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sea ice may appear to be a 
barren, impermeable cap ...

Golden
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- ocean-ice-air exchanges of heat, CO

evolution of Arctic melt ponds and sea ice albedo
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Antarctic surface �ooding 
and snow-ice formation 

nutrient �ux for algal communities

- evolution of salinity pro�les

�uid �ow through the porous microstructure of sea ice
governs key processes in polar climate and ecosystems
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Sea Ice is a Multiscale Composite Material
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HOMOGENIZATION for Composite Materials

∗

Einstein 1906 : e�ective viscosity of a dilute suspension of rigid spheres in a �uid
Maxwell 1873 : e�ective conductivity of a dilute suspension of spheres

         e�ective
conductivity

Wiener 1912 : arithmetic and harmonic mean bounds on e�ective conductivity 
Hashin and Shtrikman 1962 : variational bounds on e�ective conductivity 

widespread use of composites in late 20th century due in large part
to advances in mathematically predicting their e�ective properties
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What is this talk about?
Using methods of  homogenization and statistical physics to model sea ice e�ective 
behavior and advance representation of sea ice in climate models, process studies, ...

Physics of sea ice drives advances in many areas of science and engineering.

MODELING
    SEA ICE

microscale

macroscale

mesoscale

Anderson localization,
semiconductor physics

random matrix theory

COMPOSITE MATERIALS

porous media, 
oil extraction

remote sensing

electrical engineering,
stealth technology

biomedical imaging,
       biomaterials, EPS

statistical mechanics 
of ferromagnets

di�erential equations polar microbial ecology

composites, 
polycrystals

Inputs, Ingredients Outputs, Impacts 

advection di�usion

sea ice physics 
          & biology

CLIMATE MODELING

A tour of �uid transport processes in sea ice modeling 
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brine volume fraction and connectivity increase with temperature

X-ray tomography for brine in sea ice                                Golden et al., Geophysical Research Letters, 2007



critical brine volume fraction φc ~~ 5%

Critical behavior of �uid transport in sea ice

c ~~ -5  C, S ~~ 5 ppt

RULE  OF  FIVES 
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Arctic �eld data

Golden, Eicken, Heaton, Miner, Pringle, Zhu   GRL 2007
Golden, Ackley, Lytle   Science   1998

Pringle, Miner, Eicken, Golden   J. Geophys. Res.   2009

impermeable permeable

φ

v = k p

Darcy’s Law

k = �uid permeability tensor

homogenized parameter



sea ice algal 
communities

D. Thomas 2004

nutrient replenishment 
controlled by ice permeability

biological activity turns on
or o� according to 
rule of �ves

Golden, Ackley, Lytle                         Science 1998

Fritsen, Lytle, Ackley, Sullivan     Science 1994
Convection-fueled algae bloom
         Ice Station Weddell

critical behavior of microbial activity



p = 1/3 p = 2/3

impermeable permeable

percolation theory
probabilistic theory of connectedness

percolation threshold
  pc = 1/2   for  d = 2 

open    with probability  p
closed  with probability 1-p

smallest p for which there is an infinite open cluster

bond

  open
cluster
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 compressed 
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sea ice

Golden, Ackley, Lytle, Science, 1998

Continuum  percolation  model  for   stealthy  materials
applied to sea ice microstructure explains Rule of Fives
and Antarctic data  on  ice production and  algal growth

radar absorbing 
      composite

φc ~~ 5 %

sea ice is radar absorbing

B-2 Stealth Bomber
F-117 Nighthawk
Stealthy Helicopters



X-ray tomography for
brine inclusions

microscale

governs

mesoscale
processes

Thermal evolution of permeability and microstructure in sea ice
Golden, Eicken, Heaton , Miner, Pringle, Zhu,    Geophysical Research Letters    2007 

    percolation theory 
for �uid permeability

hierarchical model

network model

con�rms rule of �ves

theories agree closely 
         with �eld data

k ( ) = k 2
0

 k   = 3 x 100
-8

m2

 critical
exponent

t
φ φ − 0.05(               )

Pringle, Miner, Eicken, Golden
J. Geophys. Res. 2009

rigorous bounds

melt pond
evolution

from critical path analysis 
in hopping conduction 

*

rock physics



How does EPS a�ect �uid transport?

2D random pipe model with bimodal distribution of pipe radii

Rigorous bound on permeability k; results predict observed drop in k

Ste�en, Epshteyn,  Zhu, Bowler, Deming, Golden
        Multiscale Modeling and Simulation, 2018

How does the biology a�ect the physics?
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Sea ice algae secrete extracellular polymeric substances (EPS)
                     a�ecting evolution of brine microstructure.

without EPS with EPS

Krembs, Eicken, Deming, PNAS 2011
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Columnar Sample 1 
Columnar Sample 2
Granular
Columnar sample 1 
Columnar sample 2 
Granular
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Fractal dimension

DLA model X-ray tomography

-8 C,   = 0.057° φT =C,   = 0.033° φT = -12  

φ

Thermal evolution of the fractal geometry of the brine microstructure in sea ice
                
          N. Ward, D. Hallman, J. Reimer, H. Eicken, M. Oggier and K. M. Golden, 2022

brine volume fraction (porosity)

       theory of porosity as a 
function of fractal dimension

invert

Katz and Thompson, PRL, 1985

excellent correspondence with data

+ implications for brine phase as a habitat  



develop electromagnetic methods 
of monitoring �uid transport and 
microstructural transitions

extensive measurements of �uid and 
electrical transport properties of sea ice:

2007    Antarctic   SIPEX 
2010    Antarctic   McMurdo Sound 
2011    Arctic           Barrow AK
2012    Arctic           Barrow AK
2012    Antarctic   SIPEX II
2013    Arctic           Barrow AK
2014    Arctic           Chukchi Sea

Arctic and Antarctic �eld experiments



measuring 
�uid permeability
of Antarctic sea ice

photo by Jan Lieser SIPEX  2007



electrical measurements Wenner array

vertical conductivity

Sampson, Golden, Gully, Worby   Deep Sea Research   2011 
Zhu, Golden, Gully, Sampson   Physica B   2010
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Golden, Eicken, Gully, Ingham, Jones, Lin, Reid, Sampson, Worby   2022

critical behavior of electrical transport in sea ice 
electrical signature of the on-o� switch for �uid �ow 

percolation theory percolation theory

10 ppc

*

10 ppc

*ρ

ρ
0

same universal critical exponent as for �uid permeability

cross-borehole
  tomography

studied for over 50 years but no previous
observations or theory of critical behavior 



Golden



Remote sensing of sea ice
Recover sea ice
properties from
electromagnetic
       (EM) data 

 INVERSE PROBLEM

sea ice thickness
ice concentration

brine volume fraction
brine inclusion connectivity

ε*
   effective complex permittivity  

(dielectric constant, conductivity)



}
Effective complex permittivity of a two phase composite
           in the quasistatic (long wavelength) limit

, = volume fractions of
    the components

= (    , composite geometry )
  What are the effective propagation characteristics 
of an EM wave (radar, microwaves) in the medium?



Stieltjes integral representation 
    for homogenized parameter

spectral measure of
self adjoint operator
mass = 

higher moments depend 
on n-point correlations

separates geometry 
   from parameters 

Golden and Papanicolaou, Comm. Math. Phys. 1983

characteristic function
of the brine phase

geometry

material parameters

:  microscale         macroscale 
links scales

Analytic Continuation Method for Homogenization
Bergman (1978), Milton (1979), Golden and Papanicolaou (1983), Theory of Composites, Milton (2002)

/



This representation distills the complexities of 
mixture geometry into the spectral properties 
of an operator like the Hamiltonian in physics. 



inverse bounds and 
recovery of brine porosity

forward and inverse bounds on the complex permittivity of sea ice

forward bounds

Gully, Backstrom, Eicken, Golden  
Physica B, 2007

4.75 GHz data
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inverse bounds 

inversion for brine inclusion
separations in sea ice from 
measurements of e�ective
complex permittivity  ε

matrix particle

Orum, Cherkaev, Golden 
Proc. Roy. Soc. A, 2012

*
rigorous inverse bound
         on spectral gap

construct algebraic curves which bound 
        admissible region in (p,q)-space

qmin

Inverse Homogenization  
Cherkaev and Golden (1998), Day and Thorpe (1999), 
Cherkaev (2001), McPhedran, McKenzie, Milton (1982), 
Theory of Composites, Milton (2002)

∗ε
composite geometry
(spectral measure µ)



HUMAN BONESEA ICE

Golden, Murphy, Cherkaev, J.  Biomechanics  2011

the math doesn’t care if it’s sea ice or bone!

       apply spectral measure analysis of brine connectivity and 
spectral inversion to electromagnetic monitoring of osteoporosis

 young healthy trabecular bone  old osteoporotic trabecular bone

P. Hansma

 reconstruct spectral measures 
from complex permittivity data

use regularized inversion scheme

spectral characterization 
of porous microstructures 
in human bone 

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

µ(λ)

young bone

old bone



inhomogeneous 
medium

inhomogeneous 
medium

homogeneous 
medium

Homogenization for polycrystalline materials
e�ective

conductivity

Two-component 
composites

homogeneous 
medium

e�ective
conductivity

Polycrystalline 
media

Local conductivity

Homogenize

Homogenize

Conductivity of crystal directions

Find the homogeneous medium which behaves macroscopically the same as the inhomogeneous medium
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Bounds on the complex permittivity
           of polycrystalline materials 
              by analytic continuation

      Adam Gully, Joyce Lin, 
Elena Cherkaev, Ken Golden

Stieltjes integral representation for
e�ective complex permittivity 

Forward and inverse bounds 

Proc. Roy. Soc. A       8 Feb 2015

Applied to sea ice using 
two-scale homogenization

Inverse bounds give method for 
distinguishing ice types using 
remote sensing techniques

Milton (1981, 2002), Barabash and Stroud (1999), ...

orientation statistics



columnar granular

higher threshold for �uid �ow in granular sea ice

5% 10%

microscale details impact “mesoscale” processes 
nutrient �uxes for microbes
melt pond drainage
snow-ice formation

Golden, Sampson, Gully, Lubbers, Tison 2022

electromagnetically distinguishing ice types 
    Kitsel Lusted, Elena Cherkaev, Ken Golden 



Masters, 1989

advection enhanced di�usion

e�ective di�usivity
nutrient and salt transport in sea ice 
heat transport in sea ice with convection 
sea ice floes in winds and ocean currents 
tracers, buoys diffusing in ocean eddies 
diffusion of pollutants in atmosphere

homogenize

Drake
Passage

sea ice vortices

Gulf Stream Aghulas Current

e�ective di�usivity
Stieltjes integral for         with spectral measure

Avellaneda and Majda, PRL 89, CMP 91

Murphy, Cherkaev, Xin, Zhu, Golden, Ann. Math. Sci. Appl. 2017 
Murphy, Cherkaev, Zhu, Xin, Golden, J. Math. Phys. 2020

Wells et al. 2011



tracers flowing through inverted sea ice blocks 



κ∗ = κ 1 +
∞

−∞

dµ(τ)

κ2 + τ2
, F (κ

∞

−∞

dµ(τ)

κ2 + τ2

µ is a positive definite measure corresponding to the
spectral resolution of the self-adjoint operator iΓHΓ

Γ := −∇(−∆)−1∇· , ∆ is the Laplace operator

iΓHΓ is bounded for time independent flows

F (κ) is analytic κ-plane

Stieltjes Integral Representation for Advection Di�usion

Murphy, Cherkaev, Zhu, Xin, Golden, J. Math. Phys. 2020 

H

=)

= stream matrix

off the spectral interval in the

κ = local diffusivity,

rigorous framework for numerical computations of 
spectral measures and e�ective di�usivity for model �ows 

new integral representations, theory of moment calculations

separation of material properties and �ow �eld           
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cat’s eye flow model for 
  brine convec�on cells 

rigorous Pade bounds from S�eltjes integral + 
analy�cal calcula�ons of moments of measure

‘

Rigorous bounds on convec�on enhanced thermal conduc�vity of sea ice

Kraitzman, Hardenbrook, Dinh, Murphy, Zhu, Cherkaev, Golden 2022

data 
Trodahl 
et al. 2001

similar bounds 
for shear �ows 



wave propagation in the marginal ice zone (MIZ) 
   Stieltjes integral representation and bounds for 
the complex viscoelasticity of the ice - ocean layer 

�rst theory of key parameter
in wave-ice interactions only

�tted to wave data before

Sampson, Murphy, Cherkaev, Golden 2022

quasistatic, long wavelength regime
homogenized

parameter
depends on

sea ice 
concentration

and ice �oe
geometry

Bergman (78) - Milton (79)
integral representation for
Golden and Papanicolaou (83) 

ε*

Analytic Continuation Method

Milton, Theory of Composites (02)

like EM waves

Keller, 1998
Mosig, Montiel, Squire, 2015
Wang, Shen, 2012



major drivers in polar climate
key challenge for global climate models

Perovich

melt pond formation and albedo evolution: 

     Are there universal features of the evolution 
similar to phase transitions in statistical physics?

numerical models of melt pond evolution, including 
            topography, drainage (permeability), etc. Flocco, Feltham 2007 Flocco, Feltham, 

Hunke 2012

Skyllingstad, Paulson, 
Perovich 2009

Luthje, Feltham, 
Taylor, Worster 2006

..



fractal curves in the plane
they wiggle so much that their dimension is >1

D = 1 D = 1.26

simple curves Koch snow�ake

D = 2

space �lling curves

Brownian 
motion

Peano curve
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complexity grows with length scale

Transition in the fractal geometry of Arctic melt ponds
Christel Hohenegger, Bacim Alali, Kyle Steffen, Don Perovich, Ken Golden

The Cryosphere, 2012

~ 30 m

simple pond transitional pond complex pond



Continuum percolation model for melt pond evolution

intersections of a plane with the surface define melt ponds

electronic transport in disordered media             di�usion in turbulent plasmas              Isichenko, Rev. Mod. Phys., 1992

Brady Bowen, Court Strong, Ken Golden,  J. Fractal Geometry  2018

random Fourier series representation of surface topography

level sets of random surfaces



10
0

10
1

10
2

10
3

10
4

10
5

1

1.2

1.4

1.6

1.8

2

A (m 2)

1.0

a
3

 = 2.0

a
3

 = 3.0

10
0

10
1

10
2

10
3

10
4

10
5

1

1.2

1.4

1.6

1.8

2

A (m 2)

a
2

 = 1.0

a
2

 = 4.0

fr
ac

ta
l d

im
en

si
on

fr
ac

ta
l d

im
en

si
on

           fractal dimension curves depend on 
statistical parameters defining random surface



Ryleigh Moore, Jacob Jones, Dane Gollero, 
Court Strong, Ken Golden 

 Topology of the sea ice surface and the 
fractal geometry of Arctic melt ponds

Physical Review Research (invited, under revision)

Several models replicate the transition in 
fractal dimension, but none explain how it arises.

We use Morse theory applied to the random surface model 
to show that saddle points play the critical role in the fractal transition.

ponds coalesce 
(change topology) and 
complexify at saddle points    



• Ponds connect through saddle points (Morse Theory).

•  Red bonds in lattice percolation theory ~ saddle points.

“red squares”saddles



Main results

Isoperimetric quotient - as a proxy for fractal dimension - increases 
   in discrete jumps when ponds coalesce at saddle points.   

Horizontal �uid permeability “controlled” by saddles ~ electronic transport in 2D random potential.  

drainage processes, seal holes



P. Nicklen

C. Lydersen P. McGowan

High connectivity of melt pond networks allows vast expanses of melt water 
to drain down seal holes, thaw holes, and into leads.

NPEO

meted.ucar.edu

ice floe break-up



drainage vortex

melt pond evolution depends also on large-scale “pores” in ice cover  

photo courtesy of C. Polashenski and D. Perovich

Melt pond connectivity enables vast expanses of melt water to 
         drain down seal holes, thaw holes, and leads in the ice.



Topological 
Data Analysis

Bobrowski &
Skraba, 2020

Euler characteristic   =  # maxima  +  # minima  -  # saddles

persistent homology

�ltration - sequence of nested topological spaces, indexed by water level

topological invariant

Expected 
Euler Characteristic Curve (ECC)

500 realizations 

tracks  the evolution of the EC of 
the �ooded surface as water rises

zero of ECC ~ percolation 

Carlsson, 2009

Vogel, 2002

porous media
cosmology
brain activity

percolation on a torus 
creates a giant cycle

GRF



melt pond donuts



From magnets to melt ponds 100 year old model for magnetic materials
used to explain melt pond geometry 

Ma, Sudakov, Strong, 
Golden, New J. Phys. 2019

magnetic domains 
           in cobalt

Arctic melt ponds magnetic domains 
in cobalt-iron-boron

Arctic melt ponds

2D Ising model

spin up

spin down

model real ponds
(Perovich)



no bloom bloom

massive under-ice algal bloom
Arrigo et al., Science 2012

WINDOWS

Have we crossed into a 
new ecological regime?

       The frequency and extent of sub-ice 
phytoplankton blooms in the Arctic Ocean

(2015 AMS MRC)

Horvat, Rees Jones, Iams, Schroeder, 
Flocco, Feltham, Science Advances 2017

Horvat, Flocco, Rees Jones, Roach, Golden
Geophys. Res. Lett. 2019

The e�ect of melt pond geometry on the distribution 
                of solar energy under �rst year sea ice

Melt ponds control transmittance
of solar energy through sea ice,
impacting upper ocean ecology.

Perovich



Conclusions

1.  Sea ice is a fascinating multiscale porous composite with 
      structure similar to many other natural and man-made materials.    

2. Fluid �ow through sea ice mediates melt pond evolution and many 
     processes important to climate change and polar ecosystems.

3. Homogenization and statistical physics provide rigorous methods to 
     �nd e�ective behavior of sea ice; and advance the theory of composites. 

4. Field experiments are essential to developing relevant mathematics.

5. Our research is advancing how sea ice is represented in climate 
     models, and improving projections of climate change, the fate of 
     Earth’s sea ice packs, and the ecosystems they support. 
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Measuring sea ice thickness



direct calculation of spectral measures

Day and Thorpe 1996
Helsing, McPhedran, Milton 2011    earlier studies of spectral measures

once we have the spectral measure µ it can be used in 
        Stieltjes integrals for other transport coefficients:

electrical and thermal conductivity, complex permittivity, 
magnetic permeability, diffusion, fluid flow properties

depends only on the composite geometry

discretization of microstructural image gives binary network

fundamental operator becomes a random matrix 

spectral measure computed from eigenvalues and eigenvectors 

Murphy, Hohenegger, Cherkaev, Golden, Comm. Math. Sci. 2015
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Anderson transition in wave physics: 
quantum, optics, acoustics, water waves, ...

metal / insulator transition

Anderson transition for classical transport in composites
Murphy, Cherkaev, Golden     Phys.  Rev.  Lett.    2017

Anderson  1958
Mott 1949
Shklovshii et al  1993
Evangelou  1992

universal eigenvalue statistics (GOE)
extended states, mobility edges

-- but with NO wave interference or scattering e�ects ! --

PERCOLATION
  TRANSITION

localization

from analysis of spectral measures for brine, melt ponds, ice �oes

we �nd percolation-driven 

electronic transport in semiconductors
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Order to disorder in quasiperiodic composites
Morison, Murphy, Cherkaev, Golden, Commun. Phys. 2022

constellation of periodic systems in a sea of randomness

we bring the framework of solid state physics of electronic 
transport and band gaps in semiconductors to classical 
transport in periodic and quasiperiodic composites

parameter space

spectral
measure

periodic quasiperiodic

RRN at 
percolation
threshold

electric �eld 
    strength

photonic crystals and quasicrystals


