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Fractal Geometry of Sea Ice Structures 



fractals

D =               = 1.585...
log3
log2

   self-similar structure
non-integer dimension



fractal curves in the plane
they wiggle so much that their dimension is >1

D = 1 D = 1.26

simple curves Koch snow�ake

D = 2

space �lling curves

Brownian 
motion

Peano curve



Phyllotaxis, fractals and the Fibonacci sequence

1,1,2,3,5,8,13,21,34,55,...

34/21 ~ Golden Ratio 1.618...

Fibonacci sequence



L = 1 L = 2 L = 3

Mass ~ L
d

d = 2

fractal dimension

....

M = 1 M = 4 M = 9

L = 1
M = 1

L = 2
M = 3

L = 4 = 2
M = 9 = 3

.... Mass ~ L
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d f = α = 
log 3
log 2
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= 1.58...
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A = L
D

log(A) = log(L    ) =  D log(L)D

x = log(L)

y = log(A)

slope = 2

slope = 1.58

y  =  D  x

D = 1.58...

Sierpinski triangle 

  self-similar structure 
with fractal dimension

       fractal dimension < 2  
no longer two dimensional
       -- too much removed

D = 1.31...  

Apollonian gasket



Thermal Evolution of Brine Fractal Geometry in Sea Ice
Nash Ward, Daniel Hallman, Benjamin Murphy, Jody Reimer, 

Marc Oggier, Megan O’Sadnick, Elena Cherkaev and Kenneth Golden, 2025

-8 C,   = 0.057° φT =C,   = 0.033° φT = -12  

Proko�ev

fractal dimension of the 
coastline of Great Britain 
by box counting 

X-ray computed
tomography of
brine in sea ice

Golden, Eicken, et al. GRL, 2007

brine channels and
inclusions “look” 
like fractals 
(from 30 yrs ago) columnar and granular



Katz and Thompson,1985;  Yu and Li, 2001
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Porosity  φ

Follows same curve as 
exactly self-similar 
Sierpinski tetrahedron

The �rst quantitative study of the fractal dimension of brine in sea ice 
and its strong dependence on temperature and porosity.

red curve

discovered for sandstones
statistically self-similar porous media

D. Eppstein

Fractal geometry of brine in sea ice, Ward, et al. 2025 
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Implications of brine fractal geometry on sea ice ecology and biogeochemistry  

Brine inclusions are home to 
ice endemic organisms, e.g., 
bacteria, diatoms, �agellates, 
rotifers, nematodes.

The habitability of sea ice 
for these organisms is 
inextricably linked to its 
complex brine geometry.

(A) Many sea ice organisms attach themselves to inclusion walls; inclusions with a higher fractal dimension have greater surface area for colonization.

(B) Narrow channels prevent the passage of larger organisms, leading to refuges where smaller organisms can multiply without being grazed, as in (C).

(D) Ice algae secrete extracellular polymeric substances (EPS) which alter incusion geometry and may further increase the fractal dimension.



How does EPS a�ect �uid transport?

2D random pipe model with bimodal distribution of pipe radii

Rigorous bound on permeability k; results predict observed drop in k

How does the biology a�ect the physics?
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Sea ice algae secrete exopolymeric substances (EPS)
       affecting evolution of brine microstructure.

without EPS with EPS

Krembs, Eicken, Deming, PNAS 2011
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Zhu, Jabini, Golden, 
Eicken, Morris
Ann. Glac. 2006

RANDOM
     PIPE
  MODEL

Krembs

FRACTAL

Ste�en, Epshteyn,  Zhu, Bowler, Deming, Golden 
        Multiscale Modeling and Simulation, 2018

      EPS - Algae Model   Jajeh, Reimer, Golden
SIAM News
June 2024



electrorheological  �uid
    with metal spheres

brine channel
     in sea ice

di�usion limited
     aggregation

fractal  microstructures

brine channels



Di�usion  Limited  Aggregation  (DLA)  model
               cluster has fractal dimension :

fractal structure of brine channels

brine drainage

fd   = 1.71    in two dimensions

D. Cole



self similarity of DLA

P. Meakin



the sea ice pack is a fractal
dispalying self-similar structure on many scales

            �oe size distribution important in 
dynamics (fracture), thermodynamics (melting)

bigger �oes easier to break, smaller �oes easier to melt 



the sea ice pack is a fractal
displaying self-similar structure on many scales

J. Robertson

�oe size distribution, area-perimeter relations, etc. important
           in dynamics (fracture), thermodynamics (melting)

NASA

E. Walker

Toyota, et al.  Geophys. Res. Lett. 2006 
Rothrock and Thorndike, J. Geophys. Res. 1984 



Polarstern

400m

Self-similarity of sea ice floes
Weddell Sea, Antarctica

Toyota, et al.  Geophys. Res. Lett. 2006 

fractal dimensions of Okhotsk Sea ice pack  
  smaller scales D~1.2,  larger scales D~1.9 

Rothrock and Thorndike, J. Geophys. Res. 1984 

The sea ice pack has fractal structure.

fractal dim. vs. floe size exponent 
Adam Dorsky, Nash Ward, Ken Golden 2025



Results from Okhotsk Sea ice
There are two regimes in 
the ice floe distribution.

Size 

1～20ｍ：α = 1.15  ±  0.02

α = 1.87 ± 0.02
α =1.87

α=1.15

Floe size ρ （m）
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(Toyota, Takatsuji et al., 2006)

100 ~ 1500 m :



self- similar multiscale structure in Okhotsk sea ice pack

Two regimes in �oe  
   size distribution:

size fractal dimension 

1～20 ｍ： D =1.15±0.02 

100～1500 m: D =1.87±0.02

D = 1.87

D = 1.15

Floe size ρ （m）
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Toyota, et al., Geophys. Res. Lett. 2006

N(ρ) ~ ρ - D

Number of floes per unit area
no smaller than ρ

(Rothrock and Thorndike, J. Geophys. Res. 1984)



polar bear
foraging in a 

fractal icescape

It costs the polar bear
5 times the energy to
swim through water
than to walk on sea ice.

Nicole Forrester
Jody Reimer
Ken Golden

What pathway to a seal 
minimizes energy spent? 



major drivers in polar climate
key challenge for global climate models

Perovich

melt pond formation and albedo evolution: 

     Are there universal features of the evolution 
similar to phase transitions in statistical physics?

numerical models of melt pond evolution, including 
            topography, drainage (permeability), etc. Flocco, Feltham 2007 Flocco, Feltham, 

Hunke 2012

Skyllingstad, Paulson, 
Perovich 2009

Luthje, Feltham, 
Taylor, Worster 2006

..



fractal curves in the plane
they wiggle so much that their dimension is >1

D = 1 D = 1.26

simple curves Koch snow�ake

D = 2

space �lling curves

Brownian 
motion

Peano curve





30th Congressional District, Texas, 1991-1996



S. Lovejoy, Science, 1982

 use perimeter-area data to �nd that 
cloud and rain boundaries are fractals

clouds exhibit fractal behavior from 1 to 1000 km 

D 1.35~~

A = L
P = 4L = 4

2

simple shapes

A

for fractals with 
dimension D

D = 1.52...

L

L
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simple pond transitional pond complex pond

data from 
5269 Arctic
melt ponds

Transition in the fractal geometry of Arctic melt ponds
Christel Hohenegger, Bacim Alali, Kyle Ste�en, Don Perovich, Ken Golden

The Cryosphere, 2012
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complexity grows with length scale

Transition in the fractal geometry of Arctic melt ponds
Christel Hohenegger, Bacim Alali, Kyle Steffen, Don Perovich, Ken Golden

The Cryosphere, 2012

~ 30 m

simple pond transitional pond complex pond



Continuum percolation model for melt pond evolution

intersections of a plane with the surface define melt ponds

electronic transport in disordered media             di�usion in turbulent plasmas              Isichenko, Rev. Mod. Phys., 1992

Brady Bowen, Court Strong, Ken Golden,  J. Fractal Geometry  2018

random Fourier series representation of surface topography

level sets of random surfaces
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           fractal dimension curves depend on 
statistical parameters defining random surface



Ryleigh Moore, Jacob Jones, Dane Gollero, 
Court Strong, Ken Golden 

 Topology of the sea ice surface and the 
fractal geometry of Arctic melt ponds

Physical Review Research (invited, under revision)

Several models replicate the transition in 
fractal dimension, but none explain how it arises.

We use Morse theory applied to the random surface model 
to show that saddle points play the critical role in the fractal transition.

ponds coalesce 
(change topology) and 
complexify at saddle points    

saddles drive the  fractal transition
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Morse theory tells us that changes in the topology of a surface occur at 
critical points of smooth functions on the surface: maxima, minima, and saddles.

Morse theory



Main results

Isoperimetric quotient - as a proxy for fractal dimension - increases 
   in discrete jumps when ponds coalesce at saddle points.   

Horizontal �uid permeability “controlled” by saddles ~ electronic transport in 2D random potential.  

drainage processes, seal holes



Topological 
Data Analysis

Bobrowski &
Skraba, 2020

Euler characteristic   =  # maxima  +  # minima  -  # saddles

persistent homology

�ltration - sequence of nested topological spaces, indexed by water level

topological invariant

Expected 
Euler Characteristic Curve (ECC)

500 realizations 

tracks  the evolution of the EC of 
the �ooded surface as water rises

zero of ECC ~ percolation 

Carlsson, 2009

Vogel, 2002

image analysis
porous media 
cosmology 
brain activity

percolation on a torus 
creates a giant cycle

GRF



melt pond donuts



From magnets 
to melt ponds

100 year old model for magnetic materials
used to explain melt pond fractal geometry 

Ma, Sudakov, Strong, Golden, New J. Phys. 2019

magnetic domains 
             cobalt

Arctic melt ponds magnetic domains 
cobalt-iron-boron

Arctic melt ponds

2D Ising model

spin up

spin down

Golden, Ma, Strong, Sudakov, SIAM News 2020



Ising Model for a Ferromagnet

si ={+1
−1

spin up
spin down

nearest neighbor Ising Hamiltonian

H
applied 
magnetic
field

Tc

M

T

        Curie point 
critical temperature

blue

white

islands of
like spins

energy is lowered when nearby spins align 
with each other, forming magnetic domains

magnetic domains 
in cobalt

magnetic domains 
in cobalt-iron-boron

melt ponds (Perovich) melt ponds (Perovich)

effective magnetization



100 101 102 103 104

D

A (m2 )

1

2

observed

model

            pond size 
distribution exponent

observed   -1.5

model        -1.58

Ma, Sudakov, Strong, Golden,  New J. Phys.,  2019

(Perovich, et al. 2002)

Starting with random initial configurations, as Hamiltonian energy is minimized 
by Glauber spin flip dynamics, system “flows” toward metastable equilibria. 

ONLY MEASURED INPUT = LENGTH SCALE (GRID SIZE) from snow topography data

Order from Disorder

Ising 
model

melt pond 
photo (Perovich)

Ising model for ferromagnets Ising model for melt ponds

= { +1

−1 ice       (spin down)

water   (spin up)

pond area fractionmagnetization (M + 1)
2~ albedo

random magnetic field 
represents snow topography

only nearest neighbor 
patches interactF = 

Scienti�c American
EOS, PhysicsWorld, ...



no bloom bloom

massive under-ice algal bloom
Arrigo et al., Science 2012

WINDOWS

Have we crossed into a 
new ecological regime?

       The frequency and extent of sub-ice 
phytoplankton blooms in the Arctic Ocean

(2015 AMS MRC)

Horvat, Rees Jones, Iams, Schroeder, 
Flocco, Feltham, Science Advances 2017

Horvat, Flocco, Rees Jones, Roach, Golden
Geophys. Res. Lett. 2019

The e�ect of melt pond geometry on the distribution 
                of solar energy under �rst year sea ice

Melt ponds control transmittance
of solar energy through sea ice,
impacting upper ocean ecology.

Perovich



drainage vortex

melt pond evolution depends also on large-scale “pores” in ice cover  

photo courtesy of C. Polashenski and D. Perovich

Melt pond connectivity enables vast expanses of melt water to 
         drain down seal holes, thaw holes, and leads in the ice.



P. Nicklen

C. Lydersen P. McGowan

High connectivity of meltpond networks allows vast expanses of meltwater 
to drain down seal holes, thaw holes, and into leads in the ice

NPEO

meted.ucar.edu





Ising model transport in composites

partition function

free energy

order parameter

Gri�ths, Hurst, Sherman JMP 1970

G.H.S. inequality

Golden, JMP 1995; PRL 1997



Stieltjes integral representation for magnetization (~ albedo)

Herglotz

Baker,  Phys. Rev. Lett. 1968and scaling relations for critical exponents 

       parallel Herglotz structure for transport in composites 
analogous critical behavior and scaling relations hold near p  
Golden, J. Math. Phys. 1995 
                Phys Rev. Lett. 1997

(C. Newman)

Herglotz

e�ective conductivity 
of two phase composite
lattice or continuum

c

(Lee-Yang 1952)



Marginal Ice Zone

Meier et al, 2011 NSIDC CDR

MIZ

biologically active region

intense ocean-sea ice-atmosphere interactions

MIZ WIDTH
fundamental length scale of 

ecological and climate dynamics

region of signi�cant wave-ice interactions 

Strong, Climate Dynamics 2012
Strong and Rigor, GRL 2013

transitional region between 
dense interior pack  (c > 80%) 
sparse outer fringes (c < 15%)

How to objectively 
measure the “width”
of this complex, 
non-convex region?
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MIZ pack ice

streamlines of a solution 
    to Laplace’s equation 

Society for Industrial and Applied Mathematics News, April 2017
Strong and Golden

              crossection of the 
cerebral cortex of a rodent brainArctic Marginal Ice Zone

     Objective method for measuring MIZ width 
 motivated  by medical imaging and diagnostics 

Strong, Climate Dynamics 2012
Strong and Rigor, GRL 2013

Strong, Foster, Cherkaev, Eisenman, Golden 
J. Atmos. Oceanic Tech. 2017

analysis of di�erent MIZ WIDTH de�nitions 

“average” lengths of streamlines

39% widening
1979 - 2012



Observed Arctic MIZ

Winter
MIZ

Summer
MIZ

low perimeter 
  to area ratio

high perimeter 
   to area ratio

low fractal 
dimension

high fractal 
dimension



Identifying Fractal Geometry in Arctic Marginal Ice Zone Dynamics
Julie Sherman, Court Strong, Ken Golden, Environ. Res. Lett.  2025

Compute the fractal dimension of the boundary of the Arctic MIZ by boxcounting 
methods; analyze seasonal cycle and long term trends.
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early summer early autumn

July

October

wave  and thermal
interactions with
fractal boundary



Arctic MIZ fractal dimension from 1980 to 2021



Geographical distribution of average fractal dimension




