Mathematics of Frozen Seas

Ken Golden, University of Utah

Introduction to Sea Ice & its Microstructure

SLMath Summer School UAF June 16, 2025

sea ice

semiconductor

invisibility cloak

Sea ice is a multiscale composite material.

micro meso macro

metamaterials

sea ice

human bone

Ascenzi

cross-pollination

SEA ICE covers ~12% of Earth's ocean surface

- boundary between ocean and atmosphere
- mediates exchange of heat, gases, momentum
- global ocean circulation
- hosts rich ecosystem
- indicator of climate change

polar ice caps critical to global climate in reflecting incoming solar radiation

white snow and ice reflect

dark water and land absorb

albedo
$$\alpha = \frac{\text{reflected sunlight}}{\text{incident sunlight}}$$

Arctic sea ice extent

September 15, 2020

recent losses in comparison to the United States

Perovich

ARCTIC summer sea ice loss

predictions require lots of math modeling

ANTARCTICA

southern cryosphere

Weddell Sea

East Antarctic Ice Sheet

West Antarctic Ice Sheet

Ross Sea

sea ice

New Record Low for Antarctic Sea Ice February 13, 2023

Much of Antarctica warmer than average

sea ice formation

effect of Langmuir circulation on grease and pancake ice

Martin and Kauffman, 1981

Polynyas

Size: 100 m - 1000 km

Two mechanisms can contribute to keeping polynyas open:

1. Latent heat (or coastal) polynyas: Mertz Glacier Polynya

Sea ice grows in open-water and is continually removed by winds and currents (e.g. katabatic winds)

- latent heat released to the ocean during ice formation perpetuates the process
- 2. Sensible heat (or open-ocean) polynyas: Weddell Polynya Upwelling warm waters, vertical heat diffusion, or convection may provide enough oceanic heat flux to maintain ice-free region

polynyas ice factories

Mertz Glacier Polynya, located in East Antarctica, covers only 0.001% of the overall Antarctic sea ice zone at its maximum winter extent, but is responsible for 1% of the total sea ice production in the Southern Ocean.

Buchanan Bay

iceberg collision!

breaking the Mertz Glacier Tongue, February 2010

Buchanan Bay, July 1999

Weddell Polynya

Antarctic Zone Flux Experiment (ANZFLUX) 1994

ocean swells propagating through a vast field of pancake ice

HOMOGENIZATION: long wave sees an effective medium, not individual floes, like long EM wave interacting with brine inclusion microstructure

pancake ice forming in a wave field in the Southern Ocean

pancake ice

"Dynamic" duo

Dynamics

Thermodynamics

Perovich

sea ice dynamics plate tectonics on a fast time scale

measuring ice depth in ridges off Barrow, AK

dynamic sea ice

Dynamics

Momentum equation: Ice acceleration = <u>wind stress</u> + ocean stress - Coriolis force - sea surface tilt + internal ice stress

Perovich

leads

heat flows directly from ocean to atmosphere

Thermodynamics: 4 ways to melt

Top, bottom, lateral, internal

Perovich

Heat budgets

Net shortwave + incoming longwave + outgoing longwave + sensible + evaporative + conduction = melt / freeze

sea ice components of GCM's

What are the key ingredients -- or *governing equations* that need to be solved on grids using powerful computers?

2. Conservation of momentum, stress vs. strain relation (Hibler 1979)

(Maykut and Untersteiner 1971)

$$mrac{D\mathbf{u}}{Dt} = -mf\mathbf{k} imes \mathbf{u} + oldsymbol{ au}_a + oldsymbol{ au}_o - mg
abla H + \mathbf{F}_{int}$$
 F = ma for sea ice dynamics

3. Heat equation of sea ice and snow

thermodynamics

$$\frac{T}{t} + \mathbf{u}_{br} \cdot \nabla T = \nabla \cdot k(T) \,\nabla T$$

+ balance of radiative and thermal fluxes on interfaces

sea ice and global ocean circulation

GLOBAL THERMOHALINE CONVEYOR BELT

Global Climate Models

Climate models are systems of partial differential equations (PDE) derived from the basic laws of physics, chemistry, and fluid motion.

They describe the state of the ocean, ice, atmosphere, land, and their interactions.

The equations are solved on 3-dimensional grids of the air-ice-ocean-land system (with horizontal grid size ~ 50 km), using very powerful computers.

key challenge :

incorporating sub - grid scale processes

linkage of scales

Randall et al., 2002