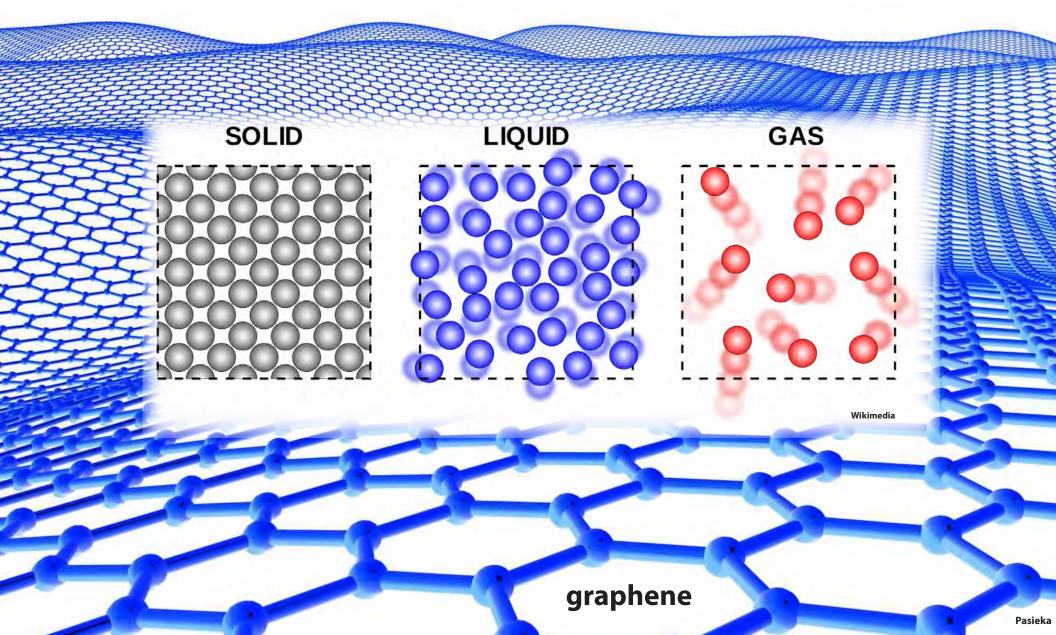


Maxwell 1873, Einstein 1906 Wiener 1912, Hashin and Shtrikman 1962

STATISTICAL PHYSICS percolation, phase transitions solid state, semiconductors

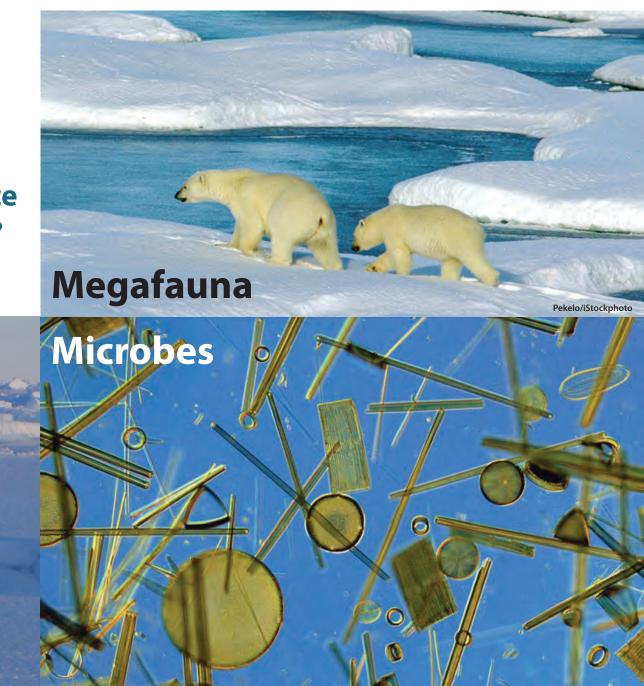
How do microscopic laws determine macroscopic behavior?

Banwell, Burton, Cenedese, Golden, Astrom, Physics of the Cryosphere, Nature Reviews Physics 2023



Polar Ecology and the Physics of Sea Ice

- How do sea ice properties affect the life it hosts?
- How does life in and on sea ice affect its physical properties?



Arrigo

Tour a few examples of multiscale modeling of physical and biological processes in the sea ice system.

microscale

mesoscale

macroscale

Take-away for mathematicians and physicists - our sea ice studies lead us into:

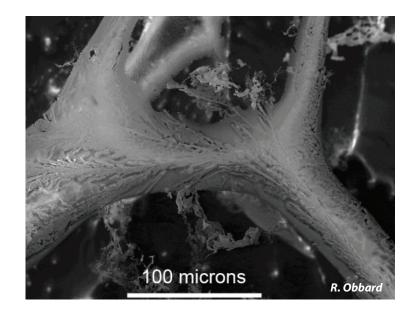
spectral analyis, random matrix theory, topological data analysis, UQ, anomalous diffusion, dynamical systems

percolation, Anderson localization, mushy layers, phase transitions semiconductors, Ising models, quasicrystals

+ fractal geometry

microscale

brine inclusions in sea ice (mm)



micro - brine channel (SEM)

brine channels (cm)

sea ice is a porous composite

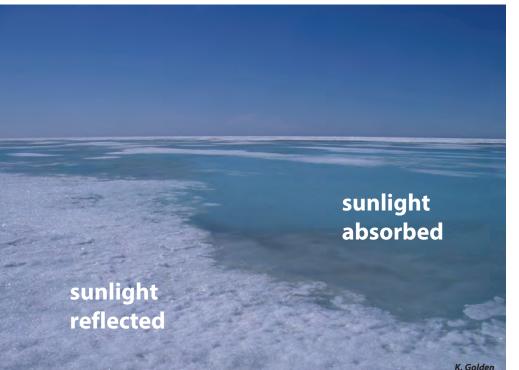
pure ice with brine, air, and salt inclusions

horizontal section

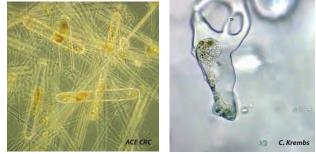
vertical section

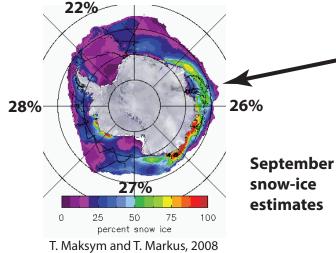
fluid flow through the porous microstructure of sea ice governs key processes in polar climate and ecosystems

evolution of Arctic melt ponds and sea ice albedo



nutrient flux for algal communities

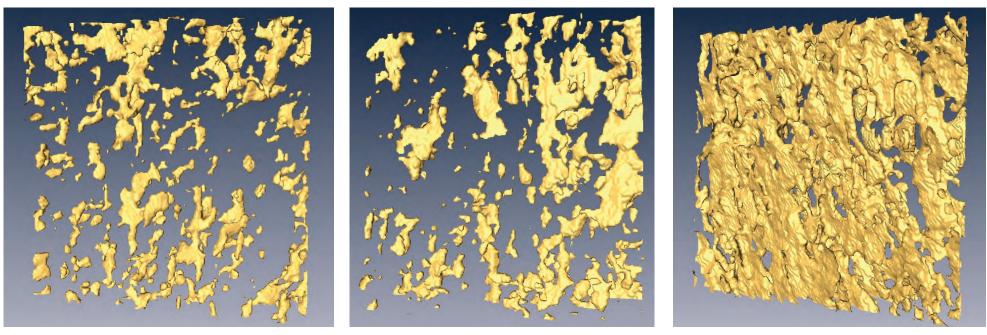




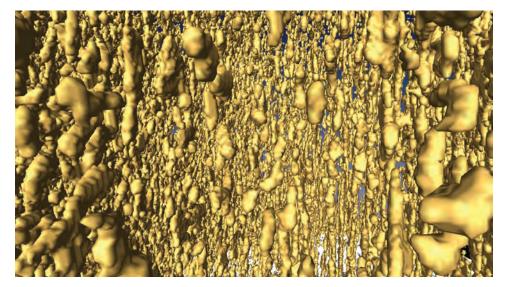
Antarctic surface flooding and snow-ice formation

- evolution of salinity profiles - ocean-ice-air exchanges of heat, CO₂

brine volume fraction and *connectivity* increase with temperature

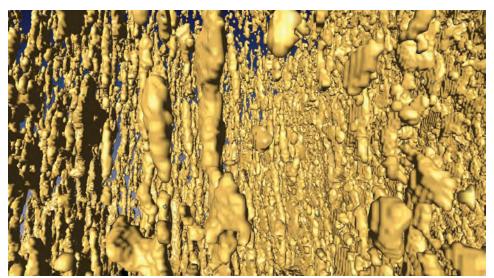


$T = -15 \,^{\circ}\text{C}, \ \phi = 0.033$ $T = -6 \,^{\circ}\text{C}, \ \phi = 0.075$ $T = -3 \,^{\circ}\text{C}, \ \phi = 0.143$



 $T = -8^{\circ} C, \phi = 0.057$

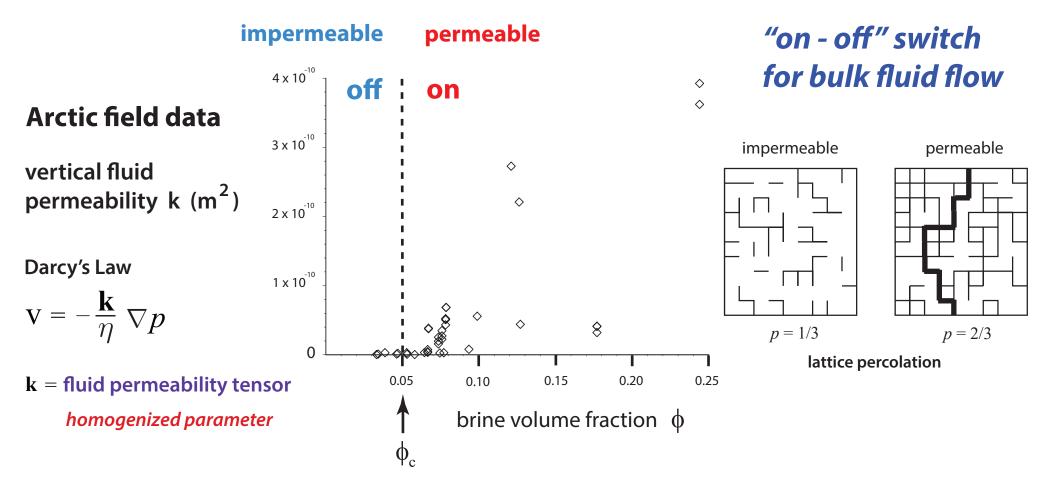
X-ray tomography for brine in sea ice



 $T = -4^{\circ} C, \phi = 0.113$

Golden et al., Geophysical Research Letters, 2007

Critical behavior of fluid transport in sea ice

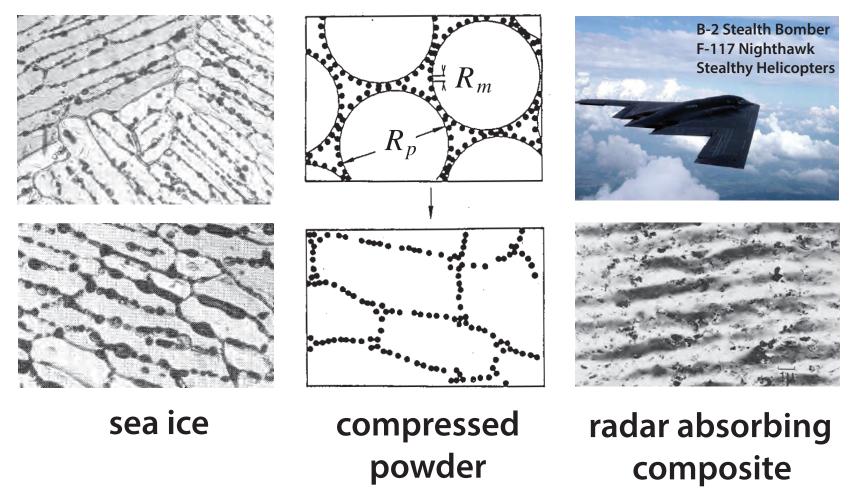


PERCOLATION THRESHOLD $\phi_c \approx 5\%$ \checkmark $T_c \approx -5^{\circ}C, S \approx 5$ ppt

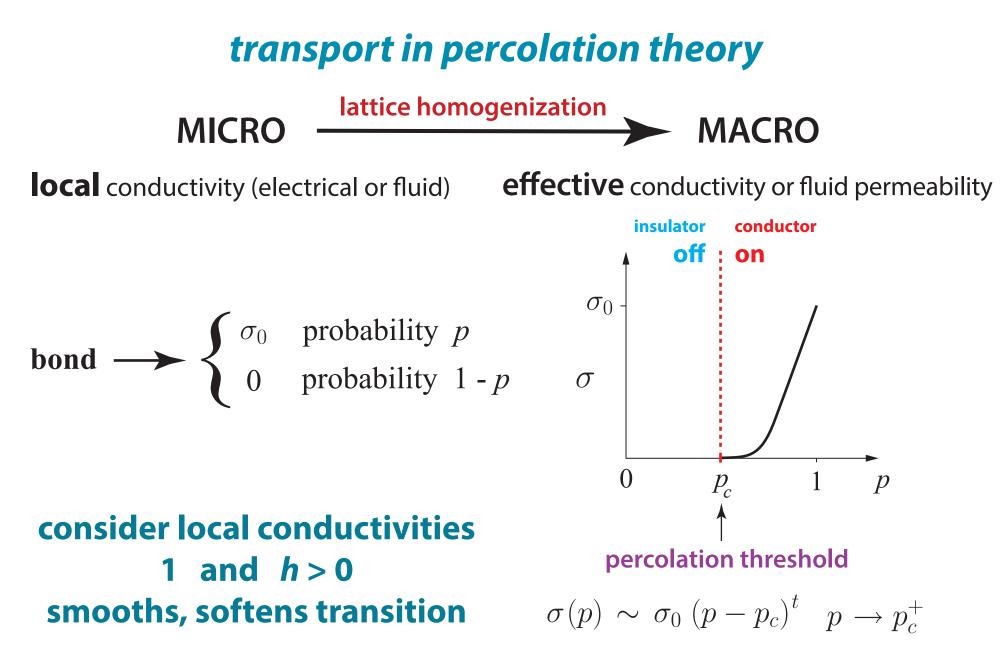
RULE OF FIVES

Golden, Ackley, Lytle Science 1998 Golden, Eicken, Heaton, Miner, Pringle, Zhu GRL 2007 Pringle, Miner, Eicken, Golden J. Geophys. Res. 2009 *Continuum* percolation model for *stealthy* materials applied to sea ice microstructure explains **Rule of Fives** and Antarctic data on ice production and algal growth

 $\phi_c \approx 5\%$ Golden, Ackley, Lytle, *Science*, 1998



sea ice is radar absorbing



UNIVERSAL critical exponents for lattices -- depend only on dimension

 $1 \le t \le 2$ (for idealized model), Golden, *Phys. Rev. Lett.* 1990; *Comm. Math. Phys.* 1992 *non-universal behavior in continuum*

sea ice algal communities

D. Thomas 2004

nutrient replenishment controlled by ice permeability

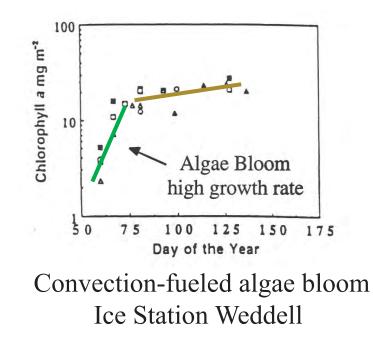
biological activity turns on or off according to *rule of fives*

Golden, Ackley, Lytle

Science 1998

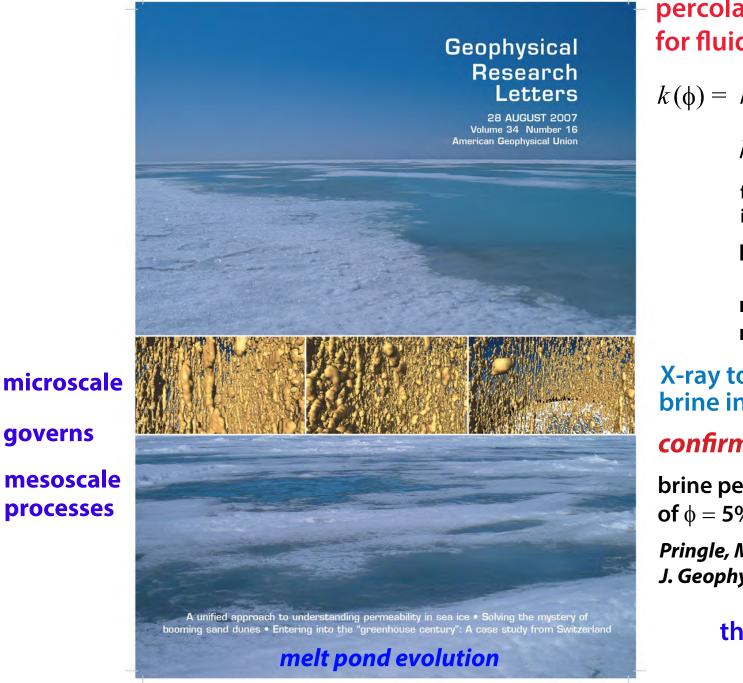
Fritsen, Lytle, Ackley, Sullivan Science 1994

critical behavior of microbial activity



Thermal evolution of permeability and microstructure in sea ice

Golden, Eicken, Heaton, Miner, Pringle, Zhu, Geophysical Research Letters 2007



governs

percolation theory for fluid permeability

$k(\phi) =$	$k_0 (\phi - 0.05)^2$	critical exponent
	$k_0 = 3 \times 10^{-8} \text{ m}^2$	t

from critical path analysis in hopping conduction

hierarchical model rock physics network model rigorous bounds

X-ray tomography for brine inclusions

confirms rule of fives

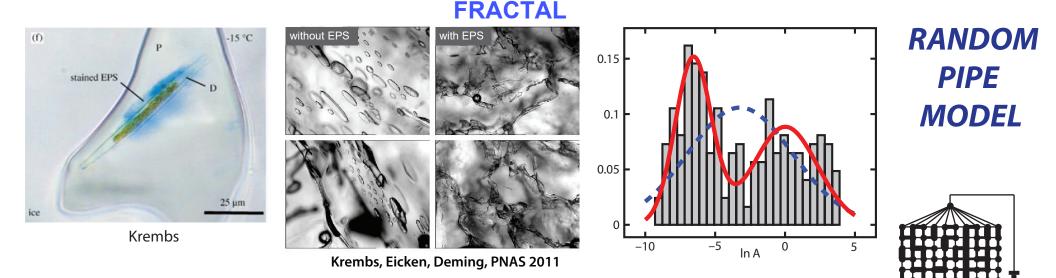
brine percolation threshold of $\phi = 5\%$ for bulk fluid flow

Pringle, Miner, Eicken, Golden J. Geophys. Res. 2009

> theories agree closely with field data

Sea ice algae secrete exopolymeric substances (EPS) affecting evolution of brine microstructure.

How does EPS affect fluid transport? How does the biology affect the physics?

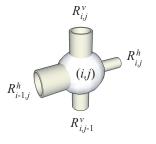


- 2D random pipe model with bimodal distribution of pipe radii
- Rigorous bound on permeability k; results predict observed drop in k

Steffen, Epshteyn, Zhu, Bowler, Deming, Golden Multiscale Modeling and Simulation, 2018

EPS - Algae Model Jajeh, Reimer, Golden, 2024

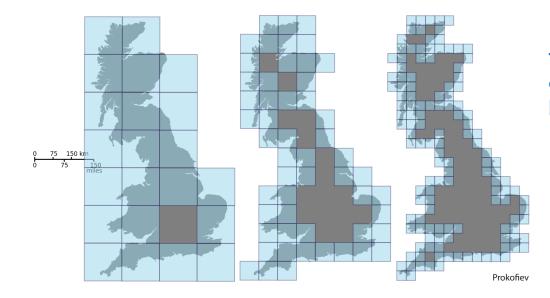
SIAM News June 2024



Zhu, Jabini, Golden, Eicken, Morris *Ann. Glac.* 2006

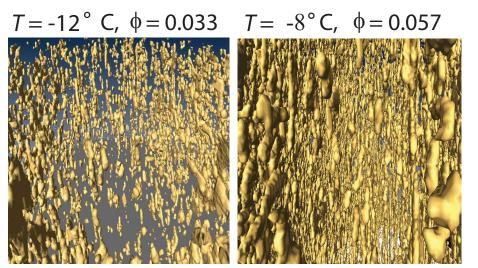
Thermal Evolution of Brine Fractal Geometry in Sea Ice

Nash Ward, Daniel Hallman, Benjamin Murphy, Jody Reimer, Marc Oggier, Megan O'Sadnick, Elena Cherkaev and Kenneth Golden, 2024



fractal dimension of the coastline of Great Britain by box counting

brine channels and inclusions "look" like fractals (from 30 yrs ago)



X-ray computed tomography of brine in sea ice

columnar and granular

Golden, Eicken, et al. GRL, 2007

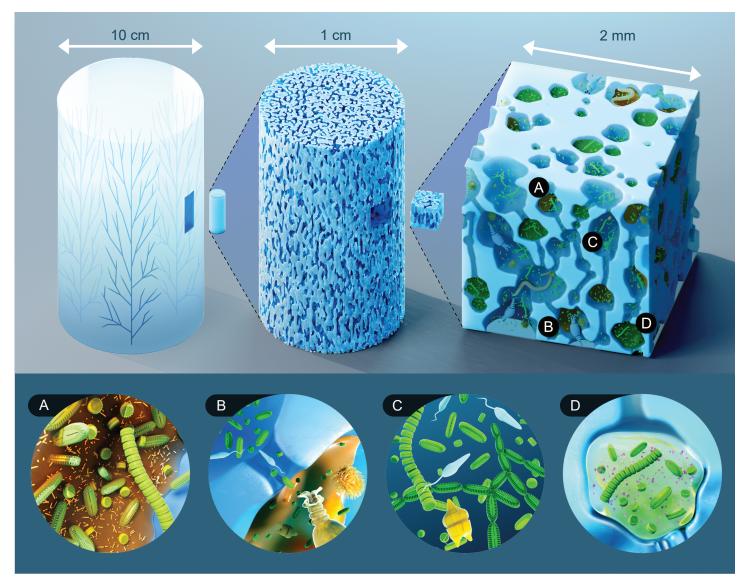
2.6 2.5 **Fractal Dimension** 2.4 icken\Golder Follows same curve as 2.3 exactly self-similar 2.2 Sierpinski tetrahedron 2.1 2 Fractal dimension from boxcounting 1.9 Theoretical prediction 1.8 0.3 0.05 0.1 0.15 0.2 0.25 0 D. Eppstein Porosity ϕ **red curve** $F_d = d_E - \frac{\ln \phi}{\ln(\lambda_{min}/\lambda_{max})}$ Katz and Thompson, 1985; Yu and Li, 2001 discovered for sandstones

The first quantitative study of the fractal dimension of brine in sea ice and its strong dependence on temperature and porosity.

statistically self-similar porous media

Fractal geometry of brine in sea ice, Ward, et al. 2024

Implications of brine fractal geometry on sea ice ecology and biogeochemistry



Brine inclusions are home to ice endemic organisms, e.g., bacteria, diatoms, flagellates, rotifers, nematodes.

The habitability of sea ice for these organisms is inextricably linked to its complex brine geometry.

(A) Many sea ice organisms attach themselves to inclusion walls; inclusions with a higher fractal dimension have greater surface area for colonization.
(B) Narrow channels prevent the passage of larger organisms, leading to refuges where smaller organisms can multiply without being grazed, as in (C).
(D) Ice algae secrete extracellular polymeric substances (EPS) which alter incusion geometry and may further increase the fractal dimension.

Arctic and Antarctic field experiments

develop electromagnetic methods of monitoring fluid transport and microstructural transitions

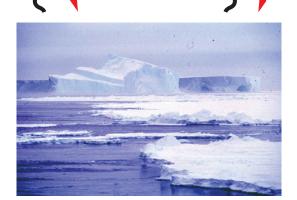
extensive measurements of fluid and electrical transport properties of sea ice:

2007 Antarctic SIPEX	
2010 Antarctic McMu	urdo Sound
2011 Arctic Barro	w AK
2012 Arctic Barro	w AK
2012 Antarctic SIPEX	
2013 Arctic Barro	w AK
2014 Arctic Chuke	chi Sea

Remote Sensing of Sea Ice

with radar, microwaves, ...

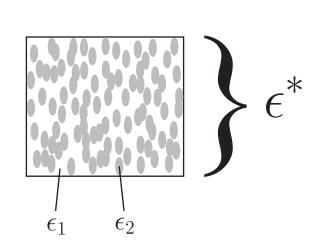
interaction of EM waves with brine and polycrystalline microstructures, rough surfaces



INVERSE PROBLEM

Recover sea ice properties from electromagnetic (EM) data ϵ^*

Effective complex permittivity of a composite in the quasistatic (long wavelength) limit



 p_1 , p_2 = volume fractions of the components

electrical conductivity thermal conductivty magnetic permeability diffusivity

 $D = \epsilon E$

 $\nabla \cdot D = 0$

 $\nabla \times E = 0$

 $\langle D \rangle = \epsilon^* \langle E \rangle$

ⁿ
$$\epsilon^* = \epsilon^* \left(\frac{\epsilon_1}{\epsilon_2}, \text{ composite geometry}\right)$$

What are the effective propagation characteristics of an EM wave (radar, microwaves) in the medium?

Analytic Continuation Method for Homogenization

Bergman 1978, Milton 1979, Golden & Papanicolaou 1983, Milton 2002

Stieltjes integrals for homogenized parameters separate component parameters from geometry

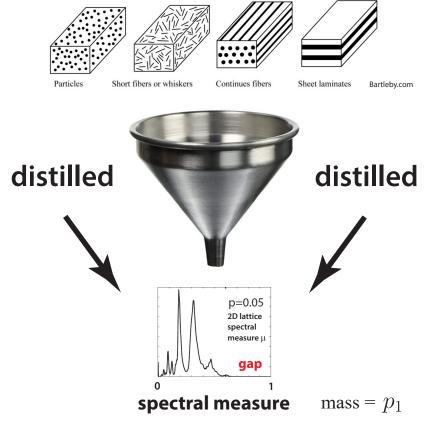
$$F(s) = 1 - \frac{\epsilon^*}{\epsilon_2} = \int_0^1 \frac{d\mu(z)}{s-z} \qquad s = \frac{1}{1 - \epsilon_1/\epsilon_2}$$
material parameters

- spectral measure of self adjoint operator $\Gamma \chi$ (matrix)
 - $\Gamma = \nabla (-\Delta)^{-1} \nabla \cdot$
 - $\chi = {\rm characteristic \, function} \\ {\rm of \, the \, brine \, phase}$

 $ullet E = s \; (s + \Gamma \chi)^{-1} e_k$ resolvent

 bounds in the complex plane; approximations inverse bounds to recover porosity, connectivity

complexities of mixture geometry

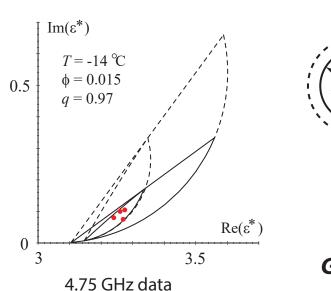


spectral properties of operator (matrix) ~ quantum states, energy levels for atoms

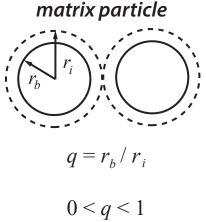
eigenvectors eigenvalues

$\Gamma \chi$: microscale ightarrow macroscale

forward and inverse bounds on the complex permittivity of sea ice



forward bounds



Golden 1995, 1997

_ _

Inverse Homogenization Cherkaev and Golden (1998), Day and Thorpe (1999), Cherkaev (2001), McPhedran, McKenzie, Milton (1982), *Theory of Composites*, Milton (2002)

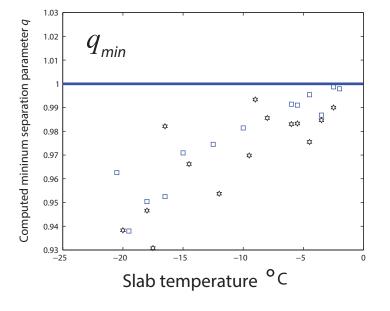
inverse bounds and recovery of brine porosity Gully, Backstrom, Eicken, Golden Physica B, 2007 inversion for brine inclusion separations in sea ice from measurements of effective complex permittivity ϵ^*

rigorous inverse bound on spectral gap

construct algebraic curves which bound admissible region in (p,q)-space

Orum, Cherkaev, Golden Proc. Roy. Soc. A, 2012

inverse bounds

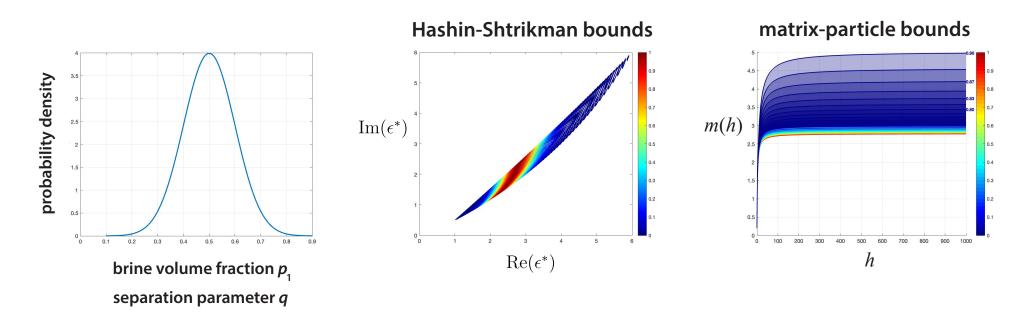


Uncertainty Quantification for Homogenization via Stieltjes Integral Representations

Clara Platt, Elena Cherkaev, Akil Narayan, Debdeep Bhattacharya, Ken Golden 2025

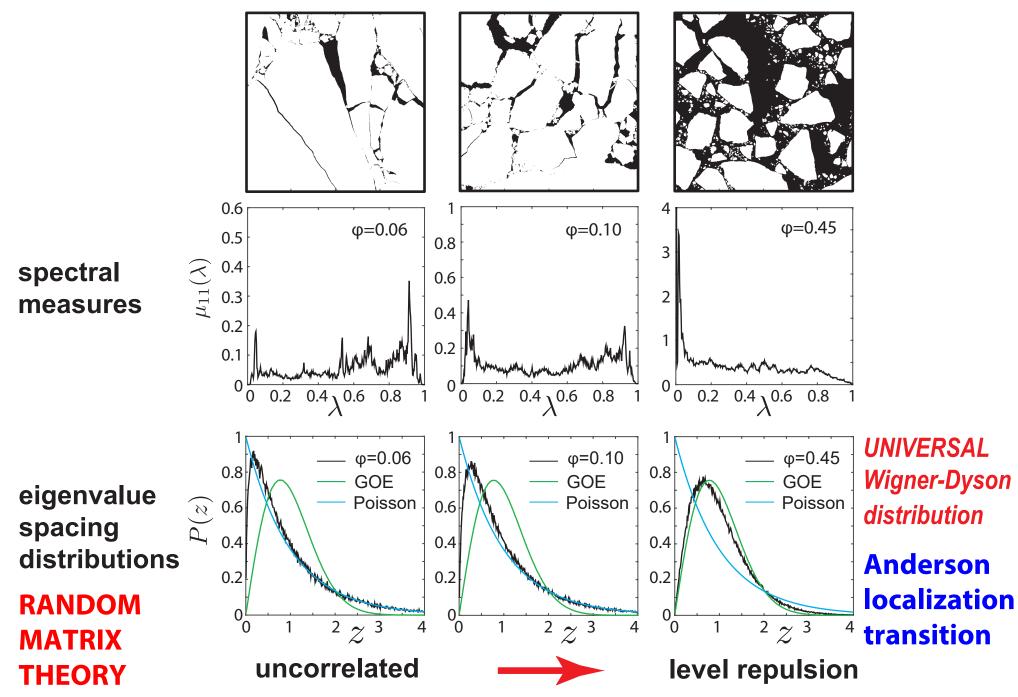
Classical bounds in the analytic continuation method assume fixed microstructural parameters, such as porosity, local permittivities, or inclusion separations.

But what if there is uncertainty, and they are random variables?



UQ for complex permittivity & thermal conductivity of sea ice

Spectral computations for sea ice floe configurations



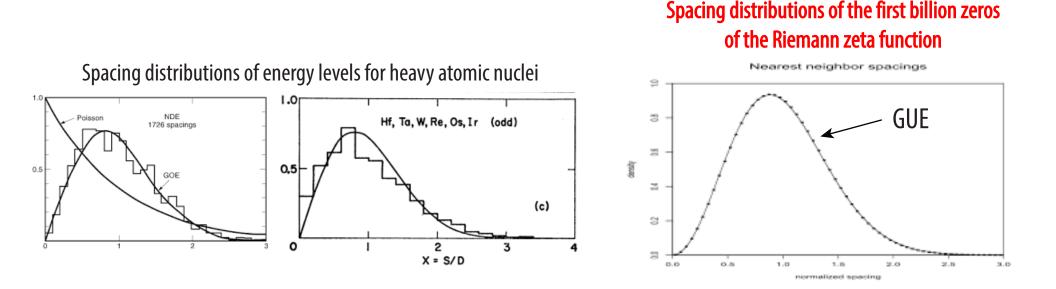
Murphy, Cherkaev, Golden, Phys. Rev. Lett. 2017; Murphy, Cherkaev, Hohenegger, Golden, Comm. Math. Sci. 2015

Eigenvalue Statistics of Random Matrix Theory

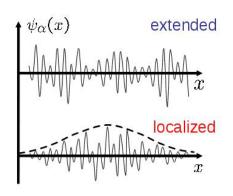
Wigner (1951) and Dyson (1953) first used random matrix theory (RMT) to describe quantized energy levels of heavy atomic nuclei.

 $[N]_{ij} \sim N(0,1),$ $A = (N+N^T)/2$ Gaussian orthogonal ensemble (GOE) $[N]_{ij} \sim N(0,1) + iN(0,1),$ $A = (N+N^T)/2$ Gaussian unitary ensemble (GUE)

Short range and long range correlations of eigenvalues are measured by various eigenvalue statistics.



Universal eigenvalue statistics arise in a broad range of "unrelated" problems!



Anderson localization

disorder-driven

metal / insulator transition

Anderson 1958 Mott 1949 Evangelou 1992 Shklovshii et al 1993

Wave equations

propagation vs. localization in wave physics: quantum, optics, acoustics, water waves

Laplace + Diffusion equations

we find percolation-driven

Anderson transition for classical transport in composites

mobility edges, localization, universal spectral statistics

Murphy, Cherkaev, Golden Phys. Rev. Lett. 2017

but no wave interference or scattering effects at play!

local conductivity in 1D inhomogeneous material

$$\sigma(x) = 3 + \cos x + \cos kx$$

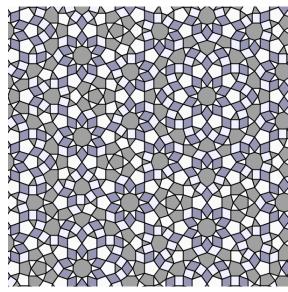
effective conductivity

$$\sigma^*(k) = \begin{cases} \text{constant} & k \text{ irrational} & \text{quasiperiodic} \\ f(k) & k \text{ rational} & \text{periodic} \end{cases}$$

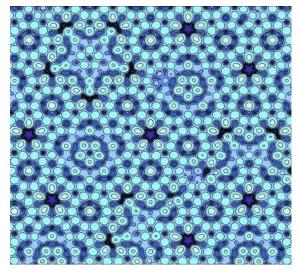
Golden, Goldstein, Lebowitz, Phys. Rev. Lett. 1985

Order to Disorder in Quasiperiodic Composites

D. Morison (Physics), N. B. Murphy, E. Cherkaev, K. M. Golden, Communications Physics 2022



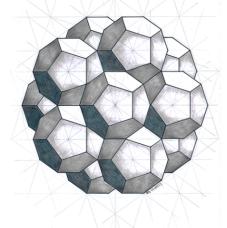
quasiperiodic checkerboard Stampfli, 2013



energy surface Al-Pd-Mn quasicrystal Unal et al., 2007

quasiperiodic crystal

quasicrystal



dense packing of dodecahedra 3D Penrose tiling Tripkovic, 2019

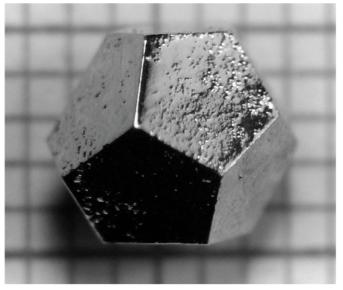
ordered but aperiodic

lacks translational symmetry

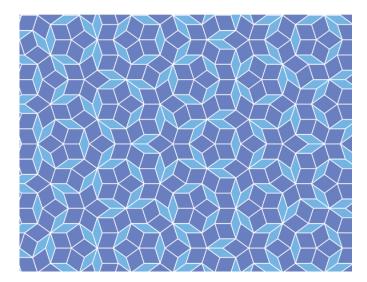
Shechtman et al., *Phys. Rev. Lett.*, 1984 Levine & Steinhardt, *Phys. Rev. Lett.*, 1984

classical transport in quasiperiodic media

Golden, Goldstein & Lebowitz, *Phys. Rev. Lett.*, 1985 Golden, Goldstein & Lebowitz, *J. Stat. Phys.*, 1990



Holmium-magnesium-zinc quasicrystal

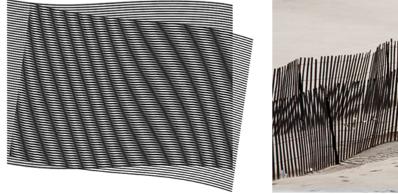


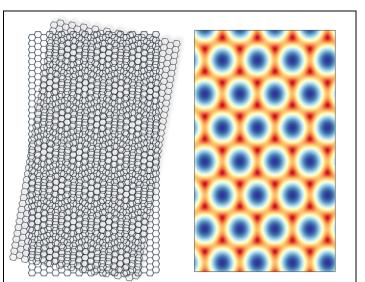
aperiodic tiling of the plane - R. Penrose 1970s

:

Moiré patterns generate two component composites on any scale

$$\begin{array}{c}
\begin{array}{c}
\begin{array}{c}
\begin{array}{c}
\end{array}{} \\
\end{array} \\
\end{array} \\
\end{array} \\
\begin{array}{c}
\end{array} \\
\end{array} \\
\end{array} \\
\left(\begin{array}{c}
\end{array} \\
\end{array} \\
\left(\begin{array}{c}
\end{array} \\
\end{array} \\
\end{array} \\
\left(\begin{array}{c}
\end{array} \\
\end{array} \\
\left(\begin{array}{c}
\end{array} \\
\end{array} \\
\end{array} \\
\left(\begin{array}{c}
\end{array} \\
\end{array}$$
\left(\begin{array}{c}
\end{array} \\
\end{array}
\left(\begin{array}{c}
\end{array} \\
\end{array} \\
\left(\end{array} \\
\end{array}
\left(\begin{array}{c}
\end{array} \\
\end{array}
\left(\end{array}
 \\
\left(\\
\end{array}
\left) \\
\end{array}
\left(\\
\end{array}
\left) \\
\end{array}
\left(\\
\end{array}
\left(\\
\end{array}
\left(\\
\end{array}
\left) \\
\end{array}
\left(\\
\end{array}
\left(\\
\end{array}
\left(\\
\end{array}
\left(\\
\end{array}
\left) \\
\end{array}
\left(\\
\end{array}
\left) \\
\end{array}
\left(\\
\end{array}
\left(\\
\end{array}
\left(\\
\end{array}
\left(\\
\end{array}
\left) \\
\end{array}
\left(\\
\end{array}
\left(\\
\end{array}
\left) \\
\end{array}
\left(\\
\end{array}
\left(\\
\end{array}
\left(\\
\end{array}
\left) \\
\end{array}
\left(\\
\end{array}
\left(\\
\end{array}
\left) \\
\end{array}
\left(\\
\end{array}
\left(\\
\end{array}
\left) \\
\end{array}
\left(\\
\end{array}
\left(\\
\end{array}
\left) \\
\end{array}
\left(\\
\end{array}
\left(\\
\end{array}
\left) \\
\end{array}
\left(\\
\end{array}
\left(\\
\end{array}
\left) \\
\bigg)
\left(\\
\end{array}
\left) \\
\bigg)
\left(\\
\end{array}
\left) \\
\bigg)
\left(\\
\end{array}
\left(\\
\end{array}
\left) \\
\bigg)
\left(\\
\bigg)
\left(\\
\bigg)
\left(\\
\bigg)
\left(\\





quantum dots artificial atoms

Tran et al. Nature 2019

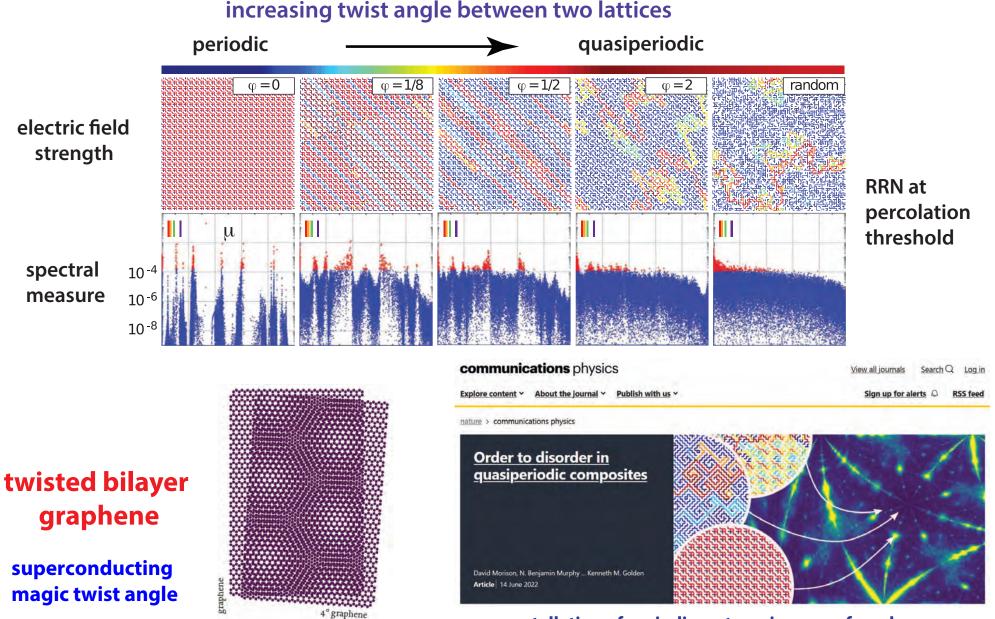
Order to disorder in quasiperiodic composites

sea ice inspired - twisted bilayer composites

tunable quasiperiodic composites with exotic properties

Morison, Murphy, Cherkaev, Golden, Comm. Phys. 2022

(optical, electrical, thermal) Anderson localization; our Moiré patterned geometries are similar to twisted bilayer graphene



constellation of periodic systems in a sea of randomness

Bounds on the complex permittivity of polycrystalline materials by analytic continuation

> Adam Gully, Joyce Lin, Elena Cherkaev, Ken Golden

 Stieltjes integral representation for effective complex permittivity

Milton (1981, 2002), Barabash and Stroud (1999), ...

- Forward and inverse bounds orientation statistics
- Applied to sea ice using two-scale homogenization
- Inverse bounds give method for distinguishing ice types using remote sensing techniques

Proc. Roy. Soc. A 8 Feb 2015

ISSN 1364-5021 | Volume 471 | Issue 2174 | 8 February 2015

PROCEEDINGS A

An invited review commemorating 350 years of scientific publishing at the Royal Society

A method to distinguish between different types of sea ice using remote sensing techniques A computer model to determine how a human should walk so as to expend the least energy

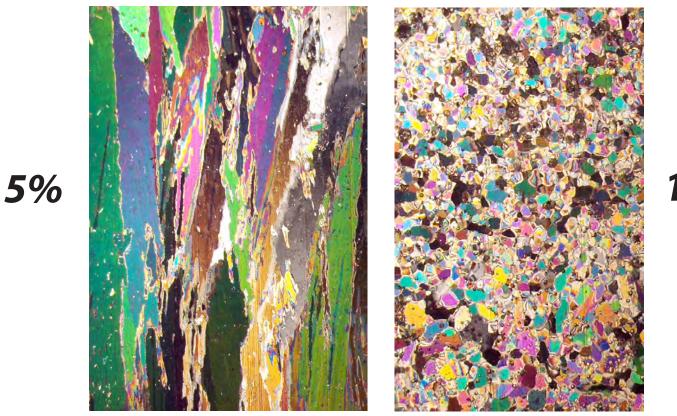
higher threshold for fluid flow in granular sea ice

granular

microscale details impact "mesoscale" processes

columnar

nutrient fluxes for microbes melt pond drainage snow-ice formation



10%

Golden, Furse, Gully, Lin, Mosier, Sampson, Tison 2025

electromagnetically distinguish ice types inverse homogenization for polycrystals

mesoscale

advection enhanced diffusion

effective diffusivity

nutrient and salt transport in sea ice heat transport in sea ice with convection sea ice floes in winds and ocean currents tracers, buoys diffusing in ocean eddies diffusion of pollutants in atmosphere

advection diffusion equation with a velocity field $ec{u}$

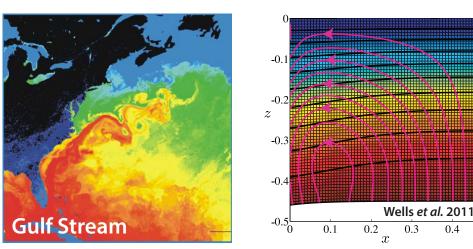
$$\frac{\partial T}{\partial t} + \vec{u} \cdot \vec{\nabla} T = \kappa_0 \Delta T$$
$$\vec{\nabla} \cdot \vec{u} = 0$$
$$homogenize$$
$$\frac{\partial \overline{T}}{\partial t} = \kappa^* \Delta \overline{T}$$

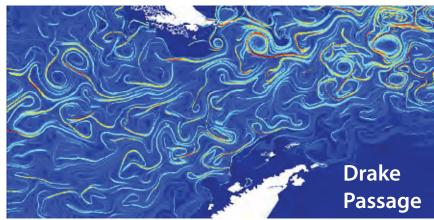
κ^* effective diffusivity

Stieltjes integral for κ^* with spectral measure

Avellaneda and Majda, PRL 89, CMP 91

Murphy, Cherkaev, Xin, Zhu, Golden, Ann. Math. Sci. Appl. 2017 Murphy, Cherkaev, Zhu, Xin, Golden, J. Math. Phys. 2020





-0.2

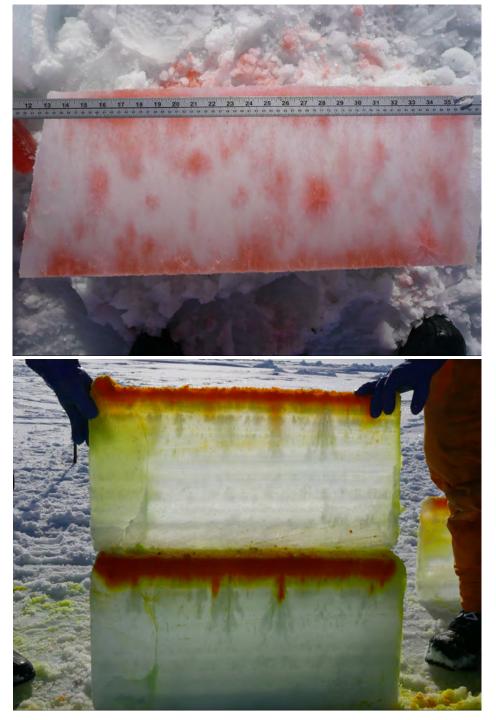
-0.4

-0.6

-0.8

0.4

tracers flowing through inverted sea ice blocks



Stieltjes Integral Representation for Advection Diffusion

Murphy, Cherkaev, Zhu, Xin, Golden, J. Math. Phys. 2020

$$\kappa^* = \kappa \left(1 + \int_{-\infty}^{\infty} \frac{d\mu(\tau)}{\kappa^2 + \tau^2} \right), \quad F(\kappa) = \int_{-\infty}^{\infty} \frac{d\mu(\tau)}{\kappa^2 + \tau^2}$$

- μ is a positive definite measure corresponding to the spectral resolution of the self-adjoint operator $i\Gamma H\Gamma$
- H = stream matrix , $\kappa =$ local diffusivity
- $\Gamma:=abla(-\Delta)^{-1}
 abla\cdot$, Δ is the Laplace operator
- $i\Gamma H\Gamma$ is bounded for time independent flows
- $F(\kappa)$ is analytic off the spectral interval in the κ -plane

rigorous framework for numerical computations of spectral measures and effective diffusivity for model flows

new integral representations, theory of moment calculations

separation of material properties and flow field

PROCEEDINGS OF THE ROYAL SOCIETY A

MATHEMATICAL, PHYSICAL AND ENGINEERING SCIENCES

Homogenization for convection-enhanced thermal transport in sea ice

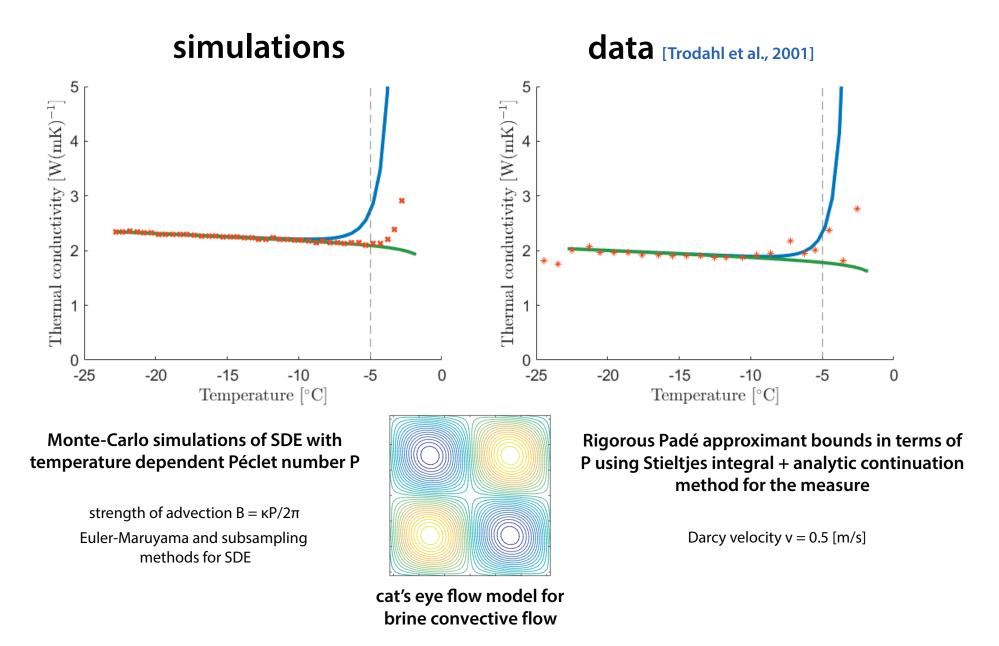
N. Kraitzman, R. Hardenbrook, H. Dinh, N. B. Murphy, E. Cherkaev, J. Zhu and K. M. Golden

August 2024

First rigorous mathematical theory of thermal conductivity of sea ice with convective fluid flow; captures data.

missing in climate models

Bounds on Convection Enhanced Thermal Transport



Kraitzman, Hardenbrook, Dinh, Murphy, Cherkaev, Zhu, & Golden Proc. Royal Soc. A, 2024

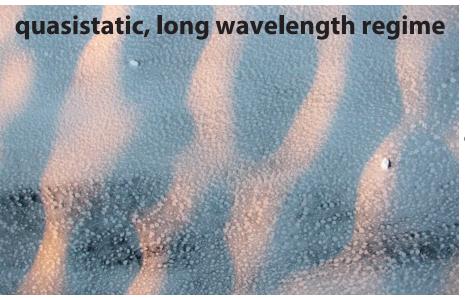
ocean wave propagation through the sea ice pack

- wave-ice interactions critical to growth and melting processes
- break-up; pancake promotion floe size distribution

effective layer parameter previously fit to wave data

Keller 1998 Mosig, Montiel, Squire 2015 Wang, Shen 2012

Analytic Continuation Method Bergman 1978, Milton 1979 Golden and Papanicolaou 1983 Milton, *Theory of Composites* 2002



homogenized parameter depends on sea ice concentration and ice floe geometry

like EM waves

Single effective rheological parameter (Mosig et al. 2015)

$$u^* = G - i\omega\rho v$$

Effective complex viscoelasticity

 $\frac{i\omega\rho v}{i\omega\rho v} \quad \frac{\nu}{\nu_2} = ||\epsilon_s^0||^2(1-F(s))$ $\frac{1}{\rho} = \frac{1}{\rho} \frac{d\mu(\lambda)}{s-\lambda}$ $\frac{1}{\rho} = \frac{1}{\rho} \frac{d\mu(\lambda)}{s-\lambda}$

z=h

z=0

7=-H

 u^*

divergence-free deviatoric stress

 $\nabla \cdot \sigma_s = 0$

Kelvin-Voigt model

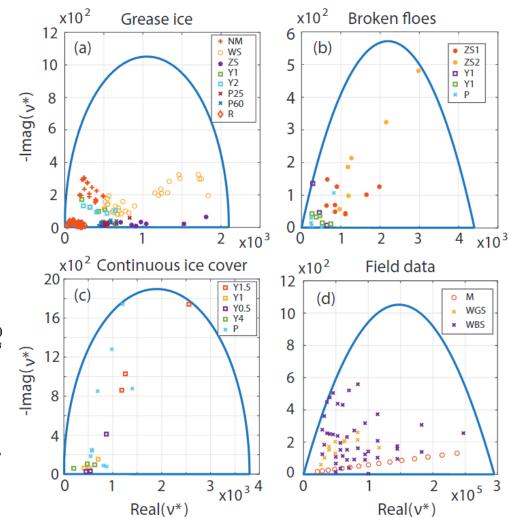
Ice

Ocean

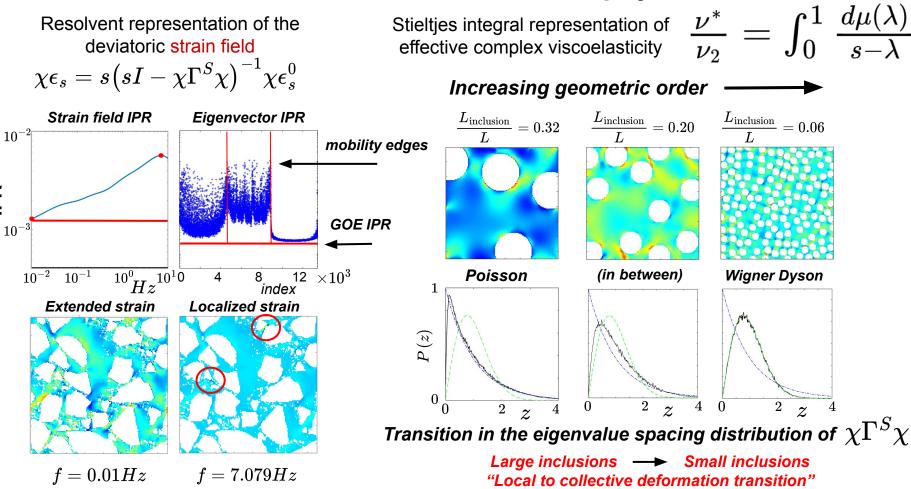
Integral representation

Bottom

Forward bounds for the effective viscoelasticity are fitted to well known wave-ice datasets, including *Wadhams et al. 1988, Newyear & Martin 1997, Wang & Shen 2010, Meylan et al. 2014,* and several others!



Waves in sea ice and solid state physics

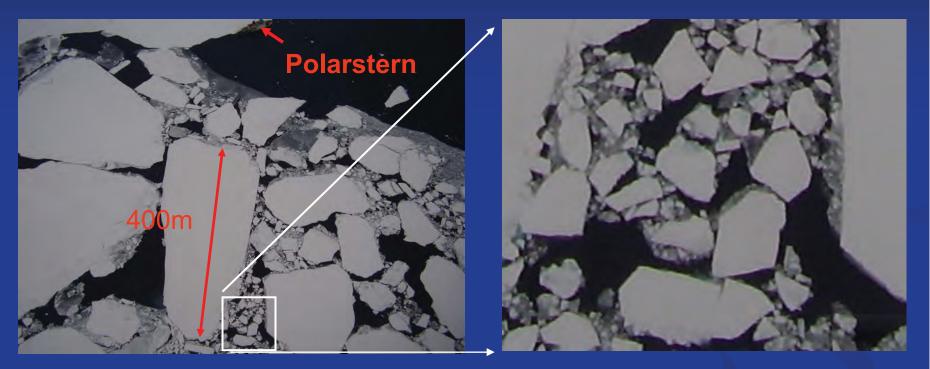


PR

The sea ice pack has fractal structure.

Self-similarity of sea ice floes

Weddell Sea, Antarctica



fractal dimensions of Okhotsk Sea ice pack smaller scales D~1.2, larger scales D~1.9

fractal dim. *vs.* **floe size exponent** Adam Dorsky, Nash Ward, Ken Golden 2024

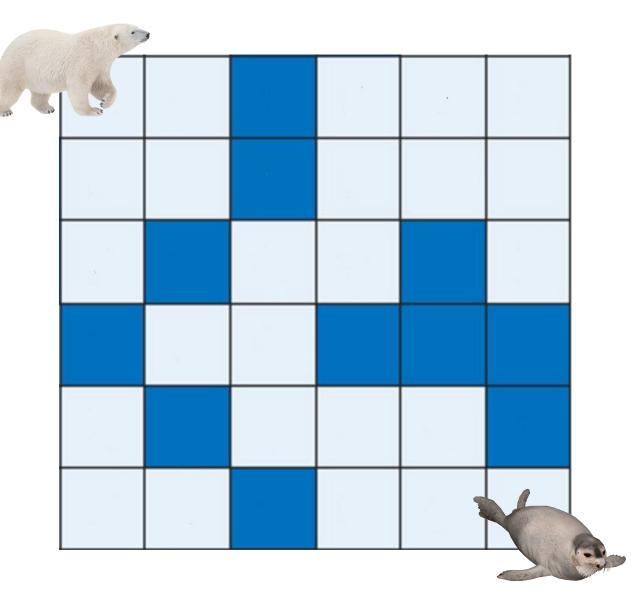
Toyota, et al. Geophys. Res. Lett. 2006 Rothrock and Thorndike, J. Geophys. Res. 1984

Optimal Movement of a Polar Bear in a Heterogenous Icescape

Nicole Forrester, Jody Reimer, Ken Golden 2024

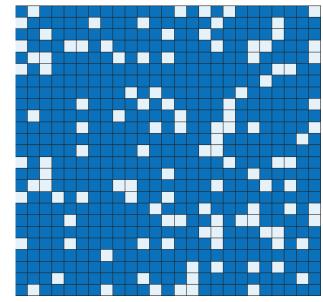
Polar bears expend 5X more energy swimming than walking on sea ice.

As sea ice is lost, how do polar bears optimize their movement to save energy and survive?



Polar Bear Percolation

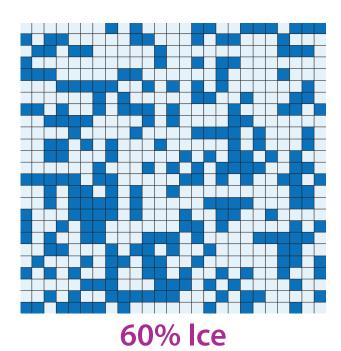
To study the importance of ice connectedness, we exaggerate the data by setting the cost of walking on ice to 0 with the cost of swimming still at 5.



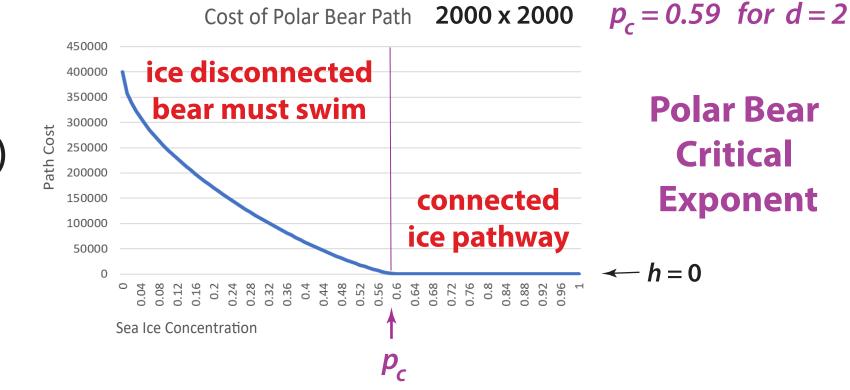
C_i

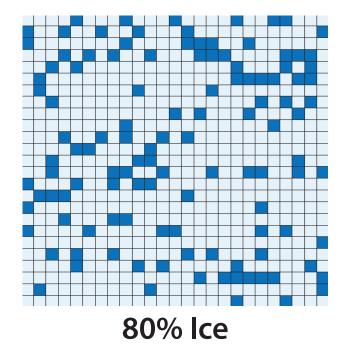
 C_{W}

20% lce



C(p)





SEA ICE ALGAE high level of local heterogeneity

Can we improve agreement between algae models and data?

80% of polar bear diet can be traced to ice algae*.

^{*} Brown TA, et al. (2018). *PloS one*, 13(1), e0191631

HETEROGENEITY in PARAMETERS & CONDITIONS

At each location within a larger region, consider

$$\frac{dN}{dt} = \alpha - BNP - \eta N$$
treating parameters
as random variables

$$\frac{dP}{dt} = \gamma BNP - \delta P$$

$$N(0) = N_0, \quad P(0) = P_0$$

growth rate, B Initial nutrients, N₀ Initial algae, P₀

But, Monte Carlo for Full Algae Model: 8 hours X 10,000

Received: 7 June 2022

Revised: 1 August 2022 Accepted: 1 August 2022

DOI: 10.1111/ele.14095

METHOD

Uncertainty quantification for ecological models with random parameters ©

Jody R. Reimer^{1,2} | Frederick R. Adler^{1,2} | Kenneth M. Golden¹ | Akil Narayan^{1,3}

¹Department of Mathematics, University of Utah, Salt Lake City, Utah, USA

²School of Biological Sciences, University of Utah, Salt Lake City, Utah, USA

³Scientific Computing and Imaging Institute, University of Utah, Salt Lake City, Utah, USA

Correspondences

Jody R. Reimer, Department of Mathematics and School of Biological Sciences, University of Utah, Salt Lake City, Utah, USA. Email: reimer@math.utah.edu

N-P Model

Abstract

There is often considerable uncertainty in parameters in ecological models. This uncertainty can be incorporated into models by treating parameters as random variables with distributions, rather than fixed quantities. Recent advances in uncertainty quantification methods, such as polynomial chaos approaches, allow for the analysis of models with random parameters. We introduce these methods with a motivating case study of seaice algal blooms in heterogeneous environments. We compare Monte Carlo methods with polynomial chaos techniques to help understand the dynamics of an algal bloom model with random parameters.

Introduce polynomial chaos approach to widely used ecological ODE models, but with random parameters.

POLYNOMIAL CHAOS EXPANSIONS

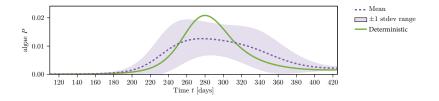
$$N(t; B, P_0, N_0) \approx N_V(t; B, P_0, N_0) \coloneqq \sum_{j=1}^n \widetilde{N}_j(t)\phi_j(B, P_0, N_0),$$
$$P(t; B, P_0, N_0) \approx P_V(t; B, P_0, N_0) \coloneqq \sum_{j=1}^n \widetilde{P}_j(t)\phi_j(B, P_0, N_0),$$

where

- $V \coloneqq \operatorname{span}\{\phi_j\}_{j=1}^n$
- ϕ_j are orthogonal polynomials that form a basis for V
- $(\widetilde{N}_j, \widetilde{P}_j)$ need to be computed

Xiu, D. (2010). Numerical methods for stochastic computations. Princeton university press.

ECOLOGICAL INSIGHTS



- lower peak bloom intensity
- longer bloom duration
- able to compare variance to data

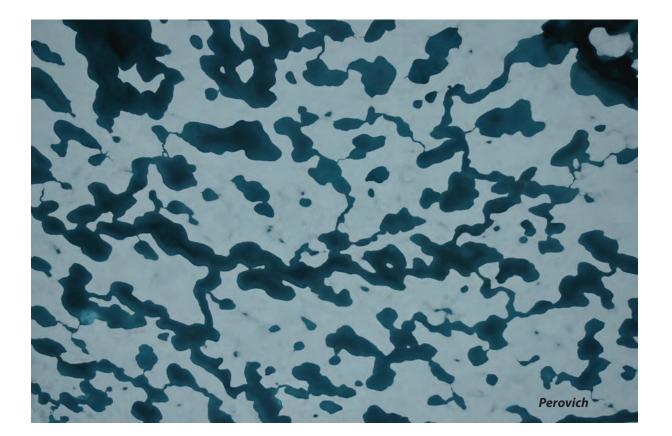
Inverse Problem: given algal and nutrient data, recover growth rate distribution Anthony Lee, Jody Reimer, Akil Narayan, Ken Golden 2025

melt pond formation and albedo evolution:

- major drivers in polar climate
- key challenge for global climate models

numerical models of melt pond evolution, including topography, drainage (permeability), etc.

Lüthje, Feltham, Taylor, Worster 2006 Flocco, Feltham 2007 Skyllingstad, Paulson, Perovich 2009 Flocco, Feltham, Hunke 2012

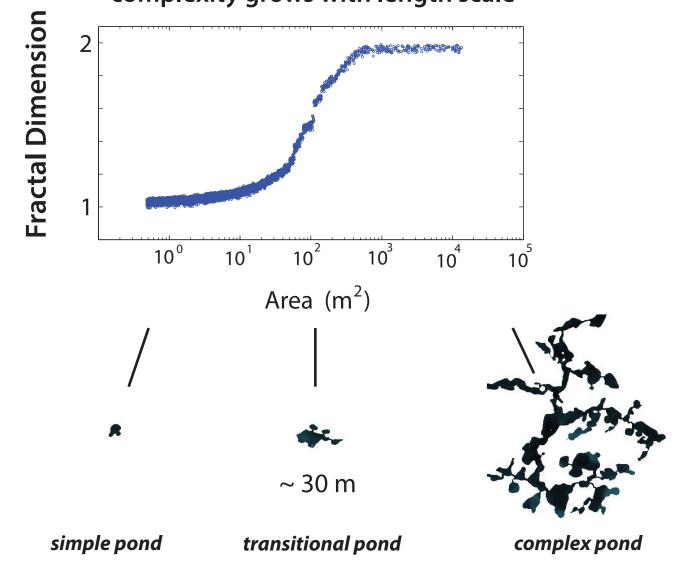


Are there universal features of the evolution similar to phase transitions in statistical physics?

Transition in the fractal geometry of Arctic melt ponds

Christel Hohenegger, Bacim Alali, Kyle Steffen, Don Perovich, Ken Golden

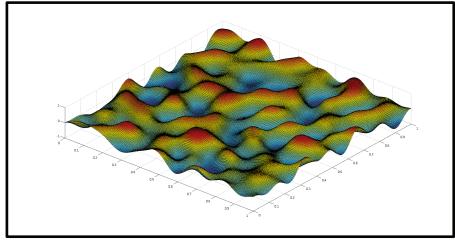
The Cryosphere, 2012



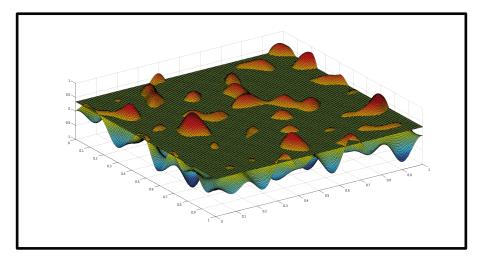
complexity grows with length scale

Continuum percolation model for melt pond evolution level sets of random surfaces

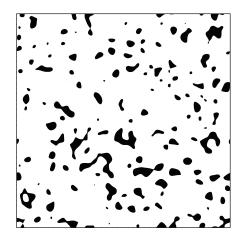
Brady Bowen, Court Strong, Ken Golden, J. Fractal Geometry 2018

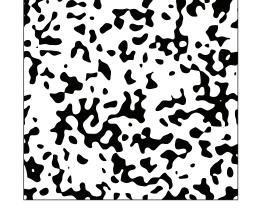


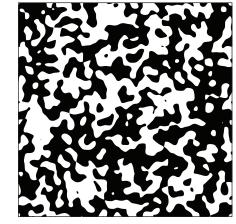
random Fourier series representation of surface topography



intersections of a plane with the surface define melt ponds







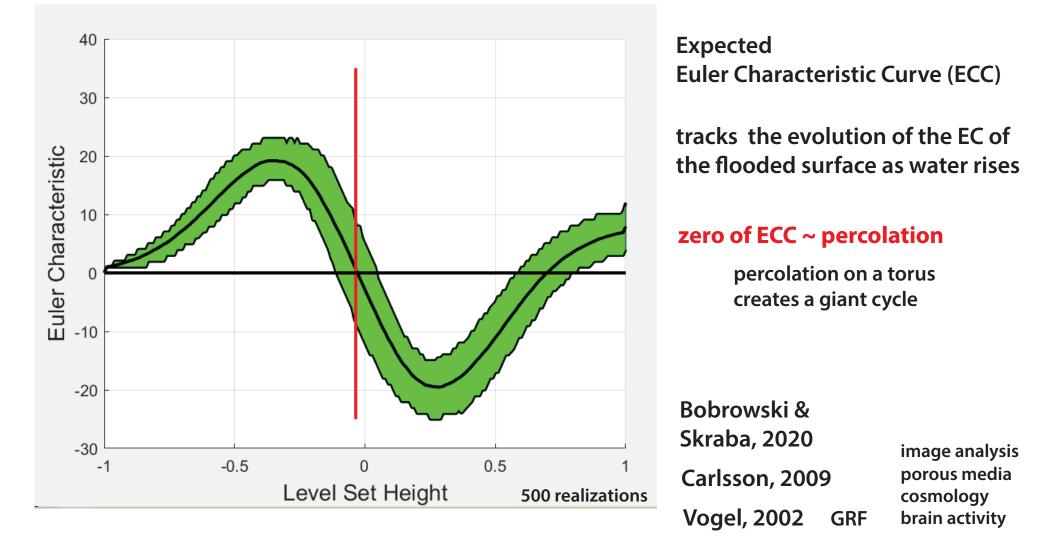
electronic transport in disordered media

diffusion in turbulent plasmas

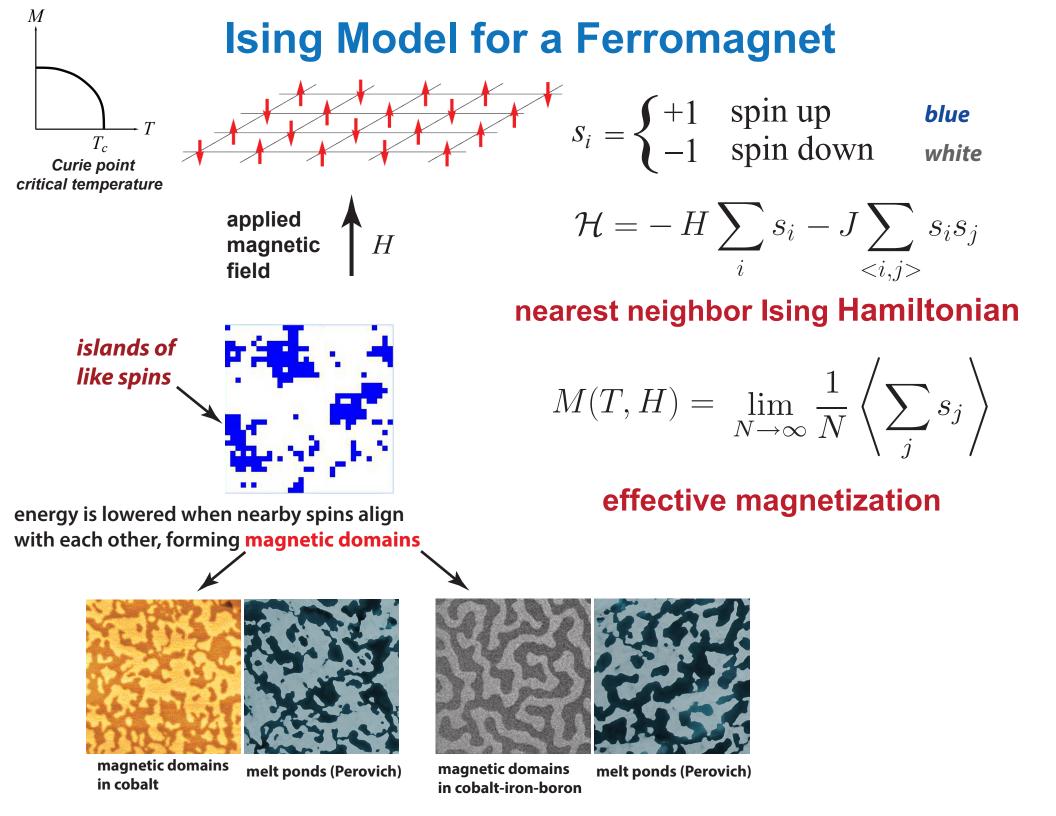
Isichenko, Rev. Mod. Phys., 1992

TopologicalEuler characteristic= # maxima+ # minima- # saddlesData Analysistopological invariant

filtration - sequence of nested topological spaces, indexed by water level



Physical Review Research (invited, in revision), R. Moore, J. Jones, D. Gollero, R. Hardenbrook, C. Strong, K. M. Golden 2024



Ising model for ferromagnets —> Ising model for melt ponds

Ma, Sudakov, Strong, Golden, New J. Phys., 2019

 $\mathcal{H} = -\sum_{i}^{N} H_{i} s_{i} - J \sum_{\langle i,j \rangle}^{N} s_{i} s_{j} \qquad s_{i} = \begin{cases} \uparrow & +1 & \text{water (spin up)} \\ \downarrow & -1 & \text{ice (spin down)} \end{cases}$

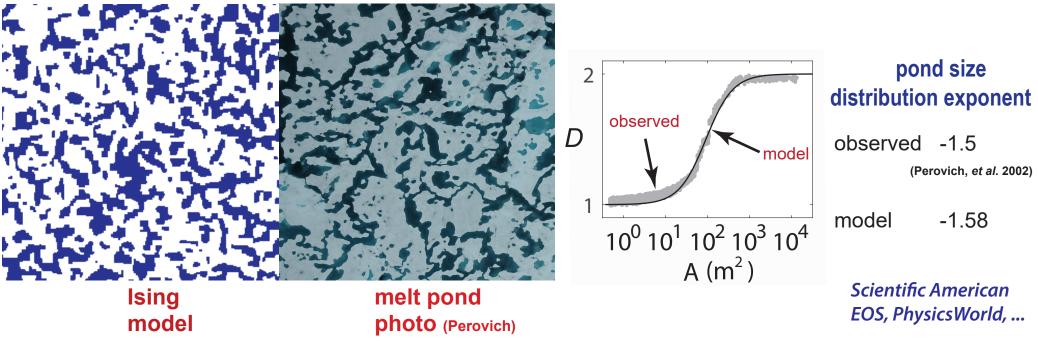
random magnetic field represents snow topography

magnetization M

pond area fraction $F = \frac{(M+1)}{2}$

only nearest neighbor patches interact

Starting with random initial configurations, as Hamiltonian energy is minimized by Glauber spin flip dynamics, system "flows" toward metastable equilibria.

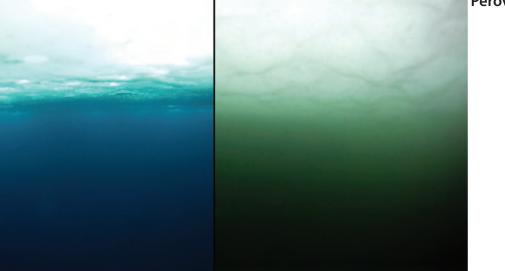


ONLY MEASURED INPUT = LENGTH SCALE (GRID SIZE) from snow topography data

Order from Disorder

Melt ponds control transmittance of solar energy through sea ice, impacting upper ocean ecology.

WINDOWS



no bloom bloom massive under-ice algal bloom

Arrigo et al., Science 2012

Have we crossed into a new ecological regime?

The frequency and extent of sub-ice phytoplankton blooms in the Arctic Ocean

Horvat, Rees Jones, Iams, Schroeder, Flocco, Feltham, *Science Advances* 2017

The effect of melt pond geometry on the distribution of solar energy under first year sea ice

Horvat, Flocco, Rees Jones, Roach, Golden Geophys. Res. Lett. 2019

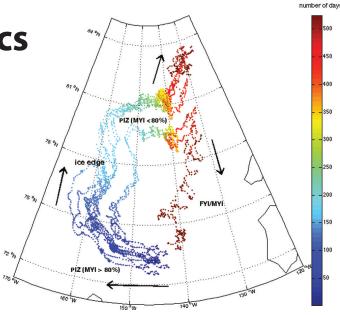
(2015 AMS MRC)

macroscale

Anomalous diffusion in sea ice dynamics

Ice floe diffusion in winds and currents **observations from GPS data**

Lukovich, Hutchings, Barber, Ann. Glac. 2015



Floe scale model of advection diffusion

Huy Dinh, Tyler Evans, Kaeden George, Ben Murphy, Elena Cherkaev, Ken Golden 2025

diffusive $\alpha = 1$

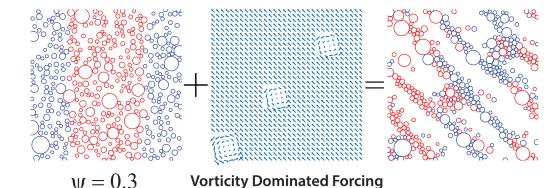
$$|\mathbf{x}(t) - \mathbf{x}(0) - \langle \mathbf{x}(t) - \mathbf{x}(0) \rangle|^2 \rangle \sim t^{\alpha}$$
 $\alpha = \text{Hurst exponent}$ sub-diffusive $\alpha < 1$

super-diffusive $\alpha > 1$

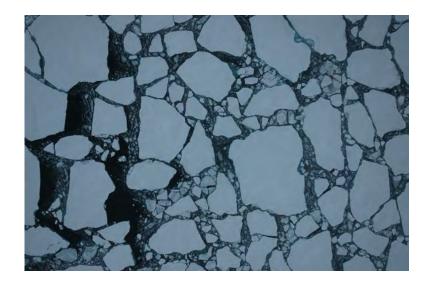
Model Approximations

Power Law Size Distribution: $N(D) \sim D^{-k}$ D. A. Rothrock and A. S. Thorndike Journal of Geophysical Research 1984 Floe-Floe Interactions: Linear Elastic Collisions Advective Forcing: Passive, Linear Drag Law

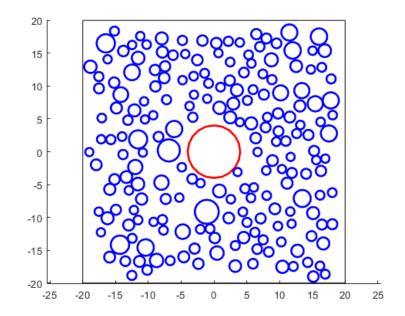
Fractional PDE

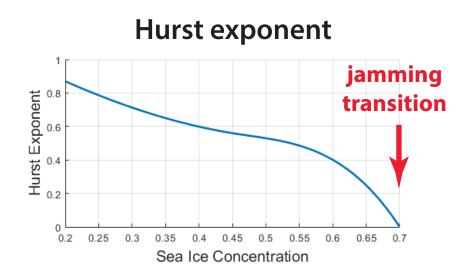


Arctic sea ice pack with tagged particle

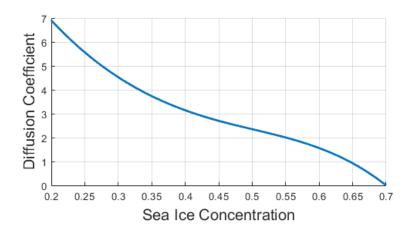


Einstein's pollen grain





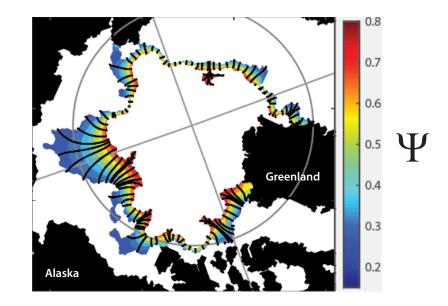
diffusion coefficient



Marginal Ice Zone (MIZ)

transitional region between dense interior pack $\Psi > 0.8$ sparse outer fringes $\Psi < 0.15$

- biologically active region
- intense wave-ice interactions
- strong air-ice-ocean exchanges



MIZ WIDTH

fundamental length scale of ecological and climate dynamics

streamlines of harmonic Ψ MIZ width definition from medical imaging

Strong, *Climate Dynamics* 2012 Strong & Rigor, *GRL* 2013 **39% widening** 1979 - 2012

Strong, Foster, Cherkaev, Eisenman, Golden, J. Atmos. Oceanic Tech. 2017

Strong & Golden, SIAM News 2017

Multiscale mushy layer model for marginal ice zone dynamics

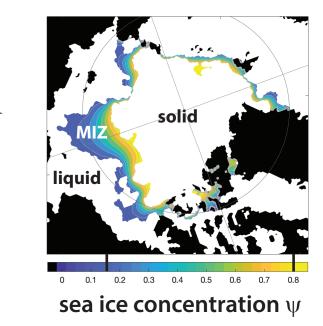
Strong, Cherkaev, Golden Scientific Reports 2024

MIZ - transitional region between dense pack ice and open ocean

OBJECTIVE: model & predict dramatic annual cycle impacts climate dynamics, polar ecology, human activities

mushy layer physics in the lab

Arctic MIZ as a mushy layer



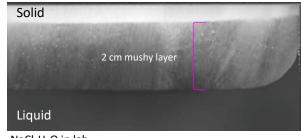
MIZ as a moving phase transition region

$$oc \frac{\partial T}{\partial t} = \nabla \cdot (k \nabla T) + S$$
$$S = [\rho(c_l - c_s)T + \rho L] \frac{\partial \psi}{\partial t}$$
$$\psi = 1 - \left(\frac{T - T_s}{T_l - T_s}\right)^{\alpha}$$
$$k_x = \left(\frac{\psi}{k_s} + \frac{1 - \psi}{k_l}\right)^{-1}$$
$$k_z = \psi k_s + (1 - \psi)k_l$$

homogenization

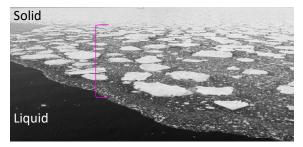
- ρ effective density T temperature c specific heat L latent heat of fusion
- S models nonlinear phase change ψ sea ice concentration k effective diffusivity l liquid, s solid

Classical small-scale application



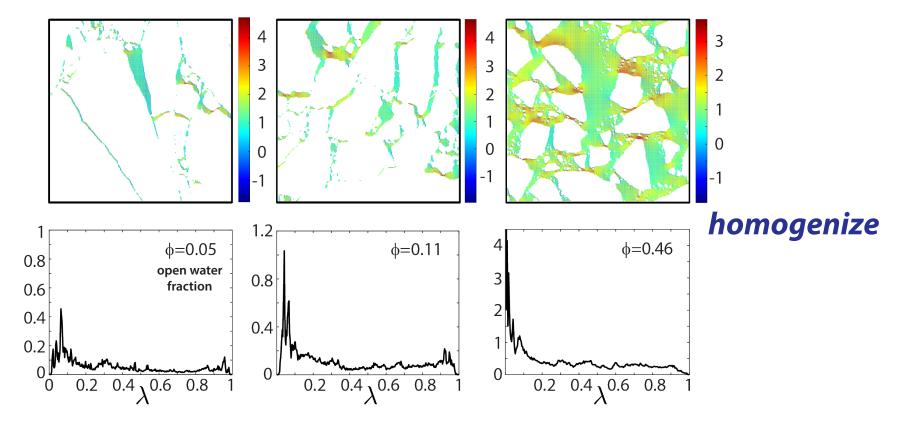
NaCl-H₂O in lab (Peppin et al., 2007;, J. Fluid Mech.)

Macroscale application



- Develop multiscale PDE model for simulating phase transition fronts to predict MIZ seasonal cycles and decadal trends
- Model simulates MIZ as a large-scale mushy layer with effective thermal conductivity derived from physics of composite materials

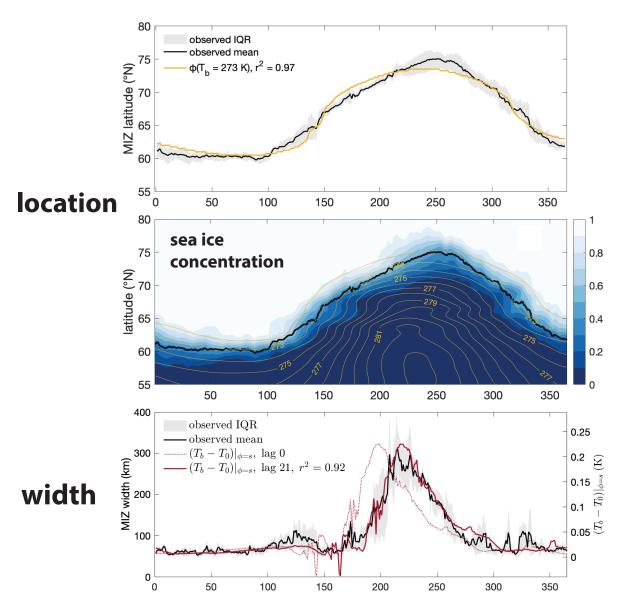
thermal flow field through the ice cover: multiscale granular composite



spectral measures for 2D horizontal thermal conductivity

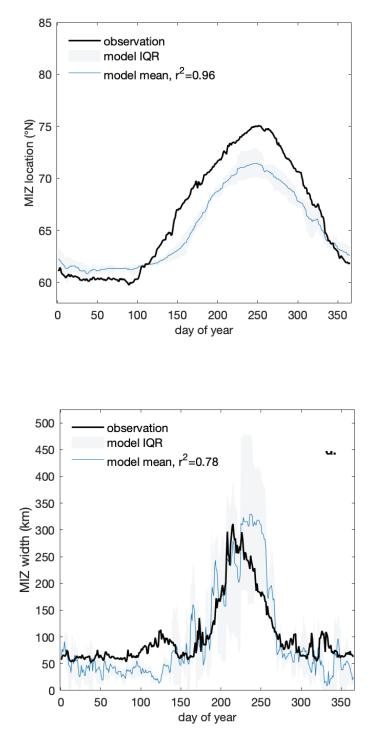
homogenized thermal conductivity is a key parameter in MIZ mushy layer model

MIZ observations



Model captures basic physics of MIZ dynamics.

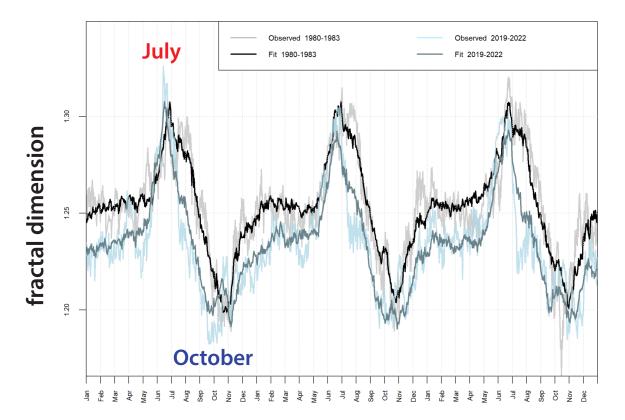
MIZ model vs. observations



Identifying Fractal Geometry in Arctic Marginal Ice Zone Dynamics

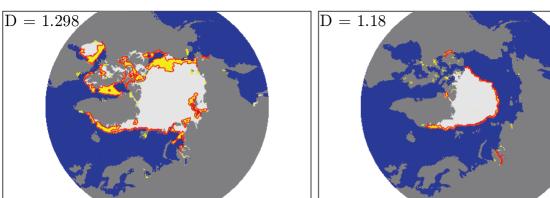
Julie Sherman, Court Strong, Ken Golden 2024

Compute the fractal dimension of the boundary of the Arctic MIZ by boxcounting methods; analyze seasonal cycle and long term trends.



early summer

2012



early autumn

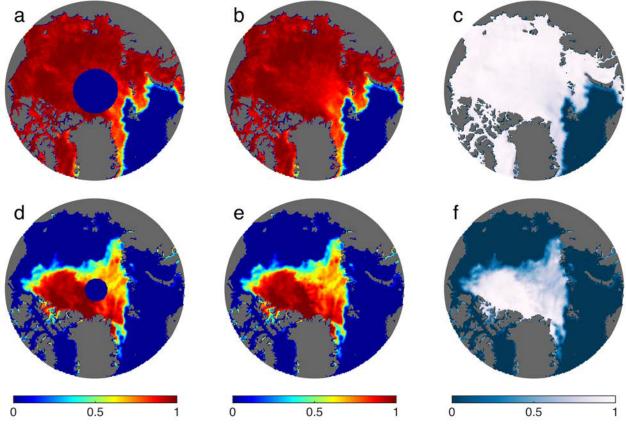
wave and thermal interactions with fractal boundary

Filling the polar data gap with
partial differential equationshole in satellite coverageof sea ice concentration field

previously assumed ice covered

Gap radius: 611 km 06 January 1985

Gap radius: 311 km 30 August 2007



fill = harmonic function satisfying satellite BC's plus learned stochastic term

Strong and Golden, *Remote Sensing* 2016 Strong and Golden, *SIAM News* 2017 Global Sea Ice Concentration Climate Data Records, 2022

Lavergne, Sorensen, et al., Norwegian Met. Inst., ... OSI SAF

Conclusions

Our research is helping to improve projections of climate change, the fate of Earth's sea ice packs, and the ecosystems they support.

Mathematics for sea ice advances the theory of composites, inverse problems, and other areas of science and engineering.

Modeling sea ice leads to unexpected areas of math and physics.

of the American Mathematical Society

November 2020

Volume 67, Number 10

The cover is based on "Modeling Sea Ice," page 1535.

NSF Research Training Grant (RTG) with 15 Applied Math faculty:

optimization and inverse problems

July 2022 - June 2027

Overall goal: Build an advanced, competitive U.S. STEM workforce.

- Strengthen our graduate and postdoctoral programs in applied math to attract top students in the nation, and place them in top jobs.
 - Provide transformative experiences that draw students into math.

Arctic Mathpeditions - May 2024 & 2026

OPEN POSITIONS: Postdoctoral, Ph.D., Undergraduate

NSF RTG Arctic Mathpedition, May 2024

on the frozen Arctic Ocean north of Utqiagvik, AK

We took 7 math students working on sea ice models to the Arctic to do *experiments* on the physics and biology of sea ice.

Jody Reimer, Ken Golden [Seth & Tarn] Anthony Lee David Gluckman Kathy Lin Nash Ward Daniel Hallman Anthony Jajeh Delaney Mosier Marco Lozzi High School Undergraduate Undergraduate Undergraduate Graduate Student Graduate Student Graduate Student Student Photojournalist

see what you're modeling; close the gap between theory and experiment; connect physics & bio; experience climate change first-hand; math outreach to locals

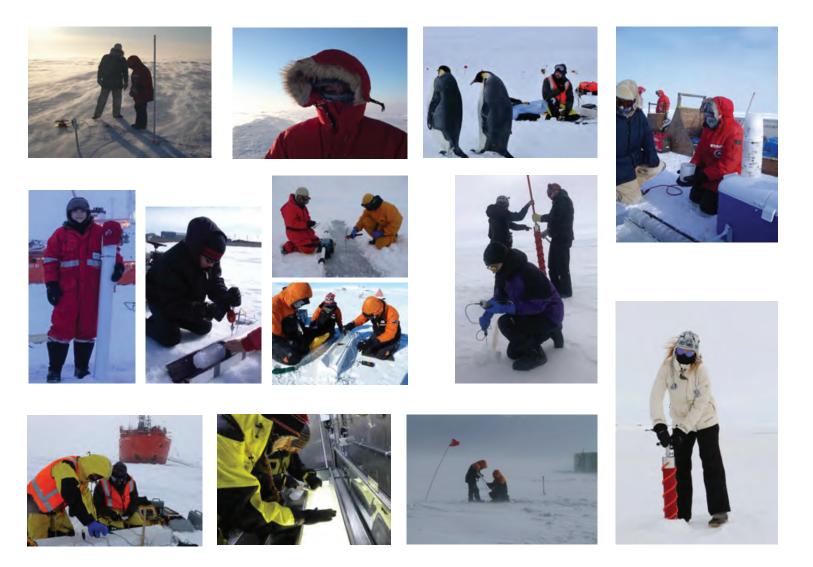
Math Dept Colloquium, Nov 21

NSF RTG Arctic Mathpedition 2, May 2026



bottom of a sea ice core

Thank you to so many postdocs, graduate students, undergraduates, high school students and colleagues who contributed to this work!



U. of Utah students in the Arctic and Antarctic (2003-2022): closing the gap between theory and observation - making math models come alive and experiencing climate change firsthand.

THANK YOU

Office of Naval Research

Applied and Computational Analysis Program Arctic and Global Prediction Program

National Science Foundation

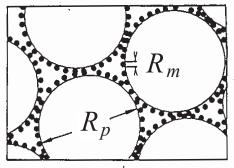
Division of Mathematical Sciences Division of Polar Programs

Australian Government

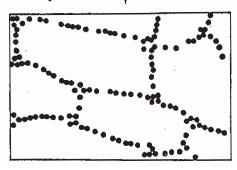
Department of the Environment and Water Resources Australian Antarctic Division

Buchanan Bay, Antarctica Mertz Glacier Polynya Experiment July 1999

cross pollination »

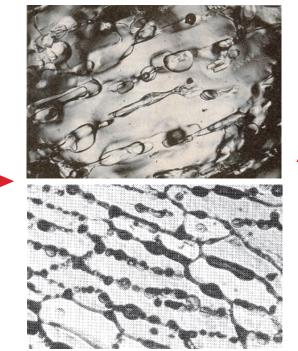


compressed powder



radar absorbing coating

Kusy & Turner Nature 1971



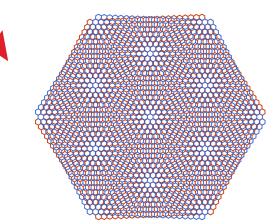
sea ice

Golden, Ackley, Lytle Science 1998

Rule of Fives fluid flow

human bone Golden, Murphy, Cherkaev J. Biomechanics 2011

spectral analysis & RMT



twisted bilayer composites

Morison, Murphy, Cherkaev, Golden Communications Physics 2022

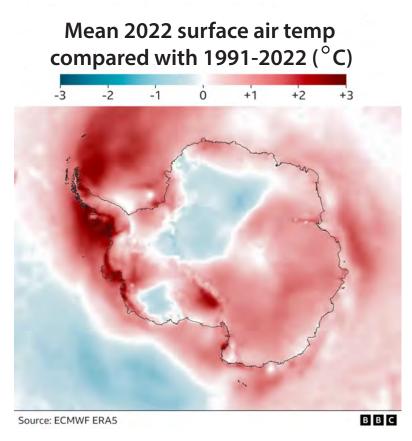
stealth technology, climate science, medical imaging, twistronics

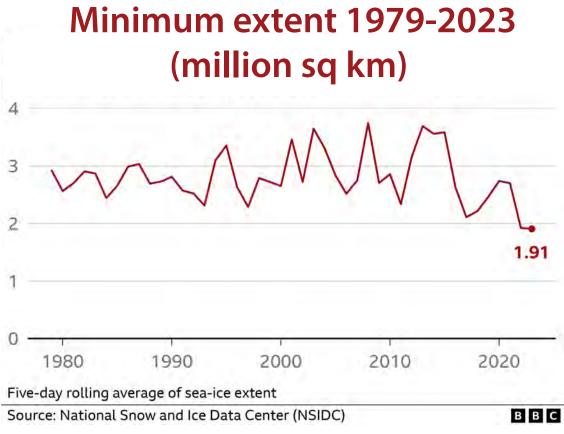
recent losses in comparison to the United States

Perovich

New Record Low for Antarctic Sea Ice February 13, 2023

Much of Antarctica warmer than average





sea ice algal communities

D. Thomas 2004

nutrient replenishment controlled by ice permeability

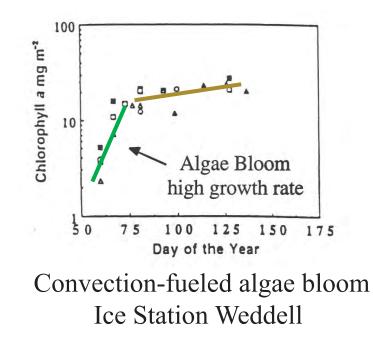
biological activity turns on or off according to *rule of fives*

Golden, Ackley, Lytle

Science 1998

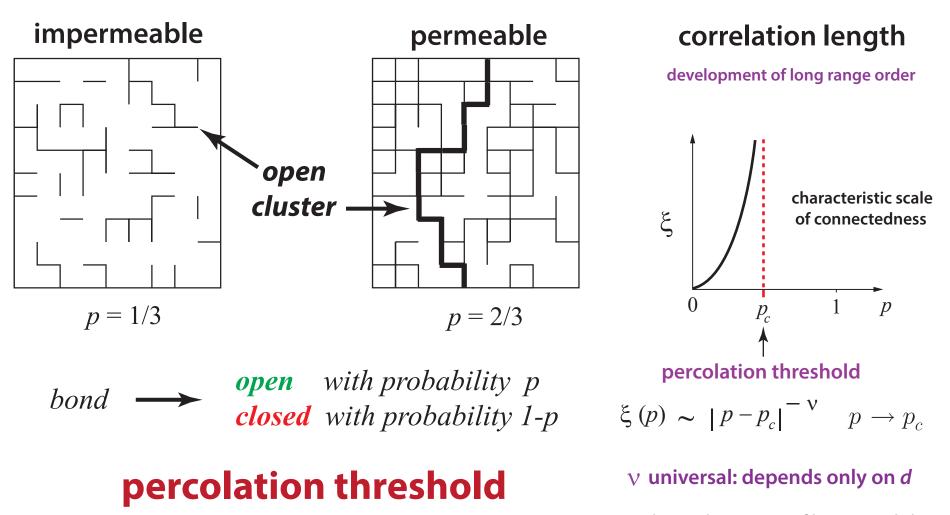
Fritsen, Lytle, Ackley, Sullivan Science 1994

critical behavior of microbial activity



percolation theory

probabilistic theory of connectedness

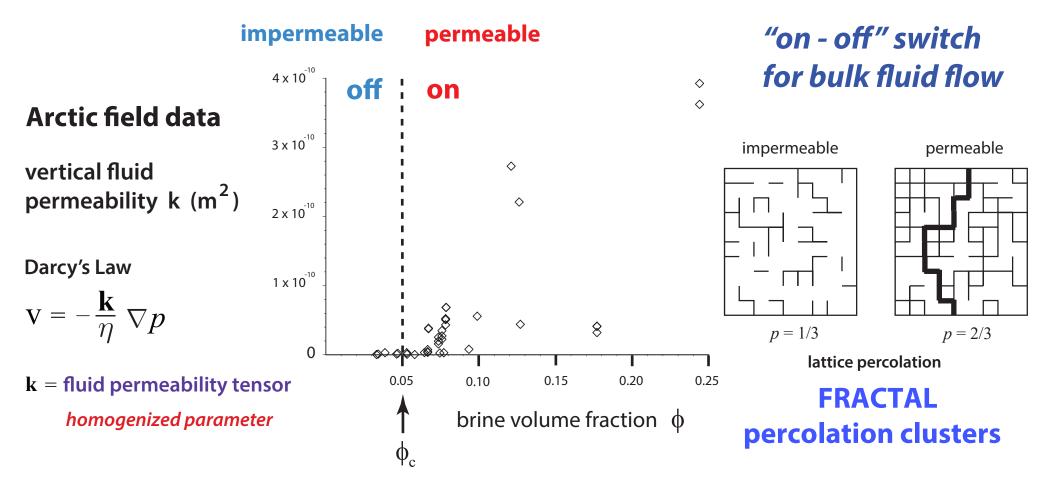


 p_c depends on type of lattice and d

smallest p for which there is an infinite open cluster

 $p_c = 1/2$ for d = 2

Critical behavior of fluid transport in sea ice

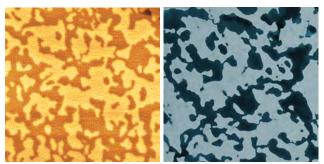


PERCOLATION THRESHOLD $\phi_c \approx 5\%$ \checkmark $T_c \approx -5^{\circ}C, S \approx 5$ ppt

RULE OF FIVES

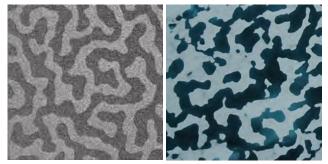
Golden, Ackley, Lytle Science 1998 Golden, Eicken, Heaton, Miner, Pringle, Zhu GRL 2007 Pringle, Miner, Eicken, Golden J. Geophys. Res. 2009

From magnets to melt ponds

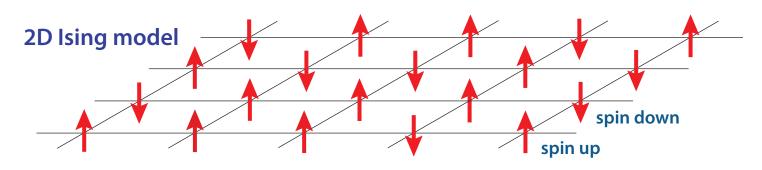


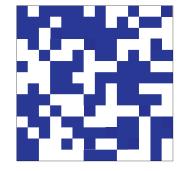
magnetic domains Arctic melt ponds in cobalt

100 year old model for magnetic materials used to explain melt pond geometry

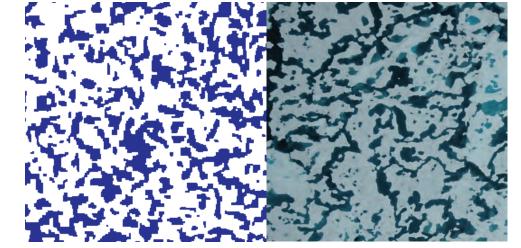


magnetic domains Arctic melt ponds in cobalt-iron-boron





model



real ponds (Perovich)

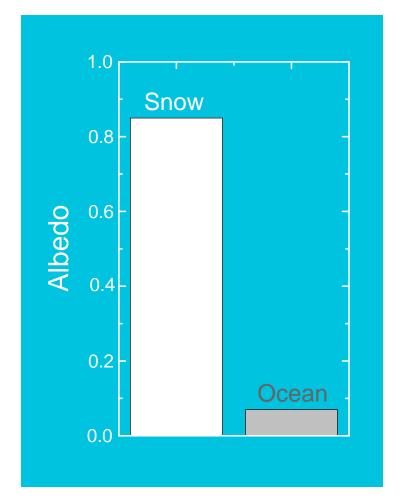
Ma, Sudakov, Strong, Golden, *New J. Phys.* 2019

Scientific American, EOS, PhysicsWorld, ...

Time evolution - William Harrison, Tyler Evans, Ken Golden 2024

polar ice caps critical to global climate in reflecting incoming solar radiation

white snow and ice reflect

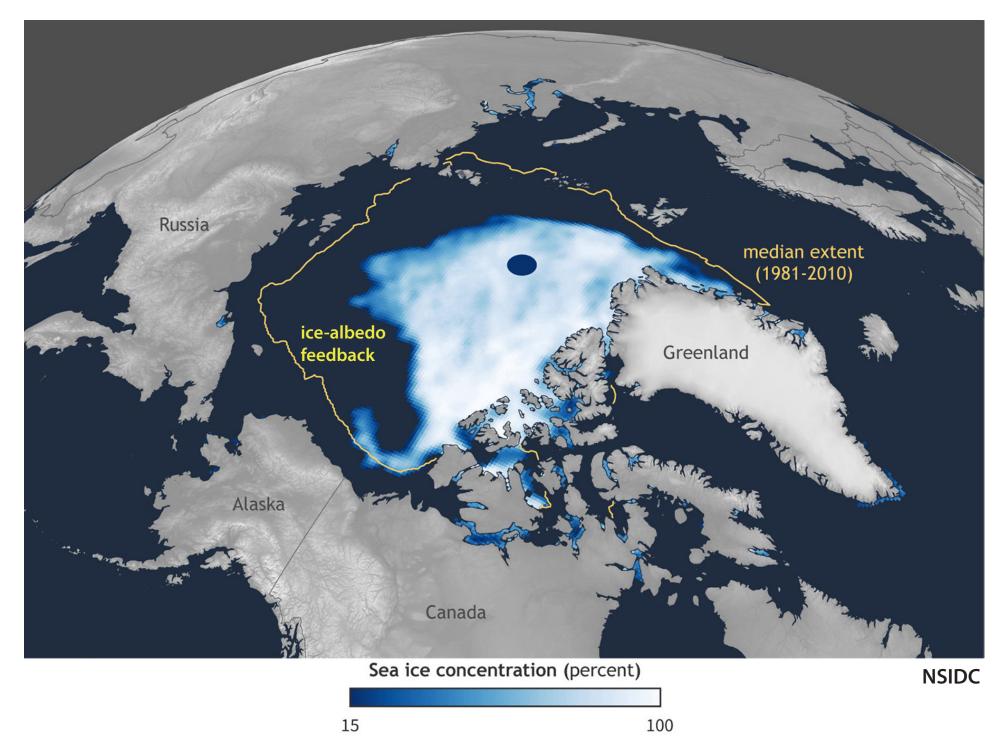


dark water and land absorb

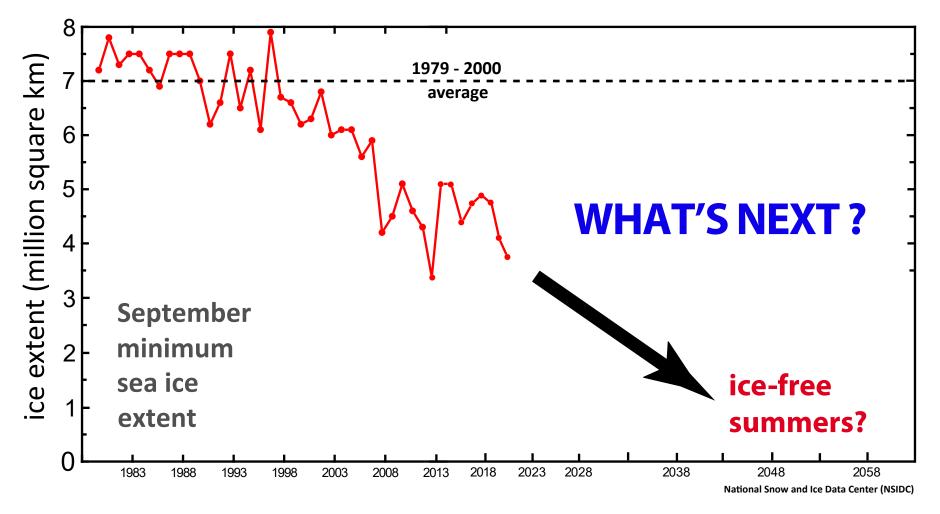
albedo
$$\alpha = \frac{\text{reflected sunlight}}{\text{incident sunlight}}$$

Arctic sea ice extent

September 15, 2020



ARCTIC summer sea ice loss



predictions require lots of math modeling

New Record Low for Antarctic Sea Ice February 13, 2023

Much of Antarctica warmer than average

