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Preface

This book is based on a series of lecture notes for a graduate course in the Department
of Statistics and Probability at Michigan State University. The goal is to prepare grad-
uate students for research in the area of fractional calculus, anomalous diffusion, and
heavy tails. The book covers basic limit theorems for random variables and random
vectors with heavy tails. This includes regular variation, triangular arrays, infinitely
divisible laws, random walks, and stochastic process convergence in the Skorokhod
topology. The basic ideas of fractional calculus and anomalous diffusion are intro-
duced in the context of probability theory. Each section of the book provides material
roughly equivalent to one lecture. Most sections conclude with some additional details,
intended for individual reading, and to make the book relatively self-contained.

Heavy tails are applied in finance, insurance, physics, geophysics, cell biology,
ecology, medicine, and computer engineering. A random variable has heavy tails if
P (|X| > x) ≈ Cx−α for some α > 0. If α < 2, then the second moment of X is
undefined, so the usual central limit theorem does not apply. A heavy-tailed version
of the central limit theorem leads to a stable distribution. Random walks with heavy
tails converge to a stable Lévy motion, similar to Brownian motion. The densities of
Brownian motion solve the diffusion equation, which provides a powerful link between
differential equations and stochastic processes. Densities of a stable Lévy motion solve
a fractional diffusion equation like

∂

∂t
p(x, t) = c

∂α

∂xα
p(x, t)

using a fractional derivative of order α. Fractional derivatives are limits of fractional
difference quotients, using the same fractional difference operator that appears in time
series models of long range dependence.

Vector models with heavy tails are useful in many applications, since physical space
is not one dimensional. A heavy tailed version of the central limit theorem for random
vectors leads to an operator stable limit distribution, which can have a combination
of normal and stable components. Vector random walks with heavy tails converge to
an operator stable Lévy motion. Probability densities of this random walk limit solve
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vi

a vector fractional diffusion equation like

∂

∂t
p(x, y, t) = c1

∂α

∂xα
p(x, y, t) + c2

∂β

∂yβ
p(x, y, t)

with a different fractional derivative in each coordinate.
Many interesting research problems in this area remain open. This book will guide

the motivated reader to understand the essential background needed to read and un-
derstand current research papers, and to gain the insights and techniques needed to
begin making their own contributions to this rapidly growing field.

East Lansing, November 2011 Mark M. Meerschaert, Alla Sikorskii

Preface
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Chapter 1

Introduction

Fractional calculus is a rapidly growing field of research, at the interface between
probability, differential equations, and mathematical physics. Fractional calculus is
used to model anomalous diffusion, in which a cloud of particles spreads in a different
manner than traditional diffusion. This book develops the basic theory of fractional
calculus and anomalous diffusion, from the point of view of probability.

Traditional diffusion represents the long-time limit of a random walk, where finite
variance jumps occur at regularly spaced intervals. Eventually, after each particle
makes a series of random steps, a histogram of particle locations follows a bell-shaped
normal density. The central limit theorem of probability ensures that this same bell-
shaped curve will eventually emerge from any random walk with finite variance jumps,
so that this diffusion model can be considered universal. The random walk limit is
a Brownian motion, whose probability densities solve the diffusion equation. This
link between differential equations and probability is a powerful tool. For example, a
method called particle tracking computes approximate solutions of differential equa-
tions, by simulating the underlying stochastic process.

However, anomalous diffusion is often observed in real data. The “particles” might be
pollutants in ground water, stock prices, sound waves, proteins crossing a cell bound-
ary, or animals invading a new ecosystem. The anomalous diffusion can manifest in
asymmetric densities, heavy tails, sharp peaks, and/or different spreading rates. The
square root scaling in the central limit theorem implies that the width of a particle
histogram should spread like the square root of the elapsed time. Both anomalous
super-diffusion (a faster spreading rate) and sub-diffusion have been observed in real
applications. In this book, we will develop models for both, based on fractional calcu-
lus.

The traditional diffusion equation relates the first time derivative of particle con-
centration to the second derivative in space. The fractional diffusion equation replaces
the space and/or time derivatives with their fractional analogues. We will see that
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2 Chapter 1 Introduction

fractional derivatives are related to heavy tailed random walks. Fractional derivatives
in space model super-diffusion, related to long power-law particle jumps. Fractional
derivatives in time model sub-diffusion, related to long power-law waiting times be-
tween particle jumps. Fractional derivatives were invented by Leibnitz soon after their
more familiar integer-order cousins, but they have become popular in practical appli-
cations only in the past few decades. In this book, we will see how fractional calculus
and anomalous diffusion can be understood at a deep and intuitive level, using ideas
from probability.

The first chapter of this book presents the basic ideas of fractional calculus and
anomalous diffusion in the simplest setting. All of the material introduced here will
be developed further in later chapters.

1.1 The traditional diffusion model

The traditional model for diffusion combines elements of probability, differential equa-
tions, and physics. A random walk provides the basic physical model of particle
motion. The central limit theorem gives convergence to a Brownian motion, whose
probability densities solve the diffusion equation. We start with a sequence of indepen-
dent and identically distributed (iid) random variables Y, Y1, Y2, Y3, . . . that represent
the jumps of a randomly selected particle. The random walk

Sn = Y1 + · · · + Yn

gives the location of that particle after n jumps. Next we recall the well-known cen-
tral limit theorem, which shows that the probability distribution of Sn converges to a
normal limit. Here we sketch the argument in the simplest case, using Fourier trans-
forms. Details are provided at the end of this section to make the argument rigorous.
A complete proof of the central limit theorem will be given in Theorem 3.36 using
different methods. Then in Theorem 4.5, we will use regular variation to show that
the same normal limit governs a somewhat broader class of random walks.

Let F (x) = P[Y ≤ x] denote the cumulative distribution function (cdf) of the jumps,
and assume that the probability density function (pdf) f(x) = F ′(x) exists. Then we
have

P [a ≤ Y ≤ b] =

∫ b

a
f(x) dx = F (b) − F (a)

for any real numbers a < b. The moments of this distribution are given by

µp = E [Y p] =

∫
xpf(x) dx

where the integral is taken over the domain of the function f .
The Fourier transform (FT) of the pdf is

f̂(k) = E
[
e−ikY

]
=

∫
e−ikxf(x) dx.
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Section 1.1 The traditional diffusion model 3

The FT is closely related to the characteristic function E
[
eikY

]
= f̂(−k). If the first

two moments exist, a Taylor series expansion ez = 1 + z + z2/2! + · · · leads to

f̂(k) =

∫ (
1 − ikx +

1

2!
(−ikx)2 + · · ·

)
f(x) dx = 1 − ikµ1 − 1

2
k2µ2 + o(k2) (1.1)

since
∫

f(x) dx = 1. Here o(k2) denotes a function that tends to zero faster than k2

as k → 0. A formal proof of (1.1) is included in the details at the end of this section.
Suppose µ1 = 0 and µ2 = 2, i.e., the jumps have mean zero and variance 2. Then

we have
f̂(k) = 1 − k2 + o(k2)

as k → 0. The sum Sn = Y1 + · · · + Yn has FT

E
[
e−ikSn

]
= E

[
e−ik(Y1+···+Yn)

]

= E
[
e−ikY1

]
· · ·E

[
e−ikYn

]

= E
[
e−ikY

]n
= f̂(k)n

and so the normalized sum n−1/2Sn has FT

E

[
e−ik(n−1/2Sn)

]
= E

[
e−i(n−1/2k)Sn

]
= f̂(n−1/2k)n

=

(
1 − k2

n
+ o(n−1)

)n

→ e−k2
(1.2)

using the general fact that (1 + (r/n) + o(n−1))n → er as n → ∞ for any r ∈ R (see
details). The limit

e−k2

= E
[
e−ikZ

]
=

∫
e−ikx 1√

4π
e−x2/4 dx

using the standard formula from FT tables [190, p. 524]. Then the continuity theorem
for FT (see details) yields the traditional central limit theorem (CLT):

n−1/2Sn =
Y1 + · · · + Yn√

n
⇒ Z (1.3)

where ⇒ indicates convergence in distribution. The limit Z in (1.3) is normal with
mean zero and variance 2.

An easy extension of this argument gives convergence of the rescaled random walk:

S[ct] = Y1 + · · · + Y[ct]

gives the particle location at time t > 0 at any time scale c > 0. Increasing the time
scale c makes time go faster, e.g., multiply c by 60 to change from minutes to hours.
The long-time limit of the rescaled random walk is a Brownian motion: As c → ∞ we
have

E

[
e−ik c−1/2S[ct]

]
=

(
1 − k2

c
+ o(c−1)

)[ct]

=

[ (
1 − k2

c
+ o(c−1)

)c
] [ct]

c

→ e−tk2

(1.4)
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4 Chapter 1 Introduction

where the limit
e−tk2

= p̂(k, t) =

∫
e−ikxp(x, t) dx

is the FT of a normal density

p(x, t) =
1√
4πt

e−x2/(4t)

with mean zero and variance 2t. Then the continuity theorem for FT implies that

c−1/2S[ct] ⇒ Zt

where the Brownian motion Zt is normal with mean zero and variance 2t.
Clearly the FT p̂(k, t) = e−tk2

solves a differential equation

dp̂

dt
= −k2p̂ = (ik)2p̂. (1.5)

If f ′ exists and if f, f ′ are integrable, then the FT of f ′(x) is (ik)f̂(k) (see details).
Using this fact, we can invert the FT on both sides of (1.5) to get (see details)

∂p

∂t
=

∂2p

∂x2
. (1.6)

This shows that the pdf of Zt solves the diffusion equation (1.6). The diffusion equation
models the spreading of a cloud of particles. The random walk Sn gives the location of
a randomly selected particle, and the long-time limit density p(x, t) gives the relative
concentration of particles at location x at time t > 0.

More generally, suppose that µ1 = E[Yn] = 0 and µ2 = E[Y 2
n ] = σ2 > 0. Then

f̂(k) = 1 − 1

2
σ2k2 + o(k2)

leads to

E[e−ik n−1/2Sn ] =

(
1 − σ2k2

2n
+ o(n−1)

)n

→ exp(− 1

2
σ2k2)

and

E[e−ik c−1/2S[ct] ] =

(
1 − σ2k2

2c
+ o(c−1)

)[ct]

→ exp(− 1

2
tσ2k2) = p̂(k, t). (1.7)

This FT inverts to a normal density

p(x, t) =
1√

2πσ2t
e−x2/(2σ2t)

with mean zero and variance σ2t. The FT solves

dp̂

dt
= −σ2

2
k2p̂ =

σ2

2
(ik)2p̂
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Section 1.1 The traditional diffusion model 5

which inverts to
∂p

∂t
=

σ2

2

∂2p

∂x2
. (1.8)

This form of the diffusion equation shows the relation between the dispersivity D =
σ2/2 and the particle jump variance. Apply the continuity theorem for FT to (1.7) to
get random walk convergence:

c−1/2S[ct] ⇒ Zt

where Zt is a Brownian motion, normal with mean zero and variance σ2t.
In many applications, it is useful to add a drift: vt + Zt has FT

E[e−ik(vt+Zt)] = e−ikvt−
1

2
tσ2k2

= p̂(k, t),

which solves
dp̂

dt
=

(
−ikv +

σ2

2
(ik)2

)
p̂.

Invert the FT to obtain the diffusion equation with drift:

∂p

∂t
= −v

∂p

∂x
+

σ2

2

∂2p

∂x2
. (1.9)

This represents the long-time limit of a random walk whose jumps have a non-zero
mean v = µ1 (see details). Figure 1.1 shows a typical concentration profile, a normal
pdf

p(x, t) =
1√

2πσ2t
e−(x−vt)2/(2σ2t) (1.10)

that solves the diffusion equation with drift (1.9). Figure 1.2 shows how the solution
evolves in time. Since vt + Zt has mean vt, the center of mass is proportional to the
time variable. Since vt + Zt has variance σ2t, the standard deviation is σ

√
t, so the

particle plume spreads proportional to the square root of time. Setting x = vt in (1.10)
shows that the peak concentration falls like the square root of time. The simple R
codes used to produce the plots in Figures 1.1 and 1.2 will be presented and discussed
in Examples 5.1 and 5.2, respectively.

Details

The FT f̂(k) =
∫

e−ikxf(x) dx is defined for integrable functions f , since |e−ikx| = 1.
Hence the pdf of any random variable X has a FT. In fact, the FT f̂(k) = E[e−ikX ]
exists for all k ∈ R, for any random variable X, whether or not it has a density. The
next two results justify the FT expansion (1.1).

Proposition 1.1. If µp = E[|Y |p] exists, then

µp = (−i)pf̂ (p)(0) = (−i)p dp

dkp
E

[
e−ikX

]
k=0

(1.11)
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6 Chapter 1 Introduction
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Figure 1.1. Solution to diffusion equation (1.9) at time t = 5.0 with velocity v = 3.0 and
variance σ2 = 2.0.
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Figure 1.2. Solution to diffusion equation (1.9) at times t1 = 1.0 (solid line), t2 = 2.0
(dotted line), and t3 = 3.0 (dashed line). The velocity v = 3.0 and variance σ2 = 2.0.
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Section 1.1 The traditional diffusion model 7

Proof. The first derivative of the FT is

f̂ (1)(k) = lim
h→0

f̂(k + h) − f̂(k)

h

= lim
h→0

h−1

(
E

[
e−i(k+h)X

]
− E

[
e−ikX

])
= lim

h→0
E[gh(X)]

where gh(x) = h−1(e−i(k+h)x − e−ikx) = h−1(e−ihx − 1)e−ikx is the difference quotient
for the differentiable function k (→ e−ikx, so that gh(x) → g(x) = −ixe−ikx as h → 0.
From the geometric interpretation of eiy as a vector in complex plane, it follows that
|eiy − 1| ≤ |y| for all y ∈ R. Then

|gh(x)| =

∣∣∣∣
e−ihx − 1

h

∣∣∣∣ · |e
−ikx| ≤ |x|

for all h ∈ R and all x ∈ R. The Dominated Convergence Theorem states that if
gh(x) → g(x) for all x ∈ R and if |gh(x)| ≤ r(x) for all h and all x ∈ R, and if E[r(X)]
is finite, then E[gh(X)] → E[g(X)] and these expectations exist (e.g., see Durrett [59,
Theorem 1.6.7, p. 29]). Since E[|X|] exists, the dominated convergence theorem with
r(x) = |x| implies that

f̂ (1)(k) = lim
h→0

E[gh(X)] = E[g(X)] = E
[
(−iX) e−ikX

]
.

Set k = 0 to arrive at (1.11) in the case p = 1. The case p > 1 is similar, using
the fact that gh(x) = h−p(e−ihx − 1)pe−ikx is the pth order difference quotient for
k (→ e−ikx. Alternatively, the proof for the case p > 1 can be completed using an
induction argument.

Proposition 1.2. If µp = E[|Y |p] exists, then the FT of Y is

f̂(k) =
p∑

j=1

(−ik)j

j!
µj + o(kp) (1.12)

as k → 0.

Proof. If the FT f̂(k) is p times differentiable, then the Taylor expansion

f̂(k) =
p∑

j=1

kj

j!
f̂ (p)(0) + o(kp)

is valid for all k ∈ R. Apply Proposition 1.1 to arrive at (1.12).

In equation (1.2) we used the fact that

(
1 +

r

n
+ o(1/n)

)n
→ er as n → ∞. (1.13)
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8 Chapter 1 Introduction

To verify this, write o(1/n) = εn/n where εn → 0 as n → ∞. Note that |r + εn| < 1
for n sufficiently large, and then use the fact that ln(1+z) = z +O(z2) as z → 0. This
notation means that for some δ > 0 we have

∣∣∣∣
ln(1 + z) − z

z2

∣∣∣∣ < C

for some constant C > 0, for all |z| < δ. Then we can write

ln

[(
1 +

r + εn

n

)n]
= n ln

[
1 +

r + εn

n

]

= n

[
r + εn

n
+ O

(
1

n2

)]
= r + εn + O

(
1

n

)
→ r.

Then apply the continuous function exp(z) to both sides to conclude that (1.13) holds.
In (1.3) we use the idea of weak convergence. Suppose that Xn is a sequence of

random variables with cdf Fn(x) = P[Xn ≤ x], and X is a random variable with cdf
F (x) = P[X ≤ x]. We write Xn ⇒ X if Fn(x) → F (x) for all x ∈ R such that F is
continuous at x. This is equivalent to the condition that E[h(Xn)] → E[h(X)] for all
bounded, continuous functions h : R → R. See for example Billingsley [36].

In (1.3) we use the continuity theorem for the Fourier transform. Let f̂n(k) =
E[e−ikXn ] and f̂(k) = E[e−ikX ]. The Lévy Continuity Theorem [135, Theorem 1.3.6]
implies that Xn ⇒ X if and only if f̂n(k) → f̂(k). More precisely, we have:

Theorem 1.3 (Lévy Continuity Theorem). If Xn, X are random variables on R, then
Xn ⇒ X implies that f̂n(k) → f̂(k) for each k ∈ R, uniformly on compact subsets.
Conversely, if Xn is a sequence of random variables such that f̂n(k) → f̂(k) for each
k ∈ R, and the limit f̂(k) is continuous at k = 0, then f̂(k) is the FT of some random
variable X, and Xn ⇒ X.

In (1.6) we used the fact that the FT of f ′(x) is (ik)f̂(k). If f ′(x) exists and is
integrable, the limits

lim
x→∞

f(x) = f(0) + lim
x→∞

∫ x

0

f ′(u)du and lim
x→−∞

f(x) = f(0) − lim
x→−∞

∫ 0

x
f ′(u)du

exist. If f is integrable, then these limits must equal zero. Then we can integrate by
parts to get
∫ ∞

−∞
e−ikxf ′(x) dx =

[
e−ikxf(x)

]∞
x=−∞

+

∫ ∞

−∞
ike−ikxf(x) dx = 0 + (ik)f̂(k). (1.14)

Applying this fact to the function f ′ shows that, if f ′′ is also integrable, then its FT
equals (ik)2f̂(k), and so

(ik)2p̂(k, t) =

∫
e−ikx ∂2

∂x2
p(x, t) dx. (1.15)

To arrive at (1.6), we inverted the FT (1.5). This can be justified using the following
theorem.
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Section 1.1 The traditional diffusion model 9

Theorem 1.4 (Fourier inversion theorem). If
∫
|f(x)| dx < ∞, then FT f̂(k) exists.

Then if
∫
|f̂(k)| dk < ∞, we have

f(x) =
1

2π

∫
eikxf̂(k) dk (1.16)

for all x ∈ R.

Proof. See [135, Theorem 1.3.7] or Stein and Weiss [194, Corollary 1.21].

Apply Theorem 1.4 to both sides of (1.5) to get

1

2π

∫
eikx ∂

∂t
p̂(k, t) dk =

1

2π

∫
eikx(ik)2p̂(x, t) dk. (1.17)

By (1.15), the right hand side of (1.17) equals ∂2p(x, t)/∂x2. In order to prove (1.6),
it suffices to show that

∫
eikx ∂

∂t
p̂(k, t) dk =

∂

∂t

∫
eikxp̂(k, t) dk

for any fixed t > 0. Write

∂

∂t

∫
eikxp̂(k, t) dk = lim

h→0

∫
eikx p̂(k, t + h) − p̂(k, t)

h
dk,

where p̂(k, t) = e−tk2

. Since h → 0, consider h small such that |h| < t/2 (t > 0 is fixed
in this argument). Then the mean value theorem yields |1− e−hk2 | ≤ |h|k2etk2/2, and
therefore ∣∣∣∣

p̂(k, t + h) − p̂(k, t)

h

∣∣∣∣ = e−tk2

∣∣∣∣∣
1 − e−hk2

h

∣∣∣∣∣
≤ k2e−tk2/2.

Another version of the Dominated Convergence Theorem (e.g., see Rudin [168, Theo-
rem 11.32]) states that if fn(y) → f(y) as n → ∞ and if |fn(y)| ≤ g(y) for all n and all
y, where

∫
g(y) dy exists, then

∫
fn(y) dy →

∫
f(y) dy and these integrals exist. Since

for any t > 0, the function k2e−tk2/2 is integrable with respect to k, the dominated
convergence theorem implies

∂

∂t

∫
eikxp̂(k, t) dk =

∫
eikx lim

h→0

p̂(k, t + h) − p̂(k, t)

h
dk =

∫
eikx ∂

∂t
p̂(k, t) dk.

Similar arguments justify (1.8) and (1.9).
To show that (1.9) governs the limit of a random walk with drift, suppose that

Y, Y1, Y2, Y3, . . . are iid with mean µ1 = v = E[Y ] and finite variance σ2 = µ2 − µ2
1 =

E[(Y − µ1)2]. Write

S[ct] =

[ct]∑

j=1

Yj =

[ct]∑

j=1

(Yj − v) +

[ct]∑

j=1

v
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10 Chapter 1 Introduction

and note that the first sum grows like c1/2 while the second grows like c as c → ∞.
Hence, in order to get convergence, we must normalize at two scales. Since Y − v has
FT

f̂(k) = 1 − 1

2
σ2k2 + o(k2)

as k → 0, the sum of the mean-centered jumps (Y1 − v)+ · · ·+(Yn − v) has FT f̂(k)n,
and then the centered and normalized sum

S(c)(t) = c−1/2

[ct]∑

j=1

(Yj − v) + c−1

[ct]∑

j=1

v

has FT

(
1 − 1

2
σ2 k2

c
+ o(c−1)

)[ct]

· e−ikc−1v[ct] → exp(−ikvt − 1

2
tσ2k2)

The limit inverts to a normal density with mean vt and variance σ2t. Physically, we
follow a cloud of particles (iid copies of the random walk S[ct]) in a moving coordinate
system with origin at x = vt. In this coordinate system, the cloud spreads according to
the diffusion equation. Translating back to the original coordinates, we see a diffusion
with drift.

1.2 Fractional diffusion

The diffusion model presented in Section 1.1 describes random walk limits with finite
variance jumps. In many real world applications, particles follow a heavy-tailed jump
distribution, and a different model emerges. Here we outline the argument for the
simplest case, a Pareto distribution. Additional details are provided at the end of this
section. The formal proof for Pareto jumps will be given in Theorem 3.37. Then in
Theorem 4.5, we will use regular variation to show that the same limit governs a broad
class of random walks whose probability tails fall off like a power law.

As in Section 1.1, the random walk

Sn = Y1 + · · · + Yn

gives the location of a particle after n independent and identically distributed (iid)
jumps. Suppose that the jump variables Yn follow a Pareto distribution, centered to
mean zero: Suppose P[X > x] = Cx−α where C > 0 and 1 < α < 2. Then the first
moment µ = E[X] exists, but the second moment E[X2] = ∞. Now take Yn iid with
X − µ, so that µ1 = E[Yn] = 0. Since the variance of Yn is infinite, the central limit
theorem (1.3) does not apply. Instead, we will see that a different limit occurs, with a
different scaling. For suitably chosen C, the FT of Yn is (see details)

f̂(k) = 1 + (ik)α + O(k2) (1.18)
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Section 1.2 Fractional diffusion 11

as k → 0. The sum Sn = Y1 + · · ·+Yn has FT f̂(k)n and the normalized sum n−1/αSn

has FT

f̂(n−1/αk)n =

(
1 +

(ik)α

n
+ O(n−2/α)

)n

→ e(ik)α

(1.19)

since 2/α > 1, where the limit

e(ik)α

= E
[
e−ikZ

]

is the FT of a stable density (see details). The continuity theorem for FT yields the
extended central limit theorem:

n−1/αSn =
Y1 + · · · + Yn

n1/α
⇒ Z. (1.20)

The family of stable distributions includes the normal as a special case, when α = 2.
They represent all possible limits in the extended central limit theorem, see Theorem
4.5 for details.

Now we show convergence of the random walk. As c → ∞ we have

E
[
e−ik c−1/αS[ct]

]
=

(
1 +

(ik)α

c
+ O(c−2/α)

)[ct]

→ et(ik)α

where the limit

et(ik)α

= E[e−ikZt ] = p̂(k, t) =

∫
e−ikxp(x, t) dx

is the FT of a stable density. Then the continuity theorem for FT implies

c−1/αS[ct] ⇒ Zt.

Unlike the normal case α = 2, the stable FT p̂(k, t) = et(ik)α

cannot be inverted in
closed form when 1 < α < 2.

Clearly the FT p̂(k, t) = et(ik)α

solves

dp̂

dt
= (ik)αp̂. (1.21)

Recalling that (ik)nf̂(k) is the FT of the nth derivative, we define the fractional
derivative dαf(x)/dxα to be the function whose FT is (ik)αf̂(k) (see details). Then
we can invert the FT in (1.21) to see that the stable densities solve a fractional diffusion
equation

∂p

∂t
=

∂αp

∂xα
. (1.22)

The fractional diffusion equation models the spreading of a cloud of particles with a
power-law jump distribution.

The stable pdf p(x, t) is positively skewed, with a heavy power-law tail. In fact, we
have p(x, t) = Ax−α−1 + o(x−α−1) as x → ∞ for some A > 0 depending on C, t, and
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12 Chapter 1 Introduction

α, so that the limit retains the power-law jump distribution (e.g., see Zolotarev [213],
p. 143). This is in stark contrast to the traditional CLT, in which the tail behavior of
the individual jumps disappears in the limit.

The fractional diffusion equation (1.22) models super-diffusion. In fact, we have
Zct ≃ c1/αZt (same distribution) since

E[e−ikZct ] = p̂(k, ct) = ect(ik)α

= et(ikc1/α)α

= p̂(c1/αk, t) = E[e−ik c1/αZt ]

This property is called self-similarity. The index H = 1/α of self-similarity is often
called the Hurst exponent (e.g., see Embrechts and Maejima [61]). This also implies
that solutions p(x, t) to the fractional diffusion equation (1.22) satisfy a scaling relation

p(x, ct) = c−1/αp(c−1/αx, t) for all x ∈ R and all t > 0.

In particular, the spreading rate is t1/α, and the peak falls at the same rate, which is
faster than the t1/2 rate in the traditional diffusion equation (1.6).

Next we add scale and drift. The FT of vt + D1/αZt is

p̂(k, t) = E
[
e−ik(vt+D1/αZt)

]
= e−ikvt+Dt(ik)α

which solves
dp̂

dt
= (−ikv + D(ik)α) p̂.

Invert the FT to obtain the fractional diffusion equation with drift:

∂p

∂t
= −v

∂p

∂x
+ D

∂αp

∂xα
. (1.23)

In applications to ground water hydrology, equation (1.23) is also called the frac-
tional advection dispersion equation (FADE), see Benson et al. [28]. Advection is the
displacement of suspended particles in moving water, and dispersion is the particle
spreading caused by particles following different flow paths through a porous medium.
The particle density p(x, t) that solves (1.23) has center of mass x = vt, and it spreads
out from the center of mass at the super-diffusive rate t1/α due to self-similarity.

Figure 1.3 shows a stable pdf that solves the FADE (1.23). Note the skewness and
the heavy right tail. Figure 1.4 shows how the solution evolves in time. Since the
limit process is self-similar with index 1/α > 1/2, the plume spreads faster than a
traditional Brownian motion. The R codes used to produce the plots in Figures 1.3
and 1.4 will be presented and discussed in Examples 5.9 and 5.11, respectively.

In ground water hydrology, the FADE (1.23) models concentration of a contaminant
that is transported along with moving water under the ground. Particles must find
their way through a porous medium consisting of sand, gravel, clay, etc. Some par-
ticles will find a relatively direct path, while others will take a more tortuous route.
This causes dispersion, traditionally modeled by the second derivative term. A frac-
tional derivative indicates a power-law distribution of particle velocities, thought to
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Figure 1.3. Solution to the fractional diffusion equation (1.23) at time t = 5.0 with velocity
v = 2.0 and dispersion D = 1.0, for α = 1.5.

0 5 10 15 20 25

0
.0

0
0

.0
5

0
.1

0
0

.1
5

x

p

Figure 1.4. Solution to fractional diffusion equation (1.23) at times t1 = 3.0 (solid line),
t2 = 5.0 (dotted line), and t3 = 8.0 (dashed line) with velocity v = 2.0 and dispersion D = 1.0,
for α = 1.5.
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14 Chapter 1 Introduction

be related to a fractal model of the porous medium, see Wheatcraft and Tyler [203].
The plume center of mass moves at a constant rate, modeled by the first derivative
term. Concentration measurements are taken at different points x at the same time
t > 0 to form a histogram, which is then fit to the stable density p(x, t) that solves
the FADE (1.23).

To fit the parameter α, the fact that p(x, t) ≈ Ax−α−1 is used. Since log p ≈
log A−(α+1) log x, a log-log plot of the concentration profile should resemble a straight
line with slope −(α+1) for x large, and this can provide a rough estimate of α. Figure
1.5 shows concentration measurements taken at a distance x meters downstream from
the initial injection point, from an experiment documented in Benson et al. [28]. A
tracer is injected at location x = 0 at time t = 0 and transported downstream by
the natural flow of the ground water. Concentration measurements taken at t = 224
and t = 328 days after injection were fit to the FADE (1.23) with constant coefficients
(black line), and to the traditional advection dispersion equation (ADE) in (1.9) where
D is allowed to vary with time (grey line). It is commonly noted in hydrological studies
that the best fitting D grows with time like a power law (e.g., see Wheatcraft and Tyler
[203]). The popularity of the fractional ADE is partly due to the fact that it can fit
the same plume at different times using constant coefficients. The fitted stable density
has α = 1.1 with v = 0.12 meters per day and D = 0.14 metersα per day. It is
thought that α reflects the heterogeneity of the porous medium, see Clarke et al. [47].
The power law tail of the stable density is confirmed by the straight line asymptotics
on the right hand side of each plot. The best fitting normal density underestimates
concentrations by six orders of magnitude at the leading (right) edge of the plume.
If the plume represents a pollutant heading towards a municipal water supply well,
the ADE would seriously underestimate the risk of downstream contamination. The
stable density that solves the FADE, on the other hand, captures the super-diffusive
spreading and power-law leading tail observed in the data.
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Figure 1.5. Concentration measurements from Benson et al. [28], and fitted stable density
with α = 1.1.
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Section 1.2 Fractional diffusion 15

A more general fractional diffusion equation pertains when random walk jumps
follow a two-sided Pareto distribution. Suppose P[X > x] = pCx−α and P[X < −x] =
qCx−α for some 1 < α < 2 and 0 ≤ p, q ≤ 1 with p + q = 1. Then µ1 = E[X] exists,
and we take (Yn) iid with X − µ1. Now for some constant D > 0 depending on α and
C we have (see details)

f̂(k) = 1 + pD(ik)α + qD(−ik)α + O(k2) (1.24)

and then we get

E[e−ik c−1/αS[ct] ] =

(
1 +

pD(ik)α + qD(−ik)α

c
+ O(c−2/α)

)[ct]

→ et[pD(ik)α+qD(−ik)α] = p̂(k, t).

This FT solves
dp̂

dt
= [pD(ik)α + qD(−ik)α] p̂. (1.25)

Now we define the negative fractional derivative dαf(x)/d(−x)α to be the function
whose FT is (−ik)αf̂(k). Invert the FT in (1.25) to see that the two-sided stable
densities solve a two-sided fractional diffusion equation

∂p(x, t)

∂t
= pD

∂αp(x, t)

∂xα
+ qD

∂αp(x, t)

∂(−x)α
. (1.26)

The random walk limit c−1/αS[ct] ⇒ Zt is a two-sided stable process. Its densities
solve the fractional diffusion equation (1.26), which therefore models the spreading of
a cloud of particles with power-law jumps in both directions. The weights p and q
represent the relative likelihood of positive or negative jumps. The family of two-sided
stable densities p(x, t) for the limit process Zt spreads at the super-diffusive rate t1/α,
and has power-law tails in both directions (see details). The skewness β = p − q
indicates whether the pdf is positively skewed (β > 0) due to the preponderance of
positive jumps, negatively skewed (β < 0), or symmetric (β = 0). The two-sided
FADE

∂p(x, t)

∂t
= −v

∂p(x, t)

∂x
+ pD

∂αp(x, t)

∂xα
+ qD

∂αp(x, t)

∂(−x)α
(1.27)

governs the process vt + Zt, the scaling limit of a random walk with mean jump
v = E[Yn] (see details).

In applications to ground water hydrology, concentration profiles show a power-law
leading edge, and we typically find β = 1, since fast-moving particles jump down-
stream, as noted by Benson et al. [28]. In a classical study of turbulence by Solomon,
Weeks and Swinney [192], velocity measurements follow a symmetric power-law distri-
bution with β = 0. In a fractional model for invasive species developed by Baeumer,
Kovács and Meerschaert [15], animals and plants take power law jumps with β > 0,
indicating a preference for motion in the direction of new territories . In finance, price
jumps follow a power law with β ≈ 0, while trading volume follows a power law with
β = 1, see for example Mandelbrot [122]. In medical ultrasound, power law dispersal
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16 Chapter 1 Introduction

is observed with β = 1, see Kelly, McGough and Meerschaert [98]. In river flows,
retention of contaminant particles in river beds and eddy pools causes a power-law
trailing edge in the concentration profile, modeled by a FADE with β = −1, see for
example Deng, Singh and Bengtsson [57]. This fit is controversial, since the random
walk model with β = −1 suggests that particles are taking long jumps upstream, see
discussion in Chakraborty, Meerschaert and Lim [46]. The paper [46] also discusses
more advanced statistical methods for fitting a stable pdf to data.

Remark 1.5. The random variable Z with FT

E[e−ikZ ] = epD(ik)α+qD(−ik)α

is called stable because, if (Yn) are iid with Z, then the FT en[pD(ik)α+qD(−ik)α] of
n1/αZ is also the FT of Y1 + · · · + Yn. It follows that

Y1 + · · · + Yn

n1/α
≃ Z

for all n ≥ 1, i.e., (1.20) holds with Yn replaced by Zn, and convergence in distribution
strengthened to equality in distribution.

Remark 1.6. The most cited paper of Einstein [60] concerns the connection between
random walks, Brownian motion, and the diffusion equation. Sokolov and Klafter
[191] review the history, and the development of fractional diffusion, based on random
walks with power law jumps, to address empirical observations of anomalous diffusion.

Details

A Pareto random variable X satisfies P[X > x] = Cx−α for x > C1/α, where C > 0
and 1 < α < 2. It has cdf

F (x) = P[X ≤ x] =

{
1 − Cx−α if x ≥ C1/α

0 if x < C1/α
(1.28)

and pdf

f(x) =

{
Cαx−α−1 if x ≥ C1/α

0 if x < C1/α
(1.29)

The pth moment

µp = E[Xp] =

∫
xpf(x) dx

= Cα

∫ ∞

C1/α

xp−α−1 dx

= Cα

[
xp−α

p − α

]∞

C1/α

=
α

α − p
Cp/α

(1.30)

when 0 < p < α. For p ≥ α, the pth moment µp does not exist, since the integral in
(1.30) diverges at infinity. Hence for 1 < α < 2, the first moment µ1 exists, but the
second moment µ2 is undefined.
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Section 1.2 Fractional diffusion 17

Proposition 1.7. A Pareto random variable X with pdf (1.29) for some 1 < α < 2
has FT

E
[
e−ikX

]
= 1 − ikµ1 + D(ik)α + O(k2) as k → 0. (1.31)

where µ1 is given by (1.30) with p = 1, and D = CΓ(2 − α)/(α − 1).

Proof. Write

E[e−ikX ] =

∫ ∞

C1/α

e−ikxCαx−α−1dx

=

∫ ∞

C1/α

[
1 − ikx +

(
e−ikx − 1 + ikx

)]
Cαx−α−1dy

= 1 − ikµ1 +

∫ ∞

0

(
e−ikx − 1 + ikx

)
Cαx−α−1dy

−
∫ C1/α

0

(
e−ikx − 1 + ikx

)
Cαx−α−1dy

where µ1 = C1/αα/(α − 1) by (1.30) with p = 1. It follows by an elementary but
lengthy computation (see the proof of Proposition 3.12) that

∫ ∞

0

(
e−ikx − 1 + ikx

)
Cαx−α−1dx = C

Γ(2 − α)

α − 1
(ik)α

when 1 < α < 2. For the remaining integral, a Taylor series expansion shows that

|e−ikx − 1 + ikx| ≤ (kx)2

2!
for all x ∈ R and k ∈ R.

Then
∣∣∣∣∣

∫ C1/α

0

(
e−ikx − 1 + ikx

)
Cαx−α−1dy

∣∣∣∣∣
≤ k2

2

∫ C1/α

0

Cαx1−αdy

=
k2

2
Cα

[
x2−α

2 − α

]C1/α

0

=
k2

2

α

2 − α
C2/α

since 1 < α < 2. Then it follows that X has FT (1.31).

Setting C = (α − 1)/Γ(2 − α) and using the Taylor series for ez, it follows from
(1.31) that Y = X − µ1 has FT

E[e−ik(X−µ1)] =
[
1 − ikµ1 + (ik)α + O(k2)

]
·
[
1 + ikµ1 + 1

2!
(ikµ1)

2 + O(k3)
]

= 1 + (ik)α + O(k2)

which justifies the FT expansion in (1.18).
Inverting the FT (1.21) to arrive at (1.22) also requires

∫
eikx ∂

∂t
p̂(k, t) dk =

∂

∂t

∫
eikxp̂(k, t) dk
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18 Chapter 1 Introduction

for the FT p̂(k, t) = et(ik)α

of a stable density. Write

∂

∂t

∫
eikxp̂(k, t) dk = lim

h→0

∫
eikx p̂(k, t + h) − p̂(k, t)

h
dk,

where ∣∣∣∣
p̂(k, t + h) − p̂(k, t)

h

∣∣∣∣ =
∣∣∣et(ik)α

∣∣∣
∣∣∣∣
1 − eh(ik)α

h(ik)α

∣∣∣∣ |(ik)α| . (1.32)

Note that |ez| = eRe(z), i = cos (π/2) + i sin (π/2), and (ik)α = (i sgn(k)|k|)α =
|k|α exp(i sgn(k)πα/2) = |k|α[cos(πα/2) + i sgn(k) sin(πα/2)], where sgn(k) is sign of
k. Then the first term in (1.32) reduces to

∣∣∣et(ik)α
∣∣∣ = et|k|α cos(πα/2)

where cos (πα/2) < 0, since 1 < α < 2. Also, the third term is

|(ik)α| = |k|α

since |eiθ| = 1 for all real θ. To bound the second term, use the Taylor series for ez to
write ∣∣∣∣

1 − ez

z

∣∣∣∣ ≤ 1 +
|z|
2

+
|z|2

3!
+ · · · =

e|z| − 1

|z| .

Fix t > 0 and consider z = h(ik)α for |h| < −(t/2) cos (πα/2). Then |z| = |h||k|α, and
the mean value theorem implies that

e|h||k|
α

− 1 ≤ |h||k|αe−(t/2) cos (πα/2)|k|α

for all |h| < −(t/2) cos (πα/2). Then the second term in (1.32) is bounded by
∣∣∣∣
1 − eh(ik)α

h(ik)α

∣∣∣∣ ≤
e|h||k|

α − 1

|h||k|α ≤ e−(t/2) cos (πα/2)|k|α

Putting all three terms together, it follows that
∣∣∣∣
p̂(k, t + h) − p̂(k, t)

h

∣∣∣∣ ≤ |k|αe(t/2)|k|α cos(πα/2)

for all |h| < −(t/2) cos (πα/2). Since the function |k|αe(t/2)|k|α cos(πα/2) is integrable
with respect to k for any t > 0, the dominated convergence theorem implies that

∂

∂t

∫
eikxp̂(k, t) dk =

∫
eikx lim

h→0

p̂(k, t + h) − p̂(k, t)

h
dk =

∫
eikx ∂

∂t
p̂(k, t) dk.

Similar arguments justify (1.23) and (1.26).
A two-sided Pareto random variable X with index 1 < α < 2 satisfies P[X > x] =

pCx−α and P[X < −x] = qCx−α for all x > C1/α, where C > 0, and 0 ≤ p, q ≤ 1
with p + q = 1. Then X has pdf

f(x) =

⎧
⎪⎪⎨

⎪⎪⎩

pCαx−α−1 if x ≥ C1/α;
0 if −C1/α ≤ x ≤ C1/α;
qCα|x|−α−1 if x < −C1/α.

Brought to you by | Brown University Rockefeller Library
Authenticated | 128.148.231.12

Download Date | 4/28/14 11:52 PM



Section 1.2 Fractional diffusion 19

Noting that |x| = −x for x < 0, a substitution y = −x along with (1.30) shows that
the nth moment of X is

E[Xn] =

∫
xnf(x) dx

= pCα

∫ ∞

C1/α

xn−α−1 dx + qCα

∫ −C1/α

−∞
xn(−x)−α−1 dx

= pCn/α α

α − n
+ qCα

∫ ∞

C1/α

(−1)nyn−α−1 dy

=
(
p + (−1)nq

)
Cn/α α

α − n

(1.33)

when 0 < n < α. For n ≥ α, the nth moment does not exist.
The FT of X follows easily from Proposition 1.7. A change of variables y = −x

together with (1.31) leads to

E[e−ikX ] = p

∫ ∞

C1/α

e−ikxCαx−α−1dx + q

∫ −C1/α

−∞
e−ikxqCα(−x)−α−1dx

= p
[
1 − ikµ + D(ik)α + O(k2)

]
+ q

∫ ∞

C1/α

eikyqCαy−α−1dy

= p
[
1 − ikµ + D(ik)α + O(k2)

]
+ q

[
1 + ikµ + D(−ik)α + O(k2)

]

= 1 − (p − q)ikµ + pD(ik)α + qD(−ik)α + O(k2)

(1.34)

where µ = C1/αα/(α − 1) and D = CΓ(2 − α)/(α − 1). Since µ1 = (p − q)µ = E[X]
by (1.33), it follows from (1.34) that Y = X − µ1 has FT

E[e−ikY ] =
[
1 − ikµ1 + pD(ik)α + qD(−ik)α + O(k2)

]
·
[
1 + ikµ1 + O(k2)

]

= 1 + pD(ik)α + qD(−ik)α + O(k2)

which justifies the FT expansion in (1.24).
The Lévy Continuity Theorem 1.3 shows that the limit e(ik)α

in (1.19) is the FT
of some probability measure, since it is continuous at k = 0. In Section 4.5 we will
prove that this probability distribution has a density, using the FT inversion formula
(Theorem 1.4).

In Proposition 2.5 we will use the FT inversion formula prove that if f and its
derivatives up to some integer order n > 1 + α exist and are absolutely integrable,
then the fractional derivative dαf(x)/dxα exists, and its FT equals (ik)αf̂(k).

To show that (1.23) governs the limit of a random walk with drift, take Xj iid with
X, where P[X > x] = Cx−α for some 1 < α < 2 and some C > 0. Proposition 1.7
shows that Xj has FT (1.31), and it follows that the FT of Xj−µ1 is 1+D(ik)α+O(k2).
Take Sn = X1 + · · · + Xn and consider the normalized random walk

c−1/α(S[ct] − v[ct]) + c−1v[ct] = c−1/α
[ct]∑

j=1

(Xj − v) + c−1

[ct]∑

j=1

v
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20 Chapter 1 Introduction

where v = µ1 = E[X]. Take FT to get

(
1 + D

(ik)α

c
+ O(c−2/α)

)[ct]

· e−ikc−1v[ct] → exp(−ikvt + Dt(ik)α).

Remark 1.8. The FT expansion (1.18) can also be proven using Tauberian theorems
from Pitman [156]. These Tauberian theorems relate the asymptotic behavior of the
probability tail G(x) = P[Y > x] at infinity to that of the FT at zero. We will write
f(x) ∼ g(x) to mean that the ratio f(x)/g(x) → 1. Suppose Y > 0 with G(x) ∼ Cx−α

as x → ∞ for some 1 < α < 2, and let f̂(k) = E[e−ikY ]. Then the real and imaginary
parts of the FT satisfy

Re f̂(−k) = 1 − π

2Γ(α) sin(πα/2)
G(1/k) + o(kα)

Imf̂(−k) =
π

2Γ(α) cos(πα/2)
G(1/k) + o(kα)

as k → 0, by [156, Theorem 1] and [156, Theorem 8], respectively. Putting the real
and imaginary parts together, and using the formula

(−i)α = (e−iπ/2)α = e−iπα/2 = cos(πα/2) − i sin(πα/2)

we have

f̂(−k) = 1 − Ckα π

2Γ(α)

[
1

sin(πα/2)
− i

cos(πα/2)

]
+ o(kα)

= 1 − Cπkα cos(πα/2) − i sin(πα/2)

2 sin(πα/2) cos(πα/2)Γ(α)
+ o(kα)

= 1 − Cπ

Γ(α) sin(πα)
(−ik)α + o(kα)

as k → 0. This shows that

f̂(k) = 1 + D(ik)α + o(kα)

as k → 0, where

D = − Cπ

Γ(α) sin(πα)
> 0

since 1 < α < 2. Using Euler’s formula

Γ(α)Γ(1 − α) =
π

sin(πα)

we have
D = −CΓ(1 − α) =

CΓ(2 − α)

α − 1

which agrees with Proposition 1.7.
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Chapter 2

Fractional Derivatives

Fractional derivatives were invented by Leibnitz soon after their integer-order cousins.
In this chapter, we develop the main ideas and mathematical techniques for dealing
with fractional derivatives.

2.1 The Grünwald formula

In the first chapter of this book, we defined the fractional derivative dαf(x)/dxα as
the function with FT (ik)αf̂(k). Our present goal is to develop a more familiar and
intuitive definition in terms of difference quotients. Given a function f(x), we can
define the first derivative

df(x)

dx
= lim

h→0

f(x) − f(x − h)

h

when the limit exists. Higher order derivatives are defined by

dnf(x)

dxn
= lim

h→0

∆nf(x)

hn

where

∆f(x) = f(x) − f(x − h)

∆
2f(x) = ∆∆f(x) = ∆[f(x) − f(x − h)]

= f(x) − 2f(x − h) + f(x − 2h)

∆
3f(x) = f(x) − 3f(x − h) + 3f(x − 2h) − f(x − 3h)

...

∆
nf(x) =

n∑

j=0

(
n
j

)
(−1)jf(x − jh)
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22 Chapter 2 Fractional Derivatives

using the binomial formula: Using the backward shift operator Bf(x) = f(x − h) we
can write

∆f(x) = (I − B)f(x)

where If(x) = f(x) is the identity operator; then we have

∆
nf(x) = (I − B)nf(x) =

n∑

j=0

(
n
j

)
(−B)jIn−jf(x).

The fractional difference operator

∆
αf(x) = (I − B)αf(x) =

∞∑

j=0

(
α
j

)
(−B)jf(x) =

∞∑

j=0

(
α
j

)
(−1)jf(x − jh)

is also used in time series analysis to model long range correlation. Here
(

α
j

)
=

Γ(α + 1)

j!Γ(α − j + 1)

extends the usual definition, since Γ(n + 1) = n! for positive integers n. Now we write
the Grünwald-Letnikov finite difference form

dαf(x)

dxα
= lim

h→0

∆αf(x)

hα
(2.1)

for the fractional derivative. Our next result shows that this definition agrees with
our original definition of the fractional derivative in terms of Fourier transforms.

Proposition 2.1. For a bounded function f , such that f and its derivatives up to
some order n > 1 + α exist and are absolutely integrable, the Grünwald fractional
derivative (2.1) exists, and its FT is (ik)αf̂(k).

Proof. The binomial series

(1 + z)α =
∞∑

j=0

(
α
j

)
zj (2.2)

converges for any complex |z| ≤ 1 and any α > 0 (e.g., see Hille [85, p. 147]). Equation
(2.12) in the details at the end of this section shows that

∞∑

j=0

∣∣∣∣

(
α
j

)
(−1)j

∣∣∣∣ < ∞.

Hence, if f is bounded, the series

∆
αf(x) =

∞∑

j=0

(
α
j

)
(−1)jf(x − jh)

converges, uniformly on −∞ < x < ∞.
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Section 2.1 The Grünwald formula 23

Proposition 2.5 in the details at the end of this section shows that dαf(x)/dxα exists
as the function with FT (ik)αf̂(k). A substitution y = x− a shows that f(x− a) has
FT

∫
e−ikxf(x − a) dx =

∫
e−ik(y+a)f(y) dy

= e−ika

∫
e−ikyf(y) dy = e−ikaf̂(k).

Then ∆αf(x) has FT

∫
e−ikx

∞∑

j=0

(
α
j

)
(−1)jf(x − jh) dx =

∞∑

j=0

(
α
j

)
(−1)j

∫
e−ikxf(x − jh) dx

=
∞∑

j=0

(
α
j

)
(−1)je−ikjhf̂(k)

= (1 − e−ikh)αf̂(k).

The first equality above can be justified using the uniform convergence of the series
∆αf(x), and the integrability of each term (e.g., see Rudin [168, Theorem 7.16, p.
151]).

If k ̸= 0, then the FT of ∆αf(x)/hα is

h−α(ikh)α

(
1 − e−ikh

ikh

)α

f̂(k) = (ik)α

(
1 − [1 − ikh + 1

2!
(−ikh)2 + · · · ]

ikh

)α

f̂(k)

= (ik)α

(
ikh − 1

2!
(−ikh)2 + · · ·
ikh

)α

f̂(k)

= (ik)α
(
1 − 1

2!
(ikh) + · · ·

)α
f̂(k)

→ (ik)αf̂(k)

as h → 0. If k = 0, then obviously (1 − e−ikh)αf̂(k) = (ik)αf̂(k). Hence the FT of
∆αf(x)/hα converges pointwise to that of dαf(x)/dxα. Then the continuity theorem
for the FT implies that (2.1) holds.

Remark 2.2. A similar argument shows that for any fixed integer p > 0 we have

dαf(x)

dxα
= lim

h→0
h−α

∞∑

j=0

(
α
j

)
(−1)jf(x − (j − p)h)

which is useful in numerical methods, see for example Meerschaert and Tadjeran [142].

The negative fractional derivative can be defined by

dαf(x)

d(−x)α
= lim

h→0
h−α

∞∑

j=0

(
α
j

)
(−1)jf(x + jh). (2.3)
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24 Chapter 2 Fractional Derivatives

An argument similar to Proposition 2.1 shows that this expression has FT (−ik)αf̂(k).
The fractional difference is a discrete convolution with the Grünwald weights

wj = (−1)j

(
α
j

)
=

(−1)jΓ(α + 1)

Γ(j + 1)Γ(α − j + 1)

=
(−1)jα(α − 1) · · · (α − j + 1)

Γ(j + 1)

=
−α(1 − α) · · · (j − 1 − α)

Γ(j + 1)

=
−αΓ(j − α)

Γ(j + 1)Γ(1 − α)

(2.4)

using the property Γ(x + 1) = xΓ(x). Write f(x) ∼ g(x) to mean that f(x)/g(x) → 1.
Apply Stirling’s approximation Γ(x + 1) ∼

√
2πx xxe−x as x → ∞ to get

wj ∼ −α

Γ(1 − α)

√
2π(j − α − 1) (j − α − 1)j−α−1e−(j−α−1)

√
2πj jje−j

=
−α

Γ(1 − α)

√
j − α − 1

j

(
j − α − 1

j

)j−α−1

j−α−1eα+1

and note that √
j − α − 1

j
→ 1

and
(

j − α − 1

j

)j−α−1

=

(
1 − α + 1

j

)j

·
(

j − α − 1

j

)−α−1

→ e−(α+1) · 1

as j → ∞. It follows that the Grünwald weights follow a power law asymptotically:

wj ∼ −α

Γ(1 − α)
j−α−1 as j → ∞. (2.5)

The Grünwald formula (2.1) gives a concrete interpretation to the fractional deriva-
tive. Suppose that p(x, t) represents the relative concentration of particles in the
fractional diffusion equation ∂p/∂t = ∂αp/∂xα. Suppose that 1 < α < 2, so that
wj > 0 for all j ≥ 2. Since

∆p(x, t)

∆t
≈ (∆x)−α

∞∑

j=0

wjp(x − j∆x, t)

we see that the change in concentration at location x at time t is increased by an
amount wjp(x− j∆x, t) that is transported to location x from location x− j∆x. Since
wj falls off like a power law j−α−1, the fraction of particles at any location that moves
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Section 2.1 The Grünwald formula 25

j steps to the right follows a power law distribution. This deterministic model is com-
pletely consistent with the random power law model of particle jumps assumed in the
last chapter, leading to the extended central limit theorem, and a stable density that
solves this fractional diffusion equation. This connection between the deterministic
(Euler) picture and the random (Lagrange) picture of diffusion is fundamental.

Remark 2.3. Here we explain the Eulerian picture. We give a physical derivation of
the deterministic model for diffusion, and show how it extends to the fractional case.
Let p(x, t) represent the mass concentration at location x at time t. The conservation
of mass law is

∂p

∂t
= − ∂q

∂x
(2.6)

where q(x, t) is the flux. Consider a small cube of side ∆x in three dimensions, with
flow from left to right in the x direction. The flux

flux =
mass

area · time
(2.7)

at location x is the rate at which mass passes through the face of the cube at location
x. Since the face of the cube has area A = (∆x)2 the change in mass in the cube over
time ∆t can be approximated by

∆M = q(x, t) A ∆t − q(x + ∆x, t)A ∆t.

Then the approximate change in concentration is

∆p =
∆M

A∆x
=

−[q(x + ∆x, t) − q(x, t)]A∆t

A∆x
= −−∆q(x, t)∆t

∆x

and so
∆p

∆t
= −∆q

∆x

which leads to (2.6) in the limit as ∆x → 0. See Figure 2.1 for an illustration.
The diffusion equation comes from combining the conservation of mass equation

(2.6) with Fick’s Law for the flux

q = −D
∂p

∂x
(2.8)

which states that particle flux is proportional to the concentration gradient. Fick’s
law is based on empirical observation. If fluid to the left of the point x contains a
higher concentration of dissolved mass than fluid to the right of the point x, then
random motion will send more particles to the right than to the left. In this case, we
have ∂p/∂x < 0 and q > 0, i.e., the sign of the flux is the opposite of the sign of the
concentration gradient. Experiments indicate that flux is generally a linear function
of the gradient. The dispersivity constant D in (2.8) depends on physical parameters
such as temperature (a higher temperature increases D).
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26 Chapter 2 Fractional Derivatives

x x + Dx

i i+1

Dx

Figure 2.1. Eulerian picture for diffusion, from Schumer et al. [182].

The diffusion equation comes from combining (2.6) with (2.8):

∂p

∂t
= − ∂

∂x

[
−D

∂p

∂x

]
= D

∂2p

∂x2

assuming D is a constant independent of x. The fractional diffusion equation with
1 < α < 2 can be derived from a fractional Fick’s Law

q = −D
∂α−1p

∂xα−1
(2.9)

combined with the classical conservation of mass equation

∂p

∂t
= − ∂

∂x

[
−D

∂α−1p

∂xα−1

]
= D

∂αp

∂xα

where (2.9) can be understood in terms of the Grünwald formula. In the traditional
derivation of Fick’s Law, we consider particle movements between adjacent cubes of
side ∆x, as illustrated in Figure 2.1. The fractional Fick’s Law for the flux allows
particles to jump into the box at location x from a box at location x − j∆x. The
proportion of particles that make a jump this long drops off as a power of the separation
distance. See Schumer et al. [182] for more details. An alternative derivation uses the
traditional Fick’s Law (2.8) along with a fractional conservation of mass equation

∂p

∂t
= − ∂α−1q

∂xα−1
(2.10)

which leads to the same fractional diffusion equation

∂p

∂t
= − ∂α−1

∂xα−1

[
−D

∂p

∂x

]
= D

∂αp

∂xα
,

see Meerschaert, Mortensen and Wheatcraft [129] for additional details. The physical
interpretation of (2.10) is similar to (2.9), using the Grünwald interpretation of the
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Section 2.1 The Grünwald formula 27

fractional derivative. Both lead to the same fractional diffusion equation when the
dispersivity D is a constant. For a combination of positive and negative fractional
derivatives, particles can also jump into the box at location x from a box at location
x+ j∆x. See Figure 2.2 for an illustration. For the case where D varies with x, see for
example Zhang, Benson, Meerschaert and LaBolle [209]. A more general model of flux
as a convolution was developed by Cushman and Ginn [51]. It was shown in Cushman
and Ginn [52] that this more general model reduces to the fractional diffusion equation
when the convolution is a power law. Note that the physical derivation also explains
why we focus on the case 1 < α ≤ 2.

Dx

i−4 i−3 i−2 i−1 i i+1 i+2 i+3 i+4

Figure 2.2. Eulerian picture for fractional diffusion, from Schumer et al. [182].

Details

Here we collect some mathematical details needed to check the arguments in this
section. The gamma function is defined for α > 0 by

Γ(α) =

∫ ∞

0

e−xxα−1 dx.

Note that e−xxα−1 ∼ xα−1 as x → 0+, so that the integral exists. A simple integration
by parts ∫ b

a
u(x)v′(x)dx = u(x)v(x)

∣∣b
a
−

∫ b

a
v(x)u′(x) dx

with u = xα shows that

Γ(α + 1) =
[
−xαe−x

]∞
0

+ α

∫ ∞

0

e−xxα−1 dx = αΓ(α)

for α > 0. Now use the formula Γ(α+1) = αΓ(α) to extend the definition of the gamma
function to non-integer values of α < 0. For example, Γ(−0.7) = Γ(0.3)/(−0.7), and
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28 Chapter 2 Fractional Derivatives

Γ(−1.7) = Γ(−0.7)/(−1.7). Since

Γ(1) =

∫ ∞

0

e−x dx = 1

it follows that Γ(n + 1) = n! Apply the formula Γ(α + 1) = αΓ(α) j times to see that
(

α
j

)
=

Γ(α + 1)

Γ(j + 1)Γ(α − j + 1)
=

αΓ(α)

j!Γ(α − j + 1)
= · · · =

α(α − 1) · · · (α − j + 1)

Γ(j + 1)
.

Eventually (j − 1 − α) > 0 for all j large, and then

wj = (−1)j

(
α
j

)
=

−α

Γ(j + 1)
(1 − α) · · · (j − 1 − α)

has the same sign for all j large. Since
∞∑

j=0

wj =
∞∑

j=0

(
α
j

)
(−1)j = (1 + (−1))α = 0 (2.11)

by the binomial formula (2.2), it follows that
∞∑

j=0

|wj | < ∞. (2.12)

Since e−z = 1 − z + O(z2), we have for any fixed k ̸= 0 that
(

1 − e−ikh

ikh

)α

=

(
1 − [1 − ikh + O(h2)]

ikh

)α

=

(
1 +

1

ik
O(h)

)α

→ 1

as h → 0.
Our next goal is to prove that, under certain technical conditions, the fractional

derivative dαf(x)/dxα exists as the function with FT (ik)αf̂(k). This requires the
following useful lemma.

Lemma 2.4. If f(x) and all of its derivatives up to order n exist and are absolutely
integrable, then

|f̂(k)| ≤ C

1 + |k|n (2.13)

for all k ∈ R.

Proof. When k = 0, |f̂(0)| ≤
∫∞
−∞ |f(x)|dx := C0, and similarly for |k| < 1 we have

|f̂(k)| ≤ 2C0

1 + |k|n ,

since 1+ |k|n < 2 in that case. A straightforward extension of the argument for (1.15)
shows that, if f(x) and all of its derivatives up to order n exist and are absolutely
integrable, then the FT of the nth derivative f (n)(x) equals (ik)nf̂(k). Then we have

f̂(k) = (ik)−n

∫ ∞

−∞
e−ikxf (n)(x) dx,
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Section 2.2 More fractional derivatives 29

and it follows that |f̂(k)| ≤ C1/|k|n where C1 =
∫∞
−∞ |f (n)(x)| dx. For |k| ≥ 1 we have

|f̂(k)| ≤ 2C1

1 + |k|n ,

since 2|k|n ≥ 1+ |k|n in that case. Then by choosing C to be the larger of 2C1 or 2C0,
we have that (2.13) holds for all k.

Proposition 2.5. If f and its derivatives up to some integer order n > 1 + α exist
and are absolutely integrable, then the fractional derivative

dαf(x)

dxα
=

1

2π

∫ ∞

−∞
eikx(ik)αf̂(k) dk

exists, and its FT equals (ik)αf̂(k).

Proof. Lemma 2.4 implies that (2.13) holds, and then

|(ik)αf̂(k)| ≤ C|k|α

1 + |k|n

for all k. Since n > 1 + α, the function (ik)αf̂(k) is absolutely integrable. Then
Theorem 1.4 implies that there exists a function with FT (ik)αf̂(k), and we have
defined the fractional derivative dαf(x)/dxα to be this function.

Since we define ∂αp/∂xα as the function with FT (ik)αp̂, it is clear that

∂α−1

∂xα−1

∂p

∂x
=

∂

∂x

∂α−1p

∂xα−1
=

∂αp

∂xα

for any α > 0. Since ∆αf(x) has FT (1 − e−ikh)αf̂(k), it is also true that

∆∆
α−1f(x) = ∆

α−1
∆f(x) = ∆

αf(x).

2.2 More fractional derivatives

In this section, we develop some alternative integral forms for the fractional derivative.
From equation (2.1) we have

∂αf(x)

∂xα
= lim

∆x→0

∆αf(x)

∆xα
(2.14)

where

∆
αf(x) =

∞∑

j=0

wjf(x − j∆x)

is a discrete convolution with the Grünwald weights wj . Recall from (2.5) that

wj ∼ −α

Γ(1 − α)
j−α−1 as j → ∞.
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30 Chapter 2 Fractional Derivatives

Since w0 = 1 we can write

∆αf(x)

∆xα
= (∆x)−α

⎡

⎣f(x) +
∞∑

j=1

wjf(x − j∆x)

⎤

⎦ .

From the binomial formula (2.2) it follows that
∑∞

j=0
wj = 0, see (2.11). Consider the

simplest case 0 < α < 1. Then it follows from (2.4) that wj < 0 for all j ≥ 1, and so∑∞
j=1

wj = −1. Define bj = −wj for j ≥ 1, so that

bj ∼ α

Γ(1 − α)
j−α−1 as j → ∞, and

∞∑

j=1

bj = 1.

Then

∆αf(x)

∆xα
= (∆x)−α

∞∑

j=1

[f(x) − f(x − j∆x)] bj

≈
∞∑

j=1

[f(x) − f(x − j∆x)]
α

Γ(1 − α)
(j∆x)−α−1

∆x

≈
∫ ∞

0

[f(x) − f(x − y)]
α

Γ(1 − α)
y−α−1dy

which motivates the generator form of the fractional derivative:

dαf(x)

dxα
=

∫ ∞

0

[f(x) − f(x − y)]
α

Γ(1 − α)
y−α−1dy. (2.15)

Integrate by parts with u = f(x) − f(x − y) to get the Caputo form

dαf(x)

dxα
=

1

Γ(1 − α)

∫ ∞

0

f ′(x − y)y−αdy =
1

Γ(1 − α)

∫ ∞

0

d

dx
f(x − y) y−αdy. (2.16)

Take the derivative outside the integral to get the Riemann-Liouville form

dαf(x)

dxα
=

1

Γ(1 − α)

d

dx

∫ ∞

0

f(x − y)y−αdy. (2.17)

[Are these forms equivalent?] These forms are valid for 0 < α < 1. For 1 < α < 2 we
can write the generator form

dαf(x)

dxα
=

α(α − 1)

Γ(2 − α)

∫ ∞

0

[f(x − y) − f(x) + yf ′(x)] y−1−αdy. (2.18)

Integrate by parts twice to get the Caputo form for 1 < α < 2:

dαf(x)

dxα
=

1

Γ(2 − α)

∫ ∞

0

d2

dx2
f(x − y)y1−αdy. (2.19)
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Section 2.2 More fractional derivatives 31

Move the derivative outside to get the Riemann-Liouville form for 1 < α < 2:

dαf(x)

dxα
=

1

Γ(2 − α)

d2

dx2

∫ ∞

0

f(x − y)y1−αdy. (2.20)

In Chapter 3 we will provide a rigorous proof that the generator form satisfies the FT
definition of the fractional derivative. The equivalence of the generator form and the
Caputo form will be discussed in the details at the end of this section. The general
relation between the Caputo and Riemann-Liouville forms will be discussed further in
Section 2.3.

Example 2.6. Let f(x) = eλx for some λ > 0, so that f ′(x) = λeλx. Using the
Caputo form for 0 < α < 1, a substitution u = λy, and the definition of the gamma
function, we get

dα

dxα

[
eλx

]
=

1

Γ(1 − α)

∫ ∞

0

λeλ(x−y)y−αdy

=
λeλx

Γ(1 − α)

∫ ∞

0

e−λyy−αdy

=
λeλx

Γ(1 − α)

∫ ∞

0

e−u
(u

λ

)−α du

λ

=
λeλx

Γ(1 − α)
λα−1

∫ ∞

0

e−uu(1−α)−1du

=
λeλx

Γ(1 − α)
λα−1

Γ(1 − α) = λαeλx

which agrees with the integer order case. For example, we have

d2

dx2

[
eλx

]
= λ2eλx

and so forth. Using the Riemann-Liouville form we get

dα

dxα

[
eλx

]
=

d

dx

[
1

Γ(1 − α)

∫ ∞

0

eλ(x−y)y−αdy

]

=
d

dx

[
eλx

Γ(1 − α)

∫ ∞

0

e−λyy−αdy

]

=
d

dx

[
eλx

Γ(1 − α)
λα−1

Γ(1 − α)

]

=
d

dx

[
λα−1eλx

]
= λαeλx

which agrees with the Caputo. In this case, both forms lead to the same result.

Before we consider our next example, we first develop some equivalent forms. Make
a substitution u = x − y in the Caputo form to get

dαf(x)

dxα
=

1

Γ(1 − α)

∫ x

−∞
f ′(u)(x − u)−αdu. (2.21)
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32 Chapter 2 Fractional Derivatives

The same substitution gives an alternative Riemann-Liouville derivative for 0 < α < 1:

dαf(x)

dxα
=

1

Γ(1 − α)

d

dx

∫ x

−∞
f(u)(x − u)−αdu. (2.22)

Example 2.7. For p > 0, define f(x) = xp for x ≥ 0, and f(x) = 0 for x < 0. Then
f ′(x) = pxp−1 for x > 0 and f ′(x) = 0 for x < 0. Recall the formula for the beta
density ∫ x

0

ya−1(x − y)b−1 dy =
Γ(a)Γ(b)

Γ(a + b)
xa+b−1

for a > 0 and b > 0. Then the Caputo form is

dα

dxα
[xp] =

1

Γ(1 − α)

∫ x

0

pyp−1(x − y)−αdy

=
p

Γ(1 − α)

∫ x

0

yp−1(x − y)(1−α)−1dy

=
p

Γ(1 − α)

Γ(p)Γ(1 − α)

Γ(p + 1 − α)
xp+(1−α)−1

=
pΓ(p)

Γ(p + 1 − α)
xp−α =

Γ(p + 1)

Γ(p − α + 1)
xp−α

which agrees with the integer order case. For example, we have

d2 [xp]

dx2
= p(p − 1)xp−2 =

Γ(p + 1)

Γ(p − 1)
xp−2

since Γ(p + 1) = p(p − 1)Γ(p − 1). Using the Riemann-Liouville form we get

dα

dxα
[xp] =

1

Γ(1 − α)

d

dx

[∫ x

0

yp(x − y)−αdy

]

=
1

Γ(1 − α)

d

dx

[∫ x

0

y(p+1)−1(x − y)(1−α)−1dy

]

=
1

Γ(1 − α)

d

dx

[
Γ(p + 1)Γ(1 − α)

Γ(p + 2 − α)
xp+1−α

]

=
Γ(p + 1)

Γ(p + 2 − α)
(p + 1 − α)xp−α =

Γ(p + 1)

Γ(p − α + 1)
xp−α

which again agrees with the Caputo form.

Our next example shows the Caputo and Riemann-Liouville forms need not agree.

Example 2.8. Let f(x) = 1 for x ≥ 0 and f(x) = 0 for x < 0. Then f ′(x) = 0
for x ̸= 0, so the Caputo fractional derivative is zero. In fact, the Caputo fractional
derivative of a constant function is always zero, just like the integer order derivative.
But the Riemann-Liouville derivative is not. For x > 0 and 0 < α < 1, use (2.22) to
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Section 2.2 More fractional derivatives 33

get

dα

dxα
f(x) =

1

Γ(1 − α)

d

dx

[∫ x

0

1 (x − y)−αdy

]

=
1

Γ(1 − α)

d

dx

[∫ x

0

u−αdu

]

=
1

Γ(1 − α)

d

dx

[
x1−α

1 − α

]

=
x−α

Γ(1 − α)
̸= 0.

Since f(x) = f(x − y) unless y > x > 0, the generator form is

dα

dxα
f(x) =

∫ ∞

0

[f(x) − f(x − y)]
α

Γ(1 − α)
y−α−1dy

=

∫ ∞

x
[1 − 0]

α

Γ(1 − α)
y−α−1dy

=
α

Γ(1 − α)

[
x−α

α

]
=

x−α

Γ(1 − α)

the same as the Riemann-Liouville form. Recall that we obtained the Caputo form
from the generator form via integration by parts. In this case, integration by parts
with u = f(x) − f(x − y) in the generator form (2.15) gives

∫ ∞

0

[f(x) − f(x − y)]
α

Γ(1 − α)
y−α−1dy

=

[
−y−α

Γ(1 − α)
(f(x) − f(x − y))

]∞

x

+

∫ ∞

x
f ′(x − y)

1

Γ(1 − α)
y−αdy

=
x−α

Γ(1 − α)
+

∫ ∞

0

f ′(x − y)
1

Γ(1 − α)
y−αdy

so the difference between these forms comes from the boundary terms.

Details

The generator form (2.15) of the fractional derivative of order 0 < α < 1 is an improper
integral. If f(x) is continuously differentiable, then f(x− y) = f(x)− yf ′(x) + O(y2)
as y → 0, and hence [f(x) − f(x − y)] y−α−1 = O(y−α) is integrable at x = 0. If f
is bounded, then [f(x) − f(x − y)] y−α−1 = O(y−1−α) as y → ∞ is also integrable
at infinity, so that the generator form of the fractional derivative exists. A similar
argument pertains to the generator form (2.18) when 1 < α < 2.

To derive the Caputo form (2.16) from the generator form (2.15), integrate by parts
in (2.15) with

u = f(x) − f(x − y) and dv =
α

Γ(1 − α)
y−α−1dy
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34 Chapter 2 Fractional Derivatives

which leads to
[
[f(x) − f(x − y)]

−y−α

Γ(1 − α)

]∞

y=0

+

∫ ∞

0

f ′(x − y)
1

Γ(1 − α)
y−αdy.

If f(x) is continuously differentiable and bounded, then [f(x)−f(x−y)]y−α = O(y1−α)
as y → 0 and [f(x) − f(x − y)]y−α = O(y−α) as y → ∞, so that the Caputo and
generator forms are equivalent. Many probability density functions f(x) satisfy these
conditions.

2.3 The Caputo derivative

The transform method for solving partial differential equations uses the FT for the
space variable x along with the formula

∫ ∞

−∞
e−ikxf ′(x) dx = (ik)f̂(k).

The Laplace transform (LT)

f̃(s) =

∫ ∞

0

e−stf(t) dt (2.23)

is usually used for the time variable t, along with the formula
∫ ∞

0

e−stf ′(t) dt = sf̃(s) − f(0). (2.24)

The Laplace transform (2.23) may also be considered as the integral over the entire
real line, where the function f(t) = 0 for t < 0, and then we replace f(0) by f(0+)
in (2.24). See Remark 2.12 for more details. The formula (2.24) differs from the FT
analogue because of the boundary term from integration by parts: Check (2.24) using
u = e−st and dv = f ′(t)dt, which leads to

∫ ∞

0

e−stf ′(t) dt = e−stf(t)
∣∣∞
t=0

+

∫ ∞

0

se−stf(t) dt

= −e−0f(0) + sf̃(s),

assuming e−stf(t) → 0 as t → ∞. Since the FT integrates over the entire real line
−∞ < x < ∞, the boundary term in that integration by parts vanishes, assuming
that f(x) → 0 as |x| → ∞. See Remark 2.12 for additional discussion.

For 0 < α < 1, the Riemann-Liouville fractional derivative Dα
t f(t) has LT sαf̃(s),

while the Caputo fractional derivative ∂α
t f(t) has LT sαf̃(s) − sα−1f(0) (see details

at the end of this section). Check using integration by parts that the LT of f ′′(t) is
s2f̃(s) − sf(0) − f ′(0). For 1 < α < 2, Dα

t f(t) has LT sαf̃(s), while ∂α
t f(t) has LT

sαf̃(s)− sα−1f(0)− sα−2f ′(0), and so forth (see details). Since the Caputo derivative
incorporates the initial condition in the usual way, it is the preferred form of the
fractional time derivative in practical applications.
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Section 2.3 The Caputo derivative 35

Example 2.9. Let p > 0 and define f(t) = tp for t ≥ 0. Substitute u = st and use
the definition of the gamma function to see that

f̃(s) =

∫ ∞

0

e−sttp dt

=

∫ ∞

0

e−u
(u

s

)p du

s

= s−p−1

∫ ∞

0

e−uu(p+1)−1 du = s−p−1
Γ(p + 1).

(2.25)

Then the Riemann-Liouville fractional derivative Dα
t f(t) has LT

∫ ∞

0

e−st

[
dα

dtα
tp

]
dt = sα−p−1

Γ(p + 1) =
[
s−(p−α)−1

Γ(p − α + 1)
]

Γ(p + 1)

Γ(p − α + 1)

and inverting the LT shows that

dα

dtα
[tp] = tp−α Γ(p + 1)

Γ(p − α + 1)
(2.26)

which agrees with Example 2.7. Since f(0) = 0, the Caputo and Riemann-Liouville
derivatives are equal in this case.

Example 2.10. Suppose f(t) = 1 for all t ≥ 0. It is easy to check that f̃(s) = 1/s.
Then the Caputo fractional derivative of order 0 < α < 1 has LT sα(1/s)−sα−11 = 0 so
that ∂α

t f(t) = 0. The Riemann-Liouville fractional derivative has LT sα(1/s) = sα−1

so that Dα
t f(t) = t−α/Γ(1 − α) using (2.25), which agrees with Example 2.8.

Derivatives are linear operators on some space of functions. We say that f ̸= 0 is an
eigenfunction of the linear operator d

dt provided that d
dtf(t) = λf(t) for some real (or

complex) number λ, called the eigenvalue. The function f(t) = eλt is an eigenfunction
since d

dt [e
λt] = λeλt, which is also reflected in the LT:

f̃(s) =

∫ ∞

0

e−steλt dt =

∫ ∞

0

e(λ−s)t dt =
1

s − λ

for s > λ. Then f ′(t) has LT

sf̃(s) − f(0) = s

(
1

s − λ

)
− 1 =

λ

s − λ
= λf̃(s).

We have used this fact to solve the diffusion equation: From ∂p/∂t = ∂2p/∂x2 the FT
yields d

dt p̂ = −k2p̂, so that the FT solution is an eigenfunction of d
dt with eigenvalue

−k2, and hence we can take p̂ = e−k2t, which inverts to a normal density.
The Mittag-Leffler function is defined by a power series

Eβ(z) =
∞∑

j=0

zj

Γ(1 + βj)
(2.27)
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36 Chapter 2 Fractional Derivatives

that converges absolutely for every complex z. Note that Eβ(0) = 1. The Mittag-
Leffler function reduces to the exponential function when β = 1. The eigenfunctions
of the Caputo fractional derivative are f(t) = Eβ(λtβ): Differentiate term-by-term
using (2.26) to see that

∂β
t f(t) = ∂β

t

⎡

⎣
∞∑

j=0

λjtβj

Γ(1 + βj)

⎤

⎦

=
∞∑

j=1

λj

Γ(1 + βj)

Γ(βj + 1)

Γ(βj + 1 − β)
tβj−β

= λ
∞∑

j=1

λj−1

Γ(1 + β(j − 1))
tβ(j−1) = λf(t).

(2.28)

For a complete and detailed proof, see Mainardi and Gorenflo [119].

Remark 2.11. Another proof uses LT: Use (2.25) to see that f(t) = Eβ(λtβ) has LT

∞∑

j=0

λj

Γ(1 + βj)
s−βj−1

Γ(βj + 1) = s−1

∞∑

j=0

(λs−β)j

= s−1 1

1 − λs−β
=

sβ−1

sβ − λ

(2.29)

when sβ > |λ|. Then ∂β
t f(t) has LT

sβ

(
sβ−1

sβ − λ

)
− sβ−11 =

s2β−1

sβ − λ
− sβ−1(sβ − λ)

sβ − λ
= λ

(
sβ−1

sβ − λ

)
.

Invert the LT to see that ∂β
t f(t) = λf(t).

Eigenfunctions of Caputo fractional derivatives are useful for solving time-fractional
diffusion equations. Starting from

∂β
t p(x, t) = D

∂2

∂x2
p(x, t)

take FT to get
∂β

t p̂(k, t) = −Dk2p̂(k, t)

which shows that p̂(k, t) is an eigenfunction of ∂β
t with eigenvalue −Dk2. Then

p̂(k, t) = Eβ([−Dk2]tβ)

and in order to solve this time-fractional diffusion equation, we need to invert this FT.
In the next section, we will solve this problem, and we will also develop a stochastic
interpretation for time-fractional diffusion. [Recall that space-fractional diffusion re-
flects power law jumps in space. What random process do you think is reflected in a
time-fractional diffusion?]
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Section 2.3 The Caputo derivative 37

Details

In this section, we have used the uniqueness theorem for LT: If f(t) and g(t) are
continuous, and if f̃(s) = g̃(s) for all s > s0, then f(t) = g(t) for all t > 0, see for
example Feller [65, p. 433].

In Remark 2.11 we took the LT of the infinite series (2.29) term-by term. This
can be justified as follows. Theorem 8.1 in Rudin [168] states that if the power series∑∞

j=0
cjuj converges for |u| < R, then

∑∞
j=0

cjuj converges uniformly on |u| < R − ε
for any 0 < ϵ < R. Then, since the power series (2.27) converges for all z, for any
fixed s > 0, λ ∈ R, and β > 0, a substitution u = tβ shows that the series

∞∑

j=0

(λtβ)j

Γ(1 + βj)
e−st = e−st

∞∑

j=0

(λtβ)j

Γ(1 + βj)

converges uniformly in t ∈ [0, x] for any real number x > 0. Next we apply [168,
Theorem 7.16]: If a sequence of functions fn(t) is integrable on [a, b] and converges to
f(t) uniformly on t ∈ [a, b], then f(t) is integrable and

∫ b

a
f(t) dt = lim

n→∞

∫ b

a
fn(t) dt.

Define

fn(t) =
n∑

j=0

(λtβ)j

Γ(1 + βj)
e−st

and

f(t) =
∞∑

j=0

(λtβ)j

Γ(1 + βj)
e−st

and apply these two theorems to get
∫ x

0

∞∑

j=0

(λtβ)j

Γ(1 + βj)
e−stdt =

∫ x

0

f(t) dt

= lim
n→∞

∫ x

0

fn(t) dt

= lim
n→∞

n∑

j=0

∫ x

0

(λtβ)j

Γ(1 + βj)
e−stdt

=
∞∑

j=0

∫ x

0

(λtβ)j

Γ(1 + βj)
e−stdt.

Now let x → ∞ to get
∫ ∞

0

∞∑

j=0

(λtβ)j

Γ(1 + βj)
e−stdt = lim

x→∞

∞∑

j=0

∫ x

0

(λtβ)j

Γ(1 + βj)
e−stdt. (2.30)

It remains to show that the limit on the right hand side of (2.30) can be taken inside
the sum. Theorem 7.10 in [168] states that, if |gj(x)| ≤ Cj for all x and all j, and if
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38 Chapter 2 Fractional Derivatives

∑
j Cj < ∞, then

∑
j gj(x) converges uniformly in x. Fix s > 0 such that sβ > |λ|

and define

gj(x) =

∫ x

0

(λtβ)j

Γ(1 + βj)
e−stdt

and

Cj =

∫ ∞

0

(|λ|tβ)j

Γ(1 + βj)
e−stdt.

Since |gj(x)| ≤ Cj and
∞∑

j=0

Cj =
sβ−1

sβ − |λ| < ∞,

it follows that
∑∞

j=0
gj(x) converges uniformly in x. Lastly, Theorem 7.11 in [168]

implies that if hn(x) → h(x) uniformly in x, and if hn(x) → Dn as x → ∞ for all n,
then

lim
x→∞

lim
n→∞

hn(x) = lim
n→∞

lim
x→∞

hn(x).

Then with

hn(x) =
n∑

j=1

gj(x) =
n∑

j=1

∫ x

0

(λtβ)j

Γ(1 + βj)
e−stdt

and

h(x) =
∞∑

j=1

gj(x) =
∞∑

j=1

∫ x

0

(λtβ)j

Γ(1 + βj)
e−stdt

it follows that

lim
x→∞

lim
n→∞

hn(x) = lim
x→∞

∞∑

j=1

∫ x

0

(λtβ)j

Γ(1 + βj)
e−stdt

= lim
n→∞

lim
x→∞

hn(x)

=
∞∑

j=0

∫ ∞

0

(λtβ)j

Γ(1 + βj)
e−stdt.

This completes the proof of term-by-term integration of the series in Remark 2.11.
We now derive the expression for the LT of the Caputo fractional derivative of order

0 < α < 1. For a function f(x) defined on x ≥ 0, the Caputo fractional derivative is
defined by

∂α
x f(x) =

1

Γ(1 − α)

∫ x

0

f ′(x − y)y−αdy, (2.31)

which is equivalent to (2.16) with f(x) = 0 for x < 0. Assuming that e−sxf ′(x−y)y−α

is integrable as a function of two variables, x and y, substitute x − y = z, change the
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Section 2.3 The Caputo derivative 39

order of integration, and apply (2.25) to get

1

Γ(1 − α)

∫ ∞

0

e−sx

∫ x

0

f ′(x − y)y−αdy =
1

Γ(1 − α)

∫ ∞

0

y−α

∫ ∞

y
e−sxf ′(x − y)dx dy

=
1

Γ(1 − α)

∫ ∞

0

e−syy−αdy

∫ ∞

0

e−szf ′(z)dz

= sα−1
(
sf̃(s) − f(0)

)

= sαf̃(s) − sα−1f(0).

To derive the expression for the LT of the Riemann-Liouville fractional derivative,
note that for a function f(x) defined on x ≥ 0 the Riemann-Liouville fractional deriva-
tive (2.17) reduces to

D
α
xf(x) =

1

Γ(1 − α)

d

dx

∫ x

0

f(x − y)y−αdy. (2.32)

To compute its LT, integrate by parts to get

1

Γ(1 − α)

∫ ∞

0

e−sx

(
d

dx

∫ x

0

f(x − y)y−αdy

)
dx = I1 + I2

where

I1 =
1

Γ(1 − α)

[
e−sx

∫ x

0

f(x − y)y−αdy

]∞

x=0

= 0

assuming f(x) is bounded, and

I2 =
s

Γ(1 − α)

∫ ∞

0

e−sx

∫ x

0

f(x − y)y−αdy dx

=
s

Γ(1 − α)

∫ ∞

0

y−α

∫ ∞

y
e−sxf(x − y)dx dy

=
s

Γ(1 − α)

∫ ∞

0

e−syy−αdy ×
∫ ∞

0

e−szf(z)dz

= s sα−1f̃(s) = sαf̃(s)

assuming e−sxf(x − y)y−α is integrable. It follows that the Caputo and Riemann-
Liouville fractional derivatives of order 0 < α < 1 are related by

∂α
x f(x) = D

α
xf(x) − f(0)

t−α

Γ(1 − α)

=
1

Γ(1 − α)

d

dx

[∫ x

0

f(x − y)y−αdy

]
− f(0)

t−α

Γ(1 − α)
.

(2.33)

Some authors use the last line of (2.33) as the definition of the Caputo fractional
derivative, since it exists for a broader class of functions (e.g., see Kochubei [100]).
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40 Chapter 2 Fractional Derivatives

Remark 2.12. This remark explains the connection between Fourier and Laplace
transforms in more detail, and introduces the Fourier-Stieltjes transform and the weak
derivative. Suppose that f(t) is a real-valued function defined for t ≥ 0, and extend
to the entire real line by setting f(t) = 0 when t < 0. Then the two-sided Laplace
transform

f̃(s) =

∫
e−stf(t) dt =

∫ ∞

−∞
e−stf(t) dt

agrees with the definition (2.23). If f ′(t) exists at every t > 0, then we can write
∫

e−stf ′(t) dt = lim
a↓0

∫ ∞

a
e−stf ′(t) dt

= lim
a↓0

[
e−stf(t)

∣∣∣∣
∞

a

−
∫ ∞

a
(−s)e−stf(t) dt

]

= sf̃(s) − f(0+)

(2.34)

using integration by parts with u = e−st and dv = f ′(t) dt. This formula reduces to
(2.24) when f(t) is continuous from the right at t = 0.

We have noted previously that f ′(t) has FT (ik)f̂(k). This was proven in the details
at the end of Section 1.1, assuming that f ′(t) exists for all t ∈ R and f, f ′ are integrable.
These conditions do not hold in the present case, since f ′(t) may be undefined at t = 0.
In fact, let us suppose that f(0) ̸= 0, so that f(t) is not even continuous at t = 0. The
usual interpretation of the FT in this case is the Fourier-Stieltjes transform, using the
idea of a weak derivative: Suppose that f(t) is a right-continuous function of bounded
variation, so that f(t) can be written as the difference of two monotone nondecreasing
functions, f(t) = f1(t) − f2(t) where fi(t) ≤ fi(t′) whenever t ≤ t′, for i = 1, 2.
Then we can define a Borel measure µ on R such that µ(a, b] = f(b) − f(a), and
write the Lebesgue-Stieltjes integral

∫
g(t)f(dt) =

∫
g(t)µ(dt) for any suitable Borel

measurable function g(t). The Lebesgue integral is a standard construction in analysis
and probability (e.g., see [34, 59, 167]). A brief review of Lebesgue integrals, Lebesgue-
Stieltjes integrals, and their connection to Riemann integrals will be included in the
details at the end of Section 7.6. Now we can interpret the FT of the derivative as a
Fourier-Stieltjes transform

∫
e−ikt∂tf(t) dt =

∫
e−iktf(dt). (2.35)

If the traditional first derivative f ′(t) exists for all t ∈ R, then we have ∂tf(t) dt =
f(dt) as an equivalence of measures, but the Fourier-Stieltjes transform also exists for
functions with jumps. The canonical example is the Heaviside function f(t) = H(t) :=
I(t ≥ 0), so that H(t) = 0 when t < 0, and H(t) = 1 when t ≥ 0. Here µ is a point
mass at t = 0 and

∫
e−ikt∂tf(t) dt =

∫
e−iktf(dt) = e−ik0µ{0} = 1

for all k ∈ R. In functional analysis, it is common to write ∂tf(t) = δ(t) in this case,
where δ(t) is the Dirac delta function. The Dirac delta function is a distribution, or
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Section 2.3 The Caputo derivative 41

generalized function, defined as a linear operator on a suitable space of test functions
g(t) by the formula ∫

g(t)δ(t) dt = g(0),

another notation for the Lebesgue-Stieltjes integral
∫

g(t)∂tf(t) dt =
∫

g(t)f(dt) when
f(t) = H(t) and ∂tf(t) = δ(t). The generalized function ∂tf(t) = δ(t) is also called
the weak (or distributional) derivative of the Heaviside function f(t) = H(t). Now
apply the integration by parts formula for functions F,G of bounded variation with
no common points of discontinuity (e.g., see [81, Theorem 19.3.13]):

∫ b

a
F (t)G(dt) = F (b)G(b) − F (a)G(a) −

∫ b

a
G(t)F (dt).

Define F (t) = e−ikt and G(t) = f(t), and note that both are functions of bounded
variation on any finite interval [a, b], with no common points of discontinuity, since
F (t) is continuous. Then

∫ b

a
e−ikt∂tf(t) dt =

∫ b

a
e−iktf(dt)

= e−ikbf(b) − e−ikaf(a) −
∫ b

a
(−ik)e−iktf(t) dt.

Suppose that f(t) → 0 as t → ∞. Since f(t) = 0 for t < 0, we can take limits as
a → −∞ and b → ∞ to conclude that

∫ ∞

−∞
e−ikt∂tf(t) dt = (ik)f̂(k). (2.36)

This extends the usual FT formula, using the weak derivative. This notation is com-
monly used in the physics literature. Recall that we are assuming f(t) = 0 for t < 0,
f(0) ̸= 0, f is continuous from the right, of bounded variation, and f ′(t) exists in
the traditional sense for all t > 0. Then in the sense of distributions, we can use the
physics notation to write

∂tf(t) =

⎧
⎪⎪⎨

⎪⎪⎩

0 x < 0

f(0) δ(t) x = 0

f ′(t) x > 0

and so we have
∫ ∞

−∞
e−ikt∂tf(t) dt = 0 +

∫ ∞

−∞
e−iktf(0) δ(t) dt +

∫ ∞

0

e−iktf ′(t) dt

= 0 + e−ik0f(0) +
[
ikf̂(k) − f(0)

]

= ikf̂(k).

In the third term, we have used integration by parts in exactly the same manner as
(2.34). Indeed, this integral may be viewed as the LT of f ′(t) evaluated at s = ik.
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42 Chapter 2 Fractional Derivatives

In some applications, it is quite natural to consider Laplace transforms where s is a
complex number (e.g., see Arendt, Batty, Hieber and Neubrander [8]). In summary,
the difference between the formulas for the FT and the LT of the first derivative reflects
the fact that these two transforms interpret the first derivative in a different manner
at the boundary point t = 0.

2.4 Time-fractional diffusion

The simplest time-fractional diffusion equation

∂β
t p(x, t) = D

∂2

∂x2
p(x, t) (2.37)

employs a Caputo fractional derivative (2.31) of order 0 < β < 1. We will solve this
fractional partial differential equation using the Fourier-Laplace transform (FLT):

p̄(k, s) =

∫ ∞

0

∫ ∞

−∞
e−ste−ikxp(x, t) dx dt =

∫ ∞

0

e−stp̂(k, t) dt.

To illustrate the method, first consider the traditional Brownian motion solution

p(x, t) =
1√
4πt

e−x2/(4t) (2.38)

to the diffusion equation ∂p/∂t = ∂2p/∂x2. Take FT in (2.38) to get p̂(k, t) = e−k2t

and then take LT to get

p̄(k, s) =

∫ ∞

0

e−ste−k2t dt =

∫ ∞

0

e−(s+k2)t dt =
1

s + k2

for all s > 0. Note that p̂(k, 0) = 1 for all k, reflecting the fact that the Brownian
motion B(t) = 0 with probability one when t = 0. Rewrite in the form

sp̄(k, s) − 1 = −k2p̄(k, s)

and invert the LT to get
d

dt
p̂(k, t) = −k2p̂(k, t).

Then invert the FT to recover the diffusion equation

∂

∂t
p(x, t) =

∂2

∂x2
p(x, t). (2.39)

Now we apply the FLT method to the time-fractional diffusion equation (2.37). Take
FT to get

∂β
t p̂(k, t) = −Dk2p̂(k, t)

and assume the point source initial condition p̂(k, 0) ≡ 1. Take LT to get

sβ p̄(k, s) − sβ−1 = −Dk2p̄(k, s) (2.40)
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Section 2.4 Time-fractional diffusion 43

and rearrange to get

p̄(k, s) =
sβ−1

sβ + Dk2
, (2.41)

then invert using (2.29) to get

p̂(k, t) = Eβ(−Dk2tβ).

In order to invert this FT, we will need a stochastic model for time-fractional diffusion.

Remark 2.13. The time-fractional diffusion equation (2.37) can also be written in
terms of the Riemann-Liouville fractional derivative D

β
t . Recall that D

β
t f(t) has LT

sβ f̃(s). Note that (2.25) is valid for p > −1, and substitute p = −β to see that sβ−1

is the LT of t−β/Γ(1 − β). Invert the LT in (2.40) to get

D
β
t p̂(k, t) − t−β

Γ(1 − β)
= −Dk2p̂(k, t)

and then invert the FT to arrive at

D
β
t p(x, t) = D

∂2

∂x2
p(x, t) +

t−β

Γ(1 − β)
δ(x). (2.42)

Here δ(x) is the Dirac delta function, whose Fourier transform δ̂(k) ≡ 1 (see the
details at the end of this section). Equation (2.42) is the fractional kinetic equation
for Hamiltonian chaos introduced by Zaslavsky [207] in the physics literature. The
mathematical study of (2.42) was initiated by Kochubei [100, 101] and Schneider and
Wyss [179].

Now we will outline the stochastic model for time-fractional diffusion. Additional
details and precise mathematical proofs will be provided later in Chapter 4 of this
book. The random walk S(n) = Y1 + · · · + Yn gives the location of a particle after
n iid jumps. Now suppose that the nth jump occurs at time Tn = J1 + · · · + Jn

where the iid waiting times Jn > 0 between jumps have a power law probability tail
P[Jn > t] = Bt−β for t large, with 0 < β < 1 and B > 0. For suitable choice of B, an
argument similar to Section 1.2 shows that

c−1/βT[ct] ⇒ Dt

where the limit process Dt is stable with index β, and LT

E[e−sDt ] = e−tsβ

= q̃(s, t),

where q(u, t) is the density of Dt. Since

d

dt
q̃(s, t) = −sβ q̃(s, t)

this density solves
∂

∂t
q(u, t) = − ∂β

∂uβ
q(u, t)

Brought to you by | Brown University Rockefeller Library
Authenticated | 128.148.231.12

Download Date | 4/28/14 11:52 PM



44 Chapter 2 Fractional Derivatives

using the Riemann-Liouville fractional derivative. Let

Nt = max{n ≥ 0 : Tn ≤ t}

denote the number of jumps by time t ≥ 0. The continuous time random walk (CTRW)
S(Nt) gives the particle location at time t. These are inverse processes: {Nt ≥ n} =
{Tn ≤ t}, and in fact, {Nt ≥ u} = {T⌈u⌉ ≤ t} where ⌈u⌉ is the smallest integer n ≥ u.
The inverse process has an inverse weak limit:

c−βNct ⇒ Et

where {Et ≤ u} = {Du ≥ t}. We can define Et = inf{u > 0 : Du > t}, the first
passage time of Du above the level u > 0. The scaling c1/βDt = Dct in distribution
implies the inverse scaling cβEt = Ect in distribution. The CTRW scaling limit as the
time scale c → ∞ is

c−β/2S(Nct) = (cβ)−1/2S(cβ c−βNct) ≈ (cβ)−1/2S(cβ Et) ≈ B(Et)

a time-changed Brownian motion. Since

P[Et ≤ u] = P[Du ≥ t] =

∫ ∞

t
q(u, t) dt

the inner process Et has density

h(u, t) =
d

du
P[Et ≤ u] =

d

du

[
1 −

∫ t

0

q(u, t) dt

]

with LT

h̃(u, s) = − d

du

[
s−1q̃(u, s)

]

= − d

du

[
s−1e−tsβ

]
= sβ−1e−tsβ

using the fact that integration corresponds to multiplication by s−1 in LT space.
Since B(Et) = B(u) where u = Et is independent of x = B(u), a simple conditioning
argument shows that the process B(Et) has density

m(x, t) =

∫ ∞

0

p(x, u)h(u, t) du ≈
∑

u

P(B(u) = x|Et = u)P(Et = u).

Take FLT (x 0→ k and t 0→ s) to get

m̄(k, s) =

∫ ∞

0

e−uDk2

sβ−1e−usβ

du = sβ−1

∫ ∞

0

e−u(sβ+Dk2) du =
sβ−1

sβ + Dk2

which agrees with (2.41). This shows that the limit density m(x, t) solves the time-
fractional diffusion equation (2.37). Also note that m̂(k, t) = Eβ([−Dk2]tβ).
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Figure 2.3. Solution to time-fractional diffusion equation (2.37) at time t = 0.1 with
β = 0.75 and dispersion D = 1.0

The CTRW model provides a physical explanation for fractional diffusion. A power
law jump distribution with P[Yn > x] = Cx−α leads to a fractional derivative in space
∂α/∂xα of the same order. A power law waiting time distribution P[Jn > t] = Bx−β

leads to a fractional time derivative ∂β
t of the same order. Long power-law jumps

reflect a heavy tailed velocity distribution, which allows particles to make occasional
long jumps, leading to anomalous super-diffusion. Long waiting times model particle
sticking and trapping, leading to anomalous sub-diffusion:

B(Ect) ≃ B(cβEt) ≃ cβ/2B(Et).

Since β < 1, the density of this process spreads slower than a Brownian motion. Figure
2.3 plots a typical density m(x, t) for the process B(Et). As compared to a normal
density, this curve has a sharper peak, and heavier tails. The R code used to produce
Figure 2.3 will be discussed in Example 5.13.

Remark 2.14. Continuous time random walks were proposed by Montroll and Weiss
[147], and developed further by Scher and Lax [177], Klafter and Silbey [99], and
Hilfer and Anton [82]. An interesting CTRW model for the migration of cancer cells
was presented in Fedotov and Iomin [64]. See Berkowitz, Cortis, Dentz and Scher
[30] for a review of continuous time random walks in hydrology. Scalas [175] reviews
applications of the CTRW model in finance. Schumer and Jerolmack [183] develop an
interesting CTRW model for sediment deposition in the geological record.
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46 Chapter 2 Fractional Derivatives

Details

To prove the inverse scaling, recall that Dcu ≃ c1/βDu and write

P[Ect ≤ u] = P[Du ≥ ct] = P[c−1Du ≥ t]

= P[(c−β)1/βDu ≥ t] = P[Dc−βu ≥ t]

= P[Et ≤ c−βu] = P[cβEt ≤ u]

so that Ect ≃ cβEt.
To prove the inverse limit, recall that c−1/βT[ct] ⇒ Dt and {Nt ≥ u} = {T⌈u⌉ ≤ t}

and write

P[c−βNct ≤ u] = P[Nct ≤ cβu] = P[T⌈cβu⌉ ≥ ct]

= P[c−1T⌈cβu⌉ ≥ t] = P[(cβ)−1/βT⌈cβu⌉ ≥ t] → P[Du ≥ t] = P[Et ≤ u]

so that c−βNct ⇒ Et.
The Dirac delta function δ(x) was introduced in Remark 2.12. It is a generalized

function, or distribution, defined for suitable test functions g(t) (e.g., bounded con-
tinuous functions) by

∫
g(x)δ(x) dx = g(0). One way to understand equation (2.42)

is that p(x, t) is a weak solution, sometimes called a distributional solution, to the
differential equation, meaning that

∫
Dβ

t p(x, t)g(x) dx =

∫
D

∂2

∂x2
p(x, t)g(x) dx +

∫
t−β

Γ(1 − β)
δ(x)g(x) dx

for suitable test functions g(x). This functional analysis construction is equivalent to
using cumulative distribution functions and Fourier-Stieltjes transforms. Let

P (x, t) =

∫ x

−∞
p(y, t) dy

be the cumulative distribution function of a Brownian motion B(t) with pdf p(x, t)
given by (2.38). Then P (x, t) is the unique solution to the diffusion equation

∂

∂t
P (x, t) =

∂2

∂x2
P (x, t) (2.43)

with initial condition P (x, 0) = I(x ≥ 0), the Heaviside function. To see this, apply
the Fourier-Stieltjes transform

P̂ (k, t) =

∫
e−ikxP (dx, t)

on both sides of equation (2.43) to get

d

dt
P̂ (k, t) = (ik)2P̂ (k, t) = −k2P̂ (k, t)

with initial condition P̂ (k, 0) =
∫

e−ikxP (dx, 0) = 1 for all k ∈ R, since P (dx, 0) is
a point mass at x = 0, i.e., the probability distribution of B(0). Taking derivatives
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Section 2.4 Time-fractional diffusion 47

with respect to x on both sides of (2.43) recovers the diffusion equation (2.39) with
the Dirac delta function initial condition p(x, 0) = δ(x). Since

∫
e−ikxP (dx, t) =

∫
e−ikxp(x, t) dx

for all t > 0, these Fourier transform calculations are completely equivalent. Hence,
equation (2.42) is equivalent to

Dβ
t P (x, t) = D

∂2

∂x2
P (x, t) +

t−β

Γ(1 − β)
H(x)

where p(x, t) = ∂xP (x, t), and H(x) = I(x ≥ 0) is the Heaviside function.
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Chapter 3

Stable Limit Distributions

In this chapter, we develop the fundamental mathematical tools for fractional diffusion.
The Fourier transform of a stable law is computed from the Lévy representation for
infinitely divisible laws. The extended central limit theorem for a random walk with
power law jumps follows from the convergence criteria for triangular arrays. The
theory of semigroups leads naturally to the generator form of the fractional derivative.

3.1 Infinitely divisible laws

Infinitely divisible laws are a class of probability distributions that includes the normal
and stable laws. The Lévy representation for infinitely divisible laws is the basis for
both the stable FT, and the generator form of the fractional derivative. Recall that
the generator form of the fractional derivative is

dαf(x)

dxα
=

∫ ∞

0

[f(x) − f(x − y)]
α

Γ(1 − α)
y−α−1dy (3.1)

for 0 < α < 1, or

dαf(x)

dxα
=

∫ ∞

0

[f(x − y) − f(x) + yf ′(x)]
α(α − 1)

Γ(2 − α)
y−1−αdy (3.2)

for 1 < α < 2. The stable FT p̂(k, t) = etD(ik)α

leads to the space-fractional diffusion
equation ∂p/∂t = D∂αp/∂xα. How do these forms connect? The answer lies in some
deep mathematical theory, which we now begin to develop.

We start by establishing some notation. Given a random variable Y , we define
the cumulative distribution function (cdf) F (x) = P[Y ≤ x], the probability density
function (pdf) f(y) = F ′(y), and the probability measure µ(a, b] = F (b) − F (a) =
P[a < Y ≤ b]. We write Y ≃ µ or Y ≃ F , and we will also write X ≃ Y if two random
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50 Chapter 3 Stable Limit Distributions

variables X,Y have the same distribution. The characteristic function

µ̂(k) = E
[
eikY

]
=

∫
eikxµ(dx) =

∫
eikxF (dx) =

∫
eikxf(x) dx = f̂(−k)

is related to the Fourier transform (FT) by an obvious change of sign. Characteristic
functions with eikx are used in probability, because they simplify the formula (1.11)
for moments. Fourier transforms with e−ikx are used in differential equations, because
they simplify the formula (1.14) for derivatives. See the details and the end of this
section for more information.

We say that (the distribution of) Y is infinitely divisible if Y ≃ X1 + · · · + Xn for
every positive integer n, where (Xn) are independent and identically distributed (iid)
random variables. If Xn ≃ µn, then we also have

µ̂(k) = E[eikY ] = E[eik(X1+···+Xn)] = E[eikX1 ] · · ·E[eikXn)] = µ̂n(k)n

since X1, . . . , Xn are independent.

Example 3.1. If Y ≃ N (a,σ2) (normal with mean a and variance σ2), then µ̂(k) =
exp(ika + 1

2
σ2k2). If we take µ̂n(k) = exp(ik(a/n) + 1

2
(σ2/n)k2) then clearly µ̂(k) =

µ̂n(k)n so Y is infinitely divisible. In fact Y ≃ X1+· · ·+Xn where Xj ≃ N (a/n, σ2/n)
are iid. The sum of independent normal random variables is also normal, the means
add, and the variances add.

Example 3.2. If Y is Poisson with mean λ, then P[Y = j] = µ{j} = e−λλj/j! for
j = 0, 1, 2, . . . and

µ̂(k) =

∫
eikxµ(dx) =

∞∑

j=0

eikj
P[Y = j]

=
∞∑

j=0

eikje−λ λj

j!

= e−λ
∞∑

j=0

(λeik)j

j!

= exp(−λ) exp(λeik) = exp(λ[eik − 1])

so µ̂(k) = µ̂n(k)n where µ̂n(k) = exp((λ/n)[eik −1]). The sum of independent Poisson
random variables is also Poisson, and the means add.

Example 3.3. A compound Poisson random variable Y = W1 + · · ·+ WN = SN is a
random sum, where Sn = W1 + · · ·+Wn, (Wj) are iid with probability measure ω(dy),
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Section 3.1 Infinitely divisible laws 51

and N has a Poisson distribution with mean λ, independent of (Wj). Then

F (y) = P[Y ≤ y] = P[SN ≤ y]

=
∞∑

j=0

P[SN ≤ y|N = j]P[N = j]

=
∞∑

j=0

P[Sj ≤ y]e−λ λj

j!
.

Then Y has characteristic function

µ̂(k) =
∞∑

j=0

ω̂(k)je−λ λj

j!

= e−λ
∞∑

j=0

[λω̂(k)]j

j!

= e−λeλω̂(k) = eλ[ω̂(k)−1].

Take µ̂n(k) = e(λ/n)[ω̂(k)−1] to see that Y is infinitely divisible. The sum of indepen-
dent compound Poisson random variables with the same jump distribution are also
compound Poisson.

To motivate what comes next, write the compound Poisson characteristic function

µ̂(k) = eλ[ω̂(k)−1]

= exp

(
λ

[∫
eikxω(dx) − 1

])

= exp

(
λ

[∫ (
eikx − 1

)
ω(dx)

])

= exp

([∫ (
eikx − 1

)
λω(dx)

])

= exp

(∫ (
eikx − 1

)
φ(dx)

)

where the Lévy measure φ(dx) = λω(dx). This is also called the jump intensity. The
random variable Y = W1 + · · · + WN is the accumulation of a random number of
jumps. The number of these jumps that lie in any Borel set B is Poisson with mean
φ(B) = λω(B). To see this, note that ω(B) = P[Wn ∈ B] and split the Poisson
process of jumps into two parts, depending on whether or not the jump lies in B. A
general theorem on Poisson processes (e.g., see Ross [166, Proposition 5.2]) shows that
an independent splitting produces two independent Poisson processes, and then the
number of jumps that lie in B follows a Poisson with mean φ(B) = λω(B).

The Lévy representation gives the general form of the characteristic function for an
infinitely divisible law. This form reflects the normal and compound Poisson cases.
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52 Chapter 3 Stable Limit Distributions

We say that a σ-finite Borel measure φ(dy) on {y : y ̸= 0} is a Lévy measure if
φ{y : |y| > R} < ∞ and ∫

0<|y|≤R
y2φ(dy) < ∞ (3.3)

for all R > 0. See the details at the end of this section for more information.

Theorem 3.4 (Lévy representation). A random variable Y ≃ µ is infinitely divisible
if and only if its characteristic function µ̂(k) = E[eikY ] = eψ(k) where

ψ(k) = ika − 1

2
k2b +

∫ (
eiky − 1 − iky

1 + y2

)
φ(dy) (3.4)

for some a ∈ R, b ≥ 0, and some Lévy measure φ(dy). This Lévy representation
µ ≃ [a, b, φ] is unique.

Proof. The proof is based on a compound Poisson approximation, see Meerschaert and
Scheffler [135, Theorem 3.1.11].

Example 3.5. If Y ≃ N (a,σ2) then Theorem 3.4 holds with b = σ2 and φ = 0.

Example 3.6. If Y is compound Poisson, then Theorem 3.4 holds with b = 0, φ(dy) =
λω(dy), and

a = λ

∫
y

1 + y2
ω(dy).

To check this, write

ψ(k) = ikλ

∫
y

1 + y2
ω(dy) +

∫ (
eiky − 1 − iky

1 + y2

)
λω(dy)

= λ

∫
eikyω(dy) − 1 = λ [ω̂(k) − 1] .

Note that the integral expression for a exists, since the integrand is bounded.

The next result shows that every infinitely divisible law is essentially compound
Poisson. Suppose that Yn is a random variable with cdf Fn(x) and probability measure
µn for each positive integer n. We say that Yn ⇒ Y (convergence in distribution,
sometimes called convergence in law, or weak convergence) if Fn(x) → F (x) for all
x ∈ R such that F (x+) = F (x−). In view of the continuity theorem for FT (see
Theorem 1.3), this is equivalent to µ̂n(k) → µ̂(k) for every k ∈ R.

Proposition 3.7. Every infinitely divisible law is the weak limit of compound Poisson
laws.

Proof. Use the Lévy Representation Theorem 3.4 to write µ̂(k) = eψ(k) where (3.4)
holds. Then µ̂(k) = [µ̂n(k)]n where µ̂n(k) = eψ(k)/n. This shows that Y ≃ X1+· · ·+Xn

where the iid summands (Xn) ≃ µn. Now define Yn = X1 + · · · + XN where N is
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Section 3.1 Infinitely divisible laws 53

Poisson with mean n. Then Yn is compound Poisson with characteristic function
ν̂n(k) = exp(n[µ̂n(k) − 1]). Fix k ∈ R and write

µ̂n(k) − 1 =

(

1 +
1

n
ψ(k) +

1

2!

(
1

n
ψ(k)

)2

+ · · ·
)

− 1 =
1

n
ψ(k) + O(n−2)

so that n[µ̂n(k) − 1] = ψ(k) + O(n−1). Then ν̂n(k) = exp(ψ(k) + O(n−1)) →
exp(ψ(k)) = µ̂(k) for all k ∈ R, so νn ⇒ µ.

The compound Poisson approximation gives a concrete interpretation of the Lévy
measure. Suppose that µ ≃ [0, 0, φ] so that

µ̂(k) = exp

[∫ (
eiky − 1 − iky

1 + y2

)
φ(dy)

]
.

Define

ν̂n(k) = exp

[∫

|y|>1/n

(
eiky − 1 − iky

1 + y2

)
φ(dy)

]

= exp

(
λn

∫ (
eiky − 1

)
ωn(dy) − ikan

)

where

λn =

∫

|y|>1/n
φ(dy) = φ{y : |y| > n−1}

ωn(B) = λ−1
n

∫

|y|>1/n,y∈B
φ(dy) = λ−1

n φ(B ∩ {y : |y| > n−1})

an =

∫

|y|>1/n

y

1 + y2
φ(dy).

Then νn ≃ Yn+an a shifted compound Poisson where Yn ≃ W1+· · ·+WN , (Wn) ≃ ωn

is iid, and N is Poisson with mean λn independent of (Wn). The Lévy Representation
Theorem 3.4 implies that ν̂n(k) → eψ(k) = µ̂(k), so νn ⇒ µ. Every infinitely divisible
law with no normal component can be approximated by such a compound Poisson,
the sum of a random number of jumps. The Lévy measure controls both the number
and size of the jumps.

Details

The Lebesgue-Stieltjes integral and the distributional derivative were introduced briefly
in Remark 2.12. Here we provide more detail, with an emphasis on probability distri-
butions. The cumulative distribution function F (x) = P[Y ≤ x] is monotone nonde-
creasing and continuous from the right, and it follows that there exists a Borel measure
µ such that µ(a, b] = F (b) − F (a) for all a < b in R. If the pdf f(x) = F ′(x) exists,
then we can define the probability measure

µ(a, b] = P[a < Y ≤ b] =

∫ b

a
f(x) dx,
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54 Chapter 3 Stable Limit Distributions

and the characteristic function

µ̂(k) =

∫
eikxf(x) dx.

If the random variable Y has atoms, i.e., if P[Y = xk] > 0 for some real numbers xk,
then F (xk) > F (xk−) and the cumulative distribution function is not continuous, so
it is certainly not differentiable. Then the pdf cannot exist at every x ∈ R. In this
case, the characteristic function

µ̂(k) = E
[
eikY

]
=

∫
eikxµ(dx) =

∫
eikxF (dx)

is defined using the Lebesgue integral with respect to the probability measure µ, or
equivalently, the Lebesgue-Stieltjes integral with respect to the cumulative distribution
function F (x). If the atoms of Y (i.e., the discontinuity points of the cumulative
distribution function F (x)) are isolated, then we may also write the pdf of Y using
physics notation. For example, if Y is a Poisson random variable with mean λ, then
P[Y = j] = µ{j} = e−λλj/j! for j = 0, 1, 2, . . ., and we can use physics notation to
write

f(x) = ∂xF (x) =
∞∑

j=0

e−λ λj

j!
δ(x − j)

where ∂xF (x) is the weak or distributional derivative of F (x). This is a completely rig-
orous alternative notation for the pdf. Readers of this book who are more familiar with
the physics notation may consider the Lebesgue integral

∫
eikxµ(dx) or the Lebesgue-

Stieltjes integral
∫

eikxF (dx) as an alternative notation for
∫

eikxf(x) dx, with the
understanding that the pdf f(x) may contain Dirac delta function terms to represent
atoms of the probability distribution. In a similar manner, readers who are more famil-
iar with the physics notation may interpret the Lévy measure as φ(dy) = φ(y)dy where
the function φ(y) is integrable over {y : |y| > R} and the function y2φ(y) is integrable
over {0 < |y| ≤ R}. It is possible that the Lévy measure φ(dy) contains atoms. For ex-
ample, a Poisson random variable with mean λ has Lévy measure φ(dy) = λ δ(y−1) dy.
For readers who are familiar with Lebesgue integrals and Lebesgue-Stieltjes integrals,
it is worth while to learn the alternative notation, since it is commonly used without
explanation in the physics literature. This notation also appears frequently in the
literature on partial differential equations.

If X ≃ µ and Y ≃ ν are independent then P[X ∈ A, Y ∈ B] = P[X ∈ A]P[Y ∈ B] =
µ(A)ν(B) is the joint distribution of (X,Y ), so the characteristic function of X + Y
is E[eik(X+Y )] =

∫
eik(x+y)µ(dx)ν(dy) =

∫
eikxµ(dx)

∫
eikyν(dy) = µ̂(k)ν̂(k).

Since the integrand in (3.4) is bounded, the integral exists over {y : |y| > R}. To
show that the integral exists over {y : 0 < |y| ≤ R} for any k ∈ R, use (3.3) along with

eiky − 1 − iky

1 + y2
= (eiky − 1 − iky) +

(
iky − iky

1 + y2

)
:= f(y) + g(y)

where f(y) = O(y2) as y → 0 by a Taylor series approximation, and

g(y) = y − y

1 + y2
=

y(1 + y2) − y

1 + y2
=

y3

1 + y2
= O(y3) as y → 0.
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Section 3.2 Stable characteristic functions 55

Since φ is a Lévy measure,
∫

0<|y|≤R
y2φ(dy) < ∞,

and ∫

0<|y|≤R
|y|3φ(dy) ≤ R

∫

0<|y|≤R
y2φ(dy) < ∞.

3.2 Stable characteristic functions

Here we compute the characteristic function of a stable law, using the Lévy represen-
tation. First we need to develop some alternative forms.

Theorem 3.8. Suppose Y ≃ µ is infinitely divisible with characteristic function
µ̂(k) = eψ(k) and (3.4) holds. Then we can also write µ̂(k) = eψ0(k) where

ψ0(k) = ika0 − 1

2
k2b +

∫ (
eiky − 1 − ikyI(|y| ≤ R)

)
φ(dy) (3.5)

for any R > 0, for some unique a0 depending on R and a. Furthermore:

(a) If ∫

0<|y|≤R
|y|φ(dy) < ∞ (3.6)

then we can also write µ̂(k) = eψ1(k) where

ψ1(k) = ika1 − 1

2
k2b +

∫ (
eiky − 1

)
φ(dy) (3.7)

for some unique a1 depending on a0; and

(b) If ∫

|y|>R
|y|φ(dy) < ∞ (3.8)

then we can also write µ̂(k) = eψ2(k) where

ψ2(k) = ika2 − 1

2
k2b +

∫ (
eiky − 1 − iky

)
φ(dy) (3.9)

for some unique a2 depending on a0.

Proof. The integral

δ0 =

∫ (
y

1 + y2
− yI(|y| ≤ R)

)
φ(dy)

exists, since the integrand is bounded and O(y3) as y → 0. If we take a0 = a − δ0,
then ψ(k) = ψ0(k). If (3.7) holds, then ψ0(k) = ψ1(k), where

a1 = a0 −
∫

0<|y|≤R
yφ(dy).
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56 Chapter 3 Stable Limit Distributions

If (3.9) holds, then ψ0(k) = ψ2(k), where

a2 = a0 +

∫

|y|>R
yφ(dy).

Uniqueness follows from Theorem 3.4.

We now define a one-sided stable law µ to be an infinitely divisible law with Lévy
representation [a, 0, φ] where a ∈ R and

φ(dy) =

{
Cαy−α−1dy for y > 0

0 for y < 0
(3.10)

for some 0 < α < 2. We call α the index of that stable law. Note that (3.10) is a Lévy
measure since

φ{y : |y| > R} =

∫ ∞

R
φ(dy) =

∫ ∞

R
Cαy−α−1dy = CR−α

and ∫

0<|y|≤R
y2φ(dy) =

∫ R

0

Cαy1−αdy =
Cα

2 − α
R2−α

are both finite for any R > 0.

Example 3.9. Suppose Y ≃ µ is a one-sided stable law stable with index 0 < α < 1.
Since ∫

0<|y|≤R
|y|φ(dy) =

∫ R

0

Cαy−αdy =
Cα

1 − α
R1−α

is finite, we can use Theorem 3.8 (a) to write

µ̂(k) = eψ1(k) = exp

[
ika1 +

∫ ∞

0

(
eiky − 1

)
Cαy−α−1dy

]
. (3.11)

We want to evaluate this integral.

Proposition 3.10. When 0 < α < 1, the stable characteristic function (3.11) with
a1 = 0 can be written in the form

µ̂(k) = E[eikY ] = exp [−CΓ(1 − α)(−ik)α] . (3.12)

Proof. We follow the proof in Feller [65], see also [135, Lemma 7.3.7]. We will approx-
imate the integral

I(α) =

∫ ∞

0

(
eiky − 1

)
αy−α−1dy

by another integral

Is(α) =

∫ ∞

0

(
e(ik−s)y − 1

)
αy−α−1dy
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Section 3.2 Stable characteristic functions 57

for s > 0. Integrate by parts with u = e(ik−s)y − 1 to see that

Is(α) =
[(

e(ik−s)y − 1
)

(−y−α)
]∞
0

+ (ik − s)

∫ ∞

0

e(ik−s)yy−αdy (3.13)

and note that the boundary terms vanish, since e(ik−s)y − 1 = O(y) as y → 0. The
characteristic function of a gamma pdf is

∫ ∞

0

eiky ba

Γ(a)
ya−1e−bydy =

(
1 − ik

b

)−a

for a > 0 and b > 0. Set a − 1 = −α and b = s to see that

Is(α) = (ik − s)
Γ(1 − α)

s1−α

(
1 − ik

s

)α−1

= −Γ(1 − α)(s − ik)α

for s > 0. Apply the dominated convergence theorem to see that Is(α) → I(α) as
s → 0. This shows that

I(α) = −Γ(1 − α)(−ik)α (3.14)

and then (3.12) follows.

The FT of this stable law is E[e−ikY ] = µ̂(−k) = exp [−CΓ(1 − α)(ik)α]. Given
any infinitely divisible law µ with characteristic function µ̂(k) = eψ(k), we can define a
Lévy process Zt such that E[eikZt ] = etψ(k) for all t ≥ 0. A Lévy process Zt is infinitely
divisible, with Z0 = 0, Zt+s − Zt ≃ Zs for all s, t > 0 (stationary increments), and Zt

independent of Zt+s −Zt for all s, t > 0 (independent increments). See Section 4.3 for
more details. Note that Zt ≃ [ta, tb, tφ] since

tψ(k) = ikta − 1

2
k2tb +

∫ (
eiky − 1 − iky

1 + y2

)
tφ(dy).

Taking µ as above, the stable Lévy process Zt has FT p̂(k, t) = E[e−ikZt ] = e−Dt(ik)α

where D = CΓ(1 − α) > 0. Then

d

dt
p̂(k, t) = −D(ik)αp̂(k, t).

Invert the FT to see that p(x, t) solves the fractional diffusion equation

∂

∂t
p(k, t) = −D

∂α

∂xα
p(k, t).

Note that in this case (0 < α < 1) there is a minus sign on the right-hand side.

Example 3.11. Now suppose that Y ≃ µ is a one-sided stable law stable with index
1 < α < 2. Since

∫

|y|>R
|y|φ(dy) =

∫ ∞

R
Cαy−αdy =

Cα

α − 1
R1−α

is finite, we can use Theorem 3.8 (b) to write

µ̂(k) = eψ2(k) = exp

[
ika2 +

∫ ∞

0

(
eiky − 1 − iky

)
Cαy−α−1dy

]
. (3.15)
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58 Chapter 3 Stable Limit Distributions

Proposition 3.12. When 1 < α < 2, the stable characteristic function (3.15) with
a2 = 0 can be written in the form

µ̂(k) = E[eikY ] = exp

[
C

Γ(2 − α)

α − 1
(−ik)α

]
. (3.16)

Proof. The proof is similar to Proposition 3.10. Write

J(α) =

∫ ∞

0

(
eiky − 1 − iky

)
αy−α−1dy

and

Js(α) =

∫ ∞

0

(
e(ik−s)y − 1 − (ik − s)y

)
αy−α−1dy

for s > 0. Integrate by parts with u = e(ik−s)y −1− (ik−s)y to see that the boundary
terms vanish (see details) and

Js(α) = (ik − s)

∫ ∞

0

(
e(ik−s)y − 1

)
y−αdy

=
ik − s

α − 1

∫ ∞

0

(
e(ik−s)y − 1

)
(α − 1)y−(α−1)−1dy

(3.17)

where 0 < α − 1 < 1. Then we can apply the calculation in the proof of Proposition
3.10 to see that

Js(α) =
ik − s

α − 1
Is(α − 1)

=
ik − s

α − 1

[
−Γ(1 − (α − 1))(s − ik)α−1

]
=

Γ(2 − α)

α − 1
(s − ik)α

for s > 0. Then dominated convergence theorem implies

Js(α) → J(α) =
Γ(2 − α)

α − 1
(−ik)α

as s → 0.

Taking µ as above, the stable Lévy process Zt with Z1 ≃ µ has FT p̂(k, t) =
E[e−ikZt ] = eDt(ik)α

where D = CΓ(2 − α)/(α − 1) > 0. Then

d

dt
p̂(k, t) = D(ik)αp̂(k, t)

which leads to the fractional diffusion equation

∂

∂t
p(k, t) = D

∂α

∂xα
p(k, t).

Note that in this case (1 < α < 2) there is a no minus sign on the right-hand side.
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Section 3.3 Semigroups 59

Details

The Dominated Convergence Theorem (DCT) (e.g., see Rudin [168, Theorem 11.32])
states that if fn(y) → f(y) for all y and if |fn(y)| ≤ g(y) for all n and all y, where∫

g(y) dy exists, then
∫

fn(y) dy →
∫

f(y) dy and these integrals exist. Write

Is(α) =

∫ ∞

0

(
e(ik−s)y − 1

)
αy−α−1dy

=

∫ ∞

0

(
e−sy cos(ky) − 1

)
αy−α−1dy + i

∫ ∞

0

(
e−sy sin(ky)

)
αy−α−1dy.

Since |e(ik−s)y − 1| ≤ 2, both integrands are bounded by C1y−α−1 for all y > 0. To
establish an integrable bound near zero, apply the mean value theorem on [0, y] for
0 < y < 1 to get

|e−sy cos(ky) − 1| ≤ e−sy|s cos(ky) + k sin(ky)|y ≤ (|k| + s)y

Since s → 0, eventually s < 1, and with C2 = |k| + 1, |e−sy cos(ky) − 1| ≤ C2y. Note
that k is fixed in this argument. Similarly

|e−sy sin(ky)| ≤ C2y,

so both integrands are also bounded by C2y αy−α−1 = C3y−α for 0 < y < 1. Define

g(y) =

{
C3y−α for 0 < y < 1, and
C1y−α−1 for y ≥ 1.

Then
∫∞
0

g(y) dy exists, and the dominated convergence theorem applies to the real
and imaginary parts of the integral, which shows that Is(α) → I(α). It is also possible
to apply the DCT directly to the complex-valued integrand.

A similar bound shows that the boundary terms in (3.13) vanish, since:
∣∣∣
(
e(ik−s)y − 1

)
(−y−α)

∣∣∣ ≤ 2y−α → 0 as y → ∞; and
∣∣∣
(
e(ik−s)y − 1

)
(−y−α)

∣∣∣ ≤ 2C2y
1−α → 0 as y → 0.

The boundary terms in (3.17) vanish since, for fixed s > 0 and k ∈ R,
∣∣∣
(
e(ik−s)y − 1 − (ik − s)y

)
(−y−α)

∣∣∣ ≤ C4y
1−α → 0 as y → ∞; and

∣∣∣
(
e(ik−s)y − 1 − (ik − s)y

)
(−y−α)

∣∣∣ ≤ C5y
2−α → 0 as y → 0.

3.3 Semigroups

The theory of semigroups allows an elegant treatment of fractional diffusion equations
as ordinary differential equations on a space of functions. It also explains the generator
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60 Chapter 3 Stable Limit Distributions

form of the fractional derivative. A semigroup is a family of linear operators on a
Banach space. A Banach space B is a complete normed vector space. That is, if
fn ∈ B is a Cauchy sequence in this vector space, such that ∥fn − fm∥ → 0 as
m, n → ∞, then there exists some f ∈ B such that ∥fn − f∥ → 0 as n → ∞ in the
Banach space norm. In this section, we will use some basic results on semigroups. For
more on the general theory of semigroups, see [8, 86, 152].

Example 3.13. The Banach space B = C(R) consists of bounded continuous func-
tions f : R → R with the norm ∥f∥ = sup{|f(x)| : x ∈ R}. The space B = C0(R)
consists of continuous functions with f(x) → 0 as |x| → ∞, with the same norm.

Example 3.14. The Banach space L2 consists of finite variance random variables X
with the norm ∥X∥ =

√
E[X2]. We will use this space in the proofs of Section 7.6.

Some authors write L2(Ω, P ) to emphasize that this is a space of random variables on
the sample space Ω with probability measure P .

Example 3.15. The Banach space Lp(R) consists of functions f : R → R such that∫
|f(x)|pdx < ∞, with the norm ∥f∥p = (

∫
|f(x)|pdx)1/p for 0 < p < ∞. The most

common choices are p = 1 and p = 2. The Sobolev space W k,p(R) consists of all
functions such that f and all of its derivatives f (j) up to order k exist and are in
Lp(R), with the norm

∥f∥k,p =

⎛

⎝
k∑

j=0

∥f (j)∥p
p

⎞

⎠
1/p

.

A family of linear operators {Tt : t ≥ 0} on a Banach space B is called a semigroup
if T0f = f for all f ∈ B, and Tt+s = TtTs (the composition of these two operators).
We say that Tt is bounded if, for each t ≥ 0, there exists some Mt > 0 such that
∥Ttf∥ ≤ Mt∥f∥ for all f ∈ B. We say that Tt is strongly continuous if ∥Ttf − f∥ → 0
for all f ∈ B. A strongly continuous, bounded semigroup is also called a C0 semigroup.

The generator of the semigroup Tt is a linear operator defined by

Lf(x) = lim
t→0

Ttf(x) − T0f(x)

t − 0
. (3.18)

This is the abstract derivative of the semigroup evaluated at t = 0. Note that the
limit in (3.18) is taken in the Banach space norm. For example, when B = C0(R) we
require that

sup
x∈R

∣∣∣∣
Ttf(x) − T0f(x)

t − 0
− Lf(x)

∣∣∣∣ → 0 as t → 0, (3.19)

and then (3.18) also holds for each x ∈ R. If Tt is a C0 semigroup, then the generator
(3.18) exists, and its domain

Dom(L) = {f ∈ B : Lf exists }

is a dense subset of B, i.e., for any f ∈ B there exists a sequence fn ∈ Dom(L) such
that ∥fn − f∥ → 0, see Pazy [152, Corollary I.2.5].
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Section 3.3 Semigroups 61

Theorem 3.16. If Tt is a C0 semigroup on the Banach space B, then the function
q(t) = Ttf solves the Cauchy problem

d

dt
q = Lq; q(0) = f (3.20)

for any f ∈ Dom(L).

Proof. See, for example, Pazy [152, Theorem I.2.4].

In our applications, the Banach space B is typically a space of functions, like C0(R)
or Lp(R). Then we can write Theorem 3.16 in a more concrete form: If Tt is a C0

semigroup on the Banach space of functions B, then q(x, t) = Ttf(x) solves the Cauchy
problem

∂

∂t
q(x, t) = Lq(x, t); q(x, 0) = f(x), (3.21)

for any f ∈ Dom(L). If L = ∂2/∂x2, then (3.21) is the diffusion equation, and (3.20)
represents this partial differential equation as an ordinary differential equation on some
suitable space of functions.

Given a Lévy process {Zt : t ≥ 0}, we define a family of linear operators

Ttf(x) = E[f(x − Zt)] (3.22)

for t ≥ 0, for suitable functions f(x). The next result shows that (3.22) defines a C0

semigroup on the Banach space C0(R), and gives an explicit form of the generator in
terms of the Lévy representation.

Theorem 3.17. Suppose that Zt is a Lévy process, and that E[eikZ1 ] = eψ(k) where
ψ(k) is given by (3.4). Then (3.22) defines a C0 semigroup on C0(R) with generator

Lf(x) = −af ′(x) + 1

2
bf ′′(x) +

∫ (
f(x − y) − f(x) +

yf ′(x)

1 + y2

)
φ(dy). (3.23)

The domain Dom(L) contains all f such that f, f ′, f ′′ ∈ C0(R). If we also have
f, f ′, f ′′ ∈ L1(R), then ψ(−k)f̂(k) is the FT of Lf(x).

Proof. See Sato [174, Theorem 31.5] for the proof that (3.22) defines a C0 semigroup
on C0(R) with generator (3.23). Hille and Phillips [86, Theorem 23.14.2] proved that
Lf(x) has FT ψ(−k)f̂(k) when f, f ′, f ′′ ∈ L1(R).

Remark 3.18. In this remark, we sketch the main ideas in the proof of Theorem
3.17. Strong continuity of the semigroup (3.22) on C0(R) follows from the fact that
Zt ⇒ Z0 = 0. The semigroup property Tt+s = TtTs follows from the fact that Zt

has stationary independent increments (see details). The generator formula (3.23)
comes from a FT inversion: Suppose {Zt : t ≥ 0} is a Lévy process with FT p̂(k, t) =
E[e−ikZt ] = exp(tψ(−k)). If Zt has pdf p(x, t), then we have

Ttf(x) =

∫
f(x − y)p(y, t) dy (3.24)
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62 Chapter 3 Stable Limit Distributions

a convolution of the two functions. We define the convolution

f ∗ g(x) =

∫
f(x − y)g(y) dy

and we note that the FT converts convolutions to products: The FT of f ∗ g is
F [f ∗ g](k) = f̂(k)ĝ(k) (see details). If f(x) is a probability density, and if X ≃ f(x)
is independent of Zt, then X + Zt ≃ Ttf(x), since the pdf of a sum of independent
random variables is a convolution of their respective densities. We can think of X as
the initial particle location, with pdf f(x). Then Ttf(x) is the pdf of particle location
at time t ≥ 0, with T0f(x) = f(x). Since the FT of a convolution is a product, it
follows from (3.22) that Ttf(x) has FT etψ(−k)f̂(k). Then for suitable functions f we
can pass the FT inside the limit and write

F [Lf ](k) = lim
t→0

etψ(−k)f̂(k) − f̂(k)

t − 0

=

[
lim
t→0

[1 + tψ(−k) + 1

2
t2ψ(−k)2 + · · · ] − 1

t

]
f̂(k) = ψ(−k)f̂(k).

We call ψ(−k) the Fourier symbol of the generator L. Use the Lévy representation
(3.5) to write

ψ(−k)f̂(k) = −a(ik)f̂(k) + 1

2
(ik)2bf̂(k) +

∫ (
e−iky − 1 +

iky

1 + y2

)
f̂(k)φ(dy).

Then invert this FT using the fact that
∫

e−ikxf(x − y) dx = e−iky f̂(k)

to arrive at (3.23). The condition f, f ′, f ′′ ∈ L1(R) is required to show that the FT of
Lf(x) exists.

Remark 3.19. In this remark, we outline the main idea behind the proof of Theorem
3.16, for the special case of an infinitely divisible semigroup. Take FT in (3.22) to get

q̂(k, t) = etψ(−k)f̂(k); q̂(k, 0) = f̂(k).

Compute
∂

∂t
q̂(k, t) = ψ(−k)q̂(k, t)

and invert the FT to arrive at (3.21). Note that the domain Dom(L) of the genera-
tor (3.23) on the space L1(R) consists of all functions f ∈ L1(R) such that ĥ(k) =
ψ(−k)f̂(k) is the FT of some function h ∈ L1(R), see Baeumer and Meerschaert [17,
Theorem 2.2].

Now we illustrate the semigroup machinery with some familiar examples.
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Section 3.3 Semigroups 63

Example 3.20. If Zt ≃ N (0, 2Dt) then

µ̂t(k) = e−tDk2

= etψ(k)

with Fourier symbol ψ(−k) = D(ik)2. The generator can be obtained by inverting
ψ(−k)f̂(k) = D(ik)2f̂(k), so that L = D∂2/∂x2 in this case. The Cauchy problem is:

∂

∂t
q(x, t) = D

∂2

∂x2
q(x, t); q(x, 0) = f(x).

Its solution is

q(x, t) = Ttf(x) =

∫ ∞

−∞
f(x − y)p(y, t) dy

where

p(y, t) =
1√

4πDt
exp

(
− y2

4Dt

)
.

If the initial particle location is a random variable X with pdf f(x), then the particle
location at time t > 0 is X + Zt ≃ Ttf(x), a Brownian motion with a random initial
location. This is a Markov process: The pdf of the displacement (X+Zt+s)−(X+Zt) =
Zt+s − Zt is independent of the past history of the process {Zu : 0 ≤ u ≤ t}.

Example 3.21. If Zt = tv for some constant velocity v then

Ttf(x) = E[f(x − Zt)] = f(x − vt),

the shift semigroup. Its generator is

Lf(x) = lim
t→0

f(x − vt) − f(x)

t − 0

v

v
= −vf ′(x).

Here µ̂t(k) = E[eikvt] = etψ(k) so that ψ(k) = ikv, and then ψ(−k) = −v(ik), so that
L = −v ∂/∂x. It is easy to check that q(x, t) = f(x − vt) solves ∂q/∂t = −v∂q/∂x.

Example 3.22. If Zt ≃ N (vt,σ2t) is a Brownian motion with drift, take a = v,
b = σ2, and φ = 0 in (3.23) to see that the density q(x, t) of X + Zt solves

∂

∂t
q(x, t) = −v

∂

∂x
q(x, t) +

1

2
σ2 ∂2

∂x2
q(x, t) = Lq(x, t)

with initial condition q(x, 0) = f(x). This diffusion equation with drift comes from
the sum of two semigroups. The semigroups commute, so the generators add.

Theorem 3.17 gives an explicit form for the generator of an infinitely divisible semi-
group. Now we apply this result to explain the generator form of the fractional deriva-
tive. In order to apply Theorem 3.17 to stable semigroups, it is convenient to develop
some alternative forms of the generator. The next result is the semigroup analogue of
Theorem 3.8.
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64 Chapter 3 Stable Limit Distributions

Theorem 3.23. Suppose that Zt is a Lévy process, and that E[eikZ1 ] = eψ(k) where
ψ(k) is given by (3.4). Then we can also write the generator (3.23) in the form

Lf(x) = −a0f
′(x) + 1

2
bf ′′(x) +

∫
(f(x − y) − f(x) + yf ′(x)I(|y| ≤ R))φ(dy) (3.25)

for any R > 0, for some unique a0 depending on R and a. Furthermore:

(a) If (3.6) holds, then we can also write

Lf(x) = −a1f
′(x) + 1

2
bf ′′(x) +

∫
(f(x − y) − f(x))φ(dy) (3.26)

for some unique a1 depending on a0; and

(b) If (3.8) holds, then we can also write

Lf(x) = −a2f
′(x) + 1

2
bf ′′(x) +

∫
(f(x − y) − f(x) + yf ′(x))φ(dy) (3.27)

for some unique a2 depending on a0.

Proof. The proof is very similar to Theorem 3.8. Since the integral

δ0 =

∫ (
y

1 + y2
− yI(|y| ≤ R)

)
φ(dy)

exists, we can take a0 = a − δ0. If (3.6) holds, take

a1 = a0 −
∫

0<|y|≤R
yφ(dy).

If (3.8) holds, take

a2 = a0 +

∫

|y|>R
yφ(dy).

Example 3.24. Let Zt be a stable Lévy process with index 0 < α < 1, such that Z1

has the one-sided stable characteristic function (3.11) with a1 = 0. Then it follows
from (3.26) that the generator of this semigroup is

Lf(x) =

∫ ∞

0

(f(x − y) − f(x))Cαy−α−1dy.

Proposition 3.10 shows that ψ(−k) = −CΓ(1 − α)(ik)α is the Fourier symbol of this
one-sided stable semigroup. If we take C = 1/Γ(1 − α), then this shows that L =
−∂α/∂xα, using the generator form (2.15) of the fractional derivative for 0 < α < 1.
Note the minus sign in the generator in this case. A result of Hille and Phillips [86,
Theorem 23.15.2] implies that this generator exists for all f ∈ L1(0,∞) such that
f(0) = 0 and f ′ ∈ L1(0,∞). This strengthens the result in Proposition 2.1, since it
implies that the fractional derivative dαf/dxα of order 0 < α < 1 exists whenever the
first derivative f ′ exists.
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Example 3.25. Let Zt be a stable Lévy process with index 1 < α < 2, such that Z1

has the one-sided stable characteristic function (3.15) with a2 = 0. Then it follows
from (3.27) that the generator of this semigroup is

Lf(x) =

∫ ∞

0

(f(x − y) − f(x) + yf ′(x))Cαy−α−1dy.

Proposition 3.12 shows that

ψ(−k) = C
Γ(2 − α)

α − 1
(ik)α

is the Fourier symbol of this one-sided stable semigroup. If we take C = (α−1)/Γ(2−
α), then this shows that L = ∂α/∂xα, using the generator form (2.18) of the fractional
derivative of order 1 < α < 2. Note the positive sign in the generator in this case.
Theorem 3.17 shows that this fractional derivative exists when f, f ′, f ′′ ∈ C0(R), which
strengthens the result in Proposition 2.1, since it implies that the fractional derivative
dαf/dxα of order 1 < α < 2 exists whenever the second derivative f ′′ exists.

Details

A substitution z = x − y shows that the FT of f ∗ g is

∫ ∞

−∞
e−ikx

(∫ ∞

−∞
f(x − y)g(y) dy

)
dx =

∫ ∞

−∞
e−ik(z+y)

∫ ∞

−∞
f(z)g(y) dy dz

=

∫ ∞

−∞
e−ikzf(z) dz

∫ ∞

−∞
e−ikyg(y) dy

= f̂(k)ĝ(k).

The proof of the semigroup property Tt+s = TtTs for (3.22) uses a conditioning
argument. Since Zt is a Lévy process, (Zt+s−Zt) ≃ Zs, and (Zt+s−Zt) is independent
of Zt. Then we can write

Tt+sf(x) = E[f(x − Zt+s)]

= E
[
E[f(x − {(Zt+s − Zt) + Zt})|Zt]

]

=

∫
E[f(x − {Zs + y})]p(y, t) dy

=

∫
E[f(x − y − Zs)]p(y, t) dy

=

∫
Tsf(x − y)p(y, t) dy

= E[Tsf(x − Zt)] = TtTsf(x).

(3.28)

This is a special case of the Chapman-Kolmogorov equation for Markov processes.
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66 Chapter 3 Stable Limit Distributions

3.4 Poisson approximation

In order to motivate the proof of the extended central limit theorem, by the method of
triangular arrays, we show here how the stable laws emerge as weak limits of compound
Poisson random variables with Pareto (power law) jumps.

Example 3.26. Suppose that Y is a one-sided stable random variable with charac-
teristic function µ̂(k) = eψ(k), where

ψ(k) = −CΓ(1 − α)(−ik)α =

∫ ∞

0

(
eiky − 1

)
Cαy−α−1dy

for some 0 < α < 1, using Proposition 3.10. We will approximate Y by an infinitely
divisible random variable Yn with characteristic function E[eikYn ] = eψn(k) where

ψn(k) =

∫ ∞

1/n

(
eiky − 1

)
Cαy−α−1dy.

Define

λn =

∫ ∞

1/n
Cαy−α−1dy =

[
− Cy−α

]∞

1/n

= Cnα

and write
ψn(k) = λn

∫ (
eiky − 1

)
ωn(dy)

where

ωn(dy) = λ−1
n Cαy−α−1I(y > 1/n) dy = n−ααy−α−1I(y > 1/n) dy

is a probability measure. This is a special case of the Pareto distribution, originally
invented to model the distribution of incomes. The general Pareto distribution can be
defined by setting P[X > x] = Cx−α for x > C1/α where C, α are positive constants.

Take (Wn) iid with distribution ωn so that

P[Wn > x] =

∫ ∞

x
n−ααy−α−1dy =

[
n−α(−y−α)

]∞

x

= Ax−α

for all x > A1/α = 1/n. Write

ψn(k) = λn

∫ (
eiky − 1

)
ωn(dy) = λn[ω̂n(dy) − 1]

to see that Yn is compound Poisson, in view of Example 3.3. In fact Yn ≃ W1+· · ·+WN

where (Wn) are iid Pareto with P[Wn > x] = Ax−α and N is Poisson with mean
λn = Cnα independent of (Wn). Since the integral ψ(k) exists, we certainly have
ψn(k) → ψ(k) for each fixed k ∈ R, and then µ̂n(k) = eψn(k) → eψ(k) = µ̂(k) as
n → ∞. This proves that Yn ⇒ Y .

Hence a stable law is essentially a compound Poisson with power law jumps. The
mean number of jumps λn = Cnα → ∞ as the minimum jump size 1/n → 0, so that
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Section 3.4 Poisson approximation 67

the jump intensity φn(dy) = λnωn(dy) increases without bound to the Lévy measure
φ of the stable law. This means that the stable law represents the accumulation of an
infinite number of power law jumps. For any n, it combines a finite number of jumps
of size greater than 1/n with an infinite number of jumps of size less than 1/n.

We now define the general two-sided stable law µ with index 0 < α < 2 to be an
infinitely divisible law with Lévy representation [a, 0, φ], where a ∈ R and

φ(dy) =

{
pCαy−α−1dy for y > 0, and
qCα|y|−α−1dy for y < 0.

(3.29)

where p, q ≥ 0 with p + q = 1. This is a Lévy measure since

φ{y : |y| > R} = CR−α and
∫

0<|y|≤R
y2φ(dy) =

Cα

2 − α
R2−α

are both finite for any R > 0.

Example 3.27. Consider a two-sided stable random variable Y with index 0 < α < 1.
Since ∫

0<|y|≤R
|y|φ(dy) =

∫ R

0

Cαy−αdy =
Cα

1 − α
R1−α

is finite, we can apply Theorem 3.8 (a). Suppose that Y is centered so that a1 = 0 in
(3.7). Then we can write µ̂(k) = E[eikY ] = eψ(k) where

ψ(k) =

∫ (
eiky − 1

)
φ(dy)

= p

∫ ∞

0

(
eiky − 1

)
Cαy−α−1dy + q

∫ 0

−∞

(
eiky − 1

)
Cα(−y)−α−1dy

= −pCΓ(1 − α)(−ik)α + q

∫ ∞

0

(
e−ikx − 1

)
Cαx−α−1dx

= −pCΓ(1 − α)(−ik)α − qCΓ(1 − α)(ik)α

(3.30)

using a substitution x = −y and Proposition 3.10.
Define Yn ≃ µn where µ̂n(k) = eψn(k) with

ψn(k) =

∫

|y|>1/n

(
eiky − 1

)
φ(dy).

Let

λn =

∫

|y|>1/n
φ(dy) = Cnα

and ωn(dy) = λ−1
n I(|y| > 1/n) φ(dy). Take (Wn) ≃ ωn iid so that

P[Wn > x] = pAx−α and P[Wn < −x] = qAx−α
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for all x > A1/α = 1/n. Then Yn ≃ W1 + · · · + WN where N is Poisson with mean
λn = Cnα independent of (Wn). Again we have Yn ⇒ Y , which shows that the two-
sided stable is also the accumulation of power law jumps, including a finite number of
jumps larger than 1/n and an infinite number of very small jumps. The constants p
and q balance the positive and negative jumps.

The two-sided stable law decomposes into independent positive and negative parts:
Use (3.30) to write ψ(k) = pψ+(k) + qψ−(k) where

ψ+(k) =

∫ ∞

0

(
eiky − 1

)
Cαy−α−1dy = −CΓ(1 − α)(−ik)α,

ψ−(k) =

∫ 0

−∞

(
eiky − 1

)
Cα|y|−α−1dy = −CΓ(1 − α)(ik)α.

Then µ̂(k) = eψ(k) = epψ+(k)eqψ−(k) which shows that Y ≃ Y + + Y − a sum of two
independent stable laws. We can also write Yn ≃ Y +

n + Y −n a sum of two indepen-
dent compound Poisson, the first with only positive jumps, and the second with only
negative jumps.

The generator form of the negative fractional derivative comes inverting the FT for
the symbol ψ−(−k): Use the fact that

∫
e−ikxf(x + y) dx = eiky f̂(k) to see that

ψ−(−k)f̂(k) =

∫ ∞

0

(
eiky f̂(k) − f̂(k)

)
Cαy−α−1dy

is the FT of ∫ ∞

0

(f(x + y) − f(x))Cαy−α−1dy.

Take C = 1/Γ(1 − α) to get

dαf(x)

d(−x)α
= F−1[(−ik)αf̂(k)]

= F−1[−ψ−(−k)f̂(k)]

=
α

Γ(1 − α)

∫ ∞

0

(f(x) − f(x + y)) y−α−1dy

(3.31)

for 0 < α < 1. Formula (3.31) also follows from (3.26) and a simple change of variables.
Suppose that Zt is a two-sided stable Lévy motion with Z1 ≃ Y . Then p̂(k, t) =

E[e−ikZt ] = etψ(−k) with ψ(−k) = −pD(ik)α − qD(−ik)α and D = CΓ(1 − α) > 0.
Then

dp̂(k, t)

dt
= ψ(−k)p̂(k, t) = −pD(ik)αp̂(k, t) − qD(−ik)αp̂(k, t)

which inverts to the two-sided fractional diffusion equation

∂p(x, t)

∂t
= −pD

∂αp(x, t)

∂xα
− qD

∂αp(x, t)

∂(−x)α

for 0 < α < 1. The positive fractional derivative codes positive power law jumps, and
the negative fractional derivative corresponds to the negative power law jumps.
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Section 3.5 Shifted Poisson approximation 69

3.5 Shifted Poisson approximation

Here we develop the Poisson approximation for stable laws with index 1 < α < 2. In
this case, the Poisson approximation involves a shift.

Example 3.28. Suppose that Y is one-sided stable with characteristic function µ̂(k) =
E[eikY ] = eψ(k) where

ψ(k) =

∫ (
eiky − 1 − iky

)
φ(dy)

=

∫ ∞

0

(
eiky − 1 − iky

)
Cαy−α−1dy

= C
Γ(2 − α)

α − 1
(−ik)α

for 1 < α < 2, using Proposition 3.12. Let Yn be infinitely divisible with characteristic
function µ̂n(k) = eψn(k) where

ψn(k) =

∫ ∞

1/n

(
eiky − 1 − iky

)
Cαy−α−1dy

=

∫ (
eiky − 1 − iky

)
φn(dy)

and φn(dy) = I(y > 1/n) φ(dy) is the Lévy measure of this infinitely divisible law.
Define

λn =

∫
φn(dy) =

∫ ∞

1/n
Cαy−α−1dy = Cnα

so that ωn(dy) = λ−1
n φn(dy) is a probability measure. Take (Wj) iid with distribution

ωn and write

ψn(k) = λn

∫ (
eiky − 1 − iky

)
ωn(dy) = λn

∫ (
eiky − 1

)
ωn(dy) − ikan

where an = λn

∫
y ωn(dy) = λnE[Wj ]. Here P[Wj > x] = Ax−α with A = n−α so that

E[Wj ] =

∫ ∞

1/n
y Aαy−α−1dy =

[
Aα

y1−α

1 − α

]∞

1/n

=
Aα

α − 1
nα−1

is finite for all n for 1 < α < 2. Then ψn(k) = λn[ω̂(k) − 1] − ikan so Yn is shifted
compound Poisson: Take N Poisson with mean λn, independent of (Wj), and note
that

exp(ψn(k)) = exp(λn[ω̂(k) − 1] − ikan) = E
[

exp
(
ik[W1 + · · · + WN − an]

)]

so that Yn ≃ W1 + · · · + WN − an. Note that

λn = Cnα → ∞ and an = λnE[Wj ] =
αC

α − 1
nα−1 → ∞
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70 Chapter 3 Stable Limit Distributions

so that both the mean number of jumps and the shift tend to infinity as the truncation
threshold 1/n → 0. Since P[Wj > x] = Ax−α the stable random variable Y is
essentially the (compensated) sum of power law jumps. The compensator adjusts the
random sum of power law jumps to mean zero. As the threshold shrinks to zero, the
number of jumps increases to infinity, and their accumulated mean an also increases
to infinity, but the compensated sum (the shifted compound Poisson) converges to an
α-stable limit.

Let Zt be a stable Lévy process with Z1 ≃ Y . Then Zt ≃ [0, 0, tφ] in the alternative
Lévy representation (3.9). The Lévy process Zn

t ≃ [0, 0, tφn] with Zn
1 ≃ Yn is a

compound Poisson process with power law jumps, centered to mean zero. In fact we
can write

Zn
t = W1 + · · · + WN(t) − tan

where N(t) is a Poisson process with rate λn. The Poisson process N(t) is a Lévy
process whose Lévy measure is a point mass φn{1} = λn. Then E[N(t)] = λnt and a
standard conditioning argument shows that the compound Poisson process (a random
sum) has mean

E[W1 + · · · + WN(t)] = E[N(t)]E[Wj ] = tan.

Example 3.29. A general two-sided stable random variable Y with 1 < α < 2 has
Lévy measure (3.29). Then it follows from Proposition 3.12 and a change of variables
that E[eikY ] = eψ(k) where

ψ(k) =

∫ (
eiky − 1 − iky

)
φ(dy)

= pC
Γ(2 − α)

α − 1
(−ik)α + qC

Γ(2 − α)

α − 1
(+ik)α.

(3.32)

If Zt is a stable Lévy motion with Z1 ≃ Y then p̂(k, t) = E[e−ikZt ] = etψ(−k). Take
D = CΓ(2 − α)/(α − 1) and write p̂(k, t) = exp[pDt(ik)α + qDt(−ik)α]. Then

dp̂(k, t)

dt
= ψ(−k)p̂(k, t) = pD(ik)αp̂(k, t) + qD(−ik)αp̂(k, t)

which inverts to the two-sided fractional diffusion equation

∂p(x, t)

∂t
= pD

∂αp(x, t)

∂xα
+ qD

∂αp(x, t)

∂(−x)α

for 1 < α < 2. As in the case 0 < α < 1, the positive fractional derivative comes from
the positive power law jumps, and the negative fractional derivative corresponds to
the negative jumps.

Example 3.29 illustrates the reason for the positive coefficients in the fractional
diffusion equation for 1 < α < 2, and the negative coefficients for 0 < α < 1. This
comes from the change of sign in the stable characteristic function. One can also
note that the log-characteristic function ψ(k) should have a negative real part, since
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Section 3.5 Shifted Poisson approximation 71

the characteristic function eψ(k) remains bounded for all real k. Since (±ik)α has a
positive real part for 0 < α < 1, and a negative real part for 1 < α < 2, the negative
sign in the case 0 < α < 1 is necessary to make the real part of ψ(k) negative.

We have now connected the coefficients α and D in the fractional diffusion equation
with the parameters of the Pareto law. The order of the fractional derivative equals
the power law index α, and the fractional dispersivity

D =

⎧
⎪⎨

⎪⎩

CΓ(1 − α) for 0 < α < 1, and

C
Γ(2 − α)

α − 1
for 1 < α < 2.

These relations can be useful for simulating sample paths of a stable Lévy process
using the compound Poisson approximation. A histogram of particle locations at time
t > 0 will approximate the solution to the corresponding fractional diffusion equation.
This is the method of particle tracking, see for example Zhang, Benson, Meerschaert
and Scheffler [208].

The two-sided stable law is a sum of independent components, segregating the pos-
itive and negative jumps. Write ψ(k) = pψ+(k) + qψ−(k) where

ψ+(k) =

∫ ∞

0

(
eiky − 1 − iky

)
Cαy−α−1dy = C

Γ(2 − α)

α − 1
(−ik)α,

ψ−(k) =

∫ 0

−∞

(
eiky − 1 − iky

)
Cα|y|−α−1dy = C

Γ(2 − α)

α − 1
(ik)α.

Then Y ≃ Y ++Y − a sum of two independent stable laws. Take C = (α − 1)/Γ(2 − α)
to get ψ−(−k) = (−ik)α the Fourier symbol of the negative fractional derivative.
Invert the FT to obtain the generator form of the negative fractional derivative in the
case 1 < α < 2: A change of variables shows that

ψ−(k) =

∫ ∞

0

(
e−iky − 1 + iky

)
Cαy−α−1dy.

Use
∫

eikxf(x + y) dx = eiky f̂(k) to get

dαf(x)

d(−x)α
= F−1[(−ik)αf̂(k)]

= F−1

[∫ ∞

0

(
eiky f̂(k) − f̂(k) − ikyf̂(k)

)
Cαy−α−1dy

]

=
α(α − 1)

Γ(2 − α)

∫ ∞

0

(
f(x + y) − f(x) − yf ′(x)

)
y−α−1dy.

(3.33)

Note that f(x + y) = f(x) + yf ′(x) + O(y2) by a Taylor series expansion, so that this
integral converges at y = 0 if f is sufficiently smooth. Formula (3.33) can also be
derived from (3.27) by a change of variables.
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72 Chapter 3 Stable Limit Distributions

Details

In the one-sided case, the shifted compound Poisson process Zn
t = S(N(t)) − tan

where S(n) = W1 + · · · + Wn is a random walk. Since N(t) is Poisson with mean tλn

independent of S(n), the random sum S(N(t)) has mean

E [S(N(t))] =
∞∑

j=0

E [S(j)|N(t) = j] P[N(t) = j]

=
∞∑

j=0

j E[W ] P[N(t) = j]

= E[W ]tλn = tan

so that E[Zn
t ] = 0.

In the two-sided case we have

λn =

∫
φn(dy) =

∫

|y|>1/n
φ(dy)

=

∫ ∞

1/n
pCαy−α−1dy +

∫ −1/n

−∞
qCα|y|−α−1dy

= (p + q)

∫ ∞

1/n
Cαy−α−1dy = Cnα

and the probability measure

ωn(dy) = λ−1
n φn(dy) =

{
n−αpαy−α−1dy for y > 1/n, and
n−αqα|y|−α−1dy for y < −1/n.

Then

P[Wn > x] = ωn(x,∞) =

∫ ∞

x
n−αpαy−α−1dy = pAx−α

P[Wn < −x] =

∫ −x

−∞
n−αqα|y|−α−1dy =

∫ ∞

x
n−αqαy−α−1dy = qAx−α

where A = n−α for all n. Again Yn ⇒ Y since
∫ (

eiky − 1 − iky
)
φ(dy) exists. Here

E[Wj ] =

∫ ∞

1/n
y pAαy−α−1dy +

∫ −1/n

−∞
y qAα|y|−α−1dy = (p − q)

Aα

α − 1
nα−1

so that E[Wj ] = 0 if p = q. In this case, the compensator an = 0, and the compound
Poisson approximation converges without centering.

3.6 Triangular arrays

This section develops the general theory of triangular arrays, which is the fundamental
tool used to prove the extended central limit theorem for stable laws. Recall that Y
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Section 3.6 Triangular arrays 73

is infinitely divisible if for every positive integer n we can write Y ≃ Xn1 + · · · + Xnn

a sum of iid random variables. A triangular array of random variables is a set

{Xnj : j = 1, . . . , kn; n = 1, 2, 3, . . .} (3.34)

where Xn1, . . . , Xnkn are independent for each n ≥ 1, and kn → ∞ as n → ∞. Then
the row sum

Sn = Xn1 + · · · + Xnkn

is a sum of independent random variables. We will make the usual assumption that

lim
n→∞

sup
1≤j≤kn

P[|Xnj | > ε] = 0 for all ε > 0. (3.35)

This condition ensures that every summand is asymptotically negligible. A general
result [135, Theorem 3.2.14] states that Y is infinitely divisible if and only if Sn−an ⇒
Y for some triangular array that satisfies (3.35) and some sequence (an).

Example 3.30. Take (Wn) iid with E[Wn] = 0 and E[W 2
n ] = σ2 < ∞. Then

Xnj =
1

σ
√

n
Wj : 1 ≤ j ≤ n

forms a triangular array with kn = n, and the row sums Sn ⇒ Y ≃ N (0, 1). Note
that Xnj are iid for 1 ≤ j ≤ n, but the distribution of Xnj depends on n.

Example 3.31. Take (Wn) iid with E[Wn] = 0 and E[W 2
n ] = σ2 < ∞. Then

Xnj = n−1/2Wj : 1 ≤ j ≤ [nt]

forms a triangular array with kn = [nt], and the row sums Sn ⇒ Y ≃ N (0, σ2t). In
other words, Sn ⇒ B(t) for any single t ≥ 0, where B(t) is a Brownian motion.

Example 3.32. Take (Wn) iid with µ = E[Wn] ̸= 0 and E[(Wn − µ)2] = σ2 < ∞.
Then

Xnj =
1√
n

(Wj − µ) +
1

n
µ : 1 ≤ j ≤ [nt]

forms a triangular array with kn = [nt], and the row sums

Sn =
kn∑

j=1

Xnj =
1√
n

[nt]∑

j=1

(Wj − µ) +
[nt]

n
µ ⇒ B(t) + µt

a Brownian motion with drift, where B(t) ≃ N (0, σ2t). Note that two scales are
necessary here: We must divide the mean by n and the deviation from the mean by√

n to represent both terms in the limit.
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74 Chapter 3 Stable Limit Distributions

The proof the extended central limit theorem with normal or stable limits depends
on the convergence theory for triangular arrays. Define the truncated random variables

XR
nj = XnjI(|Xnj | ≤ R) =

{
Xnj if |Xnj | ≤ R; and
0 if |Xnj | > R.

We say that a sequence of σ-finite Borel measures φn(dy) → φ(dy) on {y : y ̸= 0} if
φn(B) → φ(B) for any Borel set B that is bounded away from zero, and such that
φ(∂B) = 0. This is called vague convergence. In Section 3.4 we defined a sequence of
compound Poisson random variables whose Lévy measures φn converged vaguely to
the Lévy measure φ of a stable law. See the details at the end of this section for more
discussion.

Theorem 3.33 (Triangular array convergence). Given a triangular array (3.34) such
that (3.35) holds, there exists a random variable Y and a sequence (an) such that
Sn − an ⇒ Y if and only if:

(i)
kn∑

j=1

P[Xnj ∈ dy] → φ(dy) for some σ-finite Borel measure on {y : y ̸= 0}; and

(ii) lim
ε→0

lim sup
n→∞

kn∑

j=1

Var[Xε
nj ] = lim

ε→0
lim inf
n→∞

kn∑

j=1

Var[Xε
nj ] = b ≥ 0.

In this case, Y is infinitely divisible with Lévy representation [a, b, φ], where a depends
on the choice of centering constants (an). We can take

an =
kn∑

j=1

E[XR
nj ] (3.36)

for any R > 0 such that φ{y : |y| = R} = 0, and then E[eikY ] = eψ0(k) where

ψ0(k) = − 1

2
k2b +

∫ (
eiky − 1 − ikyI(|y| ≤ R)

)
φ(dy). (3.37)

That is, (3.5) holds with a0 = 0.

Proof. This is a special case of [135, Theorem 3.2.2].

Remark 3.34. To establish vague convergence condition (i), it suffices to show

kn∑

j=1

P[Xnj > y] → φ(y,∞) and
kn∑

j=1

P[Xnj < −y] → φ(−∞,−y) (3.38)

for every y > 0 such that φ{y} = φ{−y} = 0. The centering constants an in (3.36)
and the log characteristic function ψ0(k) both depend on the choice of R > 0. If the
Lévy measure has a density, as is the case for stable laws, then any R > 0 may be
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used, since we always have φ{R} = φ{−R} = 0. To establish the truncated variance
condition (ii), it is of course sufficient to show that

lim
ε→0

lim
n→∞

kn∑

j=1

Var[Xε
nj ] = b. (3.39)

Remark 3.35. The proof of Theorem 3.33 is based on a Poisson approximation. First
we approximate Sn ≈ SN where N is Poisson with mean kn, independent from the
triangular array elements. Then we use the converge criteria for infinitely divisible
laws. Suppose Yn ≃ [an, bn, φn] and Y ≃ [a, b, φ] in terms of the Lévy representation.
Then Yn ⇒ Y if and only if ψn(k) → ψ(k) for each k, i.e., the log characteristic
functions converge [135, Lemma 3.1.10]. Write

f(y, k) = eiky − 1 − iky

1 + y2

and note that y /→ f(y, k) is a bounded continuous function such that

f(y, k) = − 1

2
k2y2 + O(y2) as y → 0

for any fixed k. Now it is not hard to show that
∫

|y|>ε
f(y, k)φn(dy) →

∫

|y|>ε
f(y, k)φ(dy)

whenever φ{|y| = ε} = 0, which must be true for almost every ε > 0. Then

lim
ε→0

lim
n→∞

∫

|y|>ε
f(y, k)φn(dy) = lim

ε→0

∫

|y|>ε
f(y, k)φ(dy) =

∫
f(y, k)φ(dy)

since
∫

y2I(0 < |y| ≤ ε) φ(dy) exists for a Lévy measure. To handle the the remaining
part of the integral term in the Lévy representation for ψn(k) we write

lim
ε→0

lim
n→∞

[

− 1

2
k2bn +

∫

0<|y|≤ε
f(y, k)φn(dy)

]

= lim
ε→0

lim
n→∞

[

− 1

2
k2bn − 1

2
k2

∫

0<|y|≤ε
y2φn(dy)

]

= − 1

2
k2b

provided that

lim
ε→0

lim
n→∞

[

bn +

∫

0<|y|≤ε
y2φn(dy)

]

= b. (3.40)

Then it can be shown that Yn ⇒ Y if and only if (3.40) holds along with an → a and
φn → φ, see [135, Theorem 3.1.16]. The proof of Theorem 3.33 uses these ideas, along
with some delicate centering arguments.

Here we prove the traditional central limit theorem with iid summands, to illustrate
the use of Theorem 3.33.
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76 Chapter 3 Stable Limit Distributions

Theorem 3.36 (Central Limit Theorem). Suppose that (Wn) are iid and that µ1 =
E[Wn] and µ2 = E[W 2

n ] exist. Then

W1 + · · · + Wn − nµ1

n1/2
⇒ Y ≃ N (0, σ2) (3.41)

where σ2 = µ2 − µ2
1.

Proof. Define a triangular array with row elements Xnj = n−1/2Wj for j = 1, . . . , n.
Then condition (3.35) holds (see details), and then in order to prove that Sn−an ⇒ Y
normal, it suffices to check conditions (i) and (ii) in Theorem 3.33. For condition (i)
we have for each ε > 0 that

kn∑

j=1

P[|Xnj | > ε] = nP[|n−1/2Wj | > ε]

= nP[|Wj | > n1/2ε]

= nE[I(|Wj | > n1/2ε)]

≤ nE

[(
Wj

n1/2ε

)2

I(|Wj | > n1/2ε)

]

= ε−2
E

[
W 2

j I(|Wj | > n1/2ε)
]
→ 0

as n → ∞, since µ2 = E[W 2
n ] exists. Then (i) holds with φ = 0.

Condition (ii) in this case is a form of the Lindeberg Condition. Write

kn∑

j=1

Var[Xε
nj ] = n

{
E

[
(Xε

nj)
2
]
− E

[
Xε

nj

]2}

= nE
[
(n−1/2Wj)

2I(|n−1/2Wj | ≤ ε)
]
− nE

[
n−1/2WjI(|n−1/2Wj | ≤ ε)

]2

= E
[
W 2

j I(|Wj | ≤ n1/2ε)
]
− E

[
WjI(|Wj | ≤ n1/2ε)

]2

→ µ2 − µ2
1

since the first and second moments exist. Then Theorem 3.33 shows that Sn − an ⇒
Y ≃ [a, b, 0] where b = µ2 − µ2

1 = σ2 = Var(Y ). This shows that Y is normal. From
(3.36) we get

an =
kn∑

j=1

E[XR
nj ] = nE

[
n−1/2WjI(|Wj | ≤ n1/2R)

]

= n1/2

{
µ1 − E

[
WjI(|Wj | > n1/2R)

]}

where
∣∣∣n1/2

E

[
WjI(|Wj | > n1/2R)

]∣∣∣ ≤ n1/2
E

[
|Wj |I(|Wj | > n1/2R)

]

≤ n1/2
E

[
|Wj |

(
|Wj |

n1/2R

)
I(|Wj | > n1/2R)

]

= R−1
E

[
W 2

j I(|Wj | > n1/2R)
]
→ 0

Brought to you by | Brown University Rockefeller Library
Authenticated | 128.148.231.12

Download Date | 4/28/14 11:52 PM
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since µ2 exists. This shows that an − n1/2µ1 → 0 and then we have Sn − n1/2µ1 =
Sn − an + (an − n1/2µ1) ⇒ Y . Then (3.41) follows.

Details

Theorem 3.33 uses the concept of vague convergence: We say that a sequence of σ-
finite Borel measures φn(dy) → φ(dy) on {y : y ̸= 0} if φn(B) → φ(B) for any Borel
set B that is bounded away from zero, and such that φ(∂B) = 0. Here ∂B is the
topological boundary of the set B, defined as the closure of B (the intersection of all
closed sets that contain B) minus the interior of B (the union of all open sets contained
in B). The Borel measure is a standard tool in real analysis and probability (e.g., see
[34, 59, 167]). In the physics notation introduced in the details at the end of Section
3.1, we noted that a Lévy density can often be interpreted in terms of generalized
functions, with Dirac delta function terms to represents atoms in the Lévy measure.
Readers who are more comfortable with the physics notation may interpret the vague
convergence φn → φ to mean that, if φn(dy) = φn(y) dy and φ(dy) = φ(y) dy, then

φn(a, b) =

∫ b

a
φn(y)dy →

∫ b

a
φ(y)dy = φ(a, b)

for all 0 < a < b or a < b < 0 such that φ(y) has no Dirac delta function terms at the
points a, b, i.e., φ{a} = φ{b} = 0. Stable distributions all have Lévy densities φ(y)
with no Dirac delta function terms. However, these Lévy measures are not finite, since∫∞
0

φ(y) dy = ∞ or
∫ 0

−∞ φ(y) dy = ∞. In this case, the Lévy measure is called σ-finite
because it assigns finite measure to the sets {y : |y| > 1/n}, and the set {y : y ̸= 0} is
the countable union of these.

If X is any random variable, then the distribution of X is tight, meaning that

P[|X| > r] → 0 as r → ∞. (3.42)

Equation (3.42) follows by a simple application of the dominated convergence theorem.
It follows that

P[|Xnj | > ε] = P[|Wj | > n1/2ε] → 0

as n → ∞, so that condition (3.35) holds.

3.7 One-sided stable limits

Here we prove that one-sided stable laws with Lévy measure (3.10) are the limits for
sums of iid Pareto jumps. We also specify a convenient centering.

Theorem 3.37. Suppose that (Wn) are iid and positive with P[Wn > x] = Cx−α for
all x > C1/α for some C > 0 and 0 < α < 2. Then

n−1/α(W1 + · · · + Wn) − an ⇒ Y (3.43)
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78 Chapter 3 Stable Limit Distributions

for some sequence (an), where Y is a one-sided stable law with Lévy representation
[a, 0, φ], and the Lévy measure is given by (3.10). If 0 < α < 1, we can choose an = 0,
and then (3.12) holds. If 1 < α < 2, we can choose an = n1−1/αµ1 where µ1 = E[Wn],
and then (3.16) holds.

Proof. Define a triangular array Xnj = n−1/αWj for j = 1, . . . , n. Then condition
(3.35) holds (see details), and we just need to check the convergence criteria (i) and
(ii) from Theorem 3.33. For y > 0 we have

kn∑

j=1

P[Xnj > y] = nP[n−1/αWj > y]

= nP[Wj > n1/αy]

= nC
(
n1/αy

)−α
= Cy−α

whenever n1/αy > C1/α, as well as

kn∑

j=1

P[Xnj < −y] = 0.

Then (i) holds with φ(y,∞) = Cy−α for all x > 0, and φ(−∞, 0) = 0. This is
equivalent to (3.10). Note that 0 < α < 2 is required here, so that φ(dy) is a Lévy
measure:

∫

|y|≤R
y2φ(dy) =

∫ R

0

y2Cαy−α−1dy =

[
Cα

2 − α
y2−α

]R

0

=
Cα

2 − α
R2−α < ∞.

For any ε > 0 we have, whenever n is sufficiently large to make n1/αε > C1/α, that

0 ≤
kn∑

j=1

Var[Xε
nj ] = n

{
E

[
(Xε

nj)
2
]
− E

[
Xε

nj

]2} ≤ nE
[
(Xε

nj)
2
]

= nE
[
(n−1/αWj)

2I(|n−1/αWj | ≤ ε)
]

= n1−2/αE
[
W 2

j I(|Wj | ≤ n1/αε)
]

= n1−2/α

∫ n1/αε

C1/α

y2Cαy−1−αdy

= n1−2/α

[
Cα

y2−α

2 − α

]n1/αε

C1/α

= n1−2/αCα

[
(n1/αε)2−α

2 − α
− (C1/α)2−α

2 − α

]

= n1−2/α Cα

2 − α

[
n2/α−1ε2−α − C2/α−1

]

= ε2−α Cα

2 − α
− n1−2/α α

2 − α
C2/α ∼ ε2−α Cα

2 − α

(3.44)
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Section 3.7 One-sided stable limits 79

as n → ∞, since 1 − 2/α < 0. Then we have

lim
ε→0

lim sup
n→∞

kn∑

j=1

Var[Xε
nj ] ≤ lim

ε→0
ε2−α Cα

2 − α
= 0

since 2−α > 0, so that (ii) holds with b = 0. This proves that Sn −an ⇒ Y0 holds for
some sequence (an), where Sn = Xn1 + · · ·+ Xnn = n−1/α(W1 + · · ·+ Wn) is the row
sum of this triangular array, and Y0 is infinitely divisible with Lévy measure φ and no
normal component.

Suppose that 0 < α < 1. Theorem 3.33 shows that, if we choose (an) according to
(3.36), then E[eikY0 ] = eψ0(k) where

ψ0(k) =

∫ (
eiky − 1 − ikyI(|y| ≤ R)

)
φ(dy)

=

∫ (
eiky − 1

)
φ(dy) − ik

∫
yI(|y| ≤ R)φ(dy)

= −CΓ(1 − α)(−ik)α − ika

(3.45)

by Proposition 3.10, where we can take

a =

∫ R

0

y Cαy−α−1dy = Cα

[
y1−α

1 − α

]R

0

=
Cα

1 − α
R1−α (3.46)

for any R > 0, since φ has a density. Write

an =
kn∑

j=1

E
[
XR

nj

]
= nE

[
n−1/αWjI(|n−1/αWj | ≤ R)

]

= n1−1/α

∫ n1/αR

C1/α

y Cαy−1−αdy

= n1−1/αCα

[
(n1/αR)1−α

1 − α
− (C1/α)1−α

1 − α

]

=
Cα

1 − α
R1−α − n1−1/α α

1 − α
C1/α → Cα

1 − α
R1−α = a

(3.47)

as n → ∞, since 1 − 1/α < 0 in this case.
Let Y be a one-sided stable law with characteristic function exp[−CΓ(1−α)(−ik)α],

so that Y − a = Y0 in view of (3.45). Since an − a → 0 we also have Sn − a =
Sn −an +(an −a) ⇒ Y0, and then we also have Sn = Sn −a+a ⇒ Y0 +a = Y . Hence
we can take an = 0 in this case, and then the limit has characteristic function (3.12).

Suppose that 1 < α < 2. Theorem 3.33 shows that, if we choose (an) according to
(3.36), then E[eikY0 ] = eψ0(k) where

ψ0(k) =

∫ (
eiky − 1 − ikyI(|y| ≤ R)

)
φ(dy)

=

∫ (
eiky − 1 − iky

)
φ(dy) + ik

∫
yI(|y| > R)φ(dy)

= C
Γ(2 − α)

α − 1
(−ik)α + ika

(3.48)
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80 Chapter 3 Stable Limit Distributions

by Proposition 3.12, where we can choose

a =

∫ ∞

R
y Cαy−α−1dy = Cα

[
y1−α

1 − α

]∞

R

=
Cα

α − 1
R1−α (3.49)

for any R > 0, since φ has a density. Using (3.47) we have

an =
Cα

1 − α
R1−α − n1−1/α α

1 − α
C1/α = −a + n1−1/αµ1 (3.50)

since

µ1 = E[Wn] =

∫ ∞

C1/α

y Cαy−1−αdy =

[
Cα

y1−α

1 − α

]∞

C1/α

=
Cα

α − 1
(C1/α)1−α =

α

α − 1
C1/α

(3.51)

exists in this case.
Let Y = Y0 − a, so that Y has characteristic function (3.16). Since Sn − an ⇒ Y0

and an +a = n1−1/αµ1, it follows that Sn−n1−1/αµ1 = Sn−an−a ⇒ Y0−a = Y .

Remark 3.38. Theorem 3.37 shows that no centering is needed to get convergence
when 0 < α < 1, and when 1 < α < 2 we can center to zero expectation. The stable
limits in this case will be called centered stable. When 1 < α < 2, it is not hard to
check that a centered stable law has mean zero, by differentiating the characteristic
function. See the details at the end of this section.

Details

Since Wj is tight for any fixed j, so that (3.42) holds with X = Wj , it follows that

P[|Xnj | > ε] = P[|Wj | > n1/αε] → 0

as n → ∞, so that condition (3.35) holds.
If Y is centered stable with index 1 < α < 2, then µ̂(k) = eψ(k) where ψ(k) =∫ (
eiky − 1 − iky

)
φ(dy). Then

d

dk
µ̂(k) = eψ(k)

∫
iy

(
eiky − 1

)
φ(dy)

where the integrand is O(y2) as y → 0, and O(y) as y → ∞, so that the integral exists.
Using the general fact that d

dk µ̂(0) = i E[Y ] if E[|Y |] < ∞ (see Proposition 1.1), it
follows that E[Y ] = 0 in this case. The same argument shows that E[Y ] = a2 for any
infinitely divisible law that satisfies condition (3.8) in Theorem 3.8, see [135, Remark
3.1.15].
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Section 3.8 Two-sided stable limits 81

3.8 Two-sided stable limits

We prove that general two-sided stable laws are the limits for Pareto random walks that
allow both positive and negative jumps. Centering is unnecessary when 0 < α < 1,
and we can center to mean zero when 1 < α < 2.

Theorem 3.39. Suppose (Wn) are iid with P[Wn > x] = pCx−α and P[Wn < −x] =
qCx−α for all x > C1/α for some C > 0 and 0 < α < 2, and some p, q ≥ 0 such that
p + q = 1. Then

n−1/α(W1 + · · · + Wn) − an ⇒ Y (3.52)

for some sequence (an), where Y is a stable law with Lévy representation [a, 0, φ], and
the Lévy measure φ is given by (3.29). If 0 < α < 1, we can choose an = 0, and then
Y has characteristic function

µ̂(k) = E[eikY ] = exp
[
− pCΓ(1 − α)(−ik)α − qCΓ(1 − α)(ik)α

]
. (3.53)

If 1 < α < 2, we can choose an = n1−1/αµ1 where µ1 = E[Wn], and then Y has
characteristic function

µ̂(k) = E[eikY ] = exp

[
pC

Γ(2 − α)

α − 1
(−ik)α + qC

Γ(2 − α)

α − 1
(ik)α

]
. (3.54)

Proof. The proof is similar to Theorem 3.37. Use the triangular array Xnj = n−1/αWj

for j = 1, . . . , n, so that condition (3.35) holds. For any y > 0 we have

kn∑

j=1

P[Xnj > y] = nP[Wj > n1/αy] = npC
(
n1/αy

)−α
= pCy−α

and
kn∑

j=1

P[Xnj < −y] = nP[Wj < −n1/αy] = qCy−α

whenever n1/αy > C1/α. Then condition (i) from Theorem 3.33 holds with φ(y,∞) =
Cpy−α and φ(−∞,−y) = Cqy−α for all x > 0. This is equivalent to (3.29). Note that
the condition (3.3) for a Lévy measure requires 0 < α < 2.

For any ε > 0, for all n is sufficiently large, we have

0 ≤
kn∑

j=1

Var[Xε
nj ] ≤ nE

[
(Xε

nj)
2
]

= n1−2/αE
[
W 2

j I(|Wj | ≤ n1/αε)
]

= ε2−α Cα

2 − α
− n1−2/α α

2 − α
C2/α ∼ ε2−α Cα

2 − α

as n → ∞, by exactly the same argument as the one-sided case (see the proof of
Theorem 3.37), since the distribution of W 2

n is the same. It follows that condition (ii)

Brought to you by | Brown University Rockefeller Library
Authenticated | 128.148.231.12

Download Date | 4/28/14 11:52 PM



82 Chapter 3 Stable Limit Distributions

from Theorem 3.33 holds with b = 0. Then the centered row sums Sn − an ⇒ Y0

where Y0 is infinitely divisible with no normal component, and Lévy measure (3.29).
Suppose that 0 < α < 1. Theorem 3.33 implies that, if the norming sequence (an)

is chosen according to (3.36), then E[eikY0 ] = eψ0(k) where

ψ0(k) =

∫ (
eiky − 1 − ikyI(|y| ≤ R)

)
φ(dy)

=

∫ (
eiky − 1

)
φ(dy) − ik

∫
yI(|y| ≤ R)φ(dy)

= −pCΓ(1 − α)(−ik)α − qCΓ(1 − α)(ik)α − ika

by (3.30). Here

a =

∫
yI(|y| ≤ R)φ(dy)

=

∫ R

0

y pCαy−α−1dy +

∫ 0

−R
y qCα(−y)−α−1dy =

Cα

1 − α
(p − q)R1−α

(3.55)

which reduces to (3.46) if p = 1. Theorem 3.33 shows that we can choose

an =
kn∑

j=1

E
[
XR

nj

]
= nE

[
n−1/αWjI(|Wj | ≤ n1/αR)

]

= n1−1/α

[∫ n1/αR

C1/α

y pCαy−1−αdy +

∫ −C1/α

−n1/αR
y qCα|y|−1−αdy

]

= n1−1/αCα

[

p

(
(n1/αR)1−α

1 − α
− (C1/α)1−α

1 − α

)

− q

(
(n1/αR)1−α

1 − α
− (C1/α)1−α

1 − α

) ]

=
Cα

1 − α
(p − q)R1−α − n1−1/α(p − q)

α

1 − α
C1/α

→ Cα

1 − α
(p − q)R1−α = a

(3.56)

as n → ∞, since 1 − 1/α < 0 in this case.
Define Y = Y0 + a. Since an → a it follows that Sn ⇒ Y0 + a = Y . Hence we can

choose an = 0 in this case, and then the limit has characteristic function (3.53).
Suppose that 1 < α < 2. If (3.36) holds, then E[eikY0 ] = eψ0(k) where

ψ0(k) =

∫ (
eiky − 1 − ikyI(|y| ≤ R)

)
φ(dy)

=

∫ (
eiky − 1 − iky

)
φ(dy) + ik

∫
yI(|y| > R)φ(dy)

= pC
Γ(2 − α)

α − 1
(−ik)α + qC

Γ(2 − α)

α − 1
(ik)α + ika

(3.57)
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Section 3.8 Two-sided stable limits 83

by (3.32), where

a =

∫
yI(|y| > R)φ(dy)

=

∫ ∞

R
y pCαy−α−1dy +

∫ −R

−∞
y qCα(−y)−α−1dy =

Cα

α − 1
(p − q)R1−α

for some arbitrary fixed R > 0. Using (3.56) we have

an =
Cα

1 − α
(p − q)R1−α − n1−1/α(p − q)

α

1 − α
C1/α = −a + n1−1/αµ1 (3.58)

since

µ1 = E[Wn] =

∫ ∞

C1/α

y Cαy−1−αdy +

∫ −C1/α

−∞
y Cα(−y)−1−αdy

=
Cα

α − 1
(p − q)(C1/α)1−α = (p − q)

α

α − 1
C1/α

exists in this case.
Define Y = Y0 − a. Since an + a = n1−1/αµ1 it follows that Sn − n1−1/αµ1 ⇒

Y0 − a = Y , and the limit Y has characteristic function (3.54).

Remark 3.40. Theorem 3.39 shows that no centering is needed to get convergence
when 0 < α < 1, and when 1 < α < 2 we can center to zero expectation (see the
details at the end of Section 3.7). The stable limits in this case will be called centered
stable.

Now we extend the convergence in Theorem 3.39 to process limits. The next result
shows that a random walk with power law jumps, suitably centered, converges to an
α-stable Lévy motion. If 0 < α < 1, then no centering is needed. If 1 < α < 2, we can
center to zero expectation.

Theorem 3.41. Suppose (Wn) are iid with P[Wn > x] = pCx−α and P[Wn < −x] =
qCx−α for all x > C1/α for some C > 0 and 0 < α < 2, and some p, q ≥ 0 such that
p + q = 1.

(a) If 0 < α < 1, then

n−1/α
[nt]∑

j=1

Wj ⇒ Zt (3.59)

for all t > 0, where

E[eikZt ] = exp
[
− tpCΓ(1 − α)(−ik)α − tqCΓ(1 − α)(ik)α

]
; (3.60)

(b) If 1 < α < 2, then µ1 = E[Wn] exists and

n−1/α
[nt]∑

j=1

(Wj − µ1) ⇒ Zt (3.61)
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84 Chapter 3 Stable Limit Distributions

for all t > 0, where

E[eikZt ] = exp

[
tpC

Γ(2 − α)

α − 1
(−ik)α + tqC

Γ(2 − α)

α − 1
(ik)α

]
. (3.62)

Proof. If 0 < α < 1, then Theorem 3.39 shows that n−1/αS(n) ⇒ Y , where the random
walk S(n) = W1 + · · · + Wn, and the limit Y has characteristic function (3.53). Let
µ̂n(k) be the characteristic function of n−1/αWj , so that µ̂n(k)n → µ̂(k) for all k ∈ R.
Then we have

µ̂n(k)[nt] =
(
µ̂n(k)n

)[nt]/n → µ̂(k)t (3.63)

for any t > 0, and (3.59) follows, where the limit Zt has characteristic function µ(k)t,
so that (3.60) also holds.

If 1 < α < 2, then Theorem 3.39 shows that n−1/αS(n)−n1−1/αµ1 ⇒ Y , where the
limit Y has characteristic function (3.54). Letting µ̂n(k) be the characteristic function
of n−1/α(Wj − µ1), it follows that µ̂n(k)n → µ̂(k) for all k ∈ R. Again (3.63) holds,
and then (3.61) follows, where the limit Zt has characteristic function (3.62).

Theorem 3.41 relates the parameters of a Pareto random walk to the FT of the limit
process, an α-stable Lévy motion Zt. For example, in the case 1 < α < 2 we have
p̂(k, t) = E[e−ikZt ] = exp [tpD(ik)α + tqD(−ik)α], where D = CΓ(2 − α)/(α − 1).
Then

∂p(x, t)

∂t
= pD

∂αp(x, t)

∂xα
+ qD

∂αp(x, t)

∂(−x)α

and we can see that the weights p, q on the positive and negative fractional derivatives
come from the relative probability of large jumps in the positive or negative directions.
This is consistent with our earlier conclusions, based on the Poisson approximation.

Remark 3.42. It is also possible to prove Theorem 3.41 directly. We illustrate the
proof in the case 0 < α < 1 and p = 1. Define a triangular array Xnj = n−1/αWj for
j = 1, . . . , [nt]. Then condition (i) from Theorem 3.33 holds since:

kn∑

j=1

P[Xnj > y] = [nt]P[n−1/αWj > y] =
[nt]

n
nP[Wj > n1/αy] → tCy−α; and

kn∑

j=1

P[Xnj < −y] = [nt]P[n−1/αWj < −y] → 0.

Condition (ii) holds since

0 ≤
kn∑

j=1

Var[Xε
nj ] ≤ [nt]E

[
(Xε

nj)
2
]

=
[nt]

n
nE

[
(Xε

nj)
2
]
→ 0.
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Section 3.8 Two-sided stable limits 85

Then Sn−an ⇒ Z0
t , where the limit Z0

t is infinitely divisible with no normal component
and Lévy measure tφ(dy), with φ given by (3.10). If (3.36) holds, then

E[eikZ0

t ] = exp

[∫ (
eiky − 1 − ikyI(|y| ≤ R)

)
tφ(dy)

]

= exp

[∫ (
eiky − 1

)
tφ(dy) − ikta

]

where a is given by (3.46). Since

an =
kn∑

j=1

E
[
XR

nj

]
= [nt]E

[
XR

nj

]
=

[nt]

n

[
Cα

1 − α
R1−α − n1−1/α α

1 − α
C1/α

]
→ ta

as n → ∞, we can let Zt = Z0
t − ta, and it follows that (3.59) holds, where E[eikZt ] =

exp
[∫ (

eiky − 1
)
tφ(dy)

]
. Then (3.60) follows from Proposition 3.10.

Remark 3.43. The convergence arguments in Theorem 3.41 shed some light on the
structure of the limit process Zt. This topic will be covered systematically in Chapter 4.
Under the assumptions of this theorem, suppose that (3.59) holds for some 0 < α < 1,
or some 1 < α < 2 with E[Wn] = 0. Given s, t > 0, write Sn = n−1/α(W1 + · · ·+ Wn)
and note that S[n(t+s)] ⇒ Zt+s. We also have

S[n(t+s)] = S[nt] +
(
S[n(t+s)] − S[nt]

)

= n−1/α
[nt]∑

j=1

Wj + n−1/α
[n(t+s)]∑

j=[nt]+1

Wj

⇒ Zt +
(
Zt+s − Zt

)

since the two sums are independent. This shows that Zt+s = Zt +(Zt+s−Zt) a sum of
two independent increments. Since the second sum is identically distributed with S[ns],
it also shows that Zt+s −Zt ≃ Zs, i.e., the distribution of the increments is stationary.
In general, we define a Lévy process Zt as an infinitely divisible process with stationary
independent increments. Assuming Zt has characteristic function µ̂(k)t = etψ(k) is not
sufficient to make Zt a Lévy process. For example, take Z ≃ N (0, 2) and define Zt =
t1/2Z. Then Zt has characteristic function e−tk2

, but Zt does not have independent
increments.
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Chapter 4

Continuous Time Random Walks

We begin this chapter by refining the stable limit theory from Chapter 3. We introduce
regular variation as a technical tool to describe the full range of random walks attracted
to a normal or stable limit. This shows that fractional diffusion is a robust model. Then
we extend to the continuous time random walk (CTRW) by imposing a random waiting
time between random walk jumps. The CTRW is studied as a random walk in space-
time, which is then reduced to a time-changed process in space, using the fundamental
ideas of Skorokhod. Finally, we develop the space-time fractional diffusion equations
that govern CTRW scaling limits.

4.1 Regular variation

Regular variation is a technical tool that formalizes the idea of power law asymptotics.
The necessary and sufficient conditions for the central limit to hold, even in the case
of a normal limit, are written in terms of regular variation. Suppose that (Wn) are iid
random variables, and Y is a random variable that is not degenerate (i.e., there is no
constant y such that P[Y = y] = 1). We want to know when

an(W1 + · · · + Wn) − bn ⇒ Y (4.1)

for some an > 0 and bn ∈ R.
Suppose that R : [A,∞) → (0,∞) is Borel measurable, for some A > 0. We say

that R(x) varies regularly with index ρ, and we write R ∈ RV(ρ), if

lim
x→∞

R(λx)

R(x)
= λρ for all λ > 0. (4.2)

Then R(λx) ≈ λρR(x), so that R(x) behaves like a power law as x → ∞. If ρ = 0 we
also say that R(x) is slowly varying. We say that a sequence of positive real numbers
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88 Chapter 4 Continuous Time Random Walks

(an) is regularly varying with index ρ, and we write (an) ∈ RV(ρ), if

lim
n→∞

a[λn]

an
= λρ for all λ > 0.

Example 4.1. The function R(x) = xρ log x is regularly varying with index ρ. The
function R(x) = x−α[2+cos x] is not regularly varying, because R(λx)/R(x) oscillates
too fast to approach a limit as x → ∞. The function R(x) = xρ[2+cos(log x)] is RV(ρ).
The function R(x) = log x is slowly varying. If R(x) ∈ RV(ρ), then L(x) = x−ρR(x)
is slowly varying.

Remark 4.2. If a sequence of positive real numbers (an) is regularly varying with
index ρ, then the function R(x) = a[x] varies regularly with the same index. Conversely,
if a function R(x) varies regularly with index ρ, then the sequence an = R(n) varies
regularly with the same index. The proof is surprisingly delicate, see Meerschaert and
Scheffler [135, Theorem 4.2.9].

Let W be identically distributed with Wn and define

U2(x) = E[W 2I(|W | ≤ x)] and V0(x) = P[|W | > x] (4.3)

the truncated second moment and tail of W .

Example 4.3. Suppose that V0(x) = P[W > x] = x−α for some α > 0, for all x ≥ 1.
Then W has cdf F (x) = P[W ≤ x] = 1 − x−α and pdf f(x) = αx−α−1 for x ≥ 1. For
ζ > α we define the truncated moment

Uζ(x) = E[W ζI(W ≤ x)] =

∫ x

1

yζf(y) dy

=

∫ x

1

αyζ−α−1dy =
α

ζ − α

[
yζ−α

]x

1

=
α

ζ − α

[
xζ−α − 1

]
∼ α

ζ − α
xζ−α

as x → ∞. Then Uζ(x) → ∞ as x → ∞, i.e., E[W ζ ] does not exist. For 0 ≤ η < α we
define the tail moment

Vη(x) = E[W ηI(W > x)] =

∫ ∞

x
yηf(y) dy

=

∫ ∞

x
αyη−α−1dy =

α

η − α

[
yη−α

]∞
x

=
α

α − η
xη−α

so that Vη(x) → 0 as x → ∞. Combine to obtain the Karamata relation:

xζ−ηVη(x)

Uζ(x)
→ ζ − α

α − η
as x → ∞. (4.4)

Theorem 4.4 (Karamata Theorem). Suppose W is a random variable such that
Uζ(x) = E[|W |ζI(|W | ≤ x)] and Vη(x) = E[|W |ηI(|W | > x)] exist.
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Section 4.1 Regular variation 89

(a) If Uζ(x) is RV(ρ), then ρ = ζ − α ≥ 0 for some α, and (4.4) holds;

(b) If Vη(x) is RV(ρ), then ρ = η − α ≤ 0 for some α, and (4.4) holds;

(c) If (4.4) holds for some α ∈ (η, ζ], the Uζ(x) is RV(ζ − α);

(d) If (4.4) holds for some α ∈ [η, ζ), the Vη(x) is RV(η − α).

Proof. This is a special case of [135, Theorem 5.3.11]. See also Feller [65, VIII.8]. The
proof uses integration by parts to relate Uζ to Vη, along with some hard analysis.

We say that W belongs to the domain of attraction of Y , and we write W ∈ DOA(Y ),
if (4.1) holds for some an > 0 and bn ∈ R, where (Wn) are iid with W , and Y is
nondegenerate. The following theorem gives necessary and sufficient conditions for
W ∈ DOA(Y ) in terms of regular variation. It also proves that normal and stable laws
are the only possible limits. The proof is based on Theorem 3.33, the convergence
criteria for triangular arrays. It uses regular variation together with the Karamata
Theorem 4.4 to compare the tail (condition (i) of Theorem 3.33) and the truncated
second moment (condition (ii) of Theorem 3.33). The first part of the theorem, re-
garding normal limits, will be proved in this section. The second part, regarding stable
limits, will be proven in Section 4.2.

Theorem 4.5 (Extended Central Limit Theorem). If W ∈ DOA(Y ) then Y is either
normal, or stable with index 0 < α < 2, and:

(a) If Y is normal, then W ∈ DOA(Y ) if and only if U2(x) is slowly varying;

(b) If Y is stable with index 0 < α < 2, then W ∈ DOA(Y ) if and only if V0(x) is
regularly varying with index −α and

lim
x→∞

P[W > x]

V0(x)
= p for some 0 ≤ p ≤ 1. (4.5)

Proof of Theorem 4.5 (a). Suppose that (Wj) are iid with W and that U2(x) is slowly
varying. Then µ1 = E[W ] exists (see Proposition 4.14 in the details at the end of this
section). If E[W 2] < ∞, we have already proven in Theorem 3.36 that (4.1) holds.
Otherwise if E[W 2] = ∞, then U2(x) → ∞ as x → ∞. Choose an → 0 such that

na2
nU2(a

−1
n ) → σ2 > 0 (4.6)

(see Corollary 4.13 at the end of this section for an explicit construction). Define a tri-
angular array with row elements Xnj = anWj for j = 1, . . . , n. Then condition (3.35)
holds (see details), and so it suffices to check conditions (i) and (ii) from Theorem
3.33.
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90 Chapter 4 Continuous Time Random Walks

Condition (i): Apply Theorem 4.4 (a) with ζ = 2, η = 0, and ρ = 0 to see that the
Karamata equation (4.4) holds with α = 2. Then

kn∑

j=1

P[|Xnj | > ε] = nP[|anWj | > ε]

= nV0(a
−1
n ε)

=
(a−1

n ε)2V0(a−1
n ε)

U2(a
−1
n ε)

· ε−2 · na2
nU2(a

−1
n ε)

→ 0 · ε−2 · σ2

since x2V0(x)/U2(x) → (2 − α)/α = 0 by (4.4), and

na2
nU2(a

−1
n ε) = na2

nU2(a
−1
n ) · U2(a−1

n ε)

U2(a
−1
n )

→ σ2 · 1

by (4.6), and the fact that U2(xε)/U2(x) → 1 as x → ∞. This shows that (i) holds
with φ{x : |x| > ε} = 0 for all ε > 0, i.e., φ = 0, the zero measure.

Condition(ii): Since U2(a−1
n ) → ∞ it follows from (4.6) that na2

n → 0. Then with
Xε

nj = XnjI[|Xnj | ≤ ε] we have

kn∑

j=1

Var[Xε
nj ] = nE[(Xε

nj)
2] − nE[Xε

nj ]
2

= nE[(anW )2I(|anW | ≤ ε)] − nE[anWI(|anW | ≤ ε)]2

= na2
nU2(a

−1
n ε) − na2

nE[WI(|W | ≤ a−1
n ε)]2

∼ na2
nU2(a

−1
n ε) → σ2

(4.7)

since E[WI(|W | ≤ a−1
n ε)] → µ1 by the dominated convergence theorem, and na2

n → 0.
Then it follows from Theorem 3.33 that (4.1) holds with Y normal.

Since the direct half of Theorem 4.5(a) is our main interest, we only sketch the
proof of the converse, highlighting the role of regular variation arguments. Suppose
that (4.1) holds with Y normal. Assume for now that µ1 = E[W ] = 0. Then conditions
(i) and (ii) hold from Theorem 3.33. Writing (ii) as in (4.7) it follows that

na2
nU2(a

−1
n ε) − na2

nU1(a
−1
n ε)2 → σ2 = Var(Y ). (4.8)

If (4.1) holds with Y nondegenerate, a simple argument using characteristic functions
[135, Lemma 3.3.3] shows that an → 0. Then a dominated convergence argument
yields U1(a−1

n ε) = E[WI(|W | ≤ a−1
n ε)] → µ1 = 0. A similar argument shows that

U2(a−1
n ε) = E[W 2I(|W | ≤ a−1

n ε)] → E[W 2], where 0 < E[W 2] ≤ ∞ since W is not
degenerate. It follows that U1(a−1

n ε)2 = o(U2(a−1
n ε)) as n → ∞, and then (4.8) yields

na2
nU2(a−1

n ε) → σ2 for all ε > 0. Then an argument similar to the first part of the
proof of Proposition 4.15 in the next section shows that x−2U2(x) varies regularly
with index −2, and it follows that U2 is slowly varying. See Feller [65, XVII.5] or [135,
Theorem 8.1.11] for complete details.
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Section 4.1 Regular variation 91

Finally, if (4.1) holds with Y normal, then a convergence of types argument [135,
Theorem 8.1.5] shows that (an) is RV(−1/2), and then it follows from condition (ii)
and a regular variation estimate [135, Proposition 8.1.6] that µ1 = E[W ] exists, so the
assumption µ1 = 0 entails no loss of generality: Simply replace Wj by Wj −µ1, which
changes the shift bn.

Corollary 4.6. We can choose bn = nanµ1 in (4.1) when Y is normal.

Proof. This was already proven in Theorem 3.36, in the case E[W 2] < ∞. In the
general case, Theorem 3.33 implies that we can take

bn =
kn∑

j=1

E[XR
nj ] = nE[anWI(|anW | ≤ R)] = nanE[WI(|W | ≤ a−1

n R)] ∼ nanµ1

since E[WI(|W | ≤ a−1
n R)] → µ1 as n → ∞.

Remark 4.7. For finite variance jumps, we can take an = n−1/2 in (4.1). For infinite
variance jumps and Y normal, Corollary 4.13 in the details at the end of this section
shows that the sequence (an) is RV(−1/2). Then we can write an = n−1/2ℓn where
(ℓn) is slowly varying. Now Proposition 4.9 together with Remark 4.2 show that for
any ε > 0, for some n0 > 0 we have

n−ε < ℓn < nε (4.9)

for all n ≥ n0. In other words, the norming constants an → 0 about as fast as n−1/2

when Y is normal.

Details

Since Wj is tight for any fixed j, so that (3.42) holds with X = Wj , it follows that

P[|Xnj | > ε] = P[|Wj | > a−1
n ε] → 0,

since an → 0 as n → ∞, so that condition (3.35) holds.
The theory of regular variation is simpler for monotone functions. We will restrict

to this case, since it suffices for all our applications. The next four results remain true
if we remove the assumption that R(x) is monotone, but the proofs are significantly
harder, see Seneta [184, Theorem 1.1 and Section 1.5].

Proposition 4.8. If R(x) is monotone and R(x) ∈ RV(ρ) for some ρ > 0, then
R(x) → ∞ as x → ∞.

Proof. Fix some λ > 1 large and note that for all δ > 0 small, there exists some x0 > 0
such that

R(λx)

R(x)
≥ λρ(1 − δ) > 1
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92 Chapter 4 Continuous Time Random Walks

for all x ≥ x0. Given x > x0, we can write x = ζλnx0 for some unique nonnegative
integer n = nx and some unique real number ζ = ζx ∈ [1, λ). Then

R(x)

R(x0)
=

R(ζλnx0)

R(x0)
=

R(ζλnx0)

R(λnx0)

R(λnx0)

R(λn−1x0)
· · · R(λx0)

R(x0)
≥ [λρ(1 − δ)]n

tends to infinity as x → ∞.

Proposition 4.9. If R(x) is monotone and R(x) ∈ RV(ρ), then for any ε > 0, for
some x0 > 0 we have

xρ−ε < R(x) < xρ+ε (4.10)

for all x ≥ x0.

Proof. The function x−ρ+εR(x) is RV(ε), so it tends to infinity as x → ∞ by Proposi-
tion 4.8. This proves that xρ−ε < R(x) for all large x. The proof of the upper bound
is similar.

Theorem 4.10 (Uniform Convergence Theorem). Suppose R(x) is monotone and
R(x) ∈ RV(ρ). Then for any sequence λn → λ > 0, and any sequence xn → ∞, we
have

R(λnxn)

R(xn)
→ λρ (4.11)

as n → ∞.

Proof. Since λn → λ as n → ∞, for any δ > 0 such that λ − δ > 0, there exists some
n0 > 0 such that λ − δ < λn < λ + δ for all n ≥ n0. If R is monotone nondecreasing,
write

R(xn(λ − δ))

R(xn)
≤ R(xnλn)

R(xn)
≤ R(xn(λ + δ))

R(xn)

The left-hand side of the above inequality converges to (λ − δ)ρ, and the right-hand
side converges to (λ + δ)ρ. Since δ > 0 can be made arbitrarily small, it follows that
(4.11) holds. The proof for R monotone nonincreasing is similar.

Remark 4.11. The condition that (4.11) holds for all λn → λ > 0 and all xn → ∞
is equivalent to the condition that (4.2) holds uniformly on compact subsets of λ > 0.
Theorem 4.10 is usually stated in terms of uniform convergence on compact sets, e.g.,
see Seneta [184, Theorem 1.1]. The proof is much harder when R is not monotone.

Proposition 4.12. If R(x) is monotone and R(x) ∈ RV(ρ) for some ρ > 0, then
there exists a sequence rn → ∞ such that R(rn) ∼ n as n → ∞. In that case, the
sequence (rn) varies regularly with index 1/ρ.

Proof. Define rn = inf{x > 0 : R(x) > n}, which exists because R(x) → ∞ by
Proposition 4.8. Since R is monotone, rn ≤ rn+1, so the limit of rn as n → ∞ exists.
This limit cannot be finite: If rn → r < ∞, then rn ≤ r for all n, so R(r + 1) ≥
R(rn + 1) > n by definition of rn. Then R(r + 1) = ∞, which is a contradiction.
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Section 4.1 Regular variation 93

Therefore rn → ∞ as n → ∞. Since R is monotone, R(rn + εn) > n for any εn ↓ 0,
and R(rn − εn) ≤ n. Write

R(rn)

R(rn + εn)
<

R(rn)

n
≤ R(rn)

R(rn − εn)

and apply Theorem 4.10 with λn = (rn + εn)/rn → 1 to see that

R(rn)

R(rn + εn)
=

R(rn)

R(λnrn)
→ 1

as n → ∞. A similar argument shows that the right-hand side tends to the same limit,
and then it follows that R(rn) ∼ n.

It remains to show that the sequence (rn) varies regularly with index 1/ρ. Since
R(rn) ∼ n, and since R is RV(ρ) and monotone, it follows from Theorem 4.10 that

R(rnxn)

n
=

R(rn)

n

R(rnxn)

R(rn)
→ xρ whenever xn → x > 0. (4.12)

Define xn = r[λn]r
−1
n for some fixed λ > 0, and write

R(rnxn)

n
=

[λn]

n

R(r[λn])

[λn]
→ λ.

Then a simple proof by contradiction shows that xn → λ1/ρ: If any subsequence (xn′)
of (xn) satisfies xn′ → 0, then (4.12) implies that R(rn′xn′)/n′ → 0; if xn′ → ∞, then
R(rn′xn′)/n′ → ∞; and if xn′ → b ̸= λ1/ρ, then R(rn′xn′)/n′ → bρ ̸= λ.

Corollary 4.13. If U2(x) is slowly varying, then (4.6) holds for some an → 0, and
(an) is RV(−1/2).

Proof. If U2 is slowly varying, then R(x) = σ2x2/U2(x) is RV(2). Apply Proposition
4.12 to obtain a sequence rn = a−1

n in RV(1/2) such that σ2a2
nU2(a−1

n ) ∼ n, which is
equivalent to (4.6).

Proposition 4.14. If U2(x) is slowly varying, then E[W ] exists.

Proof. Apply Karamata (4.4) to see that x2V0(x)/U2(x) → (2 − α)/α = 0. Then for
some x0 > 0 we have V0(x) ≤ x−2U2(x) for all x ≥ x0. Given any ε > 0, Proposition
4.9 implies that V0(x) ≤ xε−2 for all x ≥ x0. Write

E[|W |] =

∫ ∞

0

P[|W | > x] dx =

∫ ∞

0

V0(x) dx ≤ x0 +

∫ ∞

x0

xε−2dx < ∞

for any 0 < ε < 1.

Brought to you by | Brown University Rockefeller Library
Authenticated | 128.148.231.12

Download Date | 4/28/14 11:52 PM



94 Chapter 4 Continuous Time Random Walks

4.2 Stable Central Limit Theorem

In this section, we will prove part (b) of Theorem 4.5, the necessary and sufficient
conditions for the central limit theorem (4.1) to hold when Y is not normal. We say
W is regularly varying if

nP[anW ∈ dy] → φ(dy) as n → ∞ (4.13)

for some an → 0 and some σ-finite Borel measure φ on {y ̸= 0} which is not the zero
measure. The vague convergence in (4.13) is the same as for condition (i) in Theorem
3.33, the convergence criteria for triangular arrays.

Proposition 4.15. Suppose that W is regularly varying and (4.13) holds. Then:

(a) For some α > 0 we have

φ(dy) =

{
pCαy−α−1dy for y > 0

qCα|y|−α−1dy for y < 0
(4.14)

for some C > 0 and some p, q ≥ 0 with p + q = 1;

(b) The sequence (an) is RV(−1/α), that is,

a[λn]

an
→ λ−1/α as n → ∞ (4.15)

for all λ > 0;

(c) The tail V0(x) = P[|W | > x] is RV(−α) and the tail balance condition (4.5) holds.
Conversely, these two conditions imply W is regularly varying and (4.13) holds.

See details at the end of this section for proof. When Proposition 4.15 holds, we
will also say that W is RV(−α).

Proof of Theorem 4.5 (b). In view of Proposition 4.15 (c), it suffices to show that (4.1)
holds with Y nonnormal if and only if W is RV(−α). Suppose that (Wj) are iid with
W , and that W is RV(−α) for some 0 < α < 2. Define a triangular array with row
elements Xnj = anWj for j = 1, . . . , n. Then condition (3.35) holds (see details), and
so in order to show that (4.1) holds, it suffices to check the convergence criteria (i)
and (ii) for triangular arrays in Theorem 3.33. Proposition 4.15 (a) along with (4.13)
shows that (i) holds, where φ is given by the formula (4.14). Since 0 < α < 2, it is not
hard to check that φ is a Lévy measure. For condition (ii) we apply the Karamata
Theorem 4.4 to see that

x2V0(x)

U2(x)
→ 2 − α

α
as x → ∞
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Section 4.2 Stable Central Limit Theorem 95

so that U2(x) ∼ αx2V0(x)/(2 − α) as x → ∞. Then

0 ≤
kn∑

j=1

Var[Xε
nj ] ≤ nE[(Xε

nj)
2]

= na2
nE[W 2I(|anW | ≤ ε)]

= na2
nU2(a

−1
n ε)

∼ na2
n

α

2 − α
(a−1

n ε)2V0(a
−1
n ε)

=
α

2 − α
ε2nV0(a

−1
n ε)

=
ε2α

2 − α
nP[|anW | > ε]

→ ε2α

2 − α
φ{y : |y| > ε} =

ε2α

2 − α
Cε−α

so that

lim
ε→0

lim sup
n→∞

kn∑

j=1

Var[Xε
nj ] ≤ lim

ε→0

α

2 − α
Cε2−α = 0.

This proves that (4.1) holds, where Y has Lévy representation [0, 0, φ]. Then it follows
from Proposition 4.15 (a) that Y is stable with index α.

Conversely, if (4.1) holds where Y is nonnormal, the triangular array convergence
condition (i) shows that (4.13) holds, where φ is not the zero measure. Then W is
RV(−α), and since φ is a Lévy measure, it is easy to check that 0 < α < 2.

The next result provides specific details about the centering constants and limit
distribution in the stable case.

Proposition 4.16. Suppose that (4.1) holds, where Y is stable with index 0 < α < 2
and Lévy measure (4.14).

(a) If 0 < α < 1, we can take bn = 0, and then the limit Y is centered stable with
characteristic function

E[eikY ] = exp (−CΓ(1 − α)[p(−ik)α + q(ik)α]) ; (4.16)

(b) If 1 < α < 2, we can take bn = nanE[W ], and then the limit Y is centered stable
with mean zero and characteristic function

E[eikY ] = exp

(
C

Γ(2 − α)

α − 1
[p(−ik)α + q(ik)α]

)
. (4.17)

Proof. We illustrate the proof in the special case where W > 0, so that p = 1. For the
general case, see [135, Theorem 8.2.7]. Suppose that an(W1 + · · · + Wn) − bn ⇒ Y1.
In case (a), by exactly the same argument as for the Pareto (see Proposition 3.10), we
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96 Chapter 4 Continuous Time Random Walks

get

E[eikY1 ] = exp

[∫
(eiky − 1)φ(dy) − ik

∫
yI(|y| ≤ R)φ(dy)

]

= exp [−CΓ(1 − α)(−ik)α − ikb]

where

b =

∫

|y|≤R
yφ(dy) =

Cα

1 − α
R1−α.

By Karamata (4.4) we have U1(x) ∼ αxV0(x)/(1 − α). The centering constants are
given by

bn =
kn∑

j=1

E[XR
nj ] =

kn∑

j=1

E[XnjI(|Xnj | ≤ R)]

= nanE[WI(|W | ≤ a−1
n R)]

= nanU1(a
−1
n R)

∼ nan
α

1 − α
a−1

n RV0(a
−1
n R)

=
Rα

1 − α
nP[|anW | > R] → Rα

1 − α
φ{|y| > R} = b

since φ{|y| > R} = CR−α. Define Y = Y1 + b. Then an(W1 + · · · + Wn) ⇒ Y , and
the limit is centered stable, i.e., stable with characteristic function given by (4.16).

In case (b), by exactly the same argument as for the Pareto (see Proposition 3.12),
we get

E[eikY1 ] = exp

[∫
(eiky − 1 − iky)φ(dy) + ik

∫
yI(|y| > R)φ(dy)

]

= exp

[
C

Γ(2 − α)

α − 1
(−ik)α + ikb

]

where

b =

∫

|y|>R
yφ(dy) =

Cα

α − 1
R1−α.

From Karamata (4.4) we get

xV1(x)

U2(x)
→ 2 − α

α − 1
and

x2V0(x)

U2(x)
→ 2 − α

α

so that

V1(x) ∼ 2 − α

α − 1
x−1U2(x) ∼ α

α − 1
xV0(x).

Brought to you by | Brown University Rockefeller Library
Authenticated | 128.148.231.12

Download Date | 4/28/14 11:52 PM



Section 4.2 Stable Central Limit Theorem 97

The centering constants are

bn = nanE[WI(|anW | ≤ R)]

= nan

{
µ1 − E[WI(|W || > a−1

n R)]
}

= nanµ1 − nanV1(a
−1
n R)

∼ nanµ1 − nan
α

α − 1
a−1

n RV0(a
−1
n R)

= nanµ1 −
Rα

α − 1
nP[|anW | > R]

∼ nanµ1 −
Rα

α − 1
φ{|y| > R} = nanµ1 − b

since φ{|y| > R} = CR−α. Define Y = Y1 − b. Then

an(W1 + · · · + Wn) − nanµ1 = an

n∑

j=1

(Wj − E[Wj ]) ⇒ Y.

This limit Y is centered stable, with characteristic function (4.17), and Remark 3.40
shows that E[Y ] = 0.

Remark 4.17. The convergence (4.1) extends to random walk limits. If

an(W1 + · · · + Wn) − bn ⇒ Z1

where Z1 is normal or stable, then we also have convergence of the characteristic
functions

µ̂n(k)n → µ̂(k) = eψ(k)

where µn is the distribution of anW −n−1bn, and µ is the distribution of the infinitely
divisible random variable Z1. It follows easily that

µ̂n(k)[nt] = (µ̂n(k)n)[nt]/n → etψ(k)

for any t ≥ 0, which means that

an(W1 + · · · + W[nt]) −
[nt]

n
bn ⇒ Zt (4.18)

for any t ≥ 0. The limit Zt is a Lévy process, see Section 4.3 for more details. If
0 < α < 1, then Proposition 4.16 (a) shows that we can take bn = 0. If 1 < α < 2,
then Proposition 4.16 (b) shows that we can take bn = nanE[W ] where an → 0, and
Corollary 4.6 shows that the same is true when α = 2. In the case 1 < α ≤ 2, equation
(4.18) can also be written in the form

an

[nt]∑

j=1

(Wj − v) ⇒ Zt
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98 Chapter 4 Continuous Time Random Walks

where v = E[W ]. Using two scales leads to a Lévy process with drift:

an

[nt]∑

j=1

(Wj − v) + n−1

[nt]∑

j=1

v ⇒ Zt + vt (4.19)

since [nt]/n → t. Two different scales are required here since an → 0 at a different
rate than n−1 when α ̸= 1.

Remark 4.18. Some authors use a different centering in Remark 4.17. Suppose that
(4.18) holds where Zt is either normal, or stable with index 1 < α < 2, so that E[W ]
exists. Then

∣∣∣∣
[nt]

n
bn − tbn

∣∣∣∣ =

(
nt − [nt]

n

)
bn ≤

(
1

n

)
nanE[W ] = anE[W ] → 0.

Now it follows from (4.18) that

an(W1 + · · · + W[nt]) − tbn ⇒ Zt (4.20)

for any t ≥ 0.

Details

Proof of Proposition 4.15. First we will prove part (c). Suppose that W is regularly
varying and (4.13) holds. Define B = {y : |y| > x} and G(x) = φ(B), and apply (4.13)
to see that

nV0(a
−1
n x) = nP[anW ∈ B] → φ(B) = G(x) (4.21)

as n → ∞ for all x such that G(x+) = G(x−). Since φ is not the zero measure, we
have G(x) > 0 for some x > 0. Since G(x) is monotone, it has at most a countable
number of discontinuities. Without loss of generality, we may assume that x = 1 is a
continuity point, with C = G(1) > 0. Define n = n(x) = inf{n > 0 : a−1

n+1
> x} so

that a−1
n ≤ x < a−1

n+1
. Then

nV0(a−1
n r)

nV0(a
−1

n+1
)
≤ V0(rx)

V0(x)
≤

nV0(a
−1

n+1
r)

nV0(a
−1
n )

where
nV0(a

−1

n+1
r) =

n

n + 1
(n + 1)V0(a

−1

n+1
r) → G(r)

if r is a continuity point of G. Define ϕ(r) = G(r)/G(1). Let n → ∞ to see that

lim
x→∞

V0(rx)

V0(x)
= ϕ(r) (4.22)

if r is a continuity point. If r, λ, and rλ are continuity points, we can take the limit
as x → ∞ on both sides of the equation

V0(rλx)

V0(x)
=

V0(rλx)

V0(rx)

V0(rx)

V0(x)
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Section 4.3 Continuous time random walks 99

to see that ϕ(rλ) = ϕ(r)ϕ(λ). It follows that ϕ(r) = rρ for some ρ ∈ R (see Seneta
[184, Lemma 1.6]), and then G(r) = Crρ. Hence every r > 0 is a continuity point,
so (4.22) holds for every r > 0. Since G(r) → 0 as r → ∞, ρ < 0. Then V0 varies
regularly with index ρ = −α for some α > 0. Now write

nV+(a−1
n )

nV0(a
−1

n+1
)
≤ V+(x)

V0(x)
≤

nV+(a−1

n+1
)

nV0(a
−1
n )

and let x → ∞ (which means that n = n(x) → ∞ as well) to see that the tail balance
condition (4.5) holds with p = φ{y : y > 1}/φ{y : |y| > 1}, so that 0 ≤ p ≤ 1.

Conversely, suppose that V0(x) is RV (−α) and (4.5) holds. Apply Proposition 4.12
with R(x) = C/V0(x) to obtain a sequence rn such that R(rn) ∼ n. Define an = r−1

n

so that nV0(a−1
n ) = nP[|anW | > 1] → C > 0. Since a−1

n = rn → ∞, it follows from
(4.2) that

nP[|anW | > x] = nV0(a
−1
n x) = nV0(a

−1
n )

nV0(a−1
n x)

nV0(a
−1
n )

→ Cx−α

for all x > 0. Using (4.5) it follows that nP[anW > x] ∼ npP[|anW | > x] → pCx−α

and similarly for the left tail. This is sufficient to prove that (4.13) holds with φ given
by (4.14), which proves part (c) and also part (a). Proposition 4.12 also implies that
(rn) varies regularly with index 1/α. Then (an) varies regularly with index −1/α so
that (4.15) holds, which proves part (b). This concludes the proof.

If W is RV(−α) for some 0 < α < 2, then (an) is RV(−1/α). Then Proposition 4.9
together with Remark 4.2 imply that an → 0. Since Wj is tight for any fixed j, so
that (3.42) holds with X = Wj , it follows that

P[|Xnj | > ε] = P[|Wj | > a−1
n ε] → 0,

so that condition (3.35) holds.

4.3 Continuous time random walks

In a continuous time random walk (CTRW), we assume a random waiting time between
particle jumps. Let S(n) = Y1 + · · · + Yn be a random walk with iid particle jumps.
Define another random walk T (n) = J1 + · · · + Jn where Jn ≥ 0 are iid waiting times
between particle jumps, so that a particle arrives at location S(n) at time T (n). Here
we also suppose that (Yn) are independent of (Jn), so the CTRW is uncoupled. Let

N(t) = max{n ≥ 0 : T (n) ≤ t}

denote the number of particle jumps by time t ≥ 0, where T (0) = 0. Then the CTRW
S(N(t)) is the particle location at time t ≥ 0. Our goal is to determine the limit
process for this CTRW. Then in Section 4.5, we will derive the governing equation of
the CTRW limit.
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100 Chapter 4 Continuous Time Random Walks

Since T (n) is a random walk, its limit distribution can be obtained as we did for
S(n). Suppose that Yn are iid with Y , and that Y ∈ DOA(A) where A is either normal,
or stable with index 0 < α < 2. Then

anS(n) − bn ⇒ A (4.23)

for some an > 0 and bn real. Suppose that bn = 0, e.g., assume that E[Y ] = 0 in the
case 1 < α ≤ 2. Then Remark 4.17 shows that we also get random walk convergence

anS([nt]) ⇒ A(t) (4.24)

where the limit A(t) is a Brownian motion, or an α-stable Lévy motion. Suppose Jn

are iid with J , and J ∈ DOA(D). If E[J ] exists, then the renewal theorem (e.g., see
Durrett [59, Theorem 2.4.6]) shows that N(t)/t → λ = 1/E[J ] with probability one as
t → ∞. That is, N(t) ≈ λt for t large. The proof of this fact is a simple application
of the strong law of large numbers. Then

anS(N(nt)) ⇒ A(λt)

and the effect of the waiting times is just a change of scale (see details). However, if
E[J ] = ∞, the CTRW behaves quite differently.

Suppose that J ∈ DOA(D) where D is β-stable with 0 < β < 1. For example, we
could take P[J > t] = Bt−β for some B > 0. Then Proposition 4.16 (a) shows that
cnTn ⇒ D for some cn → 0, and Remark 4.17 shows that the random walk converges:

cnT ([nt]) ⇒ D(t) (4.25)

where D(t) is called a β-stable subordinator. Since every Jn ≥ 0, D(t) is a one-sided
stable with p = 1 and q = 0. Also, if 0 < t1 < t2, then cnT ([nt1]) ≤ cnT ([nt2]) for all
n, which shows that the limit D(t1) ≤ D(t2), i.e., the process D(t) is increasing. In
fact, we have

cnT ([nt2]) = cnT ([nt1]) + cn(T ([nt2]) − T ([nt1]))

= cn

[nt1]∑

j=1

Jj + cn

[nt2]∑

j=[nt1]+1

Jj ⇒ D(t1) + [D(t2) − D(t1)]

and since the sums are independent, the process D(t) has independent increments.
Take weak limits on both sides of

cn

[nt2]∑

j=[nt1]+1

Jj ≃ cn

[nt2]−[nt1]∑

j=1

Jj

to see that D(t2)−D(t1) ≃ D(t2−t1), i.e., the process D(t) has stationary increments.
A process {D(t) : t ≥ 0} with stationary, independent increments is called a Lévy
process. (A subordinator is a Lévy process with nondecreasing sample paths.) Usually
we also assume that D(0) = 0 with probability one, which is certainly true here.
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Section 4.3 Continuous time random walks 101

Clearly a Lévy process is infinitely divisible, since D(t) = D(t/n)+[D(2t/n)−D(t/n)]+
· · · + [D(t) − D((n − 1)t/n)] is a sum of n iid random variables. Hence the FT of
D = D(1) can be written as E[e−ikD] = eψ(−k) with Fourier symbol ψ(−k) from the
Lévy representation (3.4), and then D(t) has FT etψ(−k) for all t ≥ 0. See Sato [174]
or Applebaum [7] for more information on Lévy processes.

The random walk T (n) and the renewal process N(t) are inverses: Obviously we
have {N(t) ≥ n} = {T (n) ≤ t}, which formalizes the fact that there are at least n
jumps by time t, if and only if the nth jump occurs by time t. In fact, we also have
{N(t) ≥ u} = {T (⌈u⌉) ≤ t} where ⌈u⌉ is the smallest integer n ≥ u. The idea of
inverse processes can be used, along with the random walk limit for T (n), to get the
limit behavior of the renewal process N(t). For ease of notation, we specialize to the
case cn = n−1/β . The general argument uses the fact that (cn) ∈ RV(−1/β) and
asymptotic inverses. Using (4.25) we have

P[c−βN(ct) < u] = P[N(ct) < cβu]

= P[T (⌈cβu⌉) > ct]

= P[c−1T (⌈cβu⌉) > t]

= P[(cβ)−1/βT (⌈cβu⌉) > t]

→ P[D(u) > t]

(4.26)

for all t > 0, since every stable law has a density (we will prove this in Section 4.5).
Define the inverse stable subordinator

E(t) = inf{u > 0 : D(u) > t} (4.27)

which is also the first passage time of the process D(t). It is not hard to check that
D, E are inverses, with {E(t) ≤ u} = {D(u) ≥ t}. Then it follows from (4.26) that
c−βN(ct) ⇒ E(t). Since (Jn) is independent of (Yn), we also have

(
c−1/αS([ct]), c−βN(ct)

)
⇒

(
A(t), E(t)

)

for each t > 0. To simplify notation, we assume an = n−1/α here. To proceed further,
we need to introduce some ideas about stochastic process convergence.

Finite dimensional convergence: Given 0 < t1 < t2 < · · · < tn < ∞ we want to
show that

(c−1/αS([ct1]), . . . , c
−1/αS([ctn])) ⇒ (A(t1), . . . , A(tn)). (4.28)

To check this, define t0 = 0 and S(0) = 0 and note that

c−1/αS([ctk]) − c−1/αS([ctk−1]) = c−1/α
[ctk ]∑

j=[ctk−1]+1

Jj ⇒ A(tk) − A(tk−1)

for k = 1, . . . , n, and since the sums are all independent, we also have
(
c−1/αS([ctk]) − c−1/αS([ctk−1]) : k = 1, . . . , n

)
⇒

(
A(tk) − A(tk−1) : k = 1, . . . , n

)

weak convergence of these n dimensional random vectors. To prove (4.28) we will use
the following fundamental result on weak convergence:
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102 Chapter 4 Continuous Time Random Walks

Theorem 4.19 (Continuous Mapping Theorem). If Xc ⇒ X as c → ∞ and f(x) is
continuous, then f(Xc) ⇒ f(X) as c → ∞.

Proof. See for example Billingsley [35].

Define f(x1, . . . , xn) = (x1, x1 + x2, . . . , x1 + · · ·+ xn) so that f is continuous, with

f
(
c−1/αS([ctk]) − c−1/αS([ctk−1]) : k = 1, . . . , n

)
=

(
c−1/αS([ctk]) : k = 1, . . . , n

)

and

f
(
A(tk) − A(tk−1) : k = 1, . . . , n

)
=

(
A(tk) : k = 1, . . . , n

)
.

Apply Theorem 4.19 to see that (4.28) holds in the sense of finite dimensional dis-
tributions. In Section 4.4, we will extend this result to obtain stochastic process
convergence.

Next we consider the waiting times. Given 0 < t1 < t2 < · · · < tn < ∞ and real
numbers u1, . . . , un we can write

P
(
c−βN(ctk) < uk : k = 1, . . . , n

)
= P

(
N(ctk) < cβuk : k = 1, . . . , n

)

= P
(
T (⌈cβuk⌉) > ctk : k = 1, . . . , n

)

= P
(
(cβ)−1/βT (⌈cβuk⌉) > tk : k = 1, . . . , n

)

→ P
(
D(uk) > tk : k = 1, . . . , n

)

= P
(
E(tk) < uk : k = 1, . . . , n

)

which proves that c−βN(ct) ⇒ E(t) in the sense of finite dimensional distributions.
Since (Jn) is independent of (Yn), we also have

(
c−1/αS([ct]), c−βN(ct)

)
⇒

(
A(t), E(t)

)

in the sense of finite dimensional distributions.

Remark 4.20. Proposition 4.16 (a) shows that if 0 < α < 1 we can always choose
bn = 0. If α = 1, we can always choose bn = 0 if the distribution of W is symmetric.
Corollary 4.6 and Proposition 4.16 (b) show that we can always choose bn = 0 if
1 < α ≤ 2 and E[W ] = 0. Suppose that 1 < α ≤ 2 and v = E[W ] ̸= 0. Then Remark
4.17 shows that

an(S[nt] − [nt]v) + n−1[nt]v ⇒ A(t)

as n → ∞ for any t > 0, where the limit A(t) = Zt + vt is a Brownian motion with
drift in the case α = 2, or a stable Lévy motion with drift in the case 1 < α < 2. It
is not hard to show, arguing as in (4.28), that we also get convergence in the sense of
finite dimensional distributions in this case.
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Section 4.4 Convergence in Skorokhod space 103

Details

Suppose that (4.24) holds with bn = 0, and that N(nt)/n → λt almost surely as
n → ∞. Then a transfer theorem from Becker-Kern, Meerschaert and Scheffler [24,
Proposition 4.1] implies that

anS(N(nt)) = anS(n · N(nt)/n) ⇒ A(λt) as n → ∞

for any t > 0. An alternative proof uses the Continuous Mapping Theorem 4.19: Since
the waiting times Jn are independent of the jumps Yn, we also have joint convergence
(anS([nt]), N(nt)/n) ⇒ (A(t), λt). Extend to joint convergence in the Skorokhod
space D[0,∞) using (4.29) in the next section, and mimic the proof of (4.32).

4.4 Convergence in Skorokhod space

We want to understand CTRW convergence, and the limit process, in terms of sample
paths. These sample paths represent particle traces in the diffusion model. Let D[0,∞)
denote the set of real-valued functions x : [0,∞) → R which are continuous from the
right:

lim
ε→0+

x(t + ε) = x(t),

with left-hand limits:
lim

ε→0+
x(t − ε) = x(t−).

In some literature these are called càdlàg functions, an acronym for the French phrase,
“continue à droite, limite à gauche,” which means “continuous on the right, with limits
on the left.” We would like to show that c−1/αS([ct]) ⇒ A(t) in the space D[0,∞), and
likewise for the waiting times. Then we will use the Continuous Mapping Theorem
4.19 to get the CTRW process limit.

Weak convergence theory requires a topology on the space D[0,∞), suitable for
stochastic process convergence. In other words, we need to say what it means for a
sample path xn(t) to be close to x(t). The obvious choice is to require xn(t) → x(t)
for all t, but this excludes the possibility that xn(t) has a jump at the point t− εn for
some εn → 0 and x(t) has a jump of the same size at t. For this reason, Skorokhod
introduced his (J1) topology: In this topology, xn(t) → x(t) in D[0, T ] if for some
increasing continuous functions λn : [0, T ] → [0, T ] such that λn(0) = 0, λn(T ) = T ,
and

lim
n→∞

sup
0≤t≤T

|λn(t) − t| = 0,

we have
lim

n→∞
sup

0≤t≤T
|x(t) − xn(λn(t))| = 0.

Then we say that xn(t) → x(t) in D[0,∞) if xn(t) → x(t) in D[0, T ] for every continuity
point T > 0 of x(t). This topology is useful if the processes have isolated jumps, as in
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104 Chapter 4 Continuous Time Random Walks

a random walk. In fact, Skorokhod [188] proved that if Y ∈ DOA(A) and (4.23) holds,
then

anS([nt]) − tbn ⇒ A(t) in D[0,∞) (4.29)

with this topology. This strengthens (4.20). The Skorokhod M1 topology (see details)
is a bit more flexible. It allows multiple jumps of xn(t) to coalesce into a single jump
of x(t) in the limit. For a beautiful description, and additional discussion, see Avram
and Taqqu [12].

Theorem 3 in Bingham [37] states that if:

(a) Xn(t) ⇒ X(t) in the sense of finite dimensional distributions;

(b) X(t) is continuous in probability; and

(c) Xn(t) is monotone,

then Xn(t) ⇒ X(t) in the space D[0,∞) with the Skorokhod (J1) topology. We say
that X(t) is continuous in probability if

P[|X(tn) − X(t)| > ε] → 0 as n → ∞

for all ε > 0, whenever tn → t. Since the sample paths of the stable subordinator
D(u) are strictly increasing, it follows from (4.27) that the sample paths of E(t) are
continuous, and hence E(t) is continuous in probability. Since sample paths of the
process N(t) are monotone nondecreasing, it follows that

c−βN(ct) ⇒ E(t) in D[0,∞). (4.30)

Suppose an = n−1/α to ease notation, and suppose that the random walk jumps are
centered so that bn = 0. Since (Yn) and (Jn) are independent, it follows from (4.29)
and (4.30) that (

c−1/αS([ct]), c−βN(ct)
)
⇒

(
A(t), E(t)

)
(4.31)

in the product space in D[0,∞) × D[0,∞). From here it is hard to prove CTRW
convergence in the J1 topology. But Theorem 13.2.4 in Whitt [204] shows that x(y(t))
is a continuous mapping from D[0,∞) × D[0,∞) to D[0,∞) with the M1 topology, so
long as u = y(t) is strictly increasing whenever x(u) ̸= x(u−), i.e., when u is a jump
point of x.

In order to apply this to the CTRW limit, we need to know that u = E(t) is a point of
increase whenever A(u) ̸= A(u−). Since the constant intervals of u = E(t) correspond
to the jumps of the inverse process t = D(u), this is equivalent to the condition that
A(u) and D(u) have no simultaneous jumps. This follows from the fact that A(u) and
D(u) are independent (see details). Then, since xc(u) = c−1/αS([cu]) ⇒ x(u) = A(u)
and yc(t) = c−βN(ct) ⇒ y(t) = E(t) jointly in D[0,∞) × D[0,∞), it follows from
(4.31) and the Continuous Mapping Theorem 4.19 that

c−β/αS(N([ct])) = (cβ)−1/αS(cβ c−βN([ct])) = xcβ (yc(t)) ⇒ x(y(t)) = A(Et) (4.32)

as c → ∞, in the space D[0,∞) with the M1 topology. The convergence (4.32) also
holds in the J1 topology, but the proof is more delicate, see Henry and Straka [196].
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Section 4.4 Convergence in Skorokhod space 105

Recall that A(ct) ≃ c1/αA(t) for all c > 0 and t ≥ 0. It is not hard to extend to
finite dimensional distributions, using the fact that A(t) has independent increments.
A process with this scaling property for finite dimensional distributions is called self-
similar with index 1/α, see for example Embrechts and Maejima [61]. Since D(t) is
also stable, the processes D(t) is self-similar with index 1/β. We have noted previously
that {E(t) ≤ u} = {D(u) ≥ t}. In fact, we also have

{E(tk) ≤ uk ∀ k = 1, . . . , n} = {D(uk) ≥ tk∀ k = 1, . . . , n}

for any 0 < t1 < t2 < · · · < tn < ∞ and real numbers u1, . . . , un. It follows that
E(t) is self-similar with index β. Then, since A(u) and E(t) are independent, the
CTRW limit process A(E(t)) is self-similar with index β/α. This index codes the rate
at which a plume of particles spreads away from their center of mass.

Remark 4.21. Suppose 1 < α ≤ 2 and that v = E[W ] ̸= 0, and suppose that
an = n−1/α to ease notation. Then another continuous mapping argument along with
(4.29) shows that

c−1/α
[ct]∑

j=1

(Wj − v) + c−1

[ct]∑

j=1

v ⇒ A′(t) (4.33)

as c → ∞, in the space D[0,∞) with the J1 topology, where A′(t) = A(t) + vt is a
Brownian motion with drift in the case α = 2, or a stable Lévy motion with drift in
the case 1 < α < 2. Then (4.31) extends to

(
c−1/α(S([ct]) − [ct]v) + c−1[ct]v, c−βN(ct)

)
⇒

(
A′(t), E(t)

)
(4.34)

and (4.32) extends to

c−β/α
(
S(N([ct])) − N([ct])v

)
+ c−1N([ct])v ⇒ A′(Et). (4.35)

Details

Suppose that t > r > 0. In Section 4.5, we will prove that every stable law has a
density. Since D(t)−D(r) is identically distributed with D(t− r), and D(t− r) has a
density, D(t − r) > 0 and D(t) > D(r) with probability one, i.e., the process D(t) is
strictly increasing.

Since D is strictly increasing, if D(u) ≥ t, then D(y) > t for all y > u, so that
E(t) ≤ u. Since D is right-continuous, if D(u) < t, then D(y) < t for all y > u
sufficiently close to u, so E(t) > u. This proves that {E(t) ≤ u} = {D(u) ≥ t}.

The Skorokhod M1 topology is defined as follows: The graph of a function x(t) in
D[0, T ] is the set {(t, x(t)) : 0 ≤ t ≤ T}. The completed graph also contains the points
{px(t) + (1 − p)x(t−) : 0 ≤ p ≤ 1}, so that it becomes a connected compact subset
of R × [0, T ]. A parametric representation (u(s), r(s)) is a continuous function that
maps the interval s ∈ [0, 1] onto the completed graph, such that u(s) is an increasing
function from [0, 1] onto [0, T ]. Then xn → x in D[0, T ] with the M1 topology if
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106 Chapter 4 Continuous Time Random Walks

and only if there exists a parametric representation (u(s), r(s)) of x(t) and parametric
representations (un(s), rn(s)) of xn(t) such that

lim
n→∞

sup
0≤s≤1

[
|un(s) − u(s)| + |rn(s) − r(s)|

]
= 0.

Also xn(t) → x(t) in D[0,∞) if xn(t) → x(t) in D[0, T ] for every T > 0 that is a point
of continuity of x(t). See Whitt [204] for additional discussion.

Since the stable Lévy processes A(u) and D(u) are independent, they have no simul-
taneous jumps. This follows from consideration of the two dimensional Lévy process
(A(u), D(u)). The Lévy Representation Theorem 6.8 in dimension d > 1 will be dis-
cussed in Chapter 6. Remark 6.19 shows that every jump of the two dimensional Lévy
process (A(u), D(u)) lies on one of the coordinate axes. Then it follows from the Lévy-
Itô Decomposition Theorem [174, Theorem 19.2] that every jump of (A(u), D(u)) lies
on one of the coordinate axes, i.e., A(u) and D(u) have no simultaneous jumps

The full proof of the CTRW limit depends on asymptotic inverses. Suppose that
anS(n) ⇒ A (centered jumps) and bnT (n) ⇒ D. Define b(c) = b[c] for c > 0, and note
that 1/b ∈ RV(1/β). The asymptotic inverse b̃(c) = inf{x > 0 : b(x) < c−1} of 1/b is
regularly varying with index β, and b(b̃(c)) ∼ 1/c, see Seneta [184, p. 21]. The proof
is similar to Proposition 4.12. Write

P[b̃(c)−1N(ct) < u] = P[N(ct) < b̃(c)u]

= P[T (⌈b̃(c)u⌉) > ct]

= P[c−1T (⌈b̃(c)u⌉) > t]

≈ P[b(b̃(c))T (⌈b̃(c)u⌉) > t]

→ P[D(u) > t] = P[E(t) < u].

Extend to finite dimensional convergence as before, and then to D[0,∞). Use inde-
pendence to get joint convergence

(
anS([ct]), b̃(c)−1N(ct)

)
⇒

(
A(t), E(t)

)

in D[0,∞) × D[0,∞). Define a(c) = a[c] and A(c) = a(b̃(c)), and apply Whitt [204,
Theorem 13.2.4] along with continuous mapping to get

A(c)S(N([ct])) = a(b̃(c))S(b̃(c) b̃(c)−1N([ct])) ⇒ A(Et)

in the M1 topology. For complete details, see Meerschaert and Scheffler [140, Theorem
4.2]. For J1 convergence, see Henry and Straka [196].

4.5 CTRW governing equations

In Section 4.4, we showed that the CTRW limit is A(E(t)). The outer process x = A(u)
is an α-stable Lévy motion with index 0 < α ≤ 2, the long-time limit of the random
walk of particle jumps. The inner process u = E(t) is the inverse of a β-stable
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Section 4.5 CTRW governing equations 107

subordinator D(t) with index 0 < β < 1, the limit of the random walk of waiting
times. If α = 2, then A(u) is a Brownian motion. In this section, we develop the
fractional diffusion equation that governs the probability densities of the CTRW limit.

First note that x = A(u) has a density function p(x, u) for all u > 0. This follows
by the Fourier inversion formula

p(x, u) =
1

2π

∫ ∞

−∞
eikxp̂(k, u) dk (4.36)

from Theorem 1.4. Since A(u) is the limit of a CTRW with centered jumps, it follows
from Corollary 4.6 and Proposition 4.16 that the FT of A(u) is

p̂(k, u) = E[e−ikA(u)] = exp
(
Du[p(ik)α + q(−ik)α]

)
, (4.37)

where D > 0 if 1 < α ≤ 2, and D < 0 if 0 < α < 1. A computation using complex
exponential functions (see details) shows that |p̂(k, u)| ≤ exp(−D0u|k|α), where D0 > 0
for 1 < α ≤ 2, and also for 0 < α < 1. Then it follows that p̂(k, u) is absolutely
integrable for all u > 0, and so (4.36) implies that x = A(u) has a density.

Since t = D(u) is also stable, it has a density g(t, u) for all u > 0. Write

P[E(t) ≤ u] = P[D(u) ≥ t] =

∫ ∞

t
g(r, u) dr = 1 −

∫ t

0

g(r, u) dr

which implies that u = E(t) has a density

h(u, t) = − d

du

∫ t

0

g(r, u) dr (4.38)

for all u > 0 and t > 0. Then a conditioning argument gives the density m(x, t) of
x = A(E(t)):

P[A(E(t)) ≤ x] = E
[
P[A(E(t)) ≤ x|E(t)]

]

=

∫ ∞

0

P[A(u) ≤ x|E(t) = u]PE(t)(du)

=

∫ ∞

0

P[A(u) ≤ x]h(u, t) du

so that

m(x, t) =
d

dx

∫ ∞

0

P[A(u) ≤ x]h(u, t) du

=

∫ ∞

0

d

dx
P[A(u) ≤ x]h(u, t) du

=

∫ ∞

0

p(x, u)h(u, t) du.

(4.39)

(In the details at the end of this section, we will prove that the derivative can be taken
inside the integral in (4.39).) Heuristically, we write

P[A(E(t)) = x] ≈
∑

u

P[A(u) = x]P[E(t) = u].
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108 Chapter 4 Continuous Time Random Walks

Recall from (4.37) that p̂(k, u) = euψ(−k) where the Fourier symbol of the stable law
x = A(u) is ψ(−k) = D[p(ik)α + q(−ik)α]. Take derivatives to get

d

du
p̂(k, u) = ψ(−k)euψ(−k) = D[p(ik)α + q(−ik)α] p̂(k, u)

and note that p̂(k, 0) ≡ 1. Inverting the FT shows that the density p(x, u) of the outer
process x = A(u) solves the space-fractional diffusion equation

∂

∂u
p(x, u) = Dp

∂α

∂xα
p(x, u) + Dq

∂α

∂(−x)α
p(x, u) (4.40)

with the Dirac delta function initial condition p(x, 0) = δ(x). The distribution function
P (x, u) = P[A(u) ≤ x] solves the same space-fractional diffusion equation

∂

∂u
P (x, u) = Dp

∂α

∂xα
P (x, u) + Dq

∂α

∂(−x)α
P (x, u)

with the Heaviside function initial condition: P (x, 0) = H(x) = I(x ≥ 0). This is
related to the fact that δ(x) = ∂xH(x) in terms of weak or distributional derivatives.
See the details at the end of Section 3.1 for more information.

Since t = D(u) is the limit of a random walk with positive jumps, it follows from
Proposition 4.16 (a) that D(u) is one-sided stable with characteristic function

E[eikD(u)] = exp
[
−BuΓ(1 − β)(−ik)β

]
,

where B > 0 depends on the sequence of norming constants cn in (4.25). If the norming
constants cn are chosen so that B = 1/Γ(1 − β), then E[eikD(u)] = exp(−u(−ik)β) for
0 < β < 1 (see details). Then the Laplace transform

g̃(s, u) =

∫ ∞

0

e−stg(t, u) dt = E[e−sD(u)] = e−usβ

(4.41)

for all u ≥ 0 and all s > 0. There are two ways to make this rigorous. One is to
develop the theory of positive infinitely divisible laws using Laplace transforms, see
for example Sato [174]. The other is to prove the Laplace transform g̃(s, u) exists for
complex s, see Zolotarev [213]. See the details at the end of this section for more
information.
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Section 4.5 CTRW governing equations 109

Then the density (4.38) of u = E(t) has LT

h̃(u, s) =

∫ ∞

0

e−sth(u, t) dt

= −
∫ ∞

0

e−st

(
d

du

∫ t

0

g(r, u)dr

)
dt

= − d

du

∫ ∞

0

e−st

∫ t

0

g(r, u)drdt

= − d

du

∫ ∞

0

g(r, u)

(∫ ∞

r
e−stdt

)
dr

= − d

du

∫ ∞

0

g(r, u)s−1e−rsdr

= − d

du

[
s−1e−usβ

]

= s−1sβe−usβ

= sβ−1e−usβ

(4.42)

and the density (4.39) of x = A(E(t)) has FLT

m̄(k, s) =

∫ ∞

0

∫ ∞

−∞
e−ste−ikxm(x, t) dx dt

=

∫ ∞

0

∫ ∞

−∞
e−ste−ikx

∫ ∞

0

p(x, u)h(u, t) du dx dt

=

∫ ∞

0

(∫ ∞

−∞
e−ikxp(x, u) dx

) (∫ ∞

0

e−sth(u, t) dt

)
du

=

∫ ∞

0

euψ(−k)sβ−1e−usβ

du

= sβ−1

∫ ∞

0

e−u[sβ−ψ(−k)]du =
sβ−1

sβ − ψ(−k)

(4.43)

by Fubini, using the fact that |p̂(k, u)| = |euψ(−k)| ≤ exp(−D0u|k|α) (see details).
Rewrite (4.43) in the form

sβm̄(k, s) − sβ−1 = ψ(−k)m̄(k, s)

and note that m̂(k, 0) = E[e−ikA(E(0))] ≡ 1 since A(0) = E(0) = 0. Invert the LT to
get

∂β
t m̂(k, t) = ψ(−k)m̂(k, t)

where ∂β
t is the Caputo fractional derivative. Then invert the FT to see that the

density m(x, t) of the CTRW limit process x = A(E(t)) solves the space-time fractional
diffusion equation

∂β
t m(x, t) = Dp

∂α

∂xα
m(x, t) + Dq

∂α

∂(−x)α
m(x, t). (4.44)
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110 Chapter 4 Continuous Time Random Walks

If the Lévy measure of A = A(1) is given by (4.14) (e.g, for Pareto jumps P[Y >
y] ∼ pCy−α and P[Y < −y] ∼ qCy−α with an = n−1/α in (4.1)) , then the fractional
dispersivity constant:

D =

⎧
⎨

⎩

−CΓ(1 − α) if 0 < α < 1;

C
Γ(2 − α)

α − 1
if 1 < α < 2.

If α = 2, then A(u) is normal with mean zero and variance 2Du, since

p̂(k, u) = E[eikA(u)] = exp(Du(ik)2) = exp(− 1

2
σ2k2)

with σ2 = 2Du. We have developed the space-time fractional diffusion equation (4.44)
from the extended central limit theorem, and connected the parameters of this equation
to those of the continuous time random walk. The fractional derivative in space codes
power law jumps, leading to anomalous super-diffusion. The fractional derivative in
time models power law waiting times, leading to anomalous sub-diffusion. The CTRW
combines both effects. For example, if α = 2β, then the limit A(E(t)) has the same
scaling as a Brownian motion.

For practical applications, we would like to explicitly compute solutions to the space-
time fractional diffusion equation (4.44). We know that the point source solution with
constant coefficients is an integral (4.39) involving the density p(x, u) of a stable Lévy
motion, and the density h(u, t) of an inverse stable. Since we know an explicit formula
for p̂(k, u), in principle we can use the FT inversion formula (4.36) to compute p(x, u).
In practice, this is a hard integral! But it does reduce to “nicer” forms that are easier
to numerically integrate. Nolan [150] has developed fast and accurate computer codes
to compute the stable density, see his personal web page for more information. There
are also R codes, based on the same ideas. We demonstrate these codes in Section 5.1.

As for the inverse stable density, recall that t = D(u) has a density g(t, u) with FT

ĝ(k, u) =

∫ ∞

0

e−iktg(t, u) dt = E
[
e−ikD(u)

]
= e−u(ik)β

(4.45)

and it follows that D(u) ≃ u1/βD(1). To check this, write

E
[
e−ik u1/βD(1)

]
= E

[
e−i(ku1/β)D(1)

]
= e−1(iku1/β)β

= e−u(ik)β

= E
[
e−ikD(u)

]
.

Let gβ(t) = g(t, 1) be the density of D = D(1), a standard stable subordinator. Then
D(u) has density

g(t, u) = u−1/βgβ(u−1/βt)

by a simple change of variables (or just differentiate P[u1/βD ≤ t]). Write

P[E(t) ≤ u] = P[D(u) ≥ t]

= P[u1/βD ≥ t]

= P[D ≥ tu−1/β ]

= P[(D/t)−β ≤ u]

(4.46)
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Section 4.5 CTRW governing equations 111

which shows that E(t) ≃ (D/t)−β for all t > 0. Differentiate (4.46) to see that
u = E(t) has density (see details)

h(u, t) =
t

β
u−1−1/βgβ(tu−1/β). (4.47)

Then (4.39) becomes

m(x, t) =

∫ ∞

0

p(x, u)
t

β
u−1−1/βgβ(tu−1/β) du

and we can compute this explicitly using existing codes for the stable density. An
alternative form can be obtained by substituting r = tu−1/β , which leads to

m(x, t) =

∫ ∞

0

p(x, (t/r)β)g(r) dr. (4.48)

Remark 4.22. The waiting time process t = D(u) has a density g(t, u) with FT
ĝ(k, u) = e−u(ik)β

and hence

d

du
ĝ(k, u) = −(ik)β ĝ(k, u).

Invert the FT to see that g(t, u) solves the fractional partial differential equation

∂

∂u
g(t, u) = − ∂β

∂tβ
g(t, u)

using the Riemann-Liouville derivative. Note that here the roles of space and time
are reversed. The inverse stable process u = E(t) has a density h(u, t) with LT
h̃(u, s) = sβ−1e−usβ

and FLT

h̄(k, s) =

∫ ∞

0

e−ikuh̃(u, s) du =

∫ ∞

0

e−ikusβ−1e−usβ

du =
sβ−1

sβ + ik
.

Rewrite in the form
sβh̄(k, s) − sβ−1 = −ikh̄(k, s)

and invert to see that this density solves

∂β
t h(u, t) = − ∂

∂u
h(u, t), (4.49)

using the Caputo derivative in time. This is a degenerate case of the CTRW with
Yn = 1. Then x = A(u) = u (the shift semigroup), E[e−ikA(u)] = e−iku, and ψ(k) = ik.
It is also possible to derive the CTRW governing equation (4.44) from (4.49), together
with (4.39) and (4.40). If we wish to interpret (4.49) as a differential equation on
u ∈ R then, since the function u 2→ h(u, t) has a jump at the point u = 0, the
derivative ∂h/∂u must be interpreted as a weak derivative, as in Remark 2.12. For an
alternative derivation of the governing equation for h(u, t) using LT in both variables,
and the explicit form of the limit h(0+, t), see Hahn, Kobayashi, and Umarov [78].
An explicit formula for the moments of E(t) was given by Piryatinska, Saichev and
Woyczynski [155].
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112 Chapter 4 Continuous Time Random Walks

Remark 4.23. In Remark 4.21 we showed that, when the random walk jumps have
a finite mean in the case 1 < α ≤ 2, the CTRW scaling limit is A′(E(t)). The outer
process x = A′(u) is a Brownian motion with drift in the case α = 2, or a stable Lévy
motion with drift in the case 1 < α < 2. When 1 < α < 2, the probability densities
p(x, u) of A′(u) solve the space-fractional diffusion equation with drift

∂

∂u
p(x, u) = −v

∂

∂x
p(x, u) + Dp

∂α

∂xα
p(x, u) + Dq

∂α

∂(−x)α
p(x, u) (4.50)

and the probability densities m(x, t) of the CTRW limit process A′(E(t)) solve the
space-time fractional equation

∂β
t m(x, t) = −v

∂

∂x
m(x, t) + Dp

∂α

∂xα
m(x, t) + Dq

∂α

∂(−x)α
m(x, t). (4.51)

If α = 2 then the same equations apply, and in particular, the probability densi-
ties of the process A′(E(t)), a Brownian motion with drift where the time variable
is replaced by an independent inverse stable subordinator, solve the time-fractional
diffusion equation with drift

∂β
t m(x, t) = −v

∂

∂x
m(x, t) + D

∂2

∂x2
m(x, t). (4.52)

Remark 4.24. There is an interesting connection between the CTRW scaling limit
process A(E(t)) in the normal case α = 2, and iterated Brownian motion. Given a
Brownian motion A(t), take another independent Brownian motion B(t) and consider
the subordinated process A(|B(t)|). Allouba and Zheng [4] and Burdzy [42] develop
governing equations and other properties of this process. Baeumer, Meerschaert and
Nane [19] show that the process A(E(t)) with β = 1/2 has the same governing equa-
tion and the same one dimensional distributions. This is related to the fact that the
first passage times of a Brownian motion are stable with index β = 1/2. Some re-
lated results for subordinated Brownian motion in a bounded domain are included in
Meerschaert, Nane and Vellaisamy [130].

Details

Define the signum function sgn(k) = +1 for k ≥ 0 and sgn(k) = −1 for k < 0. Write
(ik)α = (i sgn(k)|k|)α = |k|αei sgn(k)πα/2 = |k|α[cos θ + i sgn(k) sin θ] where θ = πα/2.
Then (ik)α = a + ib where a = |k|α cos θ. A similar argument shows that (−ik)α =
|k|αe−i sgn(k)θ = |k|α[cos θ− i sgn(k) sin θ]. Then p(ik)α + q(−ik)α is a complex number
with real part equal to (p + q)|k|α cos θ = |k|α cos(πα/2). Hence

|p̂(k, u)| = | exp
(
Du[p(ik)α+q(−ik)α]

)
| = exp(Du|k|α cos(πα/2)) = e−D0u|k|α (4.53)

where D0 = −D cos(πα/2) > 0: D < 0 and cos(πα/2) > 0 when 0 < α < 1; and
D > 0 and cos(πα/2) < 0 when 1 < α ≤ 2.
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Section 4.5 CTRW governing equations 113

Differentiation inside the integral in (4.39) is justified as follows. Consider y > 0
(the case y < 0 is treated similarly). Since

p(x, u) =
d

dx
P[A(u) ≤ x]

we have

m(x, t) =
d

dx

∫ ∞

0

P[A(u) ≤ x]h(u, t) du =
d

dx

∫ ∞

0

∫ x

−∞
p(v, u) dv h(u, t) du.

Write the last expression as a difference quotient, and simplify to get

m(x, t) = lim
y→0

∫ ∞

0

(
y−1

∫ x+y

x
p(v, u) dv

)
h(u, t) du.

It follows from (4.36) and (4.53) that
∣∣∣∣y
−1

∫ x+y

x
p(v, u) dv

∣∣∣∣ ≤ sup
v∈[x,x+y]

|p(v, u)| ≤ 1

2π

∫ ∞

−∞
|p̂(k, u)| dk

≤ 1

2π

∫ ∞

−∞
e−D0u|k|α dk := C0 < ∞

since D0 > 0. Then
∫ ∞

0

∣∣∣∣y
−1

∫ x+y

x
p(v, u) dv

∣∣∣∣ h(u, t) du ≤
∫ ∞

0

C0h(u, t) du = C0,

and the dominated convergence theorem justifies differentiation under the integral.
The justification for the differentiation under the integral in the derivation of the

LT of E(t) in (4.42) is similar. Write

lim
y→0

∫ ∞

0

e−st

∫ t

0

g(r, u + y) − g(r, u)

y
dr dt,

and

g(r, u) =
1

2π

∫ ∞

−∞
eikr ĝ(k, u) dk =

1

2π

∫ ∞

−∞
eikre−u(ik)β

dk

so that
∣∣∣∣
g(r, u + y) − g(r, u)

y

∣∣∣∣ ≤
1

2π

∫ ∞

−∞

∣∣∣e−u(ik)β
∣∣∣

∣∣∣1 − e−y(ik)β
∣∣∣

|y| dk.

Note that
∣∣∣e−u(ik)β

∣∣∣ = e−u|k|β cos(πβ/2) with cos(πβ/2) > 0 since 0 < β < 1, and apply
the mean value theorem to see that

∣∣∣1 − e−y(ik)β
∣∣∣

|y| ≤ e|y||k|
β cos(πβ/2) − 1

|y| ≤ |k|βe(u/2)|k|β cos(πβ/2)
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114 Chapter 4 Continuous Time Random Walks

if |y| < u/2, which holds eventually since y → 0, and u > 0 is fixed in this argument.
It follows that

∣∣∣∣
g(r, u + y) − g(r, u)

y

∣∣∣∣ ≤
1

2π

∫ ∞

0

|k|βe(−u/2)|k|β cos(πβ/2) dk := C1 < ∞

for any r > 0. Therefore
∫ ∞

0

e−st

∫ t

0

∣∣∣∣
g(r, u + y) − g(r, u)

y

∣∣∣∣ dr dt ≤ 1

2π

∫ ∞

0

e−sttC1 dt < ∞,

and the argument can be completed using the dominated convergence theorem.
Suppose cnTn ⇒ D where Tn = J1 + · · · + Jn and Jn are iid with J ∈ DOA(D).

If D has Lévy measure φ(r,∞) = Br−β concentrated on the positive real line (e.g.,
if P[J > t] = Bt−β and cn = n−1/β), then Proposition 4.16 shows that E[eikD] =
exp(−BΓ(1−β)(−ik)β). Define a new set of norming constants c̃n = [BΓ(1−β)]−1/βcn

(this reduces to [nBΓ(1− β)]−1/β in the case of Pareto jumps) and note that c̃nTn ⇒
[BΓ(1 − β)]−1/βD = D̃. Write

E[eikD̃] = E[eik[BΓ(1−β)]−1/βD] = exp(−BΓ(1 − β)(−ik[BΓ(1 − β)]−1/β)β) = e−(−ik)β

which shows that the limit is a standard stable subordinator.
For positive random variables, it is possible to develop an alternative theory of

infinitely divisible laws based on Laplace transforms, see for example Sato [174]. The
theory is similar to what was presented in Section 3.1, using Laplace transforms instead
of characteristic functions. Since a positive random variable cannot have a normal
distribution, the Lévy representation takes the simplified form E[e−sY ] = eψ(s), where
s > 0 and

ψ(s) = −as +

∫ ∞

0

(
e−sy − 1

)
φ(dy) (4.54)

for some a ≥ 0, and some Lévy measure φ(dy). This Lévy representation is unique.
The Lévy measure φ(dy) on {y : y > 0} satisfies φ(R,∞) < ∞ and

∫ r

0

yφ(dy) < ∞ (4.55)

for all R > 0. A computation very similar to Proposition 3.10 shows that a centered
one-sided stable law with Lévy measure (3.10) has Laplace symbol

ψ(s) =

∫ ∞

0

(
e−sy − 1

)
Cαy−α−1dy = −CΓ(1 − α)sα

for 0 < α < 1. If C = 1/Γ(1 − α) we get a standard stable subordinator with Laplace
transform E[e−sY ] = exp(−sα).

One way to connect these two theories of infinitely divisible laws is to view the
Laplace transform as a function of a complex variable. The Laplace transform

e−usβ

=

∫ ∞

0

e−stg(t, u) dt (4.56)
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Section 4.5 CTRW governing equations 115

exists for any s = ik + y with k real and y > 0, see Zolotarev [213, Lemma 2.2.1].
Hence we can substitute s = ik into the formula (4.56) for the LT of the positive
random variable D(u), to get the corresponding FT formula (4.45).

To show that (4.47) holds, write P[E(t) ≤ u] = P[D ≥ tu−1/β ] = 1 − Gβ(tu−1/β)
where Gβ(u) is the cdf of D, so that

gβ(u) =
d

du
Gβ(u).

Then

h(t, u) =
d

du

[
1 − Gβ(tu−1/β)

]

= −gβ(tu−1/β)
d

du

[
tu−1/β

]

which reduces to (4.47).
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Chapter 5

Computations in R

In this chapter, we demonstrate computer codes that the reader can use to simulate
random walks and their stochastic process limits, as well as the corresponding prob-
ability densities. These densities solve the fractional diffusion equations that are a
main focus of this book.

5.1 R codes for fractional diffusion

The R programming language is a sophisticated and useful platform for probability
and statistics [158]. This freely available open source code can be downloaded and
installed on a wide variety of Unix, Windows, and Apple computer systems. See www.

r-project.org for additional details. Once you have installed R on your computer,
the easiest way to run a program is to type the code into a plain text file (or download),
cut and paste the entire program into the R console window, and press the “Enter”
key.

Example 5.1. The simple R code listed in Figure 5.1 plots the solution p(x, t) to the
traditional diffusion equation with drift

∂

∂t
p(x, t) = −v

∂

∂x
p(x, t) + D

∂2

∂x2
p(x, t) (5.1)

for any time t > 0, with drift velocity v ∈ R and dispersion D > 0. This code uses
the fact that the solution to (5.1) is a normal pdf with mean µ = vt and standard
deviation σ =

√
2Dt for any t > 0. The R function dnorm produces a normal density

with a specified mean and standard deviation. Efficient R code is based on vector
mathematics. The vector x is a sequence of numbers from µ−4σ to µ+4σ in increments
of 0.1σ. If you type x into the R console window after running the code in Figure 5.1,
and press the “Enter” key, you will see this vector of n = 81 numbers. The command
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118 Chapter 5 Computations in R

D=1.0

v=3.0

t=5.0

mu=v*t

sigma=sqrt(2*D*t)

x = seq(mu-4*sigma, mu+4*sigma, 0.1*sigma)

density=dnorm(x, mean = mu, sd = sigma)

plot(x,density,type="l")

Figure 5.1. R code to plot solutions to the traditional diffusion equation with drift (5.1) at
time t = 5.0 with velocity v = 3.0 and dispersion D = 1.0.

dnorm takes the vector x as input, and outputs a vector density consisting of the
normal pdf at each value of the input vector. The command plot displays the points
(x[i], density[i]) for i = 1, 2, . . . , n and connects them with a curved line (graph
type="l"). Figure 5.2 shows the output from running the R code in Figure 5.1. The
same graph was also displayed as Figure 1.1 in Chapter 1. To obtain plots for other
values of the input parameters D, v, and t, edit the file containing the source code,
cut and paste this edited code back into the R console window, and press the “Enter”
key.
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Figure 5.2. Result of running the R code in Figure 5.1.
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Section 5.1 R codes for fractional diffusion 119

To save the output in the R graphics window, right-click and select a format for the
graphics file (e.g., postscript). Production of this book used the freely available LATEX
package for mathematical typesetting, with encapsulated postscript (eps) graphics.
See www.latex-project.org for more details, documentation, instructions on how to
download and install LATEX on your computer, and helpful examples.

D=1.0

v=3.0

t1=1.0

mu=v*t1

sigma=sqrt(2*D*t1)

x1 = seq(mu-4*sigma, mu+10*sigma, 0.1*sigma)

density=dnorm(x1, mean = mu, sd = sigma)

plot(x1,density,type="l")

t2=2.0

mu=v*t2

sigma=sqrt(2*D*t2)

x2 = seq(mu-4*sigma, mu+4*sigma, 0.1*sigma)

density=dnorm(x2, mean = mu, sd = sigma)

lines(x2,density,lty="dotted")

t3=3.0

mu=v*t3

sigma=sqrt(2*D*t3)

x3 = seq(mu-4*sigma, mu+4*sigma, 0.1*sigma)

density=dnorm(x3, mean = mu, sd = sigma)

lines(x3,density,lty="dashed")

Figure 5.3. R code to compare solutions to the traditional diffusion equation with drift
(5.1) at times t1 = 1.0 (solid line), t2 = 2.0 (dotted line), and t3 = 3.0 (dashed line). The
velocity v = 3.0 and dispersion D = 1.0.

Example 5.2. The next example compares the solution to the diffusion equation with
drift (5.1) at different times t1, t2, t3 > 0. The code in Figure 5.3 is very similar to
Figure 5.1, repeated for each value of the time variable. The R command lines adds
another curve to an existing graph. Figure 5.4 shows the graphical output. The same
graph was also displayed as Figure 1.2. A good way to learn R is to start by running
the same program listed here, and checking that the output is identical. Then modify
the code slightly (e.g., change one of the input variables, or add a fourth curve) and
check to see that the output is reasonable. This will also help build your intuition
about the underlying diffusion model. For example, you should be able to predict and
check the result of changing the input parameter v.
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Figure 5.4. Result of running the R code in Figure 5.3, displaying solutions to equation
(5.1) at times t1 = 1.0 (solid line), t2 = 2.0 (dotted line), and t3 = 3.0 (dashed line). The
velocity v = 3.0 and dispersion D = 1.0.

Our next goal is to plot solutions to the fractional diffusion equation. This requires
us to plot a stable density. There are existing R codes to plot stable densities, but
they rely on an alternative parametrization, popularized by Samorodnitsky and Taqqu
[172]. Recall that the signum function sgn(k) = +1 for k ≥ 0 and sgn(k) = −1 for
k < 0.

Proposition 5.3. The characteristic function of a general stable random variable Y
with Lévy representation [a, 0, φ] and Lévy measure (3.29) with index 0 < α < 2, α ̸= 1
can be written in the form

E[eikY ] = exp
[
ikµ − σα|k|α

(
1 − iβ sgn(k) tan

(πα

2

))]
(5.2)

where µ = a, β = p − q, and

σα = C
Γ(2 − α)

1 − α
cos

(πα

2

)
. (5.3)

In this case, we will write Y ≃ Sα(β, σ, µ).

Proof. If 0 < α < 1, then it follows from Example 3.27 that

E[eikY ] = exp
[
ika + pA(−ik)α + qA(ik)α

]
(5.4)

where A = −CΓ(1 − α) < 0. If 1 < α < 2, then it follows from Example 3.29 that
(5.4) holds with A = CΓ(2 − α)/(α − 1) > 0. Since Γ(2 − α) = (1 − α)Γ(1 − α), we
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Section 5.1 R codes for fractional diffusion 121

can also write A = CΓ(2 − α)/(α − 1) in the case 0 < α < 1. Use eiθ = cos θ + i sin θ
for θ ∈ R to write

(ik)α = (eiπ/2k)α

= |k|αei sgn(k)πα/2

= |k|α
[

cos(πα/2) + i sgn(k) sin(πα/2)
]

= |k|α cos(πα/2)
[
1 + i sgn(k) tan(πα/2)

]
.

(5.5)

Then (−ik)α = |k|α cos(πα/2)
[
1 − i sgn(k) tan(πα/2)

]
and so

pA(−ik)α + qA(ik)α = pA|k|α cos(πα/2)
[
1 − i sgn(k) tan(πα/2)

]

+ qA|k|α cos(πα/2)
[
1 + i sgn(k) tan(πα/2)

]

= A cos(πα/2)|k|α
[
1 − i(p − q) sgn(k) tan(πα/2)

]
(5.6)

and (5.2) follows. Note that the parameter σ > 0 for 0 < α < 1 and for 1 < α < 2,
since 1 − α and cos(πα/2) both change sign at α = 1.

Remark 5.4. It is not hard to check, using characteristic functions, that if Y ≃
Sα(β, 1, 0) then σY + µ ≃ Sα(β, σ, µ). Hence σ is a scale parameter, and µ is a
centering parameter. Some authors call Y ≃ Sα(β, 1, 0) a standard stable law. There
are several additional parameterizations for stable laws. The seminal book of Zolotarev
[213] lays out several useful parameterizations. The parametrization in Nolan [150]
makes the density f(y) a smooth function of all four parameters. The problem is that
e(ik)α → eik as α → 1, and this limit is the characteristic function of a point mass.

Remark 5.5. If α = 2 then (5.2) also holds. Then Y ≃ N (µ, 2σ2) and the skewness
β is irrelevant, since tan(πα/2) = 0 in this case. If α = 1 then a formula somewhat
different than (5.2) holds, since tan(πα/2) is undefined. The characteristic function of
a general stable random variable Y with Lévy representation [a, 0, φ] and Lévy measure
(3.29) with index α = 1 can be written in the form

E[eikY ] = exp

[
ikµ − σα|k|

(
1 + iβ

(
2

π

)
sgn(k) ln |t|

)]
(5.7)

where µ = a, β = p − q, and

σα = C · π

2
, (5.8)

see Meerschaert and Scheffler [135, Theorem 7.3.5] for complete details.

Remark 5.6. In Section 4.5 we defined the standard stable subordinator as the stable
law with characteristic function f̂(k) = exp(−(−ik)α) when 0 < α < 1. In Proposition
5.3 we can take µ = 0, β = 1, and σα = cos(πα/2).
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122 Chapter 5 Computations in R

library(fBasics)

x = seq(-5, 10, 0.1)

density = dstable(x, alpha=1.5, beta=1.0, gamma=1.0, delta=0.0, pm=1)

plot(x,density,type="l")

grid()

Figure 5.5. R code to plot a standard centered stable density with characteristic function
(5.2), where µ = 0.0, σ = 1.0, α = 1.5, and β = 1.0.

Example 5.7. The R code in Figure 5.5 plots a stable density f(y) for any values of
the tail index α ∈ (0, 2], skewness β ∈ [−1, 1], scale σ > 0, and center µ ∈ (−∞,∞). It
relies on the dstable command from the R package fBasics, a freely available package
of R codes for financial engineering and computational finance. See [206] for more
details. You need to install the fBasics package on your R platform before you run the
code in Figure 5.5. First try Packages > Load package to see if fBasics is available.
If not, then use Packages > Install package(s) and select a convenient site for
download to your computer. The calculation of the stable density behind the dstable

command uses the sophisticated method of Nolan [150] to numerically compute the
inverse Fourier transform. The option pm=1 specifies the Samorodnitsky and Taqqu
parameterization (5.2). The parameters alpha and beta are as in equation (5.2). The
scale parameter gamma is σ, and delta is the center µ, for this parametrization. Figure
5.6 shows the output from running the R code in Figure 5.5. Here we have set µ = 0.0,
σ = 1.0, α = 1.5, and β = 1.0 to get a standard stable pdf that is totally positively
skewed. This pdf represents the limit distribution of sums of iid positive jumps with
power law tails V0(x) = P[W > x] = Cx−α or, more generally, when V0(x) is RV(−α)
and the right tail dominates.

In order to plot solutions to the fractional diffusion equation

∂

∂t
p(x, t) = −v

∂

∂x
p(x, t) + Dp

∂α

∂xα
p(x, t) + Dq

∂α

∂(−x)α
p(x, t) (5.9)

for 1 < α < 2, we need to convert to the parametrization of Proposition 5.3.

Proposition 5.8. The solution p(x, t) to the space-fractional diffusion equation (5.9)
with index 1 < α < 2 is Sα(β, σ, µ) with µ = vt, β = p − q, and σα = Dt| cos(πα/2)|.

Proof. It follows from Example 3.29 that the point source solution p(x, t) to (5.9) has
characteristic function p̂(−k, t) = exp

[
ikvt + pDt(−ik)α + qDt(ik)α

]
. Write

pDt(−ik)α + qDt(ik)α = Dt cos(πα/2)|k|α
[
1 − i(p − q) sgn(k) tan(πα/2)

]

by an argument similar to Proposition 5.8. Now compare (5.2).
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Figure 5.6. Result of running the R code in Figure 5.5, a standard stable pdf with charac-
teristic function (5.2), where µ = 0.0, σ = 1.0, α = 1.5, and β = 1.0.

Example 5.9. The R code in Figure 5.7 plots the solution to the space-fractional
diffusion equation (5.9) for any time t > 0, with drift velocity v ∈ R, dispersion
D > 0, index 1 < α ≤ 2, and 0 ≤ q ≤ 1. In this case, we have set t = 5.0 with velocity
v = 2.0 and dispersion D = 1.0, for α = 1.5 and q = 0 (totally positively skewed).
The output of this code was displayed in Figure 1.3.

Remark 5.10. It follows from Example 3.27 that the solution to the fractional dif-
fusion equation

∂

∂t
p(x, t) = −v

∂

∂x
p(x, t) − Dp

∂α

∂xα
p(x, t) − Dq

∂α

∂(−x)α
p(x, t) (5.10)

for 0 < α < 1 has characteristic function p̂(−k, t) = exp
[
ikvt−pDt(−ik)α−qDt(ik)α

]
.

The only difference is a change of sign from D to −D (we assume that D > 0). Then
an argument similar to Proposition 5.8 shows that p(x, t) is Sα(β, σ, µ) with the same
parameters as for the case 1 < α < 2, i.e., µ = vt, β = p− q, and σα = Dt| cos(πα/2)|.
Hence the R code in Figure 5.7 can also be used to solve the fractional diffusion
equation (5.10) in the case 0 < α < 1.

Example 5.11. The R code in Figure 5.8 compares the solution to the space-fractional
diffusion equation (5.9) at times t1, t2, t3 > 0, with drift velocity v ∈ R, dispersion
D > 0, index 1 < α ≤ 2, and 0 ≤ q ≤ 1. The output of this code was displayed in
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124 Chapter 5 Computations in R

library(fBasics)

D=1.0

v=2.0

a=1.5

q=0.0

t=5.0

mu=v*t

pi=3.1415927

g=(D*t*abs(cos(pi*a/2)))^(1/a)

b=1-2*q

x = seq(mu-5*g, mu+5*g, 0.1*g)

p=dstable(x, alpha=a, beta=b, gamma = g, delta = mu, pm=1)

plot(x,p,type="l")

Figure 5.7. R code to plot the solution p(x, t) to the space-fractional diffusion equation
(5.9) at time t = 5.0 with velocity v = 2.0 and dispersion D = 1.0, for α = 1.5 and q = 0.

Figure 1.4. It compares the solution at times t1 = 3.0, t2 = 5.0, and t3 = 8.0 with
velocity v = 2.0 and dispersion D = 1.0, for α = 1.5 and q = 0 (positive skew). This is
an illustration of anomalous super-diffusion. The pdf spreads from its center of mass
like t1/1.5 which is faster than the t1/2 spreading for a traditional diffusion.

Example 5.12. The R code in Figure 5.9 plots the density of a stable subordinator
Y with characteristic function E[exp(ikY )] = exp(−(−ik)α) for 0 < α < 1, using
Remark 5.6 and the parametrization (5.2). Note that the Laplace transform of the
density of Y is E[exp(−sY )] = exp(−sα). Figure 5.10 plots the density of the stable
subordinator with index α = 0.75. Note that this density is always supported on the
positive real line.

Example 5.13. The R code in Figure 5.11 plots the solution to the time-fractional
diffusion equation

∂β
t p(x, t) = D

∂2

∂x2
p(x, t) (5.11)

for any time t > 0, with a Caputo derivative of order 0 < β < 1, and dispersion
D > 0. This is a special case of (4.44) with α = 2. It represents the scaling limit of a
CTRW with mean zero jumps in the domain of attraction of a normal law (e.g., mean
zero finite variance jumps), separated by power law waiting times with index β. The
solution to (5.11) is the pdf of A(E(t)), where A(t) is a Brownian motion, and E(t)
is an inverse stable subordinator. The R code in Figure 5.11 is based on the formula
(4.39) where p(x, u) is the pdf of A(u) and h(u, t) is the pdf of E(t). In the code, we
use the fact that p(x, u) is normal with mean zero and variance 2Du along with the
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library(fBasics)

D=1.0

v=3.0

a=1.5

q=0.0

t1=3.0

t2=5.0

t3=8.0

pi=3.1415927

b=1-2*q

mu1=v*t1

g1=(D*t1*abs(cos(pi*a/2)))^(1/a)

x = seq(mu1-5*g1, mu1+10*g1, 0.1*g1)

p=dstable(x, alpha=a, beta=b, gamma = g1, delta = mu1, pm=1)

plot(x,p,type="l")

mu2=v*t2

g2=(D*t2*abs(cos(pi*a/2)))^(1/a)

p2=dstable(x, alpha=a, beta=b, gamma = g2, delta = mu2, pm=1)

lines(x,p2,lty="dotted")

mu3=v*t3

g3=(D*t3*abs(cos(pi*a/2)))^(1/a)

p3=dstable(x, alpha=a, beta=b, gamma = g3, delta = mu3, pm=1)

lines(x,p3,lty="dashed")

Figure 5.8. R code to compare solutions p(x, t) to the space-fractional diffusion equation
(5.9) at times t1 = 3.0, t2 = 5.0, and t3 = 8.0 with velocity v = 2.0 and dispersion D = 1.0,
for α = 1.5 and q = 0.

alternative form
m(x, t) =

∫ ∞

0

p(x, (t/r)β)g(r) dr (5.12)

where g(r) is a the standard stable subordinator pdf, see (4.48). This form is conve-
nient for computations, because the pdf g(r) can be calculated once, and used over
and over for every value of the time t > 0. Since we have an analytical formula for the
normal density, computing p(x, (t/r)β) is a simple matter. The integral in (5.12) is
evaluated numerically by a simple Euler (rectangle) approximation. Figure 5.12 shows
the output for time t = 0.1 with β = 0.75 and dispersion D = 1.0. Note the sharp
peak at x = 0, which is typical of the time-fractional diffusion profile. This same plot
was shown previously as Figure 2.3.

Example 5.14. The R code in Figure 5.14 compares the solution to the time-fractional
diffusion equation (5.11) at times t1, t2, t3 > 0, with fractional derivative of order
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library(fBasics)

x = seq(0, 5, 0.01)

a=0.75

pi=3.1415927

g=(cos(pi*a/2))^(1/a)

density = dstable(x, alpha=a, beta=1.0, gamma=g, delta=0, pm=1)

plot(x,density,type="l")

grid()

Figure 5.9. R code to plot the pdf of a standard stable subordinator with index a ∈ (0, 1).
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Figure 5.10. Result of running the R code in Figure 5.9, pdf of a standard stable subordi-
nator with index α = 0.75.

0 < β < 1 and dispersion D > 0. Figure 5.13 compares the solution at times t1 = 0.1,
t2 = 0.3, and t3 = 0.8 with β = 0.75 and dispersion D = 1.0. This plot illustrates
anomalous sub-diffusion. The limit process A(E(t)) is self-similar with Hurst index
β/2 < 1/2, so the solution spreads at a slower rate than a traditional diffusion.

5.2 Sample path simulations

This section introduces R codes to simulate the sample paths of stochastic processes,
including random walks, Brownian motion, stable Lévy motion, CTRW, and CTRW
limits. First we will simulate one dimensional processes, then we will explore the prop-
erties of two dimensional sample paths. The limit theory for two or more dimensions
will be presented in Chapter 6.
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library(fBasics)

dr=0.1

r=seq(dr,10.0,dr)

b=0.75

pi=3.1415927

g=(cos(pi*b/2))^(1/b)

h=dstable(r, alpha = b, beta = 1.0, gamma = g, delta = 0, pm=1)

D=1.0

mcall <- function(y,t) {

sum(dnorm(y, mean = 0.0, sd =sqrt(D*(t/r)^b) )*h*dr)

}

x=seq(-5.0,5.0,0.1); m=x; t=0.1

for (i in 1:length(x)){

m[i]=mcall(x[i],t)}

plot(x,m,type="l")

Figure 5.11. R code to plot the solution to the time-fractional diffusion equation (5.11) for
any time t > 0. Here β = 0.75 and D = 1.0.

Example 5.15. We showed in Example 3.31 that a random walk S(n) = W1+· · ·+Wn

with iid mean zero finite variance jumps converges to a Brownian motion A(t). In fact
we have c−1/2S([ct]) ⇒ A(t) in D[0,∞) with the Skorokhod J1 topology (e.g., see
Billingsley [36]). To illustrate this sample path convergence, we will use R to simulate
a random walk. Figure 5.15 lists the R code to simulate a random walk whose iid
jumps are uniform on the interval [−1, 1]. Since these jumps have mean zero and
finite variance, the simulated random walk converges to a Brownian motion in the
scaling limit. The runif command in R produces a vector of (iid) uniform random
variates. The cumsum command returns the cumulative sum of a vector, i.e., given a
vector [Wi : i = 1, . . . , n] it returns the vector with ith entry S(i) = W1+· · ·+Wi. Then
the plot shows the points [(i, S(i)) : i = 1, . . . , n] connected by straight line segments.
Figure 5.16 shows a typical output from running the R code in Figure 5.15. Since
this Monte Carlo simulation involves random numbers, every run produces a different
picture. However, these pictures all have similar features. Each plot can be considered
as a graphical representation of the path followed by a randomly selected particle.
Running the same R simulation over and over shows paths of different particles.

One way to illustrate convergence to a Brownian motion is to vary the length of
the random walk in the R code from Figure 5.15. Just change t=seq(1:100) to, say,
t=seq(1:10) and then t=seq(1:50) and so forth. Once the sequence length is large
enough, increasing it further does not significantly effect the general appearance of the
graphical output. Of course the axis lengths will change. In fact, you can check that
the scale on the vertical axis is roughly the square root of the horizontal scale.
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Figure 5.12. Result of running the R code in Figure 5.11, the solution to time-fractional
diffusion equation (5.11) at time t = 0.1 with β = 0.75 and dispersion D = 1.0
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Figure 5.13. Solution to time-fractional diffusion equation (5.11) at times t1 = 0.1 (solid
line), t2 = 0.3 (dotted line), and t3 = 0.8 (dashed line) with β = 0.75 and dispersion D = 1.0.
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library(fBasics)

dr=0.1; b=0.75; D=1.0; pi=3.1415927; g=(cos(pi*b/2))^(1/b)

r=seq(dr,20.0,dr)

h=dstable(r, alpha = b, beta = 1.0, gamma = g, delta = 0, pm=1)

mcall <- function(y,t) {

sum(dnorm(y, mean = 0.0, sd =sqrt(D*(t/r)^b) )*h*dr)

}

x=seq(-5.0,5.0,0.1)

m=x; t1=0.1

for (i in 1:length(x)){

m[i]=mcall(x[i],t1)}

plot(x,m,type="l")

t2=0.3

m2=x

for (i in 1:length(x)){

m2[i]=mcall(x[i],t2)}

lines(x,m2,lty="dotted")

t3=0.8

m3=x

for (i in 1:length(x)){

m3[i]=mcall(x[i],t3)}

lines(x,m3,lty="dashed")

Figure 5.14. R code to compare solutions to the time-fractional diffusion equation (5.11)
at times at times t1 = 0.1, t2 = 0.3, and t3 = 0.8. Here β = 0.75 and D = 1.0.

Example 5.16. Figure 5.17 lists the R code to simulate a Brownian motion. In fact,
we approximate the Brownian motion by a random walk with iid N (0, 1) jumps. Then
S(n) ≃ N (0, n) approximates a standard Brownian motion A(t). The approximation
A(t) ≈ S([t]) is exact when t is an integer, and the graph interpolates between these
points. Since our simulation uses 1000 points, the difference between the exact and
simulated sample path is indistinguishable to the human eye. Figure 5.18 shows a
typical output from running the R code in Figure 5.17. Running the same code over
and over will generate statistically identical but individually distinct sample paths of
a diffusing particle following a Brownian motion.

The sample paths of a Brownian motion have many interesting properties. The
sample paths are (with probability one in the space D[0,∞)) everywhere continuous,
but nowhere differentiable. They do not have bounded variation over finite intervals,
i.e., the length of the path {(t, A(t)) : a ≤ t ≤ b} is infinite. More specifically, if we
subdivide the path into smaller increments and join these points by straight lines, the
total length of these lines tends to infinity as the mesh of the partition tends to zero.

In fact, the graph is a (random) fractal of dimension d = 3/2. Fractals are sets
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t=seq(1:100)

W=runif(t, min=-1, max=1)

S=cumsum(W)

plot(t,S,type="l")

Figure 5.15. R code to simulate a random walk with iid uniform [−1, 1] jumps.
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Figure 5.16. Simulated random walk, the result of running the R code in Figure 5.15.

whose dimension is not an integer. There are several notions of dimension (Hausdorff
dimension, packing dimension, etc.) but the easiest to explain is the box dimension.
Suppose that it requires C(n) boxes of size 1/n to cover a set. If there is a number

d = lim
n→∞

log C(n)

log n

then we call d the box dimension. For example, it takes C(n) = Ln boxes to cover a
line of length L, so that d = 1. It takes C(n) = V n3 to cover a cube of volume V , so
the cube has dimension d = 3. The proof that the graph of a Brownian motion has
(almost surely) dimension d = 3/2 requires some deep analysis, e.g., see Falconer [62,
Theorem 16.4].

One interesting property of fractals is self-similarity (or self-affinity) which means,
essentially, that zooming in or out on the graph produces a similar shape. For our
sample path simulations, we can illustrate self-similarity by increasing the length of
the simulated Brownian motion (i.e., change t=seq(1:1000) to t=seq(1:10000)) or
longer). The resulting graphs are more or less indistinguishable.
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t=seq(1:1000)

W=rnorm(t, mean=0, sd=1.0)

A=cumsum(W)

plot(t,A,type="l")

Figure 5.17. R code to simulate a standard Brownian motion.

0 2000 4000 6000 8000 10000

−
2

0
0

2
0

4
0

6
0

8
0

1
0

0

t

A

Figure 5.18. Simulated Brownian motion, the result of running the R code in Figure 5.17.

It is often overlooked that Brownian motion and the diffusion equation provide an
approximate model for diffusing particles. The theory of relativity puts an upper bound
on the distance a particle can travel in a finite time, but the normal pdf is positive on
the entire real line. A real physical particle in the physical world cannot trace a path
of unbounded variation (infinite length) in finite time. A real particle has a velocity,
but the sample path of a Brownian motion does not, since the derivative is undefined.
(It has, in some sense, an infinite speed.) From the point of view of probability, we
understand that Brownian motion and the resulting diffusion equation are merely an
approximation, valid at late time (after many particle jumps have accumulated). In
the real world, the random walk is the fundamental physical model, and the limit
process is a very useful approximation.

If you go back now to the simulation in Figure 5.15 and extend the length of the se-
quence of jumps simulated (i.e., change t=seq(1:100) to t=seq(1:1000)) or longer)
you can see that the random walk becomes indistinguishable from a Brownian mo-
tion. If you change the distribution of the random walk jumps (e.g., change runif(t,
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min=-1, max=1) to runif(t, min=-5, max=5) or even to a different mean zero finite
variance distribution) then the same effect persists. This illustrates the random walk
convergence to a Brownian motion in a very concrete way.

C=1.0

alpha=1.5

t=seq(1:100)

U=runif(t)

Y=(U/C)^(-1/alpha)-(alpha/(alpha-1))*C^(1/alpha)

S=cumsum(Y)

plot(t,S,type="l")

Figure 5.19. R code to simulate a random walk with iid Pareto jumps.
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Figure 5.20. Simulated random walk with Pareto jumps, the result of running the R code
in Figure 5.19.

Example 5.17. Figure 5.19 provides the R code to simulate a random walk with iid
Pareto jumps. The simulation uses the fact that if W has cdf F (y) = P[W ≤ y] then
W ≃ F−1(U) where U is uniform on [0, 1]. This is easy to check:

P[F−1(U) ≤ y] = P[U ≤ F (y)] = F (y).
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See Press et al. [157, Chapter 7] for more details. Applying this idea to a Pareto with
P[W > x] = Cx−α we have

P[(U/C)−1/α > x] = P[U < Cx−α] = Cx−α

for x > C1/α which shows that (U/C)−1/α has a Pareto distribution, when U is
uniform on [0, 1]. Using (3.51) we see that the Pareto has mean µ1 = C1/αα/(α − 1)
when α > 1. The code simulates a random walk with iid Pareto jumps, corrected
to mean zero. Then c−1/αS([ct]) ⇒ A(t), a mean zero α-stable Lévy motion (see
Section 4.4). Figure 5.20 shows a typical output from running the R code in Figure
5.19. The overall negative drift compensates for the occasional large positive jumps.
For a Pareto with 0 < α < 2, these jumps persist in the long-time scaling limit. To
check this, change the length of the simulated sequence and note that, unlike the finite
variance random walk simulated previously, the large positive jumps remain prominent
at any length scale.

To understand why this happens, consider the compound Poisson approximation.
We have Sn = Xn1 + · · · + Xnn ⇒ A = A(1) stable where Xnj = anWj are the
rescaled random walk jumps. We can take an = n−1/α in the Pareto case. Since
nP[anWj > R] → φ(R,∞) = CR−α is the mean number of jumps of size greater
than R, the probability of any one jump exceeding this threshold is approximately
n−1CR−α, but since there are n independent jumps, the probability of at least one of
those jumps exceeding the threshold is approximately

1 −
(

1 − CR−α

n

)n

≈ 1 − e−CR−α

≈ CR−α

for R > 0 sufficiently large. Furthermore, this is the probability that at least one jump
Wj exceeds n1/αR, which is comparable to the total sum since S(n) ≈ n1/αA. Hence
the largest jump is comparable to the entire sum. Since nP[anWj > R] → 0 for finite
variance jumps, the largest jump there is a negligible part of the sum. This is one
main distinguishing property of heavy tailed random walks.

Example 5.18. Figure 5.21 provides the R code to simulate a random walk with iid
power law jumps. The code is similar to Figure 5.19. First we simulate iid Pareto
jumps (Wn) and correct to mean zero. Then we adjust by drawing a random number
U uniform on [0, 1] and changing the sign of this jump, to give a negative jump, with
probability q = 1− p. The resulting code simulates a random walk with iid power law
jumps, corrected to mean zero, as in Theorem 3.41. Then c−1/αS([ct]) ⇒ A(t), a mean
zero α-stable Lévy motion with both positive and negative jumps. Figure 5.22 shows
a typical output from running the R code in Figure 5.21. The sample path contains
occasional large jumps, which can be either positive or negative. Again, if we lengthen
the random walk sequence, we eventually get to the point where the resulting graphs
are insensitive to the overall length of the simulation. This illustrates the convergence
to a self-similar limit process.
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C=1.0

alpha=1.5

p=0.3

t=seq(1:100)

U=runif(t)

Y=(U/C)^(-1/alpha)-(alpha/(alpha-1))*C^(1/alpha)

V=runif(t)

for (i in 1:length(t)){

if (V[i]>p) Y[i]=-Y[i]}

S=cumsum(Y)

plot(t,S,type="l")

Figure 5.21. R code to simulate a random walk with iid power law jumps.

Example 5.19. The R code in Figure 5.23 simulates a symmetric stable Lévy motion.
The simulated process is actually a random walk with iid stable jumps, using the R
command rstable to generate a vector of iid stable random variates. This command
is also part of the fBasics package introduced in Example 5.7. Figure 5.24 shows
a typical sample path, obtained by running the R code in Figure 5.23. Note the
occasional large jumps. Since we simulate a stable Lévy motion with β = p − q = 0
we have p = 1/2 and q = 1/2, i.e., the large jumps are equally likely to be positive or
negative. Since we set µ = delta = 0, the process is compensated to mean zero.

The graph of a stable Lévy motion with index 1 < α < 2 is also a random fractal,
with dimension d = 2 − 1/α, see Falconer [62, Section 16.3]. This extends the result
mentioned in Example 5.16 for Brownian motion, where d = 2 − 1/2. The fractal
dimension describes the “roughness” of the particle traces. As α decreases from 2 to
1, the sample paths become smoother.

Example 5.20. The R code in Figure 5.25 simulates a continuous time random walk
(CTRW) with iid Pareto waiting times and iid power law jumps. The method for
simulating the jumps is the same as in Example 5.18. The method for simulating
the waiting times is the same as Example 5.17. The CTRW is actually a random
walk in space-time, i.e., a two-dimensional random walk in which the horizontal axis
represents elapsed time, and the vertical axis represents the spatial location. Hence
the R code is quite similar to what we have seen before. The only difference is that
we plot the cumulative sum S(i) of the jumps against the cumulative sum T (i) of the
waiting times, rather than plotting S(i) versus i. Figure 5.26 shows a typical sample
path, obtained by running the R code in Figure 5.25. Note the long jumps in space,
and also the long jumps in time. Both will persist in the scaling limit, as the simulated
sequence gets longer. Eventually, the character of the simulated sample paths becomes
insensitive to the length of the sequence, an illustration of the CTRW limit (4.32). If
we replace the simulated jumps by iid mean zero finite variance jumps as in Example
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Figure 5.22. Simulated random walk with power law jumps, the result of running the R
code in Figure 5.21.

5.15, the outer process A(t) in the scaling limit is a Brownian motion. In this case, the
jumps in space disappear in the limit. If we replace the Pareto waiting times by some
positive iid random variables with finite mean (e.g., use runif(t, min=0, max=1))
then the resulting sample paths very closely resemble those from Example 5.18, as we
discussed in Section 4.3. The CTRW sample paths represents particle traces, in which
a particle can stick at some point for a random period before the next jump. If the
waiting time pdf has a sufficiently heavy tail, this significantly affects the movement
of particles over the long term.

Example 5.21. The R code in Figure 5.27 simulates the CTRW scaling limit process
A(E(t)) from (4.32). Figure 5.28 shows a typical sample path, obtained by running
the R code in Figure 5.27. The outer process x = A(u) is symmetric stable with index
α = 1.5 and the inner process u = E(t) is the inverse of a standard stable subordinator
t = D(u) with index β = 0.8. Actually the simulation approximates this process by a
CTRW with stable particle jumps, and stable waiting times. Note that the graph of
(t, A(E(t)) is essentially the same as the graph of (D(u), A(u)), since E(D(u)) = u for
all u ≥ 0. The only difference is that the horizontal jumps in the graph of (D(u), A(u))
are connected by a continuous line in the graph of (t, A(E(t)), see Meerschaert, Nane
and Xiao [132] for additional details. Since R code connects the plotted points with a
continuous line, the resulting graph is approximate only in terms of the discretization
of the Lévy processes: The code simulates the two independent Lévy processes A(u)
and D(u) using random walks with iid stable jumps, as in Example 5.19. Note that
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library(fBasics)

t=seq(1:1000)

Y=rstable(t, alpha = 1.5, beta = 0.0, gamma=1.0, delta=0.0, pm=1)

A=cumsum(Y)

plot(t,A,type="l")

Figure 5.23. R code to simulate a stable Lévy motion.
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Figure 5.24. Simulated stable Lévy motion, the result of running the R code in Figure 5.23.

the limit process retains the long jumps in both space and time. Some results on the
fractal dimension of the CTRW limit process are contained in [132].

We conclude this section with two examples that illustrate the sample paths of
vector-valued stochastic processes. From a physics point of view, it is quite natural
to consider particle traces in two or three dimensions, since the real world is not one
dimensional. Furthermore, we have already seen that the CTRW is fundamentally a
random walk in two dimensions (one space and one time). Vector random walks, their
limit processes, and their governing equations will be developed in Chapter 6.

Example 5.22. Figure 5.29 shows the R code to simulate a Brownian motion in two
dimensions. The code is a simple modification of Example 5.16. The two dimensional
Brownian motion is A(t) = (A1(t), A2(t)) where A1(t) and A2(t) are two independent
one dimensional Brownian motions. A vector Brownian motion is the scaling limit of a
random walk with vector jumps, when the iid jumps have mean zero and finite second
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C=1.0; alpha=1.5; p=0.3; B=1.0; beta=0.8

t=seq(1:1000)

U=runif(t)

Y=(U/C)^(-1/alpha)-(alpha/(alpha-1))*C^(1/alpha)

V=runif(t)

for (i in 1:length(t)){

if (V[i]>p) Y[i]=-Y[i]}

S=cumsum(Y)

U=runif(t)

J=(U/B)^(-1/beta)

T=cumsum(J)

plot(T,S,type="l")

Figure 5.25. R code to simulate a continuous time random walk (CTRW).
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Figure 5.26. Simulated CTRW, the result of running the R code in Figure 5.25.
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library(fBasics)

a=1.5

skew=0.0

b=0.8

t=seq(1:1000)

Y=rstable(t,alpha=a, beta=skew)

A=cumsum(Y)

pi=3.1415927

g=(cos(pi*b/2))^(-1/b)

J=rstable(t, alpha=b, beta=1.0, gamma=g, delta=0, pm=1)

T=cumsum(J)

plot(T,A,type="l")

Figure 5.27. R code to simulate the CTRW scaling limit process.
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Figure 5.28. Simulated CTRW limit, the result of running the R code in Figure 5.27.
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t=seq(1:5000)

X=rnorm(t, mean=0, sd=1.0)

A1=cumsum(X)

Y=rnorm(t, mean=0, sd=1.0)

A2=cumsum(Y)

plot(A1,A2,type="l")

Figure 5.29. R code to simulate a two dimensional Brownian motion.

moments. Figure 5.30 shows a typical sample path. The sample path of a Brownian
motion in Rd for d ≥ 2 is a random fractal with dimension two.

Example 5.23. The R code in Figure 5.31 simulates a two dimensional stable Lévy
motion with index α = 1.8. The code is a simple modification of Example 5.19. This
process is the scaling limit of a vector random walk with iid Pareto jumps in each
coordinate. Figure 5.32 shows a typical sample path. In contrast to Brownian motion,
the sample path of a vector stable Lévy motion shows occasional large jumps. The
sample path of an α-stable Lévy motion in Rd for d ≥ 2 is a random fractal with
dimension α, extending the result for Brownian motion (see Blumenthal and Getoor
[38] and Meerschaert and Xiao [143, Theorem 3.2]). Hence we can see that the power
law index, the order of the fractional derivative, and the fractal dimension are all
the same. The two dimensional stable Lévy motion is A(t) = (A1(t), A2(t)) where
A1(t) and A2(t) are two independent one dimensional stable Lévy motions. If we
take the index α1 of A1(t) to be different than the index α2 of the second component
A2(t), the resulting process is called an operator stable Lévy motion. Operator stable
Lévy motions are scaling limits of a vector random walk when the power law index
of the Pareto jump pdf depends on the coordinate. It is a simple matter to simulate
an operator stable Lévy motion, by editing the index alpha in the code. For more
information on simulating operator stable sample paths, and additional examples, see
Cohen et al. [48].
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Figure 5.30. Simulated Brownian motion in two dimensions, the result of running the R
code in Figure 5.29.

library(fBasics)

t=seq(1:5000)

X=rstable(t, alpha = 1.8, beta = 0.0, gamma=1.0, delta=0.0, pm=1)

A1=cumsum(X)

Y=rstable(t, alpha = 1.8, beta = 0.0, gamma=1.0, delta=0.0, pm=1)

A2=cumsum(Y)

plot(A1,A2,type="l")

Figure 5.31. R code to simulate a two dimensional stable Lévy motion.
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Figure 5.32. Simulated stable Lévy motion in two dimensions, the result of running the R
code in Figure 5.31.
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Chapter 6

Vector Fractional Diffusion

Since many applied problems require a more realistic model in a 2-dimensional or
3-dimensional physical space, this chapter extends the fractional diffusion model de-
veloped in previous chapters to a vector setting.

6.1 Vector random walks

Suppose that (Xn) and (Yn) are two independent sequences of iid random variables.
The two dimensional random walk with coordinates Sn = X1 + · · · + Xn and Rn =
Y1 + · · · + Yn represents the position of a particle in the (x, y) plane after n jumps.
Suppose that E[Xn] = E[Yn] = 0 and E[X2

n] = E[Y 2
n ] = 2D for some constant D > 0.

Then it follows from Example 3.31 that

n−1/2S[nt] ⇒ Zt and n−1/2R[nt] ⇒ Wt

where Zt and Wt are two independent Brownian motions. In vector notation, we have

n−1/2

(
S[nt]

R[nt]

)
⇒

(
Zt

Wt

)
(6.1)

as n → ∞. The limit process in (6.1) is a two dimensional Brownian motion with
independent components. A typical sample path was shown in Figure 5.30. If p1(x, t)
is the pdf of Zt and p2(y, t) is the pdf of Wt, then the vector limit has a pdf

p(x, y, t) = p1(x, t)p2(y, t) =
1√

4πDt
e−x2/4Dt 1√

4πDt
e−y2/4Dt

=
1

4πDt
e−(x2+y2)/4Dt

(6.2)
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144 Chapter 6 Vector Fractional Diffusion

whose Fourier transform

p̂(k, ℓ, t) =

∫ ∫
e−ikxe−iℓyp(x, y, t) dy dx

=

∫
e−ikxp1(x, t) dx

∫
e−iℓyp2(y, t) dy = e−Dtk2

e−Dtℓ2

solves the differential equation

d

dt
p̂(k, ℓ, t) = [−Dk2 − Dℓ2]p̂(k, ℓ, t) = [D(ik)2 + D(iℓ)2]p̂(k, ℓ, t).

Inverting the FT shows that p(x, y, t) solves the two dimensional diffusion equation

∂

∂t
p(x, y, t) = D

∂2

∂x2
p(x, y, t) + D

∂2

∂y2
p(x, y, t). (6.3)

This is an isotropic diffusion equation. Figure 6.1 shows level sets of the isotropic
pdf (6.2). It was produced using the R code in Figure 6.11, listed at the end of this
chapter. Since the density p(x, y, t) only depends on x2 + y2, the level sets are circles,
and the pdf is rotationally symmetric. This means that the diffusion looks the same
in any orthogonal coordinate system centered at the origin. Because Zt is isotropic,
any rotation and/or reflection in Figure 5.30 produces an equally likely sample path.

x

y

−1

0

1

−1 0 1

Figure 6.1. Level sets of the solution (6.2) to the isotropic diffusion equation (6.3) at time
t = 1 with dispersivity parameter D = 2.

To develop a more general, anisotropic diffusion equation, suppose that the two
independent random walks have E[Xn] = E[Yn] = 0 but E[X2

n] = 2D1 > 0 and
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Section 6.1 Vector random walks 145

E[Y 2
n ] = 2D2 > 0. Then a very similar argument shows that (6.1) holds and the limit

has pdf p(x, y, t) that solves

∂

∂t
p(x, y, t) = D1

∂2

∂x2
p(x, y, t) + D2

∂2

∂y2
p(x, y, t). (6.4)

Here we have

p(x, y, t) =
1√

4πD1t
e−x2/4D1t 1√

4πD2t
e−y2/4D2t

=
1

4πt
√

D1D2

exp

[
− 1

4t

(
x2

D1

+
y2

D2

)]
.

(6.5)

Figure 6.2 shows level sets of the anisotropic pdf (6.5). Now the level sets are ellipses,
whose principal axes are the x and y coordinates, so there is a preferred coordinate
system. Figure 6.2 was produced using the R code in Figure 6.12 at the end of this
chapter.

x

y

−1

0

1

−1 0 1

Figure 6.2. Level sets of the solution (6.5) to the anisotropic diffusion equation (6.4) at
time t = 1 with dispersivity parameters D1 = 2 and D2 = 1/2.

For vector random walks, it is natural to adopt a vector coordinate system. Given
an m × n matrix

A =

⎛

⎜⎝

a11 · · · a1n

...
...

am1 · · · amn

⎞

⎟⎠ = [aij ]
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146 Chapter 6 Vector Fractional Diffusion

we define the transpose

A′ = [aji] =

⎛

⎜⎝

a11 · · · am1

...
...

a1n · · · amn

⎞

⎟⎠ .

The transpose of the column vector (a d × 1 matrix)

x =

⎛

⎜⎝

x1

...
xd

⎞

⎟⎠

is the row vector x′ = (x1, . . . , xd). The inner product

x · y = x′y = (x1, . . . , xd)

⎛

⎜⎝

y1

...
yd

⎞

⎟⎠ =
d∑

j=1

xjyj

for two column vectors of the same dimension is defined by matrix multiplication.
Then x · y = y · x. The outer product

xx′ =

⎛

⎜⎝

x1

...
xd

⎞

⎟⎠ (x1, . . . , xd) =

⎛

⎜⎝

x1x1 · · · x1xd

...
...

xdx1 · · · xdxd

⎞

⎟⎠

is a matrix, while the inner product is a scalar.
Given a d-dimensional random vector

X =

⎛

⎜⎝

X1

...
Xd

⎞

⎟⎠

we define the mean vector

E[X] =

⎛

⎜⎝

E[X1]
...

E[Xd]

⎞

⎟⎠ =

⎛

⎜⎝

µ1

...
µd

⎞

⎟⎠ = µ ∈ R
d,

and the covariance matrix (using the outer product)

Q = Cov(X) = E[(X − µ)(X − µ)′]

=

⎛

⎜⎝

E[(X1 − µ1)(X1 − µ1)] · · · E[(X1 − µ1)(Xd − µd)]
...

...
E[(Xd − µd)(X1 − µ1)] · · · E[(Xd − µd)(Xd − µd)]

⎞

⎟⎠ ,
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Section 6.1 Vector random walks 147

a d × d matrix whose jj entry is the variance of Xj , and whose ij entry for i ̸= j is
the covariance of Xi and Xj .

Now we can extend the simple arguments of Chapter 1 to the vector case. Later in
this chapter, we will provide a more general treatment based on the theory of infinitely
divisible random vectors and triangular arrays. Let X = (X1, . . . , Xd)′ be a random
vector in Rd with cumulative distribution function (cdf)

F (x) = F (x1, . . . , xd) = P[X1 ≤ x1, . . . , Xd ≤ xd] = P[X ≤ x].

Then F (x) = µ{y ∈ Rd : y ≤ x} where y ≤ x means that yi ≤ xi for all i = 1, 2, . . . , d.
If the cdf F (x) is differentiable, then the probability density function (pdf)

f(x) = f(x1, . . . , xd) =
∂

∂x1

· · · ∂

∂xd
F (x1, . . . , xd)

and the probability measure

µ(B) = P[X ∈ B] =

∫

x∈B
F (dx) =

∫

x∈B
f(x) dx.

The characteristic function

µ̂(k) = E[eik·X ] =

∫
eik·xµ(dx) =

∫
eik·xF (dx)

so that, if the pdf f(x) exists, then its Fourier transform (FT) is given by

f̂(k) =

∫
e−ik·xf(x) dx = µ̂(−k).

Suppose that the d-dimensional random vector X has a pdf f(x) = f(x1, . . . , xd) and
write the FT of X in the form

f̂(k) = E[e−ik·X ] =

∫
e−ik·xf(x) dx

=

∫ (
1 − ik · x + 1

2
(−ik · x)2 + · · ·

)
f(x) dx

= 1 − ik · µ − 1

2

∫
k′x x′kf(x) dx + · · ·

where k is a column vector with k′ = (k1, . . . , kd). If the random vector X has mean
E[X] = 0 and covariance Q = E[XX ′] =

∫
xx′f(x) dx then

f̂(k) = 1 − 1

2
k′E[XX ′]k + · · · = 1 − 1

2
k′Qk + · · ·

is the FT of X. If (Xn) are iid with X, then the vector sum Sn = X1 + · · · + Xn has
FT f̂(k)n and the rescaled sum n−1/2Sn has FT

f̂(k/
√

n)n =

(
1 −

1

2
k′Qk

n
+ · · ·

)n

→ exp(− 1

2
k′Qk) (6.6)
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148 Chapter 6 Vector Fractional Diffusion

which shows that
n−1/2Sn ⇒ Y (6.7)

where the limit has FT exp(− 1

2
k′Qk). The limit Y is a multidimensional Gaussian

pdf with mean zero and covariance matrix Q. Its probability density function is

g(x) = (2π)−d/2 | det(Q)|−1/2 exp
[
− 1

2
x′Q−1x

]

where det(Q) is the determinant of the matrix Q, see details at the end of this section
for more information.

Next, consider a vector random walk S[nt] = X1 + · · · + X[nt] where (Xn) are iid
with µ = E[Xn] = 0 and Cov(Xn) = E[XnX ′

n] = 2D ̸= 0. Then the rescaled random
walk n−1/2S[nt] has FT

f̂(k/
√

n)[nt] =

(
1 − k′Dk

n
+ · · ·

)[nt]

→ exp(−k′Dtk)

and the Lévy Continuity Theorem (see details) yields

n−1/2S[nt] ⇒ Zt. (6.8)

If p(x, t) is the pdf of Zt then

p̂(k, t) = exp(−k′Dtk) = exp[(ik)′Dt(ik)], (6.9)

which solves
d

dt
p̂(k, t) = (ik)′D(ik)p̂(k, t).

Invert the FT to see that p(x, t) solves

∂

∂t
p(x, t) = ∇ · D∇p(x, t), (6.10)

the vector diffusion equation in natural vector notation. Here we use x′y = x · y, the
fact that (ik)f̂(k) is the FT of

∇f(x) =

⎛

⎜⎜⎜⎜⎝

∂

∂x1

f(x1, . . . , xd)

...
∂

∂xd
f(x1, . . . , xd)

⎞

⎟⎟⎟⎟⎠
,

and the fact that (ik) · F̂ (k) is the FT of ∇ ·F (x) when F (x) = (f1(x), . . . , fd(x))′ is a
vector-valued function of the vector x = (x1, . . . , xd)′ (see details). Inverting the FT
in (6.9) shows that

p(x, t) = (4πt)−d/2 | det(D)|−1/2 exp

[
− 1

4t
x′D−1x

]
,
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Section 6.1 Vector random walks 149

see details at the end of this section.
We can also add a drift: The process Zt + vt has FT

p̂(k, t) = E[e−ik·(vt+Zt)] = exp(−ik · vt − k′Dtk), (6.11)

which solves
d

dt
p̂(k, t) = [−ik · v + (ik)′D(ik)] p̂(k, t).

Invert the FT to get the vector diffusion equation with drift

∂

∂t
p(x, t) = −v ·∇p(x, t) + ∇ · D∇p(x, t). (6.12)

Inverting (6.11) shows that

p(x, t) = (4πt)−d/2 | det(D)|−1/2 exp

[
− 1

4t
(x − vt)′D−1(x − vt)

]
, (6.13)

see details at the end of this section.

Remark 6.1. The geometry of the solution (6.13) is determined by the structure of
the dispersion tensor D. For simplicity, suppose that the drift velocity v = 0. Since
D is symmetric and positive definite, there is an orthonormal basis of eigenvectors
b1 . . . , bd with corresponding eigenvalues ai such that Dbi = aibi for 1 ≤ i ≤ d. For
any x ∈ Rd we can write x =

∑d
j=1

xjbj where xj = x · bj . Note that

b′iD
−1bj = b′ia

−1

j bj = a−1

j (bi · bj) =

{
0 if i ̸= j;
a−1

j if i = j.

Then

x′D−1x =
( d∑

i=1

xibi

)′
D−1

( d∑

j=1

xjbj

)

=
d∑

i=1

d∑

j=1

xixjb
′
iD
−1bj

=
d∑

i=1

a−1

i x2
i

and then (6.13) reduces to

p(x, t) = (4πt)−d/2

[
d∏

i=1

a−1/2

i

]

exp

[

− 1

4t

d∑

i=1

x2
i

ai

]

.

The level sets of this pdf are ellipsoids

x2
1

a1

+ · · · + x2
d

ad
= C
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150 Chapter 6 Vector Fractional Diffusion

whose principal axes are the eigenvector coordinates b1, . . . , bd. The level sets are
widest in the direction of the eigenvector with the largest eigenvalue. Recall that 2D
is also the covariance matrix of the random walk jumps Xn. You can check (e.g., using
Lagrange multipliers) that this eigenvector maximizes the variance E[(Xn · θ)2] over
all unit vectors ∥θ∥ = 1.

Remark 6.2. The Gaussian limit in (6.7) depends on the choice of norming. Assume
as before that (Xn) are iid with mean E[Xn] = 0 and covariance matrix Q = E[XnX ′

n].
If A is any matrix, then

(n−1/2A)
n∑

j=1

Xj = n−1/2

n∑

j=1

AXj ⇒ AY ≃ N (0, AQA′)

since the iid random vectors AXn have covariance matrix AQA′. Hence n−1/2A is
another suitable sequence of norming operators. (We could also apply the Continuous
Mapping Theorem 4.19: If n−1/2Sn ⇒ Y , then A(n−1/2Sn) ⇒ AY .) If we choose A
so that A′QA = I (see details), then Z = AY ≃ N (0, I). Since Sn is a vector, matrix
norming is quite natural.

Remark 6.3. We say that the d × d matrix U is orthogonal if U−1 = U ′. It is easy
to check that UZ ≃ Z for U orthogonal and Z ≃ N (0, I): Just note that UZ has FT

E[e−ik·UZ ] = E[e−iU ′k·Z ] = exp[− 1

2
(U ′k)′(U ′k)] = exp[−1

2
k′UU ′k] = exp[− 1

2
∥k∥2]

using the fact that U ′U = U−1U = I. We say that the orthogonal matrix U is
a symmetry of Z. Geometrically, orthogonal matrices U are the norm-preserving
coordinate changes, i.e., rotations and reflections. Suppose that Sn = X1 + · · ·+Xn is
a random walk whose iid jumps satisfy E[Xn] = 0 and E[X2

n] = I, so that n−1/2Sn ⇒
Z ≃ N (0, I). If Un are orthogonal, then we also have n−1/2UnSn ⇒ Z, so that
n−1/2Un is another suitable sequence of norming matrices. To check this, use FT and
the fact that the orthogonal matrices form a compact set. For any subsequence, there
is a further subsequence Un → U along which the FT of n−1/2UnSn converges:

f̂(n−1/2U ′nk)n =

(
1 −

1

2
(U ′nk)′I(U ′nk)

n
+ · · ·

)n

→ exp(− 1

2
k′UU ′k) = exp(− 1

2
∥k∥2).

Since the every subsequence has a further subsequence that converges to the same
limit, the Lévy Continuity Theorem implies that n−1/2UnSn ⇒ Y . If In → I, a
similar argument shows that n−1/2UnInSn ⇒ Z. For more information on symmetry,
and the permissible sequences of norming operators, see Meerschaert and Scheffler
[135, Section 2.3].

Details

In (6.3) we used the fact that the FT of ∂f(x, y)/∂x is (ik)f̂(k, ℓ), and the FT of
∂f(x, y)/∂y is (iℓ)f̂(k, ℓ). The proof is a direct application of the corresponding one
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Section 6.1 Vector random walks 151

dimensional formula (1.14). For example, suppose that f(x, y) is integrable, and that
∂f(x, y)/∂y exists and is integrable. Then (1.14) implies

∫ ∞

−∞
e−iℓy ∂

∂y
f(x, y) dy = (iℓ)

∫ ∞

−∞
e−iℓyf(x, y) dy

for each x, and then
∫ ∞

−∞

∫ ∞

−∞
e−ikxe−iℓy ∂

∂y
f(x, y) dy dx =

∫ ∞

−∞
e−ikx(iℓ)

∫ ∞

−∞
e−iℓyf(x, y) dy dx

= (iℓ)f̂(k, ℓ).

If ∂f(x, y)/∂x also exists and is integrable, then it follows that the vector-valued
function ∇f(x, y) = (∂f(x, y)/∂x, ∂f(x, y)/∂y)′ has FT ((ik)f̂(k, ℓ), (iℓ)f̂(k, ℓ))′. Note
that, for a vector-valued function F (x, y) = (f(x, y), g(x, y))′, we define the FT

F̂ (k, ℓ) =

∫ ∞

−∞

∫ ∞

−∞
e−ikxe−iℓyF (x, y) dy dx =

(
f̂(k, ℓ)
ĝ(k, ℓ)

)

where

f̂(k, ℓ) =

∫ ∞

−∞

∫ ∞

−∞
e−ikxe−iℓyf(x, y) dy dx

ĝ(k, ℓ) =

∫ ∞

−∞

∫ ∞

−∞
e−ikxe−iℓyg(x, y) dy dx.

Now extending to Rd in vector notation shows that (ik)f̂(k) is the FT of the gradient
vector ∇f(x).

In (6.10) we use the fact that (ik) · F̂ (k) is the FT of ∇ · F (x), when F (x) =
(f1(x), . . . , fd(x))′ is a vector-valued function of the vector x = (x1, . . . , xd)′. Write

(ik) · F̂ (k) =

⎛

⎜⎝

ik1

...
ikd

⎞

⎟⎠ ·

⎛

⎜⎝

f̂1(k)
...

f̂d(k)

⎞

⎟⎠

and note that ikj f̂j(k) is the FT of ∂fj(x)/∂xj for all j = 1, 2, . . . , d. Then (ik) · F̂ (k)
is the FT of

d∑

j=1

∂fj(x)

∂xj
=

⎛

⎜⎝

∂/∂x1

...
∂/∂xd

⎞

⎟⎠ ·

⎛

⎜⎝

f1(x)
...

fd(x)

⎞

⎟⎠ = ∇ · F (x).

In (6.7) we use the Lévy continuity theorem for the vector Fourier transform. The
statement of this theorem is exactly the same as for random variables. Suppose that
Xn, X are random vectors on Rd. Let f̂n(k) = E[e−ik·Xn ] and f̂(k) = E[e−ik·X ]. The
Lévy Continuity Theorem [135, Theorem 1.3.6] states that Xn ⇒ X if and only if
f̂n(k) → f̂(k). More precisely, Xn ⇒ X implies that f̂n(k) → f̂(k) for each k ∈ Rd,
uniformly on compact subsets. Conversely, if Xn is a sequence of random vectors such
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152 Chapter 6 Vector Fractional Diffusion

that f̂n(k) → f̂(k) for each k ∈ Rd, and the limit f̂(k) is continuous at k = 0, then
f̂(k) is the FT of some X, and Xn ⇒ X.

The general solution to the diffusion equation (6.12) comes from inverting the FT
to obtain a normal density. Since the limit in (6.6) is continuous at k = 0, the Lévy
continuity theorem implies that it is the FT of some random vector Y , i.e., we have
E[e−ik·Y ] = exp(− 1

2
k′Qk). Using the general fact that (AB)′ = B′A′ for vectors and

matrices, it is easy to see that the covariance matrix is symmetric: Q′ = E[(XX ′)′] =
E[(X ′)′(X)′] = E[XX ′] = Q. The covariance matrix is also non-negative definite: For
any vector a ∈ Rd we have a′Qa = E[a′X X ′a] = E[(a · X)2] ≥ 0. Of course it is
possible that X is supported on some lower dimensional subspace of Rd and, to avoid
this, we will assume that Q is positive definite, meaning that a′Qa > 0 when a ̸= 0.
This is equivalent to assuming that the distribution of X is not concentrated on some
lower dimensional affine subspace, i.e., there is no a ̸= 0 such that X · a is almost
surely constant. In this case, we say that the distribution of X is full. Then a deep
result from linear algebra (the Principal Axis Theorem, e.g., see Curtis [50, Theorem
31.9]) implies that Q has an orthonormal basis of eigenvectors v1, . . . , vd such that
∥vi∥2 = vi · vi = 1 and vi · vj = 0 for i ̸= j, with Qvi = λivi for some eigenvalues
λj > 0.

For any vectors x, y ∈ Rd and any d×d matrix A we have x ·Ay = x′Ay = (A′x)′y =
A′x · y. Define A to be the unique matrix (linear operator) such that Avi = λ−1/2

i vi

for every i = 1, 2, . . . , d. Note that vi · Avi = λ−1/2

i and vi · Avj = 0 for i ̸= j. Then
A′vi · vi = vi · Avi = λ−1/2

i for all i = 1, 2, . . . , d, and A′vi · vj = 0 for j ̸= i. It follows
that A′vi = λ−1/2

i vi for all i = 1, 2, . . . , d. Then AQA′vi = vi for all i = 1, 2, . . . , d.
Since v1, . . . , vd forms a basis for Rd, it follows that AQA′ = I, the d × d identity
matrix. Then the FT of Z = AY is

f̂(k) = E
[
e−ik·Z

]
= E

[
e−ik·AY

]

= E

[
e−iA′k·Y

]

= exp
[
− 1

2
(A′k)′QA′k

]

= exp
[
− 1

2
k′AQA′k

]

= exp
[
− 1

2
k′Ik

]
= exp

[
− 1

2
(k2

1 + · · · + k2
d)

]
=

d∏

j=1

e−k2

j /2

which inverts to

f(z) =
d∏

j=1

1√
2π

e−z2

j /2 = (2π)−d/2 e−∥z∥
2/2

the density of random vector in Rd with iid N (0, 1) components. This pdf is isotropic,
since it only depends on z through its norm ∥z∥. The pdf of Y comes from a change
of variables z = Ay with dz = det(A) dy, so that for any Borel set B ⊆ Rd we have

P[Y ∈ B] = P[A−1Z ∈ B] = P[Z ∈ AB]

=

∫

z∈AB
f(z) dz =

∫

Ay∈AB
f(Ay) det(A) dy
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Section 6.2 Vector random walks with heavy tails 153

where det(A) = λ−1/2

1
· · ·λ−1/2

d is the determinant (product of the eigenvalues) of the
matrix A. This shows that the random vector limit Y in (6.6) has pdf

f(Ay) det(A) = (2π)−d/2
det(A)e−(Ay)′(Ay)/2

= (2π)−d/2 | det(Q)|−1/2 exp
[
− 1

2
y′Q−1y

] (6.14)

since A′A = Q−1, which is easy to check, and two basic facts about determinants:
det(A) = det(A′) and det(AB) = det(A) det(B) (e.g., see Curtis [50]). Since the limit
Zt in (6.8) has FT exp(−k′Dtk), we can set Q = 2Dt in (6.14) to see that Zt has pdf

p(x, t) = (4πt)−d/2 | det(D)|−1/2 exp

[
− 1

4t
x′D−1x

]

using the fact that det(2tD) = (2t)d det(D). Another change of variables shows that
Zt + vt has pdf (6.13) with FT p̂(k, t) = exp(−ikvt− k′Dtk). This shows that the pdf
(6.13) solves the vector diffusion equation with drift (6.12).

6.2 Vector random walks with heavy tails

Suppose that (Xn) and (Yn) are two independent sequences of zero mean iid random
variables with heavy tails, such that

n−1/αS[nt] ⇒ Zt and n−1/βR[nt] ⇒ Wt

where Sn = X1 + · · · + Xn, Rn = Y1 + · · · + Yn, and Zt, Wt are independent stable
Lévy motions with index α,β ∈ (1, 2). In vector notation, we have

(
n−1/αS[nt]

n−1/βR[nt]

)
⇒

(
Zt

Wt

)
(6.15)

as n → ∞. Figure 5.32 shows a typical sample path of the vector limit process in
(6.15) in the case α = β = 1.8. Since the limit has independent components, it follows
immediately from Theorem 3.41 that this process has a pdf p(x, y, t) with FT

p̂(k, ℓ, t) =

∫ ∫
e−ikxe−iℓyp(x, y, t) dy dx = etψ1(−k)etψ2(−ℓ)

where

ψ1(k) = p1D1(−ik)α + q1D1(ik)α and ψ2(ℓ) = p2D2(−iℓ)β + q2D2(iℓ)
β

for some Di > 0 and some pi, qi ≥ 0 with pi + qi = 1. Then

d

dt
p̂(k, ℓ, t) = [ψ1(−k) + ψ2(−ℓ)]p̂(k, ℓ, t)
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154 Chapter 6 Vector Fractional Diffusion

and inverting the FT shows that p(x, y, t) solves the two dimensional fractional diffu-
sion equation

∂

∂t
p(x, y, t) = p1D1

∂α

∂xα
p(x, y, t) + q1D1

∂α

∂(−x)α
p(x, y, t)

+ p2D2

∂β

∂yβ
p(x, y, t) + q2D2

∂β

∂(−y)β
p(x, y, t).

(6.16)

The fractional partial differential equation (6.16) governs the densities of a two dimen-
sional operator stable Lévy motion. If α = β, then this reduces to a two dimensional
stable Lévy motion. For α = β = 2, equation (6.16) reduces to the two dimensional
diffusion equation (6.3), whose solutions are rotationally symmetric (isotropic). The
geometry for two dimensional stable Lévy motions is more complicated.

The solution p(x, y, t) to the two dimensional diffusion equation (6.3) has FT

p̂(k, ℓ, t) = exp
[
−Dt(k2 + ℓ2)

]
.

The rotational symmetry of solutions comes from the fact that the FT only depends
on (k, ℓ) through k2 + ℓ2 which is rotationally invariant. Even if we assume α = β,
D1 = D2, and pi = qi in (6.16), we only get a rotationally symmetric solution in the
special case α = 2. It follows from Proposition 5.8 that

p̂(k, ℓ, t) = exp [D1t cos(πα/2)(|k|α + |ℓ|α)] .

The term |k|α + |ℓ|α is not rotationally symmetric unless α = 2, making Brownian
motion a very special case of a stable Lévy motion. Figure 6.3 shows level sets of
the solution p(x, y, t) to the two dimensional fractional diffusion equation (6.16) with
α = β = 1.2 and pi = qi. There is a clear anisotropy here, and a preferred coordinate
system. The R code for Figure 6.3 is listed Figure 6.13 at the end of this chapter.

The general d-dimensional random walk Sn = X1 + · · ·+Xn is a sum of iid random
vectors. Suppose that (Xn) are iid with X, and assume that X is full, i.e., there is no
a ̸= 0 such that X · a is almost surely constant. If there exist linear operators on Rd

(i.e., d × d matrices) An and vectors bn ∈ Rd such that AnSn − bn ⇒ Y , we say that
X belongs to the generalized domain of attraction of Y , and we write X ∈ GDOA(Y ).
In the special case of scalar norming An = anI for some real numbers an > 0, we say
that X belongs to the domain of attraction of Y , and we write X ∈ DOA(Y ).

Example 6.4. Suppose that X = (X1, . . . , Xd)′ has independent components, where
each Xi ∈ DOA(Yi) for some stable random variables Yi with index αi ∈ (0, 2]. For
ease of notation, suppose that the norming constants are of the form n−1/αi for each
component. (In the general case, the norming sequence is RV(−1/αi).) Define the
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Section 6.2 Vector random walks with heavy tails 155

x

y

−1

0

1

−1 0 1

Figure 6.3. Level sets of the solution p(x, y, t) to the two dimensional fractional diffusion
equation (6.16) at time t = 5 with parameters α = β = 1.2, D1 = D2 = 0.5, and p1 = p2 =
q1 = q2 = 1/2.

diagonal norming operators

An =

⎛

⎜⎜⎜⎜⎜⎜⎝

n−1/α1 0 0 · · · 0
0 n−1/α2 0 · · · 0

0 0 n−1/α3

...
...

...
. . .

0 0 · · · 0 n−1/αd

⎞

⎟⎟⎟⎟⎟⎟⎠
,

and note that, since AnSn − bn has independent components,

AnSn − bn ⇒ Y =

⎛

⎜⎝

Y1

...
Yd

⎞

⎟⎠ .

Remark 4.17 implies random walk convergence: AnS[nt] − tbn ⇒ Zt where Z1 ≃ Y .
In view of Proposition 4.16, if all 1 < αi < 2, we can take bn = nAnE[X], and if all
0 < αi < 1, we can set bn = 0. The ith component of the limit process Zt is a stable
Lévy motion with index αi, and pdf pi(xi, t). Since these components are independent,
Zt has pdf

p(x, t) = p(x1, . . . , xd, t) =
d∏

i=1

pi(xi, t)
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156 Chapter 6 Vector Fractional Diffusion

a product of one dimensional stable densities. Suppose all 1 < αi < 2. Then p(x, t)
has FT

p̂(k, t) = E
[
e−ik·Zt

]
= exp

(
t [ψ1(−k1) + · · · + ψd(−kd)]

)

where ψj(kj) = pjDj(−ikj)αj + qjDj(ikj)αj for each 1 ≤ j ≤ d, for some Dj > 0 and
some pj , qj ≥ 0 with pj + qj = 1. Then

d

dt
p̂(k, t) =

[
ψ1(−k1) + · · · + ψd(−kd)

]
p̂(k, t)

and inverting the FT shows that p(x, t) solves the d-dimensional fractional diffusion
equation

∂

∂t
p(x, t) =

d∑

j=1

[
pjDj

∂αj

∂(xj)αj
p(x, t) + qjDj

∂αj

∂(−xj)αj
p(x, t)

]
. (6.17)

The fractional partial differential equation (6.17) governs the probability densities
of a d-dimensional operator stable Lévy motion, whose components are independent
stable Lévy motions with indices α1, . . . , αd. If all αj = α and all Dj = D and all
pj = qj = 1/2, then it follows from Proposition 5.8 that

p̂(k, t) = exp
[
Dt cos(πα/2)

d∑

j=1

|kj |α
]
.

These solutions are not rotationally symmetric, since the sum
∑d

j=1
|kj |α is rotationally

invariant only when α = 2.

Example 6.5. Suppose that B(t) is a Brownian motion in Rd such that E
[
e−ik·B(t)

]
=

exp [−k′tQk]. Then B(t) ≃ N (0, 2tQ). Let Dt be a standard stable subordinator with
pdf g(u, t) such that

g̃(s, t) = E
[
e−sDt

]
=

∫ ∞

0

e−sug(u, t) du = e−tsβ

for some 0 < β < 1, as in (4.41). Define Zt = B(Dt) for t ≥ 0. This subordinated
process has FT

p̂(k, t) = E
[
e−ik·Zt

]
= E

[
e−ik·B(Dt)

]

=

∫ ∞

0

E
[
e−ik·B(Dt)

∣∣Dt = u
]
g(u, t) du

=

∫ ∞

0

E
[
e−ik·B(u)

]
g(u, t) du

=

∫ ∞

0

e−(k′Qk)ug(u, t) du = e−t(k′Qk)β

(6.18)

for all t ≥ 0. Suppose for example that Q = c1/βI for some c > 0. Then the
subordinated process Zt has characteristic function

p̂(−k, t) = E
[
eik·Zt

]
= e−tc∥k∥2β

= etψ(k)
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Section 6.2 Vector random walks with heavy tails 157

where the Fourier symbol ψ(k) = −c∥k∥α with α = 2β. This is the isotropic stable
Lévy motion in Rd with index 0 < α < 2, a natural extension of a standard, rotationally
symmetric Brownian motion.

The fractional Laplacian operator ∆β is defined by specifying that ∆βf(x) has FT
−∥k∥2β f̂(k) for suitable functions f(x). If β = 1, this reduces to the usual Laplacian
∆f(x) = ∇·∇f(x), whose FT is (ik)·(ik)f̂(k) = −∥k∥2f̂(k). The subordinated process
Zt from Example 6.5, in the special case Q = c1/βI, has a FT p̂(k, t) = e−tc∥k∥2β

that
solves

d

dt
p̂(k, t) = −c∥k∥2β p̂(k, t).

Invert to obtain the isotropic vector fractional diffusion equation

∂

∂t
p(x, t) = c∆

βp(x, t) (6.19)

for 0 < β < 1. When β = 1, this reduces to the vector diffusion equation (6.10) with
D = cI. Since the FT is rotationally symmetric, the solutions of (6.19) are invariant
under rotations and reflections. The pdf in (6.18) has elliptical symmetry. Solutions
to (6.17) in the case pi = qi are symmetric with respect to reflection across the ith
coordinate axis. For 0 < α < 2, there are three distinct Fourier symbols

−∥k∥α ̸= (ik1)
α + · · · + (ikd)

α ̸= −|k1|α − · · ·− |kd|α

which are all equal in the case α = 2. These symbols give rise to three different Lévy
processes, corresponding to three different stable limits, when 0 < α < 2. See the
details at the end of this section for more information.

The stable Lévy process with Fourier symbol ψ1(k) = (ik1)α+· · ·+(ikd)α is the limit
of random walks whose jumps have iid components consisting of only positive power
law jumps. The process with Fourier symbol ψ2(k) = −|k1|α − · · ·− |kd|α is the limit
of random walks whose jumps have iid components consisting of symmetric power law
jumps. The isotropic stable process constructed in Example 6.5 will be shown to arise
as the limit of a random walk with iid spherically symmetric power law jumps. Take
X = RΘ where P[R > r] = Cr−α and Θ is uniformly distributed over the unit sphere.
We will show in Section 6.4 that n−1/α(X1 + · · · + Xn) ⇒ Zt when (Xn) are iid with
X. In the case of finite second moments, a random walk with spherically symmetric
jumps gives the same limit as a random walk whose jumps have iid (one-dimensional)
symmetric components. In the case of heavy tails, these two limits are different. In
the next section, we will build the necessary machinery of infinitely divisible laws and
triangular arrays, to make these statements rigorous.

Details

Recall from Remark 6.3 that U is orthogonal if U−1 = U ′. Then

∥Ux∥2 = (Ux)′(Ux) = x′U ′Ux = x′U−1Ux = x′Ix = ∥x∥2
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158 Chapter 6 Vector Fractional Diffusion

so that the linear transformation x /→ Ux preserves the Euclidean norm. If X is a
random vector on Rd with FT f̂(k) = E[e−ik·X ] and A is a d × d matrix then, since
k · AX = A′k · X, the transformed random vector AX has FT

E
[
e−ik·AX

]
= E

[
e−iA′k·X

]
= f̂(A′k).

The solution to (6.19) has FT p̂(k, t) = E[e−ik·Zt ] = exp
[
−tc∥k∥2β

]
. If U is orthog-

onal, then so is U ′ = U−1, and it follows that UZt has the same FT p̂(U ′k, t) =
exp

[
−tc∥k∥2β

]
as Zt. This proves that UZt ≃ Zt, so that every orthogonal transfor-

mation (every rotation and reflection) is a symmetry of this process.
The process Zt in (6.18) is elliptically symmetric. Apply the construction in Section

6.1 to obtain a matrix A such that AQA′ = I. Then the process AZt has FT

p̂(A′k, t) = e−t((A′k)′Q(A′k))β

= e−t(k′AQA′k)β

= e−t(k′Ik)β

= e−t∥k∥2β

so that UAZt ≃ AZt for every orthogonal U . It follows that A−1UAZt ≃ Zt so that
A−1UA is a symmetry of Zt for every orthogonal U . The level sets of the pdf are
ellipsoids whose principal axes are the eigenvectors of A (i.e., the eigenvectors of Q).
More information on symmetries for stable and operator stable laws can be found
in Cohen, Meerschaert and Rosiński [48], see also [135, Section 7.2] and references
therein.

Solutions of (6.17) with pi = qi are symmetric with respect to the linear transfor-
mation (x1, . . . , xi, . . . , xd) /→ (x1, . . . ,−xi, . . . , xd) since ψi(ki) = ψi(−ki). However,
they are not spherically or elliptically symmetric.

6.3 Triangular arrays of random vectors

In this section, we begin to develop the general theory of fractional diffusion in multiple
dimensions, starting with the Lévy representation for infinitely divisible laws. We say
that a random vector Y is infinitely divisible if Y ≃ X1 + · · · + Xn for every positive
integer n, where (Xn) are independent and identically distributed (iid) random vectors.
If Xn ≃ µn, then this is equivalent to µ̂(k) = µ̂n(k)n.

Example 6.6. If Y ≃ N (a,Q) (normal with mean a and covariance matrix Q), then
µ̂(k) = exp(ik · a − 1

2
k′Qk). Take µ̂n(k) = exp(ik · n−1a − 1

2
k′(n−1Q)k) to see that Y

is infinitely divisible, the sum of n iid N (n−1a, n−1Q) random vectors.

Example 6.7. A compound Poisson random vector Y = W1 + · · · + WN = SN is a
random sum, where Sn = W1 + · · · + Wn, (Wj) ≃ ω(dy) are iid random vectors, and
N is Poisson with E[N ] = λ, independent of (Wj). Then

F (y) = P[Y ≤ y] = P[SN ≤ y]

=
∞∑

j=0

P[SN ≤ y|N = j]P[N = j]

=
∞∑

j=0

P[Sj ≤ y]e−λ λj

j!
.
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Section 6.3 Triangular arrays of random vectors 159

Then Y has characteristic function

µ̂(k) =
∞∑

j=0

ω̂(k)je−λ λj

j!

= e−λ
∞∑

j=0

[λω̂(k)]j

j!

= e−λeλω̂(k) = eλ[ω̂(k)−1].

Take µ̂n(k) = e(λ/n)[ω̂(k)−1] to see that Y is infinitely divisible. This argument is
identical to Example 3.3, using vector notation. Continuing as in Section 3.1, write

µ̂(k) = eλ[ω̂(k)−1] = exp

(
λ

[∫
eik·xω(dx) − 1

])

= exp

(
λ

[∫ (
eik·x − 1

)
ω(dx)

])

= exp

(∫ (
eik·x − 1

)
φ(dx)

)

where the Lévy measure φ(dx) = λω(dx) (jump intensity) controls the number and
size of jumps that make up the random sum. In particular, φ(B) is the expected
number of jumps in B for any Borel set B bounded away from zero.

A Lévy measure φ(dy) on Rd is a σ-finite Borel measure such that
∫

0<∥y∥≤R
∥y∥2φ(dy) < ∞ and φ{y : ∥y∥ > R} < ∞ (6.20)

for all R > 0. The next theorem extends the Lévy representation from Theorem 3.4
to random vectors.

Theorem 6.8 (Lévy representation for random vectors). A random vector Y ≃ µ on
Rd is infinitely divisible if and only if its characteristic function µ̂(k) = E[eik·Y ] = eψ(k)

where

ψ(k) = ik · a − 1

2
k′Qk +

∫ (
eik·y − 1 − ik · y

1 + ∥y∥2

)
φ(dy) (6.21)

for some a ∈ Rd, some symmetric nonnegative definite matrix Q, and some Lévy
measure φ(dy). This Lévy representation µ ≃ [a,Q,φ] is unique.

Proof. The proof is based on a compound Poisson approximation, see Meerschaert and
Scheffler [135, Theorem 3.1.11].

Example 6.9. If Y ≃ N (a,Q) then Theorem 6.8 holds with Y ≃ [a,Q, 0].

Example 6.10. If Y is compound Poisson, then Theorem 6.8 holds with Y ≃ [a, 0, φ],
where φ(dy) = λω(dy), and

a =

∫
y

1 + ∥y∥2
φ(dy).
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160 Chapter 6 Vector Fractional Diffusion

The Lévy representation (6.21) is a natural extension of the one dimensional formula
(3.4). Note that the Lévy representation implies that any infinitely divisible law can be
written as a sum of two independent components, one Gaussian, and one Poissonian.

In a triangular array of random vectors {Xnj : j = 1, . . . , kn; n = 1, 2, 3, . . .} the
row sums Sn = Xn1 + · · · + Xnkn have independent summands for each n ≥ 1, and
kn → ∞ as n → ∞. A general result [135, Theorem 3.2.14] states that Y is infinitely
divisible if and only if Sn − an ⇒ Y for some an ∈ Rd and some triangular array that
satisfies

lim
n→∞

sup
1≤j≤kn

P[∥Xnj∥ > ε] = 0 for all ε > 0. (6.22)

Define the truncated random vectors XR
nj = XnjI(∥Xnj∥ ≤ R) and recall that a

sequence of σ-finite Borel measures φn(dy) → φ(dy) on {y : y ̸= 0} if φn(B) → φ(B)
for any Borel set B bounded away from zero such that φ(∂B) = 0 (vague convergence).
The next result extends Theorem 3.33 to random vectors.

Theorem 6.11 (Triangular array convergence for random vectors). Given a triangu-
lar array such that (6.22) holds, there exists a random vector Y such that Sn−an ⇒ Y
for some an ∈ Rd if and only if:

(i)
kn∑

j=1

P[Xnj ∈ dy] → φ(dy) for some σ-finite Borel measure on {y : y ̸= 0}; and

(ii) lim
ε→0

lim sup
n→∞

kn∑

j=1

Cov[Xε
nj ] = lim

ε→0
lim inf
n→∞

kn∑

j=1

Cov[Xε
nj ] = Q.

In this case, Y is infinitely divisible with Lévy representation [a,Q,φ], where a ∈ Rd

depends on the centering sequence (an). We can take

an =
kn∑

j=1

E[XR
nj ] (6.23)

for any R > 0 such that φ{y : ∥y∥ = R} = 0, and then E[eik·Y ] = eψ0(k) where

ψ0(k) = − 1

2
k′Qk +

∫ (
eik·y − 1 − ik · yI(∥y∥ ≤ R)

)
φ(dy). (6.24)

Proof. The proof follows the same ideas as the one dimensional case, using a Poisson
approximation. The main ideas (see details) are similar to Remark 3.35. For the
complete proof, see [135, Theorem 3.2.2].

Remark 6.12. To establish vague convergence (i), it suffices to show

kn∑

j=1

P[Xnj ∈ A] → φ(A) (6.25)

for sets of the form A = {tθ : t > r, θ ∈ B} where r > 0 and B is a Borel subset of the
unit sphere S = {y ∈ Rd : ∥y∥ = 1}. Both (6.23) and (6.24) depend on the choice of
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Section 6.3 Triangular arrays of random vectors 161

R > 0. If the Lévy measure has a density, then any R > 0 may be used. To establish
condition (ii), it is sufficient to show that

lim
ε→0

lim sup
n→∞

k′Qnk = lim
ε→0

lim inf
n→∞

k′Qnk = k′Qk (6.26)

for all k ∈ Rd, where

Qn =
kn∑

j=1

Cov(Xε
nj).

As an illustration, we prove the vector central limit theorem in the case of finite
second moments.

Theorem 6.13 (Vector Central Limit Theorem). Suppose that (Wn) are iid and that
µ = E[Wn] and Q = E[(Wn − µ)(Wn − µ)′] exist. Then

n−1/2

n∑

j=1

(Wj − µ) ⇒ Y ≃ N (0, Q). (6.27)

Proof. The proof is quite similar to Theorem 3.36, extending to vector notation. Define
the triangular array row elements Xnj = n−1/2Wj for j = 1, . . . , n. Then condition
(6.22) holds (see details), and so it suffices to check conditions (i) and (ii) in Theorem
6.11. For condition (i) we have for each ε > 0 that

kn∑

j=1

P[∥Xnj∥ > ε] = nP[n−1/2∥Wj∥ > ε]

= nP[∥Wj∥ > n1/2ε]

≤ nE

[(
∥Wj∥
n1/2ε

)2

I(∥Wj∥ > n1/2ε)

]

= ε−2
E

[
∥Wj∥2I(∥Wj∥ > n1/2ε)

]
→ 0

as n → ∞, since E[∥Wn∥2] exists (see details). Then (i) holds with φ = 0.
As for condition (ii), use the general fact that Cov(X) = E[XX ′] − E[X]E[X]′ (see

details) to write

kn∑

j=1

Cov[Xε
nj ] = nE

[(
Xε

nj

) (
Xε

nj

)′] − nE
[
Xε

nj

]
E

[
Xε

nj

]′

= nE
[
(n−1/2Wj)(n

−1/2Wj)
′I(∥n−1/2Wj∥ ≤ ε)

]

− nE
[
n−1/2WjI(∥n−1/2Wj∥ ≤ ε)

]
E

[
n−1/2WjI(∥n−1/2Wj∥ ≤ ε)

]′

= E
[
WjW

′
jI(∥Wj∥ ≤ n1/2ε)

]

− E
[
WjI(∥Wj∥ ≤ n1/2ε)

]
E

[
WjI(∥Wj∥ ≤ n1/2ε)

]′

→ E
[
WjW

′
j

]
− E [Wj ]E [Wj ]

′ = Cov(Wj) = Q
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162 Chapter 6 Vector Fractional Diffusion

as n → ∞. Then Theorem 6.11 implies that Sn − an ⇒ Y ≃ [a,Q, 0] ≃ N (a,Q) for
some a ∈ Rd. Since φ = 0, for any R > 0 we can take

an =
kn∑

j=1

E[XR
nj ] = nE

[
n−1/2WjI(∥Wj∥ ≤ n1/2R)

]

= n1/2

{
µ − E

[
WjI(∥Wj∥ > n1/2R)

]}

where µ = E[Wj ] and
∥∥∥n1/2

E

[
WjI(∥Wj∥ > n1/2R)

]∥∥∥ ≤ n1/2
E

[
∥Wj∥I(∥Wj∥ > n1/2R)

]

≤ n1/2
E

[
∥Wj∥

(
∥Wj∥
n1/2R

)
I(∥Wj∥ > n1/2R)

]

= R−1
E

[
∥Wj∥2I(∥Wj∥ > n1/2R)

]
→ 0

since E[∥Wn∥2] exists. This shows that an − n1/2µ → 0, and then (6.27) follows.

Corollary 6.14. Suppose (Wn) are iid and µ = E[Wn] and Q = E[(Wn−µ)(Wn−µ)′]
exist. Then

n−1/2

[nt]∑

j=1

(Wj − µ) ⇒ Zt ≃ N (0, tQ). (6.28)

for all t > 0.

Proof. The proof is essentially identical to Theorem 3.41. Theorem 6.13 shows that
(6.28) holds for t = 1, with Z1 = Y . Let µ̂n(k) be the characteristic function of
n−1/α(Wj − µ), so that µ̂n(k)n → µ̂(k) = E[eik·Y ] for all k ∈ Rd. Then we also have

µ̂n(k)[nt] =
(
µ̂n(k)n

)[nt]/n → µ̂(k)t

for any t > 0, which shows that (6.28) holds for any t > 0.

Details

If X is any random vector, then the distribution of X is tight, meaning that

P[∥X∥ > r] → 0 as r → ∞. (6.29)

Equation (6.29) follows by a simple application of the dominated convergence theorem.
It follows that

P[∥Xnj∥ > ε] = P[∥Wj∥ > n1/2ε] → 0

as n → ∞, so that condition (6.22) holds.
If X is a random vector with µ = E[X] then

Q = Cov(X) = E [(X − µ)(X − µ)′]

= E [XX ′ − µX ′ − Xµ′ + µµ′]

= E [XX ′] − µE [X]′ − E [X]µ′ + µµ′

= E [XX ′] − µµ′ − µµ′ + µµ′ = E [XX ′] − µµ′
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Section 6.3 Triangular arrays of random vectors 163

which we used in the proof of Theorem 6.13.
Let µi denote the ith coordinate of the mean vector µ = E[X] and let Qij =

E[(Xi −µi)(Xj −µj)′] denote the ij entry of the covariance matrix Q = Cov(X). The
proof of Theorem 6.13 also used the fact that, in this case,

E
[
∥X∥2

]
= E

[
X2

1 + · · · + X2
d

]
=

d∑

i=1

(
Qii + µ2

i

)

exists, since the mean and covariance matrix exist.
The proof of Theorem 6.11 uses a compound Poisson approximation Sn ≈ SN where

N is Poisson with E[N ] = kn. We sketch the main ideas here. For the complete proof,
see [135, Theorem 3.2.2]. Let µ̂(k) = eψ(k) = E[eik·Y ] and let µ̂n(k) = eψn(k) be the
characteristic function of the appropriately shifted compound Poisson random vector
SN ≃ [bn, Qn, φn]. Then µn ⇒ µ if and only if ψn(k) → ψ(k) [135, Lemma 3.1.10].
Write

f(y, k) = eik·y − 1 − ik · y
1 + ∥y∥2

and note that y /→ f(y, k) is a bounded continuous function such that

f(y, k) = − 1

2
(k · y)2 + O((k · y)2) as y → 0

for any fixed k. If condition (i) holds, then it is not hard to show that
∫

∥y∥>ε
f(y, k)φn(dy) →

∫

∥y∥>ε
f(y, k)φ(dy)

whenever φ{∥y∥ = ε} = 0, which must be true for almost every ε > 0. Then

lim
ε→0

lim
n→∞

∫

∥y∥>ε
f(y, k)φn(dy) = lim

ε→0

∫

∥y∥>ε
f(y, k)φ(dy) =

∫
f(y, k)φ(dy)

since
∫
∥y∥2I(0 < ∥y∥ ≤ ε) φ(dy) exists for a Lévy measure. Now observe that

lim
ε→0

lim
n→∞

[

− 1

2
k′Qnk +

∫

0<∥y∥≤ε
f(y, k)φn(dy)

]

= lim
ε→0

lim
n→∞

[

− 1

2
k′Qnk − 1

2

∫

0<∥y∥≤ε
k′y y′k φn(dy)

]

= − 1

2
k′Qk

whenever

lim
ε→0

lim
n→∞

[

Qn +

∫

0<∥y∥≤ε
yy′φn(dy)

]

= Q. (6.30)

Then it can be shown that SN − an ⇒ Y for suitable an ∈ Rd if this condition holds.
Note that ∫

0<∥y∥≤ε
yy′φn(dy) = knE[XnjX

′
njI(∥Xnj∥ ≤ ε)]
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164 Chapter 6 Vector Fractional Diffusion

is the un-centered covariance matrix of the truncated row element. This leads to
condition (ii). Finally, argue that convergence of the random sum implies convergence
without the Poisson randomization [135, Theorem 3.2.12].

As in the one variable case, some alternative forms of the Lévy representation (6.21)
are also useful.

Theorem 6.15. Suppose Y ≃ µ is infinitely divisible with characteristic function
µ̂(k) = eψ(k) and (6.21) holds. Then we can also write µ̂(k) = eψ0(k) where

ψ0(k) = ik · a0 − 1

2
k′Qk +

∫ (
eik·y − 1 − ik · yI(∥y∥ ≤ R)

)
φ(dy) (6.31)

for any R > 0, for some unique a0 depending on R and a. Furthermore:

(a) If ∫

0<|y|≤R
∥y∥φ(dy) < ∞ (6.32)

then we can also write µ̂(k) = eψ1(k) where

ψ1(k) = ik · a1 − 1

2
k′Qk +

∫ (
eik·y − 1

)
φ(dy) (6.33)

for some unique a1 depending on a0; and

(b) If ∫

|y|>R
∥y∥φ(dy) < ∞ (6.34)

then we can also write µ̂(k) = eψ2(k) where

ψ2(k) = ik · a2 − 1

2
k′Qk +

∫ (
eik·y − 1 − ik · y

)
φ(dy) (6.35)

for some unique a2 depending on a0.

Proof. The proof is similar to Theorem 3.8. The integral

δ0 =

∫ (
y

1 + ∥y∥2
− yI(∥y∥ ≤ R)

)
φ(dy)

exists, since the integrand is bounded and O(∥y∥3) as y → 0. If we take a0 = a − δ0,
then ψ(k) = ψ0(k). If (6.32) holds, then ψ0(k) = ψ1(k), where

a1 = a0 −
∫

0<∥y∥≤R
yφ(dy).

If (6.34) holds, then ψ0(k) = ψ2(k), where

a2 = a0 +

∫

∥y∥>R
yφ(dy).

Uniqueness follows from Theorem 6.8.
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Section 6.4 Stable random vectors 165

Remark 6.16. It can be shown by differentiating the characteristic function that
E[Y ] = a2 for any infinitely divisible law that satisfies condition (6.34) in Theorem
6.15, see [135, Remark 3.1.15] for details.

6.4 Stable random vectors

Stable random vectors are the weak limits of random walks with power law jumps.
Each jump is of the form X = WΘ, where P[W > r] = Cr−α for some C > 0 and
some 0 < α < 2, and Θ is a random unit vector. The distribution of the stable limit
is determined, up to centering, by C, α, and the distribution of Θ.

Theorem 6.17. Suppose Xn = WnΘn are iid random vectors in Rd with P[Wn >
r] = Cr−α iid Pareto for some 0 < α < 2, and Θn are iid random unit vectors with
probability measure M(dθ), independent of (Wn). Then

n−1/α(X1 + · · · + Xn) − an ⇒ Y (6.36)

for some an ∈ Rd, where Y is infinitely divisible with Lévy representation [a, 0, φ] and

φ{tθ : t > r, θ ∈ B} = Cr−αM(B) (6.37)

for any r > 0 and any Borel subset B of the unit sphere. If 0 < α < 1, we can choose
an = 0, and then the limit Y is centered stable with characteristic function

E[eik·Y ] = exp

[

−CΓ(1 − α)

∫

∥θ∥=1

(−ik · θ)αM(dθ)

]

. (6.38)

If 1 < α < 2, we can choose an = n1−1/αE[Xn], and then the limit Y is centered stable
with mean zero and characteristic function

E[eik·Y ] = exp

[

C
Γ(2 − α)

α − 1

∫

∥θ∥=1

(−ik · θ)αM(dθ)

]

. (6.39)

Proof. Consider a triangular array Xnj = n−1/αXj for 1 ≤ j ≤ n = kn. Condition
(6.22) holds (see details), and so we only need to check conditions (i) and (ii) from
Theorem 6.11, see also Remark 6.12. For condition (i) it suffices to prove that (6.25)
holds for A = {tθ : t > r, θ ∈ B}, where B is a Borel subset of the unit sphere. For n
sufficiently large we have

kn∑

j=1

P[Xnj ∈ A] = nP[n−1/αXj ∈ A]

= nP[n−1/αWjΘj ∈ A]

= nP[n−1/αWj > r, Θj ∈ B]

= nP[Wj > n1/αr]P[Θj ∈ B]

= nC(n1/αr)−αM(B) = Cr−αM(B)
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166 Chapter 6 Vector Fractional Diffusion

which shows that (i) holds with the Lévy measure (6.37).
To prove condition (ii), write

k′Qnk = nk′ Cov(Xε
nj)k = n Var(k · Xε

nj)

≤ nE
[
(k · Xε

nj)
2
]

= nE

[
(n−1/αWj)

2I(|Wj | ≤ n1/αε)(Θj · k)2
]

= nE

[
(n−1/αWj)

2I(|Wj | ≤ n1/αε)
]

E
[
(Θj · k)2

]

≤ n1−2/α
E

[
W 2

j I(|Wj | ≤ n1/αε)
]
∥k∥2

=

(
ε2−α Cα

2 − α
− n1−2/α α

2 − α
C2/α

)
∥k∥2

(6.40)

by (3.44) and the fact that (k · θ)2 ≤ ∥k∥2 for any unit vector ∥θ∥ = 1. It follows that

lim
ε→0

lim sup
n→∞

k′Qnk ≤ lim
ε→0

lim
n→∞

(
ε2−α Cα

2 − α
− n1−2/α α

2 − α
C2/α

)
∥k∥2

= lim
ε→0

ε2−α Cα

2 − α
∥k∥2 = 0

since 0 < α < 2, so that 1 − 2/α < 0 and 2 − α > 0. Then Theorem 6.11 implies
that Sn − an ⇒ Y0 holds for some sequence (an), where Sn = n−1/α(X1 + · · · + Xn),
Y0 ≃ [a, 0, φ], and (6.37) holds.

Suppose 0 < α < 1. It follows from (6.37) that the Lévy measure

φ(dy) = αCr−α−1drM(dθ) (6.41)

in polar coordinates y = rθ with r > 0 and ∥θ∥ = 1 (see details), so we can choose
(an) according to (6.23) for any R > 0. Then E[eik·Y0 ] = eψ0(k) where

ψ0(k) =

∫

∥θ∥=1

∫ ∞

0

(
eik·rθ − 1 − ik · rθI(∥rθ∥ ≤ R)

)
αCr−α−1drM(dθ)

=

∫

∥θ∥=1

ψ(k, θ)M(dθ)

(6.42)

using (3.45), where

ψ(k, θ) =

∫ ∞

0

(
ei(k·θ)r − 1 − i(k · θ)rI(r ≤ R)

)
αCr−α−1dr

= −CΓ(1 − α)(−ik · θ)α − (ik · θ)a
(6.43)

and a is given by (3.46). It follows that

ψ0(k) = −CΓ(1 − α)

∫

∥θ∥=1

(−ik · θ)αM(dθ) − ik · b

where
b = a

∫

∥θ∥=1

θM(dθ) =
Cα

1 − α
R1−α

E[Θj ].
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Section 6.4 Stable random vectors 167

Then Y = Y0+b is a centered stable random vector with characteristic function (6.38).
Use (6.23) along with (3.47) to write

an =
kn∑

j=1

E
[
XR

nj

]
= nE

[
n−1/αWjI(|Wj | ≤ n1/αR)

]
E[Θj ]

=

[
Cα

1 − α
R1−α − n1−1/α α

1 − α
C1/α

]
E[Θj ] →

Cα

1 − α
R1−α

E[Θj ] = b

(6.44)

as n → ∞, since 1− 1/α < 0 in this case. Then Sn − b = Sn − an + (an − b) ⇒ Y0, so
Sn = Sn − b + b ⇒ Y0 + b = Y . Hence we can take an = 0 in this case, and then the
limit has characteristic function (6.38).

Now suppose that 1 < α < 2. Theorem 6.11 shows that, if we choose (an) according
to (6.23), then E[eik·Y0 ] = eψ0(k) where (6.42) holds with

ψ(k, θ) = C
Γ(2 − α)

α − 1
(−ik · θ)α + (ik · θ)a (6.45)

by (3.48), where a is given by (3.49). It follows that

ψ0(k) = C
Γ(2 − α)

α − 1

∫

∥θ∥=1

(−ik · θ)αM(dθ) + ik · b

where
b = a E[Θj ] =

Cα

α − 1
R1−α

E[Θj ].

Then Y = Y0−b is a centered stable random vector with characteristic function (6.39).
Using (6.44) we have

an =

[
Cα

1 − α
R1−α − n1−1/α α

1 − α
C1/α

]
E[Θj ] = −b + n1−1/αµ (6.46)

where

µ = E[Xj ] = E[Wj ]E[Θj ] =
α

α − 1
C1/α

E[Θj ] (6.47)

by (3.51). Since Sn − an ⇒ Y0 and an + b = n1−1/αµ, it follows that Sn − n1−1/αµ =
Sn − an − b ⇒ Y0 − b = Y . Hence we can take an = n1−1/αE[Xj ] in this case, and
then the limit has characteristic function (6.39). Then it follows from Remark 6.16
that E[Y ] = 0.

Proposition 6.18. The characteristic function of a general stable random vector Y
with Lévy measure (6.37) and index 0 < α < 2, α ̸= 1 can be written in the form

E[eik·Y ] = exp

[

ik · µ −
∫

∥θ∥=1

|θ · k|α
(
1 − i sgn(θ · k) tan

(πα

2

))
Λ(dθ)

]

(6.48)

with center µ and spectral measure

Λ(dθ) = C
Γ(2 − α)

1 − α
cos

(πα

2

)
M(dθ). (6.49)

In this case, we will write Y ≃ Sα(Λ, µ).
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168 Chapter 6 Vector Fractional Diffusion

Proof. If 1 < α < 2, then (6.39) implies

E[eik·Y ] = exp

[

A

∫

∥θ∥=1

(−ik · θ)αM(dθ)

]

(6.50)

with A = CΓ(2 − α)/(α − 1). If 0 < α < 1, then (6.38) implies that (6.50) holds with
A = −CΓ(1 − α) = CΓ(2 − α)/(α − 1). Now use (5.5) to write

E[eik·Y ] = exp

[

A

∫

∥θ∥=1

|k · θ|α cos(πα/2)
[
1 − i sgn(k · θ) tan(πα/2)

]
M(dθ)

]

(6.51)

so that Y + µ satisfies (6.48) and (6.49) holds.

Remark 6.19. The spectral measure Λ(dθ) in (6.49) is an arbitrary positive finite
Borel measure on the unit sphere, since both 1 − α and cos (πα/2) change sign at
α = 1. In one dimension, we have Λ{+1} = pσα and Λ{−1} = qσα where the
skewness β = p − q in the notation of Proposition 5.3. The spectral measure plays a
role similar to the covariance matrix, i.e., it controls the dependence of the components
of the stable random vector Y = (Y1, . . . , Yd)′. If Λ(dθ) is a discrete measure that only
assigns positive weight to the coordinate axes, then it follows easily from (6.50) that
Y1, . . . , Yd are independent. In fact, Y1, . . . , Yd are independent if and only if Λ is
concentrated on the coordinate axes, see Meerschaert and Scheffler [136, Lemma 2.3].

Remark 6.20. If α = 2, then (6.48) reduces to the characteristic function of a normal
random vector Y ≃ N (µ, Q) where the covariance matrix

Q = 2

∫

∥θ∥=1

θθ′M(dθ). (6.52)

The characteristic function of a general stable random vector Y with Lévy measure
(6.37) and index α = 1 can be written in the form

E[eik·Y ] = exp

[

ik · µ −
∫

∥θ∥=1

|θ · k|
(

1 + i

(
2

π

)
sgn(θ · k) ln |θ · k|

)
Λ(dθ)

]

(6.53)

with center µ and spectral measure

Λ(dθ) = C
(π

2

)
M(dθ). (6.54)

These formulas (6.48) and (6.53) describe the entire class of limit distributions for
sums of iid random vectors with scalar norming, see [135, Theorem 7.3.16].

Theorem 6.21. Suppose Xn = WnΘn are iid random vectors with P[Wn > r] = Cr−α

for some 0 < α < 2, and Θn are iid with probability measure M(dθ) on the unit sphere,
independent of Wn.
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Section 6.4 Stable random vectors 169

(a) If 0 < α < 1, then

n−1/α
[nt]∑

j=1

Xj ⇒ Zt (6.55)

for all t > 0, where

E
[
eikZt

]
= exp

[

−tD

∫

∥θ∥=1

(−ik · θ)αM(dθ)

]

(6.56)

and D = CΓ(1 − α);

(b) If 1 < α < 2, then µ = E[Xn] exists and

n−1/α
[nt]∑

j=1

(Xj − µ) ⇒ Zt (6.57)

for all t > 0, where

E
[
eikZt

]
= exp

[

tD

∫

∥θ∥=1

(−ik · θ)αM(dθ)

]

(6.58)

and D = CΓ(2 − α)/(α − 1).

Proof. The proof is essentially identical to Theorem 3.41. For example, in the case
0 < α < 1, Theorem 6.17 shows (6.55) and (6.56) hold for t = 1, with Z1 = Y . Let
µ̂n(k) be the characteristic function of n−1/αXj , so that µ̂n(k)n → µ̂(k) = E[eik·Y ] for
all k ∈ Rd. Then we also have

µ̂n(k)[nt] =
(
µ̂n(k)n

)[nt]/n → µ̂(k)t

for any t > 0, which shows that (6.55) and (6.56) hold for any t > 0.

Details

Since Xj = WjΘj is tight for any fixed j, so that (6.29) holds with X = Xj , it follows
that

P[∥Xnj∥ > ε] = P[∥Xj∥ > n1/αε] → 0

as n → ∞, so that condition (6.22) holds.
In (6.40) we used the fact that

Xε
nj = n−1/αWjΘjI(∥n−1/αWjΘj∥ ≤ ε) = n−1/αWjI(|Wj | ≤ n1/αε)Θj

since ∥Θj∥ = 1. We also used the general fact that, if Q = Cov(X) = E[(X−µ)(X−µ)′]
with µ = E[X], then E[k · X] = k · µ and

k′Qk = E[k′(X − µ)(X − µ)′k] = E[(k · (X − µ))2] = Var[k · X]
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170 Chapter 6 Vector Fractional Diffusion

for any fixed k ∈ Rd.
To establish (6.41), write A = {tθ : t > r, θ ∈ B} and note that

∫

tθ∈A
αCt−α−1dtM(dθ) =

∫ ∞

r
αCt−α−1dt

∫

θ∈B
M(dθ) = Cr−αM(B).

This is sufficient to prove (6.41) since sets of this form determine the measure φ.

6.5 Vector fractional diffusion equation

Theorem 6.21 shows that a vector random walk with power law jumps converges to a
vector stable Lévy motion Zt. Suppose 1 < α < 2. Then (6.58) shows that the pdf
p(x, t) of Zt has FT

p̂(k, t) = exp

[

tD

∫

∥θ∥=1

(ik · θ)αM(dθ)

]

and then
d

dt
p̂(k, t) = ψ(−k)p̂(k, t) (6.59)

where the Fourier symbol

ψ(−k) = D

∫

∥θ∥=1

(ik · θ)αM(dθ). (6.60)

Equation (6.59) represents the FT of the equation

∂

∂t
p(x, t) = Lp(x, t)

where the generator Lf(x) has FT ψ(−k)f̂(k). We would like to understand the
meaning of this generator in terms of fractional derivatives.

First we consider the FT (ik · θ)αf̂(k). If α = 1, then (ik · θ)f̂(k) = (ik)f̂(k) · θ is
the FT of the directional derivative (use the chain rule)

Dθf(x) =
d

dt
f(x + tθ)

∣∣
t=0

=
d

dt
f(x1 + tθ1, . . . , xd + tθd)

∣∣
t=0

=

[
∂

∂x1

f(x + tθ)θ1 + · · · + ∂

∂xd
f(x + tθ)θd

]

t=0

= ∇f(x) · θ

(6.61)

defined for any unit vector θ ∈ Rd. We will define the fractional directional derivative
Dα

θ f(x) to be the function with FT (ik · θ)αf̂(k). It is not hard to check (see details)
that Dα

θ f(x) is the (positive Riemann-Liouville) fractional derivative of the function
t /→ f(x + tθ) evaluated at t = 0.
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Section 6.5 Vector fractional diffusion equation 171

Take e1 = (1, 0, . . . , 0)′, e2 = (0, 1, 0, . . . , 0)′, and so forth, the standard coordinate
vectors. If θ = ej , then k · ej = θj and

D
α
ej

f(x) =
∂α

∂(xj)α
f(x1, . . . , xd)

is the fractional partial derivative in this coordinate. Now define

∇α
Mf(x) =

∫

∥θ∥=1

D
α
θ f(x)M(dθ). (6.62)

Then D∇α
Mf(x) has FT ψ(−k)f̂(k), where the Fourier symbol ψ(−k) is given by

(6.60), see details at the end of this section. Inverting the FT in (6.59) shows that the
density p(x, t) of Zt solves the vector fractional diffusion equation

∂

∂t
p(x, t) = D∇α

Mp(x, t) (6.63)

for 1 < α < 2. Next we add a drift: For v ∈ Rd the FT of vt + Zt is

p̂(k, t) = E

[
e−ik·(vt+Zt)

]
= E

[

exp

(

−ik · vt + Dt

∫

∥θ∥=1

(ik · θ)αM(dθ)

)]

.

Then
d

dt
p̂(k, t) =

(

−ik · v + D

∫

∥θ∥=1

(ik · θ)αM(dθ)

)

p̂(k, t). (6.64)

Inverting the FT in (6.64) shows that the density p(x, t) of vt + Zt solves the vector
fractional diffusion equation with drift

∂

∂t
p(x, t) = −v ·∇p(x, t) + D∇α

Mp(x, t) (6.65)

for 1 < α < 2. This equation was introduced in Meerschaert, Benson and Baeumer
[127]. It was originally applied to describe the movement of contaminant particles in
ground water in a heterogeneous aquifer by Schumer et al. [181]. It has also been
applied by Cushman and Moroni [53] to model particle traces in a laboratory setting.
If 0 < α < 1, then (6.65) governs vt + Zt with D < 0.

Example 6.22. Suppose that M{ej} = 1/d for j = 1, . . . , d where e1, . . . ed are the
standard coordinate vectors. Then

∫

∥θ∥=1

(ik · θ)αM(dθ) =
d∑

j=1

(ik · ej)
αd−1 = d−1

d∑

j=1

(ikj)
α

since kj = k · ej . Then

∇α
Mf(x) = d−1

d∑

j=1

∂α

∂(xj)α
f(x)
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172 Chapter 6 Vector Fractional Diffusion

and the vector fractional diffusion equation

∂

∂t
p(x, t) = D0

d∑

j=1

∂α

∂(xj)α
p(x, t) (6.66)

with D0 = D/d governs the scaling limit Zt of a random walk with Pareto jumps
evenly scattered over the positive coordinate axes. Here the components of Zt are iid
α-stable Lévy motions that are totally positively skewed (p = 1 and q = 0, so that
the skewness β = 1). Figure 6.4 shows a typical solution on R2 in the case α = 1.3,
obtained using a small modification of the R code from Figure 6.13: Set a1=1.3,
a2=1.3, q1=0.0, q2=0.0, and t=2.0. The mean of the pdf in Figure 6.4 is zero, but
the mode is shifted into the negative, to balance the heavy positive tail.

x1

x2

−1

0

1

−1 0 1

Figure 6.4. Level sets of the solution p(x, t) to the fractional diffusion equation (6.66) in
dimension d = 2 at time t = 2 with α = 1.3 and D0 = 0.5.
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Section 6.5 Vector fractional diffusion equation 173

Example 6.23. Suppose that M(dθ) = M(−dθ) (origin symmetric) for all ∥θ∥ = 1.
Then it follows using (5.6) with p = q = 1/2 that

∫

∥θ∥=1

(ik · θ)αM(dθ) =

∫

∥θ∥=1

(ik · θ)αM(−dθ)

=

∫

∥θ∥=1

(−ik · θ)αM(dθ)

=

∫

∥θ∥=1

[ 1
2
(ik · θ)α + 1

2
(−ik · θ)α]M(dθ)

= cos(πα/2)

∫

∥θ∥=1

|k · θ|αM(dθ).

For example, if M{ej} = M{−ej} = 1/(2d) for for j = 1, . . . , d then
∫

∥θ∥=1

(ik · θ)αM(dθ) = d−1

d∑

j=1

[
1

2
(ikj)

α + 1

2
(−ikj)

α
]

= d−1 cos(πα/2)
d∑

j=1

|kj |α

and (6.63) reduces to

∂

∂t
p(x, t) = D1

d∑

j=1

[
∂α

∂(xj)α
p(x, t) +

∂α

∂(−xj)α
p(x, t)

]
(6.67)

where D1 = D/(2d). Some authors define the fractional Laplacian in one dimension,
df(x)/d|x|α, as the inverse FT of −|k|αf̂(k). This is also called the Riesz fractional
derivative. Then we can rewrite (6.67) in the form

∂

∂t
p(x, t) = D0

d∑

j=1

∂α

∂|xj |α
p(x, t) (6.68)

where D0 = −D cos(πα/2)/d. Equation (6.67) governs the scaling limit Zt of a random
walk with Pareto jumps evenly scattered over the positive and negative coordinate
axes. The components of Zt are iid symmetric α-stable Lévy motions. A typical
solution was graphed in Figure 6.3.

Example 6.24. Suppose that M(dθ) is uniform over the unit sphere ∥θ∥ = 1. Write
k = ρω in polar coordinates with ρ > 0 and ∥ω∥ = 1. Then

∫

∥θ∥=1

(ik · θ)αM(dθ) = cos(πα/2)

∫

∥θ∥=1

|k · θ|αM(dθ)

= cos(πα/2)ρα

∫

∥θ∥=1

|ω · θ|αM(dθ)

= Bρα = B∥k∥α

where

B = cos(πα/2)

∫

∥θ∥=1

|ω · θ|αM(dθ)

= cos(πα/2)

∫

∥θ∥=1

|θ1|αM(dθ)
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174 Chapter 6 Vector Fractional Diffusion

by symmetry, since the integral in the first line does not depend on choice of ω, so
that we can set ω = e1. Note that B is a constant that only depends on α and the
dimension d, with B > 0 for 0 < α < 1 and B < 0 for 1 < α < 2. Now (6.59) becomes

d

dt
p̂(k, t) = DB∥k∥αp̂(k, t).

If 1 < α < 2 then this inverts to

∂

∂t
p(x, t) = D3∆

α/2p(x, t),

a version of (6.19) with c = D3 = −BD > 0, involving the fractional Laplacian of
order β = α/2. The case 0 < α < 1 leads to the same differential equation, with
D3 = BD > 0. This isotropic vector fractional diffusion equation governs the scaling
limit Zt of a random walk with power law jumps, whose angle is evenly scattered over
the entire unit sphere. The components of Zt are symmetric α-stable Lévy motions,
but they are not independent. This is clear because the FT

E
[
e−ik·Zt

]
= e−tD3∥k∥

α

̸=
d∏

j=1

e−tD3|kj |
α

and the quantity on the right-hand side is the product of the FT of the components.

It is instructive to contrast the normal case α = 2 with the stable case 1 < α < 2.
If α = 2 then

D

∫

∥θ∥=1

(ik · θ)αM(dθ) = −D

∫

∥θ∥=1

k′θ θ′kM(dθ) = −k′Qk

where the dispersion tensor Q = D
∫

θ θ′M(dθ). Then (6.63) reduces to the vector
diffusion equation

∂

∂t
p(x, t) = ∇ · Q∇p(x, t). (6.69)

This equation governs the scaling limit Zt of a random walk whose jumps have finite
second moments, see Corollary 6.14. The dispersion tensor Q controls particle spread-
ing, see Remark 6.1. This also reflects the jump distribution: The longest jumps tend
to be in the direction of the eigenvector corresponding to the largest eigenvalue of the
matrix Q. If Q = cI, then (6.63) reduces to the isotropic diffusion equation

∂

∂t
p(x, t) = c∆p(x, t) (6.70)

since ∇ ·∇ = ∆. Here Zt is an isotropic Brownian motion. If the jump distribution is
spherically symmetric, or if the jumps have iid symmetric components, or if the jumps
have iid positive components (corrected to mean zero), then we get the same limit
process, since all three types of jumps have the same covariance matrix. This stands
in direct contrast to the stable case, where these three types of random walks lead to
three different limits.
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Section 6.5 Vector fractional diffusion equation 175

Remark 6.25. Please note that ∇α
M is an extension of the common (abuse of) no-

tation ∇2 = ∇ · ∇ = ∆, so that ∇α
Mf(x) is scalar-valued. The operator ∇α

M is an
asymmetric version of the fractional Laplacian, not a fractional gradient vector.

Details

Fix ∥θ∥ = 1 and define g(t) = f(x+tθ) for t ∈ R. Then the positive Riemann-Liouville
fractional derivative of order 0 < α < 1 is given by the generator form

dαg(t)

dtα
=

1

Γ(1 − α)

∫ ∞

0

[g(t) − g(t − r)]αr−α−1dr

=
1

Γ(1 − α)

∫ ∞

0

[f(x + tθ) − f(x + (t − r)θ))]αr−α−1dr.

(6.71)

A simple substitution y = x − a shows that f(x − a) has FT
∫

e−ik·xf(x − a) dx =

∫
e−ik·(y+a)f(y) dy = e−ik·af̂(k).

Use this fact to show that the last expression in (6.71) for t = 0 has FT

1

Γ(1 − α)

∫ ∞

0

f̂(k)
[
1 − e−ik·rθ

]
αr−α−1dr = (ik · θ)αf̂(k)

using (3.14):

I(α) =

∫ ∞

0

(
eiky − 1

)
αy−α−1dy = −Γ(1 − α)(−ik)α.

The proof for 1 < α < 2 is similar.
A rigorous proof of the generator form (6.62) for the vector fractional derivative

∇α
Mf(x) relies on the theory of semigroups and generators. The following result is the

vector version of Theorem 3.17.

Theorem 6.26. Suppose that Zt is a Lévy process on Rd, and that E[eik·Z1 ] = eψ(k)

where ψ(k) is given by (6.21). Then Ttf(x) = E[f(x−Zt)] defines a C0 semigroup on
C0(Rd) with generator

Lf(x) = −a ·∇f(x)+ 1

2
∇ ·Q∇f(x)+

∫ (
f(x − y) − f(x) +

y ·∇f(x)

1 + ∥y∥2

)
φ(dy). (6.72)

If f and all its partial derivatives up to order two are elements of C0(Rd), then f ∈
Dom(L). If f and all its partial derivatives up to order two are also elements of
L1(Rd), then ψ(−k)f̂(k) is the FT of Lf(x).

Proof. The proof is essentially identical to the one variable case presented in Theorem
3.17, see Sato [174, Theorem 31.5] and Hille and Phillips [86, Theorem 23.14.2].

As in the one variable case, there are some alternative forms of the generator. The
next result extends Theorem 3.23.

Brought to you by | Brown University Rockefeller Library
Authenticated | 128.148.231.12

Download Date | 4/28/14 11:53 PM



176 Chapter 6 Vector Fractional Diffusion

Theorem 6.27. Suppose that Zt is a Lévy process on Rd, and that E[eik·Z1 ] = eψ(k)

where ψ(k) is given by (6.21). Then we can also write the generator (6.72) in the form

Lf(x) = −a0 ·∇f(x) + 1

2
∇ · Q∇f(x)

+

∫ (
f(x − y) − f(x) + y ·∇f(x)I(∥y∥ ≤ R)

)
φ(dy)

(6.73)

for any R > 0, for some unique a0 depending on R and a. Furthermore:

(a) If (6.32) holds, then we can also write

Lf(x) = −a1 ·∇f(x) + 1

2
∇ · Q∇f(x) +

∫ (
f(x − y) − f(x)

)
φ(dy) (6.74)

for some unique a1 depending on a0; and

(b) If (6.34) holds, then we can also write

Lf(x) = −a2 ·∇f(x) + 1

2
∇ · Q∇f(x)

+

∫ (
f(x − y) − f(x) + y ·∇f(x)

)
φ(dy)

(6.75)

for some unique a2 depending on a0.

Proof. The proof is very similar to Theorem 6.15. In view of Theorem 6.26, we know
that the generator formula (6.72) holds. Since the integral

δ0 =

∫ (
y

1 + ∥y∥2
− yI(∥y∥ ≤ R)

)
φ(dy)

exists, we can take a0 = a − δ0, and then (6.73) follows. If (6.32) holds, the integral

a1 = a0 −
∫

0<|y|≤R
yφ(dy)

exists, and then (6.74) follows from (6.73). If condition (6.34) holds, then

a2 = a0 +

∫

|y|>R
yφ(dy)

exists, and (6.75) follows from (6.73).

Example 6.28. Suppose that Z1 is centered stable with index 0 < α < 1 and char-
acteristic function (6.38). Use (6.74) to write the generator the corresponding stable
semigroup in the form

Lf(x) =

∫
(f(x − y) − f(x))φ(dy)

where φ(dy) is given by (6.41). Make a change of variable y = rθ to see that

Lf(x) =

∫

∥θ∥=1

∫ ∞

0

(f(x − rθ) − f(x))αCr−α−1drM(dθ).

If we take C = 1/Γ(1 − α), then this shows that Lf(x) = −∇α
Mf(x).
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Section 6.6 Operator stable laws 177

Example 6.29. Suppose that Z1 is centered stable with index 1 < α < 2 and char-
acteristic function (6.39). Use Theorem 6.27 (b) to write the generator in the form

Lf(x) =

∫
(f(x − y) − f(x) + y ·∇f(x))φ(dy)

where φ(dy) is given by (6.41). A change of variable y = rθ leads to

Lf(x) =

∫

∥θ∥=1

∫ ∞

0

(f(x − rθ) − f(x) + rθ ·∇f(x))αCr−α−1drM(dθ).

If we take C = (α − 1)/Γ(2 − α), then Lf(x) = ∇α
Mf(x).

6.6 Operator stable laws

Suppose that (Xn) are iid with some full random vector X on Rd. Recall from Section
6.2 that X ∈ GDOA(Y ) if

AnSn − bn ⇒ Y (6.76)

for some linear operators An and vectors bn. In this case, we say that Y is operator
stable. If An = anI for some an > 0, then Y is stable with index α ∈ (0, 2].

Example 6.30. If the components of X are independent Pareto random variables
with different indices αi ∈ (0, 1), Example 6.4 shows that (6.76) holds with bn = 0 and

An = diag(n−1/α1 , . . . , n−1/αd) =

⎛

⎜⎝

n−1/α1 0
. . .

0 n−1/αd

⎞

⎟⎠ .

and furthermore,
AnS[nt] ⇒ Z(t) (6.77)

where the limit Z(t) is an operator stable Lévy motion with independent components,
and Z(1) ≃ Y . The pdf p(x, t) of Z(t) has FT

p̂(k, t) = E

[
e−ik·Z(t)

]
= exp

⎡

⎣−t
d∑

j=1

Dj(ikj)
αj

⎤

⎦ .

This pdf p(x, t) solves the vector fractional diffusion equation

∂

∂t
p(x, t) =

d∑

j=1

[

−Dj
∂αj

∂x
αj

j

p(x, t)

]

(6.78)

for some Di > 0. Since the pdf

p(x, t) =
d∏

j=1

pj(xj , t)
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178 Chapter 6 Vector Fractional Diffusion

is the product of stable densities with different indices αi, the right tail xj /→ p(x, t)
falls off at a different rate ≈ x

−αj−1

j in each coordinate. Figure 6.5 shows level sets of
a typical solution p(x, t) in R2 with α1 = 0.8 and α2 = 0.6, obtained using the R code
from Figure 6.14 at the end of this chapter.

x1

x2

1

2

3

1 2 3

Figure 6.5. Level sets of the solution p(x, t) to the fractional diffusion equation (6.78) at
time t = 3 in dimension d = 2, with α1 = 0.8, α2 = 0.6, and D1 = D2 = 0.5.

The scaling also varies with the coordinate. In fact, the operator stable Lévy motion
Z(t) has operator scaling

Z(ct) ≃ cBZ(t) (6.79)

where the scaling matrix

B = diag(1/α1, . . . , 1/αd) =

⎛

⎜⎝

1/α1 0
. . .

0 1/αd

⎞

⎟⎠

and we define the matrix power

cB = diag(c1/α1 , . . . , c1/αd) =

⎛

⎜⎝

c1/α1 0
. . .

0 c1/αd

⎞

⎟⎠ .

To check this, let

Z(t) =

⎛

⎜⎝

Z1(t)
...

Zd(t)

⎞

⎟⎠
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Section 6.6 Operator stable laws 179

and recall that each component is self-similar with Zj(ct) ≃ c1/αj Zj(t) for all c > 0
and t > 0. Then

Z(ct) =

⎛

⎜⎝

Z1(ct)
...

Zd(ct)

⎞

⎟⎠ =

⎛

⎜⎝

c1/α1Z1(t)
...

c1/αdZd(t)

⎞

⎟⎠ =

⎛

⎜⎝

c1/α1 0
. . .

0 c1/αd

⎞

⎟⎠

⎛

⎜⎝

Z1(t)
...

Zd(t)

⎞

⎟⎠ = cBZ(t).

Remark 6.31. The random walk convergence (6.77) extends easily to finite dimen-
sional distributions. The argument is essentially identical to (4.28). The operator
scaling (6.79) also holds in the sense of finite dimensional distributions, i.e., for any
0 < t1 < t2 < · · · < tn < ∞ we have

(Z(ct1), . . . , Z(ctn)) ≃ (cBZ(t1), . . . , c
BZ(tn)).

To see this, note that Z(ctk)−Z(ctk−1) ≃ Z(c(tk − tk−1)) ≃ cBZ(tk − tk−1) since Z(t)
has stationary increments. Since Z(t) has independent increments, it follows that

(
Z(ctk) − Z(ctk−1) : k = 1, . . . , n

)
≃

(
cB [Z(tk) − Z(tk−1)] : k = 1, . . . , n

)

and then apply the Continuous Mapping Theorem 4.19. Then Z(t) is operator self-
similar with exponent B. For more on operator self-similar processes, see Embrechts
and Maejima [61].

Remark 6.32. The random walk convergence (6.77) also extends to convergence
in the Skorokhod space. Let D([0,∞), Rd) denote the set of real-valued functions
x : [0,∞) → Rd which are continuous from the right with left-hand limits. Equip
with the Skorokhod J1 topology, defined exactly as in Section 4.4. Then we also have
AnS[nt] ⇒ Z(t) in D([0,∞), Rd) with this topology, see [135, Theorem 4.1] for complete
details.

To proceed further, we need to introduce some additional notation. The matrix
exponential is defined by

exp(A) =
∞∑

n=0

An

n!
= I + A +

A2

2!
+ · · · (6.80)

for any d × d matrix A. The matrix power is defined by

tA = exp(A log t) = I + A log t +
(log t)2

2!
A2 + · · · (6.81)

for any t > 0.

Example 6.33. If

A = diag(a, b) =

(
a 0
0 b

)
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180 Chapter 6 Vector Fractional Diffusion

then

An = diag(an, bn) =

(
an 0
0 bn

)

and

exp(A) =

(
1 0
0 1

)
+

(
a 0
0 b

)
+

1

2!

(
a2 0
0 b2

)
+ · · ·

=

(
1 + a + a2/2! + · · · 0

0 1 + b + b2/2! + · · ·

)
=

(
ea 0
0 eb

)
.

Then

tA = exp(A log t) = exp

[(
a log t 0

0 b log t

)]
=

(
ea log t 0

0 eb log t

)
=

(
ta 0
0 tb

)
.

More generally, if A = diag(a1, . . . , ad), then tA = diag(ta1 , . . . , tad). Some typical
orbits t /→ tAx for different unit vectors x are shown as solid lines in Figure 6.6. Each
orbit intersects the unit circle (dashed line) exactly once at the point t = 1. The R
code for plotting these orbits is shown in Figure 6.15 at the end of this chapter.

−3 −2 −1 0 1 2 3

−
3

−
2

−
1

0
1

2
3

x1

x2

Figure 6.6. Eight orbits t !→ tAx from Example 6.33 with a = 0.7 and b = 1.2 grow out
from the origin as t increases. Each orbit intersects the unit circle (dashed line) at t = 1

when x is a unit vector.
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Section 6.6 Operator stable laws 181

Example 6.34. Suppose that

A =

(
a 1
0 a

)
=

(
a 0
0 a

)
+

(
0 1
0 0

)
= D + N

where D = aI is a diagonal matrix, and DN = ND. It is not hard to check, using
the definition of the matrix exponential, that DN = ND implies exp(N + D) =
exp(N) exp(D). The matrix N is a nilpotent matrix, i.e., Nk = 0 for any sufficiently
large integer k > 0. In fact we have

N2 =

(
0 1
0 0

)(
0 1
0 0

)
=

(
0 0
0 0

)

so that Nk = 0 for all k > 1. Then

tN = I + N log t + 0 + · · · =

(
1 0
0 1

)
+

(
0 log t
0 0

)
=

(
1 log t
0 1

)

and tD = diag(ta, ta) = taI so that

tA =

(
ta 0
0 ta

) (
1 log t
0 1

)
=

(
ta ta log t
0 ta

)
.

Some typical orbits tAx are shown as solid lines in Figure 6.7. Each orbit tAx with
x ̸= 0 passes through the unit circle (dashed line) exactly once. The R code for plotting
these orbits is shown in Figure 6.16 at the end of this chapter.

Example 6.35. Suppose that

A =

(
a −1
1 a

)
= D + Q

where D = aI is a diagonal matrix,

Q =

(
0 −1
1 0

)

is skew-symmetric, and DQ = QD. Write

Q2 =

(
0 −1
1 0

) (
0 −1
1 0

)
=

(
−1 0
0 −1

)

Q3 =

(
−1 0
0 −1

)(
0 −1
1 0

)
=

(
0 1
−1 0

)

Q4 =

(
0 1
−1 0

) (
0 −1
1 0

)
=

(
1 0
0 1

)

Q5 = Q4Q = Q

Q6 = Q4Q2 = Q2

Brought to you by | Brown University Rockefeller Library
Authenticated | 128.148.231.12

Download Date | 4/28/14 11:53 PM



182 Chapter 6 Vector Fractional Diffusion

−3 −2 −1 0 1 2 3

−
3

−
2

−
1

0
1

2
3

x1

x2

Figure 6.7. Six orbits t !→ tAx from Example 6.34 with a = 0.5 grow out from the origin as
t increases. Each orbit intersects the unit circle (dashed line) exactly once at the point t = 1

when x is a unit vector.

and so forth, so that

exp(cQ) =

(
1 0
0 1

)
+ c

(
0 −1
1 0

)
+

c2

2!

(
−1 0
0 −1

)
+

c3

3!

(
0 1
−1 0

)
+ · · ·

=

(
1 − c2/2! + c4/4! + · · · −c + c3/3! − c5/5! + · · ·
c − c3/3! + c5/5! + · · · 1 − c2/2! + c4/4! + · · ·

)

=

(
cos c − sin c
sin c cos c

)
= Rc

the rotation matrix that rotates each vector x = (r cos θ, r sin θ)′ counterclockwise by
an angle c: Rcx = (r cos(c + θ), r sin(c + θ))′. Then tQ = exp(Q log t) = Rlog t and

tA =

(
ta 0
0 ta

)
Rlog t =

(
ta cos(log t) −ta sin(log t)
ta sin(log t) ta cos(log t)

)
.

The orbits tAx are counter-clockwise spirals, see Figure 6.8. The R code for plotting
these orbits is shown in Figure 6.17 at the end of this chapter.

Remark 6.36. The computations in Examples 6.33–6.35 can be extended to explicitly
compute the matrix power tA for any d×d matrix A, using the Jordan decomposition,
see [135, Section 2.2]. The matrix exponential is also important in the theory of linear
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−3 −2 −1 0 1 2 3
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1
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x1

x2

Figure 6.8. Four orbits t !→ tAx from Example 6.35 with a = 0.5 grow out from the origin
as t increases. Each orbit intersects the unit circle (dashed line) exactly once at t = 1 when
x is a unit vector.

differential equations. The vector differential equation x′ = Ax; x(0) = x0 has a
unique solution x(t) = exp(At)x0, so the orbits t /→ exp(At)x0 are the solution curves
for this system of linear differential equations (e.g., see Hirsch and Smale [87]). The
orbits s /→ sAx0 trace out the same curves with a different parametrization t = log s.

Theorem 6.17 showed that α-stable random vectors are random walk limits with
jumps of the form X = WΘ, where W is a Pareto random variable with tail index α,
and Θ is a random unit vector. Operator stable random vectors are limits of random
walks with a more general jump distribution that allows the tail index α to vary with
the coordinate. Let B = diag(1/α1, . . . , 1/αd) for some αi ∈ (0, 2). That is, B is
a diagonal matrix whose eigenvalues λi = 1/αi > 1/2. If all αi ∈ (1, 2) then every
eigenvalue λi ∈ (1/2, 1).

Suppose P[W > r] = Cr−1 is a Pareto random variable with index α = 1, and
Θ = (θ1, . . . , θd)′ is a random unit vector with distribution M(dθ), independent of W .
Write

X = WB
Θ =

⎛

⎜⎝

W 1/α1 0
. . .

0 W 1/αd

⎞

⎟⎠

⎛

⎜⎝

θ1

...
θd

⎞

⎟⎠ (6.82)

and note that P[W 1/α > r] = P[W > rα] = Cr−α so that the ith diagonal entry in the
matrix WB is a Pareto random variable with index αi. Note also that these entries
are not independent!
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184 Chapter 6 Vector Fractional Diffusion

Take (Xn) iid with X = WBΘ in (6.82), and let Sn = X1 + · · · + Xn. In Section
6.7, we will prove that X ∈ GDOA(Y ) and (6.76) holds for some bn ∈ Rd, and in fact

n−BSn − bn ⇒ Y. (6.83)

This operator stable limit Y has Lévy representation [a, 0, φ], where a depends on the
choice of centering bn, and the Lévy measure φ reflects the operator scaling. Next we
will compute this Lévy measure, using condition (i) of Theorem 6.11. The proof of
condition (ii) is more complicated, and will be deferred to Section 6.7.

To establish the vague convergence condition (i) in Theorem 6.11, it suffices to show

kn∑

j=1

P[Xnj ∈ U ] → φ(U) (6.84)

for sets of the form U = {tBθ : t > r, θ ∈ V } where r > 0 and V is a Borel subset of
the unit sphere. A substitution s = nt shows that

nBU = {nBtBθ : t > r, θ ∈ V }
= {(nt)Bθ : t > r, θ ∈ V }
= {sBθ : s/n > r, θ ∈ V }
= {sBθ : s > nr, θ ∈ V }.

Then for n sufficiently large we have

nP[n−BX ∈ U ] = nP[X ∈ nBU ]

= nP[WB
Θ ∈ nBU ]

= nP[W > nr, Θ ∈ V ] = n C(nr)−1M(V ) = Cr−1M(V ).

This proves that condition (i) holds with

φ{tBθ : t > r, θ ∈ V } = Cr−1M(V ). (6.85)

Example 6.37. If we take α1 = · · · = αd = α ∈ (0, 2) in (6.82), then B = (1/α)I
and WBΘ = W 1/αΘ, where W 1/α is a Pareto random variable with index α. Then
Theorem 6.17 applies to show that (6.83) holds, where the α-stable random vector Y
in the limit has Lévy measure (6.37). Substitute s = tα in (6.85) to see that

φ{tθ : t > r, θ ∈ V } = φ{(tα)Bθ : t > r, θ ∈ V }

= φ{sBθ : s1/α > r, θ ∈ V }
= φ{sBθ : s > rα, θ ∈ V } = C(rα)−1M(V ) = Cr−αM(V ).

Hence the operator stable Lévy measure (6.85) reduces to the stable Lévy measure
(6.37) when the exponent B is a scalar multiple of the identity.
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Section 6.6 Operator stable laws 185

Example 6.38. Suppose that P[Θ = ej ] = 1/d for j = 1, . . . , d, where e1, . . . , ed are
the standard coordinate vectors. Since tBej = t1/αj ej for all t > 0, it follows from
(6.85) that φ is concentrated on the positive coordinate axes. A substitution s = tαj

yields

φ{tej : t > r} = φ{(tαj )Bθ : t > r}
= φ{sBθ : s > rαj , θ ∈ V } = Cr−αj M(ej).

Then it follows from the Lévy representation (6.21) that E[eik·Y ] = eψ(k) where

ψ(k) = ik · a +
d∑

j=1

∫ (
eik·rej − 1 − ik · rej

1 + r2

)
Cαjr

−αj−1drM(ej)

=
d∑

j=1

[
ikjaj + d−1

∫ (
eikjr − 1 − ikjr

1 + r2

)
Cαjr

−αj−1dr

]
=

d∑

j=1

ψj(kj).

Note that the jth component of Y has characteristic function E[eikjYj ] = E[eik(ej ·Y )].
Then Y has independent stable components Yj = ej · Y with index αj and Fourier
symbol ψj(−kj).

Remark 6.39. The formula (6.85) implies that φ has operator scaling:

cφ(dy) = φ(c−Bdy) for all c > 0. (6.86)

To see this, substitute s = t/c to get

φ(c−BU) = φ{c−BtBθ : t > r, θ ∈ V }
= φ{(t/c)Bθ : t > r, θ ∈ V }
= φ{sBθ : s > r/c, θ ∈ V } = C(r/c)−1M(V ) = c φ(U).

In fact, it is easy to check that the operator scaling relation (6.86) is equivalent to
(6.85) with CM(V ) = φ{tBθ : t > 1, θ ∈ V }.

Remark 6.40. We have noted in (6.41) that the stable Lévy measure φ(dy) =
αCr−α−1drM(dθ) in polar coordinates y = rθ with r > 0 and ∥θ∥ = 1. The op-
erator stable Lévy measure can be written in a similar manner

φ(dy) = Cr−2drM(dθ) (6.87)

where y = rBθ for some r > 0 and ∥θ∥ = 1. These are called the Jurek coordinates, see
Jurek and Mason [95]. For these coordinates to make sense, the function r /→ ∥rBx∥
must be strictly increasing for all x ̸= 0. Then there is a unique unit vector θ such
that x = rBθ for some unique r > 0. This can be accomplished with a specific non-
Euclidean norm [135, Lemma 6.1.5]. For the usual Euclidean norm in R2, r /→ ∥rBx∥
is always strictly increasing in the coordinate system that puts B in Jordan form, see
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Figure 6.9. Jurek coordinates x = rBθ in the case B = diag(0.7, 1.2). Dashed lines show
the sets r = 1/2, 1, 2.

[135, Remark 6.1.6]. This was the case in Examples 6.33–6.35, since all those matrices
are in canonical Jordan form. The Jurek coordinates are illustrated in Figure 6.9. The
R code for plotting these orbits is shown in Figure 6.18 at the end of this chapter.
Since φ is the jump intensity, the Jurek coordinates describe particle jumps in a curved
coordinate system with operator scaling. They reduce to the usual polar coordinate
system if B = I.

Remark 6.41. The operator scaling of the Lévy measure can also be visualized using
Figure 6.9. Suppose C = 1 in (6.85), so that the exterior of the unit circle S in
Figure 6.9 has φ-measure equal to 1. The exterior of the larger dashed curve is the set
{tBθ : t > 2, θ ∈ S}, so (6.85) implies that it has φ-measure 1/2. The exterior of the
smaller dashed curve is the set {tBθ : t > 1/2, θ ∈ S}, so it has φ-measure 2.

Remark 6.42. The name operator stable comes from a paper of Sharpe [185]. Expo-
nents and symmetries of operator stable laws were characterized by Holmes, Hudson
and Mason [88]. Hudson, Jurek and Veeh [89] showed that there is some exponent
that commutes with every symmetry.

6.7 Operator regular variation

In this section, we show that operator stable laws with no normal component are
the weak limits of random walks with operator scaling power law jumps of the form
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Section 6.7 Operator regular variation 187

X = WBΘ. The following result extends Theorem 6.17 to operator stable limits.

Theorem 6.43. Suppose that B is a d× d matrix whose eigenvalues λj = aj + ibj all
have real part aj > 1/2. Suppose Xn = WB

n Θn where (Wn) are iid with P[Wn > r] =
Cr−1 for some C > 0, and Θn are iid random unit vectors with probability measure
M(dθ), independent of (Wn). Then

n−B(X1 + · · · + Xn) − an ⇒ Y (6.88)

for some an ∈ Rd, where Y is infinitely divisible with Lévy representation [a, 0, φ] and
Lévy measure (6.85).

The proof of Theorem 6.43 requires some regular variation tools. We say that a
random vector X varies regularly if

nP[AnX ∈ dy] → φ(dy) as n → ∞ (6.89)

where An is invertible, ∥An∥ → 0, and φ is a σ-finite Borel measure on {y ̸= 0} that
is not concentrated on any lower dimensional subspace. The next result is the vector
version of Proposition 4.15.

Proposition 6.44. Suppose that X varies regularly, so that (6.89) holds. Then:

(a) The limit measure φ(dy) satisfies (6.85) for some B whose eigenvalues all have
positive real part;

(b) The sequence (An) can be chosen to be RV(−B), that is,

A[λn]A
−1
n → λ−B as n → ∞ (6.90)

for all λ > 0.

Proof. This is [135, Theorem 6.1.24].

In the situation of Proposition 6.44, we say that (the probability distribution of) X
varies regularly with exponent B, and we write X ∈ RV(B). The matrix norming in
(6.89) is critical, as it allows the tails of X to fall off at a different power law rate in
different directions. For more information on regularly varying probability measures,
see [135, Chapter 6].

Proof of Theorem 6.43. Condition (i) of Theorem 6.11 was already established in Sec-
tion 6.6. The proof of condition (ii) uses a vector version of the Karamata Theorem
4.4. Define the truncated moments and tail moments

Uζ(r, θ) = E
[
|X · θ|ζI(|X · θ| ≤ r)

]

Vη(r, θ) = E [|X · θ|ηI(|X · θ| > r)]
(6.91)
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188 Chapter 6 Vector Fractional Diffusion

and note that these are just the truncated and tail moments of the one dimensional
projection X ·θ. Order the eigenvalues λj = aj + ibj so that a1 ≤ · · · ≤ ad. Then [135,
Theorem 6.3.4] shows that

V0(r, θ) = P[|X · θ| > r]

is uniformly R-O varying: For any δ > 0 there exist 0 < m < M < ∞ and r0 > 0 such
that

mλ−δ−1/a1 ≤ V0(rλ, θ)

V0(r, θ)
≤ Mλδ−1/ad for all λ ≥ 1 (6.92)

for any r ≥ r0 and any ∥θ∥ = 1. Now define αj = 1/aj so that α1 ≥ · · · ≥ αd. Then
we also have

r−δ−α1 < P[|X · θ| > r] < rδ−αd (6.93)

for all r > 0 sufficiently large. Since every ai > 1/2, we also have αi ∈ (0, 2).
Suppose Uζ and Vη exist. Then the vector Karamata theorem [135, Theorem 6.3.8]

implies that, if Vη is uniformly R-O varying, then for some C > 0 and r0 > 0 we have

rζ−ηVη(r, θ)

Uζ(r, θ)
≥ C for all r ≥ r0 and all ∥θ∥ = 1. (6.94)

In order to prove condition (ii), fix k ∈ Rd and write k = ρϑ for some ρ > 0 and
∥ϑ∥ = 1. Then

n Var
[
k · (n−BX)ε)

]
≤ nE

[{
k · (n−BX)ε)

}2
]

= nE
[
(k · n−BX)2I(∥n−BX∥ ≤ ε)

]

≤ nE
[
(k · n−BX)2I(|n−BX · ϑ| ≤ ε)

]

= nE
[
(k · n−BX)2I(|n−BX · k| ≤ ε1)

]

where ε1 = ρε. It is not hard to check, using the definition of the matrix exponential,
that (tB)′ = tB

′

. Write n−B′k = rnθn where rn > 0 and ∥θn∥ = 1, and recall the
general fact that x · Ay = A′x · y. Then

nE
[
(k · n−BX)2I(|n−BX · k| ≤ ε1)

]
= nE

[
(n−B′k · X)2I(|X · n−B′k| ≤ ε1)

]

= nE
[
(rnθn · X)2I(|rnθn · X| ≤ ε1)

]

= nr2
nE

[
|X · θn|2I(|X · θn| ≤ r−1

n ε1)
]

= nr2
nU2(r

−1
n ε1, θn).

Now apply (6.94) to see that

nr2
nU2(r

−1
n ε1, θn) ≤ nr2

nC−1(r−1
n ε1)

2V0(r
−1
n ε1, θn)

= C−1ε2
1nV0(r

−1
n ε1, θn)

= C−1ε2
1 nV0(r

−1
n , θn)

V0(r−1
n ε1, θn)

V0(r
−1
n , θn)
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Section 6.7 Operator regular variation 189

where

nV0(r
−1
n , θn) = nP[|X · θn| > r−1

n ]

= nP[|X · rnθn| > 1]

= nP[|X · n−B′k| > 1]

= nP[|n−BX · k| > 1]

= nP[n−BX ∈ U ] → φ(U)

with U = {y : |y ·k| > 1}. Since every eigenvalue of B has positive real part, it follows
from [135, Theorem 2.2.4] that r−1

n → ∞ as n → ∞. Then (6.92) implies that for any
δ > 0 we have

V0(r−1
n ε1, θn)

V0(r
−1
n , θn)

=
V0(r−1

n ε1, θn)

V0(ε
−1

1
(ε1r

−1
n ), θn)

≤ 1

m
(ε−1

1
)δ+α1

for all n sufficiently large, where α1 = 1/a1 ∈ (0, 2). Then we have

lim
ε→0

lim sup
n→∞

n Var
[
k · (n−BX)ε)

]
≤ lim

ε→0
C−1ε2

1 φ(U)
1

m
ε−δ−α1

1
= 0

which proves condition (ii). Then Theorem 6.11 implies that (6.88) holds for some
an ∈ Rd, where Y is infinitely divisible with Lévy representation [a, 0, φ] and Lévy
measure (6.85).

Remark 6.45. If every eigenvalue of B has real part ai > 1, then every αi < 1,
and we can set an = 0 in (6.88). In this case, the limit has characteristic function
E[eik·Y ] = eψ(k) with

ψ(k) =

∫ (
eik·y − 1

)
φ(dy) =

∫

∥θ∥=1

∫ ∞

0

(
eik·rBθ − 1

)
Cr−2dr M(dθ). (6.95)

If every eigenvalue of B has real part ai ∈ (1/2, 1), then every αi ∈ (1, 2), and we can
set an = nE[n−BX] in (6.88) (if E[X] = 0, we can set an = 0). In this case, the limit
has characteristic function E[eik·Y ] = eψ(k) with

ψ(k) =

∫ (
eik·y − 1 − ik · y

)
φ(dy)

=

∫

∥θ∥=1

∫ ∞

0

(
eik·rBθ − 1 − ik · rBθ

)
Cr−2dr M(dθ)

and E[Y ] = 0. The proof is similar to Theorem 6.17, using vector regular variation,
see [135, Theorem 8.2.7].

Remark 6.46. Suppose that (6.88) holds with an = 0. Then an argument very
similar to Theorem 6.21 shows that we also get random walk convergence

n−BS[nt] ⇒ Zt

Brought to you by | Brown University Rockefeller Library
Authenticated | 128.148.231.12

Download Date | 4/28/14 11:53 PM



190 Chapter 6 Vector Fractional Diffusion

where Zt is an operator stable Lévy motion with Z1 ≃ Y . Suppose that every ai > 1.
Then

p̂(k, t) = E[e−ik·Zt ] = etψ(−k)

where ψ(k) is given by (6.95). It follows that

d

dt
p̂(k, t) =

∫ (
eik·y − 1

)
p̂(k, t) φ(dy)

which inverts to

∂

∂t
p(x, t) =

∫
[p(x − y, t) − p(x, t)]φ(dy)

=

∫

∥θ∥=1

∫ ∞

0

[
p(x − rBθ, t) − p(x, t)

]
Cr−2dr M(dθ).

(6.96)

If we define the generalized fractional derivative

∇B
Mf(x) =

∫

∥θ∥=1

∫ ∞

0

[
f(x) − f(x − rBθ)

]
r−2dr M(dθ) (6.97)

using (6.74), then we can write (6.96) in the form

∂

∂t
p(x, t) = −C∇B

Mp(x, t).

This generalized fractional diffusion equation governs the densities of operator stable
Lévy motions with no normal component. If B = (1/α)I, then (6.96) reduces to the
vector fractional diffusion equation (6.63) that governs a vector stable Lévy motion:
Substitute s = r1/α to get

∇B
Mp(x, t) =

∫

∥θ∥=1

∫ ∞

0

[
p(x, t) − p(x − r1/αθ, t)

]
r−2dr M(dθ)

=

∫

∥θ∥=1

∫ ∞

0

[p(x, t) − p(x − sθ, t)] (sα)−2αsα−1ds M(dθ)

=

∫

∥θ∥=1

∫ ∞

0

[p(x, t) − p(x − sθ, t)]αs−α−1ds M(dθ)

= Γ(1 − α)∇α
Mp(x, t).

When all ai ∈ (1/2, 1), the generalized fractional derivative is defined by

∇B
Mf(x) =

∫

∥θ∥=1

∫ ∞

0

[
f(x − rBθ) − f(x) + rBθ ·∇f(x)

]
r−2dr M(dθ) (6.98)

using Theorem 6.27 (b), and the generalized fractional diffusion equation

∂

∂t
p(x, t) = C∇B

Mp(x, t)

governs the densities of an operator stable Lévy motion with this exponent B.
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6.8 Generalized domains of attraction

Recall from Section 6.2 that X ∈ GDOA(Y ) if

AnSn − bn ⇒ Y (6.99)

for some linear operators An and vectors bn. Here Sn = X1 + · · · + Xn and (Xn) are
iid with some full random vector X on Rd. In this case, we say that Y is operator
stable. The necessary and sufficient conditions for X ∈ GDOA(Y ) are written in terms
of regular variation. Recall from Section 6.7 that X ∈ RV(B) if and only if

nP[AnX ∈ dy] → φ(dy) as n → ∞ (6.100)

where
A[λn]A

−1
n → λ−B for all λ > 0 (6.101)

for some linear operator B whose eigenvalues all have positive real part. Then we also
have

c φ(dy) = φ(c−Bdy) for all c > 0. (6.102)

The next result extends Theorem 4.5 to random vectors. It also shows that the limits
of power law random walks in Theorem 6.43 cover all possible limits in (6.99) when Y
has no normal component.

Theorem 6.47 (Generalized CLT for Random Vectors). If X ∈ GDOA(Y ), then Y
is infinitely divisible with Lévy representation [a,Q,φ].

(a) If Y is normal and E[X] = 0, then X ∈ GDOA(Y ) and (6.99) holds for some
bn ∈ Rd if and only if

nF (A′nkn) → k′Qk for all kn → k ̸= 0 (6.103)

where F (k) = E[|X · k|2I(|X · k| ≤ 1)];

(b) If Y has no normal component, then X ∈ GDOA(Y ) and (6.99) holds for some
bn ∈ Rd if and only if X ∈ RV(B) for some B whose eigenvalues all have real
part ai > 1/2, and (6.100) holds.

Proof. Define the triangular array row elements Xnj = AnXj for j = 1, . . . , n. Then
condition (6.22) holds (see details). If X ∈ RV(B) for some B whose eigenvalues
all have real part ai > 1/2, then condition (i) from Theorem 6.11 holds, since this
condition is identical to (6.100). The proof of condition (ii) is exactly the same as
Theorem 6.43, using An in place of n−B . Conversely, if X ∈ GDOA(Y ) and Y has
no normal component, it follows from condition (i) in Theorem 6.11 that X ∈ RV(B)
and (6.102) holds. Since φ is a Lévy measure, (6.20) holds, and a simple estimate
(a special case of [135, Lemma 7.1.7]) shows that every eigenvalue of B has real part
ai > 1/2.

Brought to you by | Brown University Rockefeller Library
Authenticated | 128.148.231.12

Download Date | 4/28/14 11:53 PM



192 Chapter 6 Vector Fractional Diffusion

The proof of part (a) is similar to Theorem 4.5, using the vector Karamata theorem.
Condition (6.103) is equivalent to condition (ii) from Theorem 6.11 when condition
(i) holds with φ = 0, and the vector Karamata theorem is used to show that condition
(i) holds with φ = 0, see [135, Theorem 8.1.3].

Remark 6.48. The convergence criterion (6.103) in Theorem 6.47 (a) can also be
stated in terms of regular variation. A real-valued (Borel measurable) function F (x) =
F (x1, . . . , xd) on Rd varies regularly at x = 0 if

nF (L−1
n xn) → ϕ(x) > 0 for all xn → x ̸= 0 (6.104)

where
L[λn]L

−1
n → λ−B for all λ > 0 (6.105)

for some linear operator B whose eigenvalues all have negative real part. Then we also
write F ∈ RV0(B). In this case, [135, Proposition 5.1.2] implies that

c ϕ(x) = ϕ(c−Bx) for all c > 0. (6.106)

If Y is normal and E[X] = 0, then [135, Theorem 8.1.3] shows that (6.99) holds for
some bn ∈ Rd if and only if F ∈ RV0(−(1/2)I). In this case, (6.104) holds with
L−1

n = A′n and ϕ(k) = k′Qk, so that B = −(1/2)I, see [135, Corollary 8.1.8]. If we
assume only that (6.104) holds for some sequence of invertible linear operators Ln

such that ∥Ln∥ → 0, then we can always choose Ln to be regularly varying, such that
(6.105) holds, under some mild technical conditions, see [135, Theorem 5.2.16].

Remark 6.49. When Y is normal, X ∈ GDOA(Y ) implies that µ = E[X] exists.
The proof uses vector regular variation, see [135, Theorem 8.1.6]. In this case, we
can apply Theorem 6.47 to the centered random vector X − E[X], and F (k) is the
truncated variance. Hence the assumption E[X] = 0 entails no loss of generality. In
fact, X ∈ GDOA(Y ) with Y normal implies that every one dimensional projection
X · θ belongs to the domain of attraction of a one dimensional normal law, see [135,
Corollary 8.1.12].

Remark 6.50. If F ∈ RV0(−(1/2)I) and (6.103) holds, then [135, Theorem 5.3.4]
implies that the truncated second moment U2(r, θ) = E

[
|X · θ|2I(|X · θ| ≤ r)

]
is slowly

varying, uniformly in ∥θ∥ = 1. That is, we have

U2(λr, θr)

U2(r, θr)
→ 1 as r → ∞

for all λ > 0 and all θr → θ. Hahn and Klass [77] characterize the normal GDOA in
terms of uniform slow variation of the truncated second moment.

If An = anI in (6.99) then we say that X belongs to the domain of attraction of Y
and we write X ∈ DOA(Y ).
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Remark 6.51. If X ∈ DOA(Y ) and Y ≃ [a, 0, φ] then (6.101) reduces to

a[λn]a
−1
n → λ−1/α for all λ > 0 (6.107)

for some α ∈ (0, 2), since B = (1/α)I for some (1/α) > 1/2. Then an is RV(−1/α)
as in the case of random variables. Of course this must be true, for if (6.99) holds
with An = anI, then every one dimensional projection X · θ belongs to the domain of
attraction of the random variable Y · θ with the same sequence of norming constants.

The next result extends Theorem 4.5 to random vectors with the same power law
tail behavior in every coordinate. It also shows that the scalar-normed limits of power
law random walks in Theorem 6.17 cover all possible limits when X ∈ DOA(Y ) and
Y has no normal component. This verifies that Proposition 6.18 describes all stable
random vectors with index 0 < α < 2, α ̸= 1.

Theorem 6.52. If X ∈ DOA(Y ), then Y is either normal, or stable with some index
0 < α < 2, and:

(a) If Y is normal, then µ = E[X] exists and X ∈ DOA(Y ) if and only if

nF (ankn) → k′Qk for all kn → k ̸= 0 (6.108)

where F (k) = E[|(X − µ) · k|2I(|(X − µ) · k| ≤ 1)];

(b) If Y is stable, then X ∈ DOA(Y ) and (6.99) holds with An = anI for some
bn ∈ Rd if and only if V (r) = P[∥X∥ > r] is regularly varying with index −α, and

P
[

X
∥X∥ ∈ D

∣∣∥X∥ > r
]

=
P [∥X∥ > r, X

∥X∥ ∈ D]

V (r)
→ Λ(D)

Λ(S)
(6.109)

for some σ-finite Borel measure Λ(dθ) on the unit sphere. Then Y ≃ Sα(Λ, µ) in
the notation of Proposition 6.18, for some µ ∈ Rd depending on (an).

Proof. Part (a) follows using Remark 6.49 and applying Theorem 6.47 (a) to X − µ.
Part (b) follows from Theorem 6.47 (b) with B = (1/α)I. With this exponent, it
follows from (6.102) and Remark 6.39 that

φ{t1/αθ : t > r, θ ∈ V } = r−1
Λ(V ) (6.110)

for all r > 0 and all Borel subsets V of the unit sphere, where the spectral measure
Λ(V ) = φ{rθ : r > 1, θ ∈ V }. Substitute s = t1/α to see that

φ{sθ : s > r, θ ∈ V } = r−α
Λ(V ). (6.111)

Then Proposition 6.18 shows that Y ≃ Sα(Λ, µ). A regular variation argument shows
that (6.109) is equivalent to (6.100) with An = anI and limit measure (6.111). The
argument is similar to Proposition 4.15, see [135, Theorem 8.2.18].
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194 Chapter 6 Vector Fractional Diffusion

Remark 6.53. When X ∈ GDOA(Y ) and Y is normal, we can always choose An in
(6.99) to be regularly varying with index −(1/2)I, as noted in Remark 6.48. Then
we can also write An = n−1/2Gn where (Gn) is slowly varying, so that G[λn]G

−1
n → I

as n → ∞ for all λ > 0. If we write Gnx = rnθn for rn > 0 and ∥θn∥ = 1, then rn

is slowly varying, and θn is very slowly varying, i.e., each coordinate of θen is slowly
varying. Roughly speaking Gnx grows like log n, and rotates like log log n. The same
is true for X ∈ GDOA(Y ) and Y stable, except that we write An = n−1/αGn. For
more details, see [135, Corollary 8.1.14]. Hahn and Klass [76, 77] provide examples to
show that the GDOA of a spherically symmetric normal or stable law is strictly larger
than the DOA, i.e., there exist X such that the convergence (6.99) requires operator
norming.

Suppose X ∈ GDOA(Y ) and take (Yn) iid with Y . The term operator stable comes
from the fact [135, Theorem 7.2.1] that for all n, for some bn ∈ Rd, we have

Y1 + · · · + Yn ≃ nBY + bn (6.112)

where B is any exponent of Y . That is, (6.99) holds with Sn = Y1+· · ·+Yn, An = n−B ,
and convergence in distribution is replaced by the stronger condition of equality in
distribution. If Y ≃ N (a,Q), we can take B = (1/2)I. If Y is stable, then (6.112)
holds with B = (1/α)I. If Y is operator stable with no normal component and (6.102)
holds, then (6.112) holds with the same exponent B [135, Corollary 8.2.11]. Exponents
need not be unique, because of symmetry. For example, it follows by a computation
similar to Example 6.35 that B = (1/2)I + Q is an exponent of Y ≃ N (a, cI) for any
skew-symmetric matrix Q. The exact relation between exponents and symmetries is
given in [135, Theorem 7.2.11].

Example 6.54. A general operator stable law can have both a normal component
and a non-normal Poissonian component. For example, suppose X ∈ GDOA(Y ) and
X has independent components, which are either Pareto with tail index 0 < α < 2, or
have a finite variance. Then it follows from Theorems 3.36 and 3.37 that (6.99) holds
with An = diag(n−1/α1 , . . . , n−1/αd) where αi = 2 for the finite variance components,
and αi ∈ (0, 2) for the heavy tailed components. Make a simple change of coordinates
so that α1 ≥ . . . ≥ αd. Then we can write the norming operator in block-diagonal
form

An =

(
A1

n 0
0 A2

n

)

with A2
n = diag(n−1/αm+1 , . . . , n−1/αd) and A1

n = n−1/2Im, where Im is the m × m
identity matrix. The limit Y = (Y 1, Y 2)′ where Y 1 is an m dimensional normal
random vector on a subspace of Rd, Y 2 is a d−m dimensional operator stable random
vector with no normal component on another subspace, and the intersection of these
two subspaces is the single point x = 0. The exponent of this operator stable random
vector is

B =

(
B1 0
0 B2

)
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Section 6.8 Generalized domains of attraction 195

x1

x2

−1

0

1

−1 0 1

Figure 6.10. Level sets of the solution p(x, t) to the fractional diffusion equation (6.113) at
time t = 1 in dimension d = 2, with α1 = 2.0, α2 = 1.4, and D1 = D2 = 1.

where B1 = (1/2)Im and B2 = diag(1/αm+1, . . . , 1/αd). The density p(x, t) of the
corresponding operator stable Lévy process Zt = (Z1

t , Z2
t )′ with Z1 ≃ Y solves the

fractional diffusion equation

∂

∂t
p(x, t) =

d∑

j=1

[

Dj
∂αj

∂x
αj

j

p(x, t)

]

(6.113)

where αi = 2 for 1 = 1, 2, . . . , m, 0 < αi < 2 for i > m, Di < 0 for 0 < αi < 1, and
Di > 0 for 1 < αi ≤ 2 (here we assume αi ̸= 1). Figure 6.10 shows level sets of a
typical solution p(x, t) in R2 with α1 = 2.0 and α2 = 1.4, obtained using the R code
from Figure 6.19.

The spectral decomposition takes Example 6.54 one step further. Suppose that Y
is operator stable with exponent B and (6.112) holds. Theorem 7.2.1 in [135] shows
that every eigenvalue λj = aj + ibj of the exponent B has real part ai ≥ 1/2. Make a
change of coordinates so that a1 ≤ · · · ≤ ad and write

B =

⎛

⎜⎝

B1

. . .
Bp

⎞

⎟⎠

where p is the number of distinct values of ai, every eigenvalue of the mj×mj matrix Bj

has real part aj , and m1 + · · ·+mp = d. Projecting (6.112) onto mj-dimensional sub-
spaces shows that Y = (Y 1, . . . , Y p)′, where each component Y j is an mj-dimensional
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196 Chapter 6 Vector Fractional Diffusion

operator stable random vector with exponent Bj , see [135, Theorem 7.2.9]. Since ev-
ery eigenvalue of Bj has the same real part aj , we say that the operator stable law Y j

is spectrally simple.
Furthermore, [135, Theorem 8.3.24] shows that we can take

An =

⎛

⎜⎝

A1
n

. . .
Ap

n

⎞

⎟⎠

in these coordinates, where every Aj
n is RV(−Bj). Then X = (X1, . . . , Xp)′ and we

can apply Theorem 6.47 (a) to the normal component. Theorem 6.47 (b) describes
each spectrally simple operator stable component, and (6.93) implies that the tails
of Xj fall off like r−αj where αj = a−1

j ∈ (0, 2). The tails of a spectrally simple
operator stable law need not be regularly varying, but they are R-O varying with the
same upper and lower tail index, see [135, Theorem 6.4.15] for complete details. It
follows from the Lévy representation (3.4) that the normal component is independent
of the remaining components. The dependence of the remaining non-normal spectrally
simple operator stable components is coded through the Lévy measure.

Suppose that (6.99) holds with bn = 0. Then it follows as in the proof of Theorem
6.21 that we also get random walk convergence

AnS[nt] ⇒ Zt

where Zt is an operator stable Lévy motion with Z1 ≃ Y . If every ai > 1, then the
density p(x, t) of Zt solves the operator scaling fractional diffusion equation

∂

∂t
p(x, t) = C∇B

Mp(x, t) (6.114)

for some C < 0, where the generalized fractional derivative ∇B
M is given by (6.97).

If every ai ∈ (1/2, 1), then p(x, t) solves (6.114) for some C > 0, with ∇B
M given by

(6.98). Add a drift to see that the density p(x, t) of vt + Zt solves the generalized
fractional advection-dispersion equation (GADE)

∂

∂t
p(x, t) = −v ·∇p(x, t) + C∇B

Mp(x, t). (6.115)

Applications of operator stable laws and the GADE will be discussed in Section 7.9.

Details

Since Xj is tight for any fixed j, equation (6.29) holds with X = Xj . Write

P[∥Xnj∥ > ε] = P[∥AnXj∥ > ε] = P[∥Xj∥ ∈ A−1
n Bε]

where the set Bε = {x ∈ Rd : ∥x∥ > ε}. If X ∈ GDOA(Y ) and Y is full, then a simple
argument with characteristic functions (a special case of [135, Lemma 3.3.3]) shows
that ∥An∥ → 0 as n → ∞. Since ∥x∥ = ∥AnA−1

n x∥ ≤ ∥An∥ ∥A−1
n x∥, it follows that

∥A−1
n x∥ > ε/∥An∥ → ∞ for all x ∈ Bε, and then it follows that condition (6.22) holds.
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Section 6.8 Generalized domains of attraction 197

library(lattice)

x = seq(-2,2,.01)

y = seq(-2,2,.01)

u <- dnorm(x, mean = 0.0, sd = 2.0)

v <- dnorm(x, mean = 0.0, sd = 2.0)

r <- as.vector(outer(u, v, FUN = "*"))

grid <- expand.grid(x=x, y=y)

grid$z <- r

levelplot(z~x*y, grid, cuts = 8,

region=FALSE, contour=TRUE, labels=FALSE)

Figure 6.11. R code to plot the isotropic two dimensional Gaussian density with indepen-
dent components in Figure 6.1.

library(lattice)

x = seq(-2,2,.01)

y = seq(-2,2,.01)

u <- dnorm(x, mean = 0.0, sd = 2.0)

v <- dnorm(x, mean = 0.0, sd = 1.0)

r <- as.vector(outer(u, v, FUN = "*"))

grid <- expand.grid(x=x, y=y)

grid$z <- r

levelplot(z~x*y, grid, cuts = 8,

region=FALSE, contour=TRUE, labels=FALSE)

Figure 6.12. R code to plot the anisotropic two dimensional Gaussian density with inde-
pendent components in Figure 6.2.
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198 Chapter 6 Vector Fractional Diffusion

library(lattice)

library(fBasics)

D1=0.5 ; D2=0.5

v1=0.0 ; v2=0.0

a1=1.2 ; a2=1.2

q1=0.5 ; q2=0.5

t=5.0

mu1=v1*t ; mu2=v2*t

pi=3.1415927

g1=(D1*t*abs(cos(pi*a1/2)))^(1/a1)

g2=(D2*t*abs(cos(pi*a2/2)))^(1/a2)

b1=1-2*q1 ; b2=1-2*q2

x = seq(-2,2,.01)

y = seq(-2,2,.01)

u = dstable(x, alpha=a1, beta=b1, gamma = g1, delta = mu1, pm=1)

v = dstable(y, alpha=a2, beta=b2, gamma = g2, delta = mu2, pm=1)

r = as.vector(outer(u, v, FUN = "*"))

grid = expand.grid(x=x, y=y)

grid$z = r

levelplot(z~x*y, grid, cuts = 8, region=FALSE,

contour=TRUE, labels=FALSE)

Figure 6.13. R code to plot level curves of the solution p(x, y, t) to the two dimensional
fractional diffusion equation (6.16) shown in Figure 6.3.
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library(lattice)

library(fBasics)

D1=0.5 ; D2=0.5

v1=0.0 ; v2=0.0

a1=0.8 ; a2=0.6

q1=0.0 ; q2=0.0

t=3.0

#

mu1=v1*t ; mu2=v2*t

pi=3.1415927

g1=(D1*t*abs(cos(pi*a1/2)))^(1/a1)

g2=(D2*t*abs(cos(pi*a2/2)))^(1/a2)

b1=1-2*q1 ; b2=1-2*q2

x1 = seq(0,4,.01)

x2 = seq(0,4,.01)

u <- dstable(x1, alpha=a1, beta=b1, gamma = g1, delta = mu1, pm=1)

v <- dstable(x2, alpha=a2, beta=b2, gamma = g2, delta = mu2, pm=1)

r <- as.vector(outer(u, v, FUN = "*"))

grid <- expand.grid(x1=x1, x2=x2)

grid$z <- r

levelplot(z~x1*x2, grid, cuts = 12, region=FALSE,

contour=TRUE, labels=FALSE)

Figure 6.14. R code to plot level curves of the solution p(x, t) to the vector fractional
diffusion equation (6.78) shown in Figure 6.5.
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200 Chapter 6 Vector Fractional Diffusion

a1=0.7; a2=1.2

t=seq(0.001,10,.1)

x1=t^a1

x2=t^a2

plot(x1,x2,type="l",xlim=c(-3,3),ylim=c(-3,3))

lines(-x1,-x2,type="l")

lines(-x1,x2,type="l")

lines(x1,-x2,type="l")

lines(x1,0*x2,type="l")

lines(-x1,0*x2,type="l")

lines(0*x1,x2,type="l")

lines(0*x1,-x2,type="l")

theta=seq(0,6.29,.1)

x1=cos(theta)

x2=sin(theta)

lines(x1,x2,lty="dashed")

Figure 6.15. R code to plot orbits t !→ tAx for Example 6.33.

a=0.5

t=seq(0.0001,10,.01)

x1=t^a*log(t)

x2=t^a

plot(x1,x2,type="l",xlim=c(-3,3),ylim=c(-3,3))

lines(-x1,-x2,type="l")

lines(3*x1,3*x2,type="l")

lines(-3*x1,-3*x2,type="l")

lines(x1,0*x2,type="l")

lines(-x1,0*x2,type="l")

t=seq(0,6.29,.1)

x1=cos(t)

x2=sin(t)

lines(x1,x2,lty="dashed")

Figure 6.16. R code to plot orbits t !→ tAx for Example 6.34.
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a=0.5

t=seq(-8,4,.05)

x1=exp(a*t)*cos(t)

x2=exp(a*t)*sin(t)

plot(x1,x2,type="l",xlim=c(-3,3),ylim=c(-3,3))

lines(-x1,-x2,type="l")

x1=-exp(a*t)*sin(t)

x2=exp(a*t)*cos(t)

lines(x1,x2,type="l")

lines(-x1,-x2,type="l")

t=seq(0,6.29,.1)

x1=cos(t)

x2=sin(t)

lines(x1,x2,lty="dashed")

Figure 6.17. R code to plot orbits t !→ tAx for Example 6.35.

a1=0.7; a2=1.2

t=seq(0.001,10,.1)

x1=t^a1

x2=t^a2

plot(x1,x2,type="l",xlim=c(-3,3),ylim=c(-3,3))

lines(-x1,-x2,type="l")

lines(-x1,x2,type="l")

lines(x1,-x2,type="l")

lines(x1,0*x2,type="l")

lines(-x1,0*x2,type="l")

lines(0*x1,x2,type="l")

lines(0*x1,-x2,type="l")

theta=seq(0,6.3,.1)

x1=cos(theta)

x2=sin(theta)

lines(x1,x2,lty="dashed")

lines(2^a1*x1,2^a2*x2,lty="dashed")

lines(.5^a1*x1,.5^a2*x2,lty="dashed")

Figure 6.18. R code to plot Jurek coordinates for Remark 6.40.
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library(lattice)

library(fBasics)

D1=1.0 ; D2=1.0

v1=0.0 ; v2=0.0

a1=2.0 ; a2=1.4

q1=0.0 ; q2=0.0

t=1.0

#

mu1=v1*t ; mu2=v2*t

pi=3.1415927

g1=(D1*t*abs(cos(pi*a1/2)))^(1/a1)

g2=(D2*t*abs(cos(pi*a2/2)))^(1/a2)

b1=1-2*q1 ; b2=1-2*q2

x1 = seq(-2,2,.01)

x2 = seq(-2,2,.01)

u <- dstable(x1, alpha=a1, beta=b1, gamma = g1, delta = mu1, pm=1)

v <- dstable(x2, alpha=a2, beta=b2, gamma = g2, delta = mu2, pm=1)

r <- as.vector(outer(u, v, FUN = "*"))

grid <- expand.grid(x1=x1, x2=x2)

grid$z <- r

levelplot(z~x1*x2, grid, cuts = 8, region=FALSE,

contour=TRUE, labels=FALSE)

Figure 6.19. R code to plot level curves of the solution p(x, t) to the fractional diffusion
equation (6.113) shown in Figure 6.10.
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Chapter 7

Applications and Extensions

In this final chapter, we discuss a few of the many applications and extensions being
developed today in the rapidly growing research area of fractional diffusion.

7.1 LePage Series Representation

As an application of the Poisson representation in Section 3.4, we now develop a
very interesting series representation for stable laws and their domains of attraction.
Suppose that (Wj) are iid Pareto with P[Wj > x] = Cx−α for some 0 < α < 1. Then
Theorem 3.37 shows that

n−1/α
n∑

j=1

Wj ⇒ Y (7.1)

where the α-stable limit Y has characteristic function

E[eikY ] = exp [−CΓ(1 − α)(−ik)α] . (7.2)

Suppose that (Uj) are iid uniform random variables on (0, 1) with P[Uj ≤ x] = x for
0 ≤ x ≤ 1. Then we can take

Wj = (Uj/C)−1/α

since

P[(Uj/C)−1/α > x] = P[U−1/α
j > C−1/αx]

= P[Uj < Cx−α] = Cx−α

for all x > C1/α, as noted in Example 5.17. This is a special case of the inverse cdf
method for simulating random variables: If F (x) = P[X ≤ x] and U is uniform on
(0, 1), then F−1(U) ≃ X (e.g., see Press et al. [157, Chapter 7]).
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204 Chapter 7 Applications and Extensions

Suppose Nt is a Poisson process with rate λ = 1. Take (En) iid with P[En > t] = e−t,
the waiting times between jumps for this process, and let

Γn = E1 + · · · + En

be the time of the nth jump. Then we have the inverse process relation {Nt ≥ n} =
{Γn ≤ t} as in Section 4.3. Now let

U(1) ≤ · · · ≤ U(n)

denote the order statistics of the sequence U1, . . . , Un. A standard result in extreme
value theory (e.g., see Resnick [162, p. 322] or Bickel and Doksum [31]) states that

(
Γ1

Γn+1

, . . . ,
Γn

Γn+1

)
≃

(
U(1), . . . , U(n)

)
.

That is, the first n arrival times are uniformly distributed in the interval [0, Γn+1].
Now write

n−1/α
n∑

j=1

Wj = n−1/α
n∑

j=1

(Uj/C)−1/α

= n−1/α
n∑

j=1

(U(j)/C)−1/α

≃ C1/αn−1/α
n∑

j=1

(Γj/Γn+1)
−1/α

= C1/α

(
Γn+1

n

)1/α n∑

j=1

Γ
−1/α
j ⇒ Y

where Y is a stable random variable with characteristic function (7.2). The strong law
of large numbers implies that

Γn+1

n
=

E1 + · · · + En+1

n + 1
· n + 1

n
→ 1 almost surely, as n → ∞.

Then it follows using the Continuous Mapping Theorem 4.19 that

C1/α
n∑

j=1

Γ
−1/α
j ⇒ Y.

In other words, the infinite series converges in distribution to a stable random variable
with characteristic function (7.2):

C1/α
∞∑

j=1

Γ
−1/α
j ≃ Sα(1, σ, 0) (7.3)

where σα = CΓ(1 − α) cos(πα/2). In fact, the series converges almost surely, see
LePage, Woodroofe, and Zinn [114].

Brought to you by | Brown University Rockefeller Library
Authenticated | 128.148.231.12

Download Date | 4/28/14 11:53 PM



Section 7.1 LePage Series Representation 205

Remark 7.1. The argument above can be extended to any W ∈ DOA(Y ) with Y
stable. Suppose an(W1 + · · · + Wn) ⇒ Y , where (Wn) are iid with W > 0, and let
V0(x) = P[W > x]. Then nV0(a−1

n x) → x−α for all x > 0, for some choice of an. A
regular variation argument (a special case of Lemma 1.2 in Meerschaert and Scheffler
[134]) shows that anV −1

0
(n−1y) → y−1/α. Roughly speaking, the argument equates

nV0(a
−1
n x) ≈ x−α

V0(a
−1
n x) ≈ n−1x−α

a−1
n x ≈ V −1

0
(n−1x−α)

x ≈ anV −1

0
(n−1x−α)

and then substitutes y = x−α to get y−1/α ≈ anV −1

0
(n−1y). The Skorokhod Theo-

rem (e.g., see Athreya and Lahiri [9, Theorem 9.4.1]) implies that (W1, · · · , Wn) ≃
(V −1

0
(U1), . . . , V

−1

0
(Un)), and then

an

n∑

j=1

Wj ≃
n∑

j=1

anV −1

0
(Γj/Γn+1) →

∞∑

i=1

Γ
−1/α
i ≃ Y.

See LePage, Woodroofe, and Zinn [114] for complete details.

Remark 7.2. The series representation (7.3) can be extended to Lévy processes.
Suppose Zt is an α-stable Lévy process with index 0 < α < 1 and Lévy measure
(3.10). For Vj iid uniform on (0, T ), we have

Zt ≃ (tC)1/α
∞∑

j=1

I(Vj ≤ t)Γ−1/α
j (7.4)

for all 0 < t < T . Note that Vj is the exact time of the jth largest jump of the process
Zt in the interval 0 < t < T . This representation extends to certain infinitely divisible
Lévy processes Zt ≃ [0, 0, tφ], with Γ

−1/α
j replaced by G−1(Γj), where G(r,∞) =

φ(r,∞), see Rosiński [164].

To get a series representation for two-sided stable laws, assume P[Wj > x] = pCx−α

and P[Wj < −x] = qCx−α for x > C1/α, for some 0 < α < 1 and C > 0, where
C > 0, p, q ≥ 0, and p+ q = 1. We can construct this sequence of iid random variables
by setting Wj = ΘjXj with iid random signs P[Θj = +1] = p, P[Θj = −1] = q, and
P[Xj > x] = Cx−α iid Pareto independent of Θj . Now write

n−1/α
n∑

j=1

Wj = n−1/α
n∑

j=1

Θj(U(j)/C)−1/α

≃ C1/α

(
Γn+1

n

)1/α n∑

j=1

ΘjΓ
−1/α
j ⇒ Y.

It follows using the strong law of large numbers that

C1/α
∞∑

j=1

ΘjΓ
−1/α
j ≃ Sα(β, σ, 0) (7.5)
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206 Chapter 7 Applications and Extensions

with index β = p − q and σα = CΓ(1 − α) cos(πα/2).

Remark 7.3. The series representation (7.5) was extended to operator stable laws
by Hahn, Hudson, and Veeh [75]. There Γ

−1/α
j is replaced by Γ

−B
j , and Θj are iid

according to the mixing measure M(dθ). The series representation for operator stable
Lévy processes was modified and applied to operator stable laws in Cohen, Meerschaert
and Rosiński [48] to provide a fast and accurate method for simulating operator stable
sample paths.

Remark 7.4. The series representation for α > 1 requires centering. In this case,
Γ
−1/α
j has a finite mean, and the centering is needed to make the sum

∞∑

j=1

(
ΘjΓ

−1/α
j − E[Θj ]E

[
Γ
−1/α
j

])

converge to a mean zero stable law, see LePage, Woodroofe, and Zinn [114]. If p = q,
then E[Θj ] = 0, and no centering is required. LePage, Podgórski, and Ryznar [113]
proved almost sure convergence for stable series representations with centering. The
centering is more delicate when α = 1.

Example 7.5. Here we present a simple application of the LePage series represen-
tation to extreme value theory. Take Wj iid Pareto with index 0 < α < 1. Let
Mn = max(W1, . . . , Wn) = W(n). Then Mn ≃ C1/α(Γ1/Γn+1)−1/α so that

n−1/αMn ≃ n−1/αC1/α(Γ1/Γn+1)
−1/α

= C1/α

(
Γn+1

n

)1/α

Γ
−1/α
1

→ C1/α
Γ
−1/α
1

with probability one, by the strong law of large numbers. Then we have n−1/αMn ⇒
C1/αΓ

−1/α
1

. This extreme value limit has the Frechét distribution:

P[C1/α
Γ
−1/α
1

≤ x] = P[C1/αE−1/α
1

≤ x]

= P[E−1/α
1

≤ C−1/αx]

= P[E1 ≥ Cx−α] = exp(−Cx−α)

for x ≥ 0.

Example 7.6. The LePage series representation is also useful to compute the weak
limit for self-normalized sums of heavy tailed random variables. Take Wj = ΘjXj as
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Section 7.2 Tempered stable laws 207

before: Xn iid Pareto with 0 < α < 1, and iid random signs. Then
∑n

j=1
Wj

√∑n
j=1

W 2
j

≃
C1/α (Γn+1/n)1/α ∑n

j=1
ΘjΓ

−1/α
j√

C2/α (Γn+1/n)2/α ∑n
j=1

Γ
−2/α
j

=

∑n
j=1

ΘjΓ
−1/α
j√∑n

j=1
Γ
−2/α
j

⇒
∑∞

j=1
ΘjΓ

−1/α
j√∑∞

j=1
Γ
−2/α
j

=
Y1√
Y2

(7.6)

so the weak limit of the self-normalized sum is a ratio of two dependent stable laws:
Y1 has index α, and Y2 has index α/2. In fact, we have

⎛

⎝n−1/α
n∑

j=1

Wj , n
−2/α

n∑

j=1

W 2
j

⎞

⎠ ⇒ (Y1, Y2)

where the limit Y = (Y1, Y2)′ is operator stable with exponent B = diag(1/α, 2/α) and
the Lévy measure φ of Y is concentrated on the set {y : y2 = y2

1}, see Meerschaert
and Scheffler [135, Corollary 10.1.8]. The convergence (7.6) extends to arbitrary X ∈
DOA(Y1) using the ideas in Remark 7.1, see Logan, Mallows, Rice and Shepp [115].

7.2 Tempered stable laws

Tempered stable laws reduce the probability of extremely large jumps, so that all
moments exist. This can be preferable in applications where the moments have a
physical meaning. Another motivation for considering a tempered power law comes
from tail estimation. If p = P[X > x] ≈ Cx−α as x → ∞, then log p ≈ log C −α log x,
and a log-log plot of the upper order statistics fits a line with slope −α. In many
practical applications, this is true up to some point, beyond which the most extreme
order statistics fall short of the power law model (e.g., see Aban, Meerschaert and
Panorska [1]). For such applications, a tempered model may provide a better fit to
real data.

For a general treatment of tempered stable laws and their governing equations, see
Baeumer and Meerschaert [18]. To illustrate the basic idea, suppose Y > 0 is a stable
random variable with index 0 < α < 1 and pdf f(y) such that

f̃(s) = E[e−sY ] =

∫ ∞

0

e−syf(y) dy = exp
[
− Dsα

]
(7.7)

for all s > 0, where D > 0. The exponentially tempered function e−λyf(y) is not a
pdf, since it will not integrate to 1. In fact, we have by (7.7) that

∫ ∞

0

e−λyf(y) dy = exp
[
− Dλα

]

and it follows that fλ(y) = e−λyf(y) exp
[
Dλα

]
is a pdf, called the (exponentially)

tempered stable pdf. This pdf has LT

f̃λ(s) =

∫ ∞

0

e−sye−λyf(y) exp
[
Dλα

]
dy = exp

[
− D{(s + λ)α − λα}

]
.
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208 Chapter 7 Applications and Extensions

Zolotarev [213, Lemma 2.2.1] implies that (7.7) holds with s = λ + ik for any λ > 0
and k ∈ R, and then it follows by essentially the same argument that

f̂λ(k) =

∫ ∞

0

e−ikye−λyf(y) exp
[
Dλα

]
dy = exp

[
− D{(λ + ik)α − λα}

]
. (7.8)

It is obvious from (7.8) that the tempered stable law with pdf fλ(y) is infinitely
divisible with Fourier symbol ψλ(−k) = −D{(λ + ik)α − λα}. Note that this reduces
to the stable case when λ = 0. Now we will show that this infinitely divisible law comes
from exponentially tempering the Lévy measure. It follows from Proposition 3.10 that
the random variable Y with LT (7.7) has characteristic function E[eikY ] = eψ(k) where

ψ(k) =

∫ (
eiky − 1

)
φ(dy)

and φ(dy) = Cαy−α−1dyI(y > 0), where D = CΓ(1 − α). Define the tempered Lévy
measure

φλ(dy) = e−λyCαy−α−1dyI(y > 0).

Since
∫

y I(0 < y ≤ R) φλ(dy) < ∞, it follows from Theorem 3.8 (a) that there exists
a unique infinitely divisible law with characteristic function eψ1(k) where

ψ1(k) =

∫ (
eiky − 1

)
φλ(dy)

=

∫ ∞

0

(
eiky − 1

)
e−λyCαy−α−1dy

=

∫ ∞

0

(
e(ik−λ)y − e−λy

)
Cαy−α−1dy

=

∫ ∞

0

(
e(ik−λ)y − 1

)
Cαy−α−1dy −

∫ ∞

0

(
e−λy − 1

)
Cαy−α−1dy

= −CΓ(1 − α)(λ − ik)α + CΓ(1 − α)λα = ψλ(k).

(7.9)

This shows that tempering a positive stable law is equivalent to tempering its Lévy
measure.

Now suppose that Zt is a tempered α-stable Lévy process whose pdf p(x, t) has FT

p̂(k, t) = E[e−ikZt ] = exp
[
tψλ(−k)

]
= exp [−Dt{(λ + ik)α − λα}] .

What is the governing equation of this process? Clearly p̂(k, t) solves the differential
equation

d

dt
p̂(k, t) = −D{(λ + ik)α − λα}p̂(k, t)

and so we know that p(x, t) solves

∂

∂t
p(x, t) = Lp(x, t)

where Lf(x) is the inverse FT of ψλ(−k)f̂(k). In order to understand the operator L,
it is easiest to go back to the LT.
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Section 7.2 Tempered stable laws 209

The pdf p(x, t) of the tempered α-stable Lévy process Zt has LT

p̃(s, t) =

∫ ∞

0

e−sxp(x, t) dx = exp [−Dt{(λ + s)α − λα}] .

This LT solves the differential equation

d

dt
p̃(s, t) = −D{(λ + s)α − λα}p̃(s, t)

and inverting the LT shows that p(x, t) solves

∂

∂t
p(x, t) = Lp(x, t)

where Lf(x) is the inverse LT of −D{(λ + s)α − λα}f̃(s). Now we will use the fact
that ∫ ∞

0

e−sxeλxf(x) dx = f̃(s − λ) (7.10)

and the fact (proven in the details at the end of Section 2.3) that the Riemann-Liouville
fractional derivative of order 0 < α < 1 has LT

∫ ∞

0

e−sx dα

dxα

[
f(x)

]
dx = sαf̃(s).

Putting these two facts together, we see that
∫ ∞

0

e−sx dα

dxα

[
eλxf(x)

]
dx = sαf̃(s − λ).

Using (7.10) one more time, we see that
∫ ∞

0

e−sxe−λx dα

dxα

[
eλxf(x)

]
dx = (s + λ)αf̃(s).

This shows that the generator of the tempered stable semigroup is defined (for suitable
functions f) by

Lf(x) = e−λx dα

dxα

[
eλxf(x)

]
− λαf(x).

We call

∂α,λ
x f(x) = e−λx dα

dxα

[
eλxf(x)

]
− λαf(x) (7.11)

the (positive) tempered fractional derivative of order 0 < α < 1. With this notation,
the pdf of the tempered fractional Lévy motion solves the tempered fractional diffusion
equation

∂

∂t
p(x, t) = −D∂α,λ

x p(x, t).
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210 Chapter 7 Applications and Extensions

Remark 7.7. A general theory of tempered stable laws in Rd has been developed by
Rosiński [165]. Exponentially tempered stable processes were originally proposed by
Koponen [105] as a model for turbulent velocity fluctuations, and developed further
by Cartea and del Castillo-Negrete [44]. Tempered stable random variables (and Lévy
processes) are the weak limits of triangular arrays where the row elements follow a
power law jump distribution with exponential tempering, and the tempering strength
tends to zero at a specific rate as kn → ∞, see Chakrabarty and Meerschaert [45].
Tempering can also be applied to the waiting times in a CTRW framework, and then
a tempered fractional derivative in time replaces the usual first order time derivative,
leading to a tempered fractional Cauchy problem. Tempered stable laws were applied
in Meerschaert, Zhang and Baeumer [144] to a variety of problems in geophysics.
In those applications, the tempering is in the time variable. The tempered space-
fractional diffusion is applied to hydrology in Zhang [212]. In a typical application,
λ > 0 is very small, so that the pdf fλ(y) is indistinguishable from the stable pdf
f(y) until |y| is quite large. A useful method for simulating tempered stable random
variables is presented in Baeumer and Meerschaert [18, Section 4].

Now suppose that Y is stable with index 1 < α < 2 and Lévy measure φ(dy) =
Cαy−α−1dyI(y > 0) as in Proposition 3.12. In this case, the pdf f(y) > 0 for all
y ∈ R, but the left tail f(y) → 0 faster than e−λy as y → ∞ for any λ > 0, so the
Laplace transform integral exists over the entire real line. In fact, Zolotarev [213,
Lemma 2.2.1] shows that

f̃(λ + ik) = E[e−(λ+ik)Y ] =

∫ ∞

−∞
e−(λ+ik)yf(y) dy = exp

[
D(λ + ik)α

]
(7.12)

for all λ > 0 and all k ∈ R, where D = CΓ(2 − α)/(α − 1). Then

∫ ∞

−∞
e−λyf(y) dy = exp

[
Dλα

]

and so fλ(y) = e−λyf(y) exp
[
− Dλα

]
is a pdf on −∞ < y < ∞. Its FT is given by

f̂λ(k) = exp
[
D{(λ + ik)α − λα}

]
, (7.13)

the same form as 0 < α < 1 except for a change of sign.
Here it is also true that exponentially tempering the pdf is equivalent to tempering

the Lévy measure, up to a shift: Define

φλ(dy) = e−λyCαy−α−1dyI(y > 0)

and note that, since
∫

y I(y > R) φλ(dy) < ∞, Theorem 3.8 (b) implies that there
exists a unique infinitely divisible random variable Y0 with characteristic function

Brought to you by | Brown University Rockefeller Library
Authenticated | 128.148.231.12

Download Date | 4/28/14 11:53 PM



Section 7.2 Tempered stable laws 211

E[eikY0 ] = eψ2(k) where

ψ2(k) =

∫ ∞

0

(
eiky − 1 − iky

)
e−λyCαy−α−1dy

=

∫ ∞

0

(
e(ik−λ)y − 1 − (ik − λ)y

)
Cαy−α−1dy

−
∫ ∞

0

(
e−λy − 1 + λy

)
Cαy−α−1dy − ik

∫ ∞

0

(
e−λy − 1

)
y Cαy−α−1dy

= C
Γ(2 − α)

α − 1
(λ − ik)α − C

Γ(2 − α)

α − 1
λα − ika

(7.14)

using Proposition 3.12 twice, where

a =
α

α − 1

∫ ∞

0

(
e−λy − 1

)
C(α − 1)y−(α−1)−1dy

=
α

α − 1

[
−CΓ(1 − (α − 1))λ(α−1)

]

= −C
Γ(2 − α)

α − 1
αλα−1

(7.15)

using Proposition 3.10 and noting that α − 1 ∈ (0, 1). Then

E[eikY0 ] = exp
[
D{(λ − ik)α − λα + ikαλα−1}

]

where D = CΓ(2 − α)/(α − 1). Similar to Remark 3.38, it is not hard to check that

E[Y0] = (−i)
d

dk
E[eikY0 ]k=0 = 0.

If we define a tempered stable Lévy process Zt with Z1 ≃ Y0, then E[Zt] = 0.
Figure 7.1 illustrates the meaning of the truncation parameter λ, in the case α = 1.2.
The bottom left panel is almost indistinguishable from the corresponding stable Lévy
motion, compare Figure 5.24. As λ grows, the large jumps diminish, and for large
λ the sample path resembles a Brownian motion, compare Figure 5.18. The sample
paths in Figure 7.1 were simulated using an exponential rejection scheme, see [18,
Section 4] for details.

The density of Zt has FT

p̂(k, t) = exp
[
Dt{(λ + ik)α − λα − ikαλα−1}

]
.

This FT solves the differential equation

d

dt
p̂(k, t) = D{(λ + ik)α − λα − ikαλα−1}p̂(k, t)

and inverting the FT shows that p(x, t) solves

∂

∂t
p(x, t) = Lp(x, t)
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Figure 7.1. Tempered stable Lévy motion Zt with α = 1.2, showing the effect of the
tempering parameter λ, from Baeumer and Meerschaert [18].

where Lf(x) is the inverse FT of D{(λ + ik)α − λα − ikαλα−1}f̂(k). An argument
very similar to the case 0 < α < 1 shows that the generator is defined (for suitable
functions f) by

Lf(x) = e−λx dα

dxα

[
eλxf(x)

]
− λαf(x) − αλα−1f ′(x).

We call
∂α,λ

x f(x) = e−λx dα

dxα

[
eλxf(x)

]
− λαf(x) − αλα−1f ′(x) (7.16)

the (positive) tempered fractional derivative of order 1 < α < 2. With this notation,
the pdf of the tempered fractional Lévy motion with drift Zt + vt solves the tempered
fractional diffusion equation with drift

∂tp(x, t) = −v∂xp(x, t) + D∂α,λ
x p(x, t).

A two-sided tempered stable Lévy process has Lévy measure φλ(dy) = e−λ|y|φ(dy)
where φ is the Lévy measure (3.29) of an arbitrary nonnormal stable law. Then we
can write Zt = Z+

t − Z−t where Z+
t and Z−t are two independent one-sided tem-

pered stable Lévy processes with the same index. If Z+
t has Lévy measure φ(dy) =

pCαy−α−1dyI(y > 0) and Z−t has Lévy measure φ(dy) = qCα|y|−α−1dyI(y < 0),
then it is not hard to check that the pdf p(x, t) of Zt solves the two-sided tempered
fractional diffusion equation

∂tp(x, t) = qD∂α,λ
(−x)p(x, t) + pD∂α,λ

x p(x, t)
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Section 7.3 Tempered fractional derivatives 213

where the Fourier symbol of the negative tempered fractional derivative is obtained
by substituting −k for k in the Fourier symbol of the positive tempered fractional
derivative. In the next section, we will consider alternative forms of the tempered
fractional derivative, similar to our analysis of the fractional derivative in Chapter 2.

7.3 Tempered fractional derivatives

We first defined a fractional derivative dαf(x)/dxα in Chapter 1 as the function with
FT (ik)αf̂(k). Then in Chapters 2–3, we studied some alternative forms in terms of
finite differences, convolution integrals, and the generator formula for a semigroup.
Our present goal is to apply the same analysis to the tempered fractional derivative.
For complete details, see Baeumer and Meerschaert [18].

Recall from Section 7.2 that a one-sided tempered stable Lévy process Zt with index
0 < α < 1 has characteristic function

E[eikZt ] = etψλ(k)

where ψλ(k) = −D{(λ − ik)α − λα} for some λ > 0 and D > 0. The pdf p(x, t) of Zt

has FT
p̂(k, t) = E[e−ikZt ] = etψλ(−k)

which solves
d

dt
p̂(k, t) = ψλ(−k)p̂(k, t) = −D{(λ + ik)α − λα}p̂(k, t)

and so p(x, t) solves the tempered fractional diffusion equation

∂

∂t
p(x, t) = −D∂α,λ

x p(x, t).

The tempered fractional derivative ∂α,λ
x f(x) has FT {(λ + ik)α − λα}f̂(k), and we

know from (7.9) that
∫ ∞

0

(
eiky − 1

)
e−λyCαy−α−1dy = −CΓ(1 − α)

[
(λ − ik)α − λα

]
.

Set C = 1/Γ(1 − α) to see that

−
∫ ∞

0

(
e−iky − 1

)
e−λy α

Γ(1 − α)
y−α−1dy = (λ + ik)α − λα

and apply this formula to see that

{(λ + ik)α − λα}f̂(k) =

∫ ∞

0

(
f̂(k) − e−iky f̂(k)

)
e−λy α

Γ(1 − α)
y−α−1dy.

Inverting the FT shows that (for suitable functions f) the generator form of the (pos-
itive) tempered fractional derivative of order 0 < α < 1 is given by

∂α,λ
x f(x) =

∫ ∞

0

(
f(x) − f(x − y)

)
e−λy α

Γ(1 − α)
y−α−1dy (7.17)
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214 Chapter 7 Applications and Extensions

using Theorem 3.23 (a). This reduces to the generator form (2.15) of the fractional
derivative when λ = 0. An alternative proof uses Theorem 3.17.

Can we also extend the Grünwald finite difference form (2.1) to tempered fractional
derivatives? Recall from Section 2.1 that

dαf(x)

dxα
= lim

h→0

∆αf(x)

hα
(7.18)

where

∆
αf(x) = (I − B)αf(x) =

∞∑

j=0

(
α
j

)
(−1)jf(x − jh)

is written in terms of the shift operator Bf(x) = f(x − h). In Section 2.2 we used
the Grünwald form to motivate the generator form. Now we reverse that process,
to explore one possible idea of a finite difference formula for the tempered fractional
derivative. In the case of a fractional derivative, we can use the asymptotic expression
(2.5) for the Grünwald weights,

wj = (−1)j

(
α
j

)
∼ −α

Γ(1 − α)
j−α−1 as j → ∞,

to write

dαf(x)

dxα
=

∫ ∞

0

[f(x) − f(x − y)]
α

Γ(1 − α)
y−α−1dy

≈
∞∑

j=1

[f(x) − f(x − jh)]
α

Γ(1 − α)
(jh)−α−1h

= h−α
∞∑

j=1

[f(x) − f(x − jh)]
α

Γ(1 − α)
j−α−1

≈ h−α
∞∑

j=1

[f(x − jh) − f(x)]wj

= h−α

⎡

⎣
∞∑

j=1

f(x − jh)wj − f(x)
∞∑

j=1

wj

⎤

⎦ = h−α
∞∑

j=0

f(x − jh)wj

since
∑∞

j=1
wj = −w0 = −1 by (2.11). The Grünwald weights form a discrete approx-

imation of the Lévy measure. (For more on this topic, see Meerschaert and Scheffler
[137, Section 5].) Inspired by this heuristic argument, we may consider a kind of
tempered finite difference operator

∆
α
λf(x) =

∞∑

j=0

(
α
j

)
(−1)je−λjhf(x − jh) =

∞∑

j=0

wje
−λjhf(x − jh). (7.19)

It follows from (2.2) that
∞∑

j=0

wje
−λjh =

∞∑

j=0

(
α
j

)
(−1)je−λjh =

(
1 − e−λh

)α (7.20)
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Section 7.3 Tempered fractional derivatives 215

and, using this fact, we can write

∂α,λ
x f(x) =

∫ ∞

0

(
f(x) − f(x − y)

)
e−λy α

Γ(1 − α)
y−α−1dy

≈
∞∑

j=1

[f(x) − f(x − jh)] e−λjh α

Γ(1 − α)
(jh)−α−1h

= h−α
∞∑

j=1

[f(x) − f(x − jh)] e−λjh α

Γ(1 − α)
j−α−1

≈ h−α
∞∑

j=1

[f(x − jh) − f(x)] e−λjhwj

= h−α

⎡

⎣
∞∑

j=1

f(x − jh)e−λjhwj − f(x)
∞∑

j=1

e−λjhwj

⎤

⎦

= h−α

⎡

⎣
∞∑

j=0

f(x − jh)e−λjhwj − f(x)(1 − e−λh)α

⎤

⎦

(7.21)

where, in the last line, we add w0f(x) to each term, and apply (7.20). This leads us
to the following conjecture:

Proposition 7.8 (Baeumer’s formula). For a bounded function f , such that f and its
derivatives up to some order n > 1+α exist and are absolutely integrable, the tempered
fractional derivative defined by (7.17) exists, and

∂α,λ
x f(x) = lim

h→0

∆α,λf(x)

hα
(7.22)

where the tempered finite difference operator

∆
α,λf(x) =

∞∑

j=0

(
α
j

)
(−1)je−λjhf(x − jh) − (1 − e−λh)αf(x). (7.23)

Now we will prove this conjecture. Of course we would not have presented the
discussion above, if it did not lead to a positive result! The rather informal presentation
is intended to illustrate, for the beginning researcher, the thought process behind the
result. In mathematical research, it is necessary (but not sufficient) to master the
methods of mathematical proof. One also needs to guess, by some method, what
result might be true, and then try to prove it. In this case, our first guess (7.19) had
to be adjusted, by the second term in (7.23).

Proof. Write

h−α
∆

α,λf(x) = h−α

⎡

⎣
∞∑

j=0

(
α
j

)
(−1)je−λjhf(x − jh) −

(
1 − e−λh

)α
f(x)

⎤

⎦

Brought to you by | Brown University Rockefeller Library
Authenticated | 128.148.231.12

Download Date | 4/28/14 11:53 PM
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and take FT to get

h−α
∞∑

j=0

(
α
j

)
(−1)je−λjhe−ikjhf̂(k) − h−α

(
1 − e−λh

)α
f̂(k)

= h−α
∞∑

j=0

(
α
j

)
(−1)je−(λ+ik)jhf̂(k) − h−α

(
1 − e−λh

)α
f̂(k)

= h−α
(
1 − e−(λ+ik)h

)α
f̂(k) − h−α

(
1 − e−λh

)α
f̂(k)

→ (λ + ik)αf̂(k) − λαf̂(k)

by the same Taylor expansion argument as in the proof of Proposition 2.1. Apply
the continuity theorem for FT to see that (7.22) holds for each x ∈ R. Note that
z = e−(λ+ik)h is a complex number with norm |z| < 1, so that the series in (7.23)
converges absolutely, uniformly in x, in view of (2.2). The proof that ∂α,λ

x f(x) exists
as the inverse FT of [(λ+ ik)α−λα]f̂(k) is essentially identical to Proposition 2.5.

Remark 7.9. The proof of Proposition 7.8 extends immediately to the case 1 < α < 2,
with exactly the same proof, to show that

e−λx dα

dxα

[
eλxf(x)

]
− λαf(x) = lim

h→0

∆α,λf(x)

hα
(7.24)

for 1 < α < 2, where ∆α,λf(x) is given by the same formula (7.23). In fact, (7.24)
holds true, by the same proof, for any α > 0. From this it is easy to derive a finite
difference formula for the tempered fractional derivative (7.16) of order 1 < α < 2,
see [18, Proposition 3]. Similar to Remark 2.2, a shifted version of the finite difference
formula is useful for numerical solutions of the tempered fractional diffusion equation,
see [18, Proposition 6].

Remark 7.10. The generator form of the negative tempered fractional derivative is

∂α,λ
(−x)f(x) =

∫ ∞

0

(
f(x) − f(x + y)

)
e−λy α

Γ(1 − α)
y−α−1dy (7.25)

using Theorem 3.23 (a). This reduces to the generator form (3.31) of the negative
fractional derivative when λ = 0. This form is the generator of a Lévy process with
Lévy measure

φ(dy) = e−λ|y|Cα|y|−α−1dyI(y < 0).

We also have the obvious modification of Proposition 7.8: For a bounded function f ,
such that f and its derivatives up to some order n > 1 + α exist and are absolutely
integrable, the negative tempered fractional derivative defined by (7.25) exists, and

∂α,λ
(−x)f(x) = lim

h→0

∆
α,λ
(−x)f(x)

hα
(7.26)

where the tempered finite difference operator

∆
α,λ
(−x)f(x) =

∞∑

j=0

(
α
j

)
(−1)je−λjhf(x + jh) − (1 − e−λh)αf(x). (7.27)
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Section 7.4 Pearson Diffusions 217

Remark 7.11. The generator form for 1 < α < 2 can be obtained by inverting the
FT

ψ2(−k)f̂(k) = {(λ + ik)α − λα − ikαλα−1}f̂(k)

of the positive tempered fractional derivative of order 1 < α < 2 in (7.16). Substitute
C = (α − 1)/Γ(2 − α) in (7.14) and (7.15) to get

∫ ∞

0

(
eiky − 1 − iky

)
e−λy α(α − 1)

Γ(2 − α)
y−α−1dy = (λ − ik)α − λα + ikαλα−1 = ψ2(k).

Then the inverse FT of

ψ2(−k)f̂(k) =

∫ ∞

0

(
e−iky f̂(k) − f̂(k) + ikyf̂(k)

)
e−λy α(α − 1)

Γ(2 − α)
y−α−1dy

is

∂α,λ
x f(x) =

∫ ∞

0

(f(x − y) − f(x) + yf ′(x)) e−λy α(α − 1)

Γ(2 − α)
y−α−1dy (7.28)

using Theorem 3.23 (b). Equation (7.28) is the generator form of the positive tempered
fractional derivative of order 1 < α < 2. When λ = 0, (7.28) reduces to the generator
form (2.18) for the positive fractional derivative of order 1 < α < 2. An alternative
proof uses Theorem 3.17.

7.4 Pearson Diffusions

The diffusion equation with constant coefficients

∂

∂t
p = − ∂

∂x

[
vp

]
+

∂2

∂x2

[
Dp

]
(7.29)

from (1.9) governs the scaling limit of a random walk with finite variance jumps. In
this section, we consider Pearson diffusions governed by (7.29) with space-variable
coefficients

D(x) = d0 + d1x + d2x
2 and v(x) = a0 + a1x. (7.30)

A Pearson diffusion is a Markov process that can tend to steady state: X(t) ⇒ X(∞)
as t → ∞. Then the density m(x) of the limit variable X(∞) is a time-invariant
solution to equation (7.29): p(x, t) = m(x) for all t ≥ 0. The steady state density
of a Pearson diffusion follows one of the six classes of Pearson distributions: normal,
gamma, beta, Student-t, inverse gamma, or F -distribution.

A Pearson diffusion is a time-homogeneous Markov process whose transition density
p(x, t; y) is the conditional pdf of x = Xt given X0 = y. For any initial state X0 = y,
the function p = p(x, t) = p(x, t; y) solves the forward equation (7.29) with the point
source initial condition p(x, 0) = δ(x − y). Then the forward semigroup

Ttf(x) =

∫
p(x, t; y)f(y) dy (7.31)
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218 Chapter 7 Applications and Extensions

gives the pdf of Xt, given that X0 has pdf f(x). The function p(x, t) = Ttf(x) solves
a Cauchy problem

∂

∂t
p(x, t) = Lp(x, t); p(x, 0) = f(x) (7.32)

where the generator of the forward equation is

Lf(x) = − ∂

∂x
[v(x)f(x)] +

∂2

∂x2
[D(x)f(x)] . (7.33)

The forward equation is sometimes called the Fokker-Planck equation, especially in
applications to physics. For Markov processes, it is common for technical reasons to
first consider the backward semigroup

T ∗t g(y) = E[g(Xt)|X0 = y] =

∫
p(x, t; y)g(x) dx. (7.34)

If g(y) = I(y ∈ B) for some Borel set B, then T ∗t g(y) = P[Xt ∈ B|X0 = y], the
probability of finding a particle in the set B after time t > 0, given that it started at
location y at time t = 0. The function p(y, t) = T ∗t g(y) solves the backward equation

∂

∂t
p(y, t) = v(y)

∂

∂y
p(y, t) + D(y)

∂2

∂y2
p(y, t) (7.35)

with initial condition p(y, 0) = g(y). The backward equation is simpler, because the
coefficients v and D appear outside the derivatives.

If a steady-state solution p = p(x, t) = m(x) to (7.29) exists, it satisfies:

0 = − ∂

∂x

[
v(x)m(x)

]
+

∂2

∂x2

[
D(x)m(x)

]
. (7.36)

Integrating (7.36) once yields

d

dx

[
D(x)m(x)

]
− v(x)m(x) = C1. (7.37)

With C1 = 0, equation (7.37) reduces to

m′(x)

m(x)
=

v(x) − D′(x)

D(x)
=

(a0 − d1) + (a1 − 2d2)x

d0 + d1x + d2x2
. (7.38)

Equation (7.38) is the famous Pearson equation, introduced by K. Pearson [153] in
1914 to unify the six classes of Pearson distributions.

The six types of Pearson diffusions will be described in Remark 7.16 at the end of
this section. The study of Pearson diffusions began with Kolmogorov [103] and Wong
[205], and continued in Forman and Sørensen [69], Avram, Leonenko and Rabehasaina
[11], Leonenko and Šuvak [112, 111], and Avram, Leonenko and Šuvak [10]. For the
remainder of this section, we will restrict our attention to Pearson diffusions of type
(1–3), where the steady state density m(x) is normal, gamma, or beta. Then the
backward equation (7.35) can be solved by separation of variables. See Leonenko,
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Section 7.4 Pearson Diffusions 219

Meerschaert and Sikorskii [109, Theorem 3.2 and Remark 3.5] for a complete and
detailed proof. Next we will sketch the main ideas of the proof. Write (7.35) in the
form of a Cauchy problem

∂

∂t
p(y, t) = Gp(y, t); p(y, 0) = g(y) (7.39)

where

Gg(y) = v(y)
∂g(y)

∂y
+ D(y)

∂2g(y)

∂y2
(7.40)

is the generator of the backward semigroup. Suppose that p(y, t) = S(t)ϕ(y) solves
(7.39), where the functions S and ϕ may depend on x. Then

∂

∂t

[
S(t)ϕ(y)

]
= G

[
S(t)ϕ(y)

]
,

which is equivalent for non-zero functions to

1

S(t)

dS(t)

dt
=

Gϕ(y)

ϕ(y)
. (7.41)

Equation (7.41) can hold only if both sides are equal to a constant. Denote this con-
stant by −λ, and consider the two resulting equations: The Sturm-Liouville equation

Gϕ = −λϕ (7.42)

and the time equation
dS(t)

dt
= −λS(t). (7.43)

Recall from Section 2.3 that ϕ is an eigenfunction of G if (7.42) holds for some complex
number λ. Write the Sturm-Liouville equation (7.42) using (7.40) and (7.30) to get

(d0 + d1x + d2x
2)ϕ′′ + (a0 + a1x)ϕ′ + λϕ = 0. (7.44)

The steady state solutions m(x) for Pearson diffusions of type (1–3) are the normal,
gamma, and beta probability density functions. In these three cases, (7.44) is solved by
the Hermite, Laguerre, or Jacobi polynomials, respectively (see Remark 7.16). Each
of these families of polynomials forms an orthogonal system:

∫
Qn(x)Qm(x)m(x)dx =

{
c2
n > 0 if n = m,

0 if n ̸= m
(7.45)

such that GQn(x) = −λnQn(x) for all n, where Q0(x) ≡ 1 and 0 = λ0 < λ1 < λ2 < · · ·
with λn → ∞. The corresponding solutions to the time equation (7.43) have the form

Sn(t) = e−λnt

since the exponential functions are the eigenfunctions of the first derivative. Then
p(y, t) = e−λntQn(y) solves the Cauchy problem (7.39) with initial condition p(y, 0) =
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220 Chapter 7 Applications and Extensions

Qn(y). Since any finite linear combination of these functions will also solve equation
(7.39), is it reasonable to consider the infinite sum

p(y, t) =
∞∑

n=0

bne−λntQn(y). (7.46)

If

g(x) =
∞∑

n=0

bnQn(x) (7.47)

where the series converges uniformly on compact sets, then some analytic estimates
show that the series (7.46) can be differentiated term-by-term, so that the function
p(y, t) in (7.46) solves equation (7.35). If the polynomials Qn(x) are normalized so
that c2

n = 1 in (7.45), then
∫

g(x)Qn(x)m(x) dx = bn for all n.

Then it follows from (7.47) that (7.46) solves the backward equation (7.35) with initial
condition p(y, 0) = g(y).

Equating (7.34) to (7.46) we see that

p(y, t) = T ∗t g(y) =
∞∑

n=0

bne−λntQn(y)

=
∞∑

n=0

(∫
g(x)Qn(x)m(x) dx

)
e−λntQn(y)

=

∫ (

m(x)
∞∑

n=0

e−λntQn(x)Qn(y)

)

g(x) dx.

(7.48)

Then

p(x, t; y) = m(x)
∞∑

n=0

e−λntQn(x)Qn(y) (7.49)

is the transition density for the Pearson diffusion Xt. This heuristic argument is made
rigorous in Proposition 7.18 in the details at the end of this section, which proves that
(7.49) is the point source solution to the forward equation (7.29) and the backward
equation (7.39) for Pearson diffusions of type (1–3).

A very similar separation of variables argument shows that

Ttf(x) =

∫
p(x, t; y)f(y) dy

solves the forward equation (7.29) with initial condition p(x, 0) = f(x), where p(x, t; y)
is given by (7.49), for any initial function such that

f(x)

m(x)
=

∞∑

n=0

bnQn(x) (7.50)

where the series converges uniformly on compact sets. See [109, Theorem 3.3 and
Remark 3.5] for details.
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Section 7.4 Pearson Diffusions 221

Example 7.12. A type (1) Pearson diffusion has D(x) constant. Suppose that
D(x) = 1, and v(x) = −x. Then equation (7.38) becomes

m′(x)

m(x)
= −x,

and it is easy to check that the normal density

m(x) =
1√
2π

e−x2/2

is a solution to this equation. The eigenfunction equation (7.44) becomes

ϕ′′ − xϕ′ + λϕ = 0, (7.51)

The eigenfunctions are the Hermite polynomials Hn(x) and the corresponding eigen-
values are λn = n for n ≥ 0. The first three Hermite polynomials are H0 = 1,
H1(x) = x, H2(x) = x2 − 1. Check that each of these functions solves (7.51) with
λ = n.

Remark 7.13. Since we always have Q0(x) ≡ 1, and since λn > 0 for all n > 0,
it follows from (7.49) that p(x, t; y) → m(x) as t → ∞ for any y, i.e., the Pearson
diffusion Xt tends to the same steady state distribution m(x) regardless of the initial
state X0 = y. See [109, Theorems 4.6–4.8] for details.

Remark 7.14. The forward equation (7.29) can be derived from the backward equa-
tion (7.35) using integration by parts. Since the Pearson diffusion Xt is a Markov
process, its transition densities satisfy the Chapman-Kolmogorov equation

p(x, t + s; y) =

∫
p(x, s; z)p(z, t; y) dz (7.52)

which adds up the probabilities of all the paths that transition from X(0) = y to
X(t+s) = x through some point X(t) = z in between (e.g., see Karlin and Taylor [97,
p. 286]). Equation (7.52) can be established by an argument similar to (3.28). Let
p(x, t) = Ttf(x), and use (7.52) to write

p(x, s + t) = TsTtf(x) = Tsp(x, t) =

∫
p(x, s; y)p(y, t) dy

for all s, t > 0. Observe that

∂p(x, t + s)

∂t
=

∂p(x, t + s)

∂s
,

and assuming that the derivative can be taken inside the integral, arrive at

∂p(x, s + t)

∂t
=

∫
p(y, t)

∂p(x, s; y)

∂s
dy.
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Apply the backward equation (7.35) to get

∂p(x, s + t)

∂t
=

∫
p(y, t)

[
v(y)

∂p(x, s; y)

∂y
+ D(y)

∂2p(x, s; y)

∂y2

]
dy.

Integrate by parts twice to get

∂p(x, s + t)

∂t
=

∫ (
∂2

∂y2

[
D(y)p(y, t)

]
− ∂

∂y

[
v(y)p(y, t)

])
p(x, s; y) dy,

assuming that the boundary terms vanish. Then let s → 0, and use the fact that
p(x, s; y) → δ(x − y) as s → 0 to get the forward equation

∂p(x, t)

∂t
=

∂2

∂x2

[
D(x)u(x, t)

]
− ∂

∂x

[
v(x)u(x, t)

]
.

See [97, p. 219] and the details at the end of this section for more information.

Remark 7.15. We saw in Section 1.1 that the diffusion equation (1.9) governs a
Brownian motion with drift, the scaling limit of a random walk Sn = W1 + · · · + Wn

with iid finite variance jumps. The forward equation (7.29) with parameters v(x) and
D(x) governs the scaling limit of a Markov process Xt = W1 + · · ·+WN(t), where N(t)
is a standard Poisson process with E[N(t)] = t, and the jump distribution depends on
the current state: Given Xt = x, the next jump has mean v(x) and variance 2D(x).
Then a suitably normalized version of the Markov process Xt converges to the Pearson
diffusion with these coefficients. See Barkai, Metzler and Klafter [21] and Kolokoltsov
[104] for additional details. In applications, this model is useful when the particle
velocity v(x) and dispersivity D(x) vary in space.

Details

A Pearson diffusion is a Markov process defined on the state space E = (a, b) ⊆ R1,
where we allow infinite endpoints. The interval (a, b) is chosen so that D(x) > 0 for
x ∈ (a, b). A Markov process on the state space E is a stochastic process on E with
the Markov property:

P[Xt+s ∈ B|Xt = y, Xt1 = y1 . . . , Xtn = yn] = P[Xt+s ∈ B|Xt = y]

for any Borel set B ⊆ E, s > 0, 0 < t1 < · · · < tn < t, and y, y1, . . . , yn ∈ E. We say
that a Markov process Xt is time-homogeneous if

P[Xt+s ∈ B|Xs = y] = P[Xt ∈ B|X0 = y].

Then the Markov process has stationary increments. A Lévy process is a time-
homogeneous Markov process with independent increments.

The existence of a Markov process Xt on E whose backward semigroup has the
generator (7.40) follows from Ikeda and Watanabe [91, Theorem 6.1]. That theorem
proves the existence of a Markov process with generator (7.40), where v(x) and D(x)

Brought to you by | Brown University Rockefeller Library
Authenticated | 128.148.231.12

Download Date | 4/28/14 11:53 PM



Section 7.4 Pearson Diffusions 223

are continuous functions of x. Further, when the coefficients satisfy a local Lipschitz
condition, the Markov process is unique. The local Lipschitz condition holds for the
coefficients (7.30), and the corresponding Markov process is called a Pearson diffusion.
The proof of [91, Theorem 6.1] is based on the theory of stochastic differential equa-
tions. The process Xt is defined as the solution to the stochastic differential equation

dXt = v(Xt)dt + σ(Xt)dBt

where D(x) = σ2(x)/2 and Bt is a standard Brownian motion, see [91] for more details.
The general solution to (7.36) can be obtained as in Karlin and Taylor [97, p. 221].

Multiply both sides of (7.37) by the integrating factor

s(x) = exp

{
−

∫ x

a0

v(y)

D(y)
dy

}
,

where a0 is an arbitrary point in (a, b), and note that s′(x) = −v(x)s(x)/D(x). Then
(7.37) reduces to

d

dx
(s(x)D(x)m(x)) = C1s(x). (7.53)

Equation (7.53) is solved by another integration

m(x) = C1

S(x)

s(x)D(x)
+ C2

1

s(x)D(x)
, (7.54)

where
S(x) =

∫ x

a0

s(y)dy

is called the scale function of the diffusion. The constants C1 and C2 are chosen so
that m(x) > 0 for x ∈ E, and

∫
m(x)dx = 1. If a non-negative integrable solution of

equation (7.36) does not exist, the stationary density does not exist. If a non-negative
integrable solution of (7.36) exists, then it can be normalized so that it integrates to
one [97, p. 221]. If the distribution of X(0) has this density m(x), then X(t) has the
same density for all t > 0 (e.g., see [97, p. 220]). For Pearson diffusions, we choose
C1 = 0.

To prove that (7.49) is the transition density of a type (1–3) Pearson diffusion, use
[109, Remark 3.4] to see that any smooth function g(y) with compact support in E
can be written in the form (7.47), where the series converges uniformly on compact
sets. Since the indicator function of any compact interval B ∈ E can be approximated
arbitrarily closely by such functions, it follows that

P[g(Xt)|x0 = y] =

∫

x∈B
p(x, t; y)g(x) dx

for all such intervals. Then it follows that p(x, t; y) is the conditional density of Xt

given X0 = y. The Fubini argument in (7.48) can be justified using Lemma 7.25.
In Remark 7.14, we outlined the derivation of the forward equation from the back-

ward equation, following the brief discussion in [97, p. 219]. Here we provide some ad-
ditional detail. As discussed in [66, 67, 97], the backward equation plays a central role
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in the theory of diffusion processes. Some analytical difficulties arise when considering
the forward equation. Suppose that f, g : E → R are twice continuously differentiable
and have compact support in E. Then it is easy to check, using integration by parts,
that

∫
[Lf(x)]g(x) dx =

∫
f(y)[Gg(y)] dy. That is, we have ⟨Lf, g⟩ = ⟨f,Gg⟩ where

the inner product ⟨f, g⟩ =
∫

f(x)g(x) dx. The derivation of Remark 7.14 also assumed
that the derivative can be passed through the integral. Since this does not always hold
in general, the forward equation does not follow directly from the backward equation
without additional assumptions.

There are six types of Pearson diffusions, corresponding to six classes of solutions to
the ordinary differential equation (7.44). The solutions vary depending on the degree
of polynomial D(x) in (7.30) (zero, one, or two) and, if D(x) has degree two, on the
discriminant of D(x) (zero, positive, or negative), see [11, 69]. These solution classes
also vary in terms of the spectrum of the operator G: The spectrum of a linear operator
A defined on a Banach space B is the set of complex numbers λ such that A− λI has
no bounded inverse. If B = Rn and A is an n × n matrix, then the spectrum is the
set of eigenvalues of the matrix A. If B is a space of functions, and if Af = λf for
some f ̸= 0 in B, then f is an eigenfunction of A with eigenvalue λ, and λ belongs to
the spectrum of A. For the first three types of Pearson diffusions, the spectrum of the
operator G is purely discrete, and the sequence of eigenvalues increases to infinity. For
the three remaining types of Pearson diffusions, the spectrum has a (possibly empty)
finite discrete part, and a continuous part called the essential spectrum. A complete
description of all six classes of Pearson diffusions is included below.

If the spectrum of the generator G is purely discrete, the Sturm-Liouville problem
(7.42) is solved by an infinite system of classical orthogonal polynomials {Qn}. This
system is called orthonormal if c2

n = 1 for all n in (7.45). Then this system of polyno-
mials forms an orthonormal basis for the space of functions L2(E,m(x) dx) consisting
of all Borel measurable functions f : E → R such that

∫
|f(x)|2m(x)dx < ∞, with the

inner product ⟨f, g⟩
m

=
∫

f(x)g(x)m(x) dx. Any function g ∈ L2(E,m(x) dx) can be
written in the form (7.47) for some constants bn, where the series on the right hand
side of (7.47) converges in the L2 sense:

∫ ∣∣∣∣∣
g(x) −

N∑

n=0

bnQn(x)

∣∣∣∣∣

2

m(x) dx → 0 as N → ∞.

The coefficients in (7.47) are computed using the inner product: gn = ⟨g,Qn⟩m for
all n. Some additional technical conditions (see Szegő [198, pp. 245–248] and [173, p.
381]) are needed to assert that (7.47) holds point-wise.

Remark 7.16. In this remark, we catalog the six types of Pearson diffusions in terms
of their invariant densities, and their polynomial families of eigenfunctions. Types
(1–3) have a purely discrete spectrum, and types (4–6) have a mixture of discrete and
continuous spectrum.

(1) The Ornstein-Uhlenbeck (OU) process is obtained when D(x) in (7.30) is a con-
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Section 7.4 Pearson Diffusions 225

stant. The traditional parametrization for the process is

v(x) = −θ(x − µ), D(x) = θσ2.

The convenience of this parametrization is in separating the distributional and
covariance parameters. For a stationary OU process, θ is a correlation function
parameter, and µ and σ are distribution parameters. The state space is E = R1

and the stationary distribution is normal:

m(x) =
1

σ
√

2π
exp

[
− (x − µ)2

2σ2

]
, x ∈ R. (7.55)

When θ < 0, the process is transient. When θ > 0, the diffusion is a stationary OU
process when the initial distribution has density m(x). The eigenvalues of (−G)
are λn = θn, n ≥ 0. The corresponding eigenfunctions are Hermite polynomials.
The first three Hermite polynomials are H0 = 1, H1(x) = x, H2(x) = x2−1. The
Rodrigues formula

Hn(x) = (−1)n [m(x)]−1 dn

dxn
m(x), x ∈ R, n = 0, 1, 2, . . .

can be used to compute the remaining polynomials.

(2) The Cox-Ingersoll-Ross (CIR) process is obtained when D(x) is a first degree
polynomial D(x) = d1x + d0. We may suppose d0 = 0 (after normalizing, which
would change a0 to a0−a1d0/d1). If d1 > 0 then the process is a CIR (square root
Feller) diffusion on the state space E = (0,∞), see Cox, Ingersoll and Ross [49].
If d1 < 0, then the state space is E = (−∞, 0), where D(x) is positive. This case
can be reduced to the case d1 > 0 by a simple reparametrization. The traditional
parametrization of the CIR process is

v(x) = −θ

(
x − b

a

)
, D(x) =

θ

a
x.

The invariant density is gamma:

m(x) =
ab

Γ(b)
xb−1e−ax x > 0. (7.56)

The eigenvalues are λn = θn, n ≥ 0. The orthogonal polynomials are the Laguerre
polynomials L(b−1)

n (ax) for n = 0, 1, 2, . . . where

L(γ)
n (x) =

1

n!
x−γex dn

dxn

[
xn+γe−x

]
.

(3) The Jacobi diffusion process is obtained when D(x) is a second degree polynomial
with positive discriminant. Suppose D(x) = d2(x− x1)(x− x2), and d2 < 0. The
state space is E = (x1, x2) with x1 < x2. After rescaling we may assume d2 = −1,
and after a linear change of variables x̃ = 2x − (x1 + x2)/(x2 − x1), we can take

v(x) = −(a + b + 2)x + b − a, D(x) = 1 − x2.
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226 Chapter 7 Applications and Extensions

In the recurrent case a, b > −1, we obtain the Beta density:

m(x) = (1 − x)a(1 + x)b Γ(a + b + 2)

Γ(b + 1)Γ(a + 1)2a+b+1
, x ∈ (−1, 1). (7.57)

The eigenvalues are λn = n(n + a + b + 1), n ≥ 0. The orthogonal polynomials
are Jacobi polynomials given by the formula:

2nn!P (a,b)
n (x) = (−1)n(1 − x)a(1 + x)b dn

dxn

{
(1 − x)a+n(1 + x)b+n

}
.

(4) The Student diffusion process is obtained when D(x) is a second degree polynomial
with negative discriminant, and d2 > 0. The state space is E = R, and the
traditional parametrization is

v(x) = −θ(x − µ), D(x) = θa
[
(x − µ′)2 + δ2

]

The invariant density is

m(x) = c(µ, µ′, a, δ)

exp

[(
µ − µ′

aδ

)
Arctan

(
x − µ′

δ

)]

[

1 +

(
x − µ′

δ

)2
]1+1/(2a)

,

where x ∈ R, 1 + 1/(2a) > 1/2, and

c(µ, µ′, a, δ) =

Γ

(
1 +

1

2a

)

δ
√

π Γ

(
1

2
+

1

2a

)
∞∏

k=0

⎡

⎢⎢⎣1 +

⎛

⎜⎝

µ − µ′

2aδ

1 +
1

2a
+ k

⎞

⎟⎠

2
⎤

⎥⎥⎦

−1

.

Note that in the symmetric case (µ = µ′) the density function is

m(x) = c(µ, a, δ)
1

[

1 +

(
x − µ

δ

)2
]1+1/(2a)

, x ∈ R.

In the classical parametrization for the Student distribution, with degrees of free-
dom ν = 1 + (1/a), this reduces to

m(x) =

Γ

(
ν + 1

2

)

δ
√

π Γ

(ν

2

) 1
[

1 +

(
x − µ

δ

)2
](ν+1)/2

, x ∈ R.

Only a finite number of central moments of the invariant distribution exist; the
nth central moment exists if n < ν. Also, the invariant density has heavy tails
that decrease like |x|−(1+ν).
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Section 7.4 Pearson Diffusions 227

In this case, there are only finitely many simple eigenvalues in [0, Λ], where Λ =
θν2/(4(ν−1)), ν > 1, and the absolutely continuous spectrum of multiplicity two
is in (Λ,∞), see Leonenko and Šuvak [112]. The simple eigenvalues are

λn =
θ

ν − 1
n(ν − n), 0 ≤ n ≤

⌊ν

2

⌋
.

The orthogonal polynomials are generalized Romanovski polynomials given by
the Rodrigues formula:

R0(x) = 1,

Rn(x) = δn

[

1 +

(
x − µ

δ

)2
](ν+1)/2

dn

dxn

[

1 +

(
x − µ

δ

)2
]n−(ν+1)/2

n = 1, . . . ,
⌊ν

2

⌋
.

(5) The reciprocal gamma diffusion is obtained in the case of zero discriminant, with
the polynomial D(x) proportional to x2 (after a change of variables). The coeffi-
cients are

v(x) = −θ

(
x − a

b − 1

)
, D(x) =

θ

b − 1
x2,

where θ > 0, a > 0, b > 1. The invariant density is the inverse gamma:

m(x) =
ab

Γ(b)
x−b−1e−a/x, x > 0.

This is a heavy tailed diffusion, whose moments of order n exist only for n < b.

The discrete part of the spectrum of (−G) consists of finitely many eigenvalues
given by

λn =
nθ(b − n)

b − 1
, 0 ≤ n ≤

⌊
b

2

⌋
.

These eigenvalues lie within [0, Λ] , and the continuous part of the spectrum has
multiplicity one and lies inside (Λ,∞), see Leonenko and Šuvak [111], where the
cut-off

Λ =
θb2

4(b − 1)
.

The orthogonal polynomials in the point spectrum case are generalized Bessel
polynomials:

B̃0(x) = 1,

B̃n(x) = xb+1e(a/x) dn

dxn

[
x2n−(b+1)e−(a/x)

]
, n ∈

{
1, . . . ,

⌊
b

2

⌋}
, b > 1.

(6) The Fisher-Snedecor diffusion is obtained when D(x) is a second degree poly-
nomial with positive discriminant. After transformations, we can assume that
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228 Chapter 7 Applications and Extensions

the first root of D(x) is negative, and the second is zero, so the state space is
E = (0,∞). The coefficients are

v(x) = −θ

(
x − b

b − 2

)
, D(x) =

θ

a(b − 2)
x(ax + b)

where the parameters a ≥ 2, b > 2, and θ > 0. The invariant density is the
density of F-distribution (also known as Fisher-Snedecor distribution):

m(x) =
x(a/2)−1(ax + b)−(a+b)/2

a−(a/2)b−b/2B (a/2, b/2)
, x > 0,

where B is the beta function

B(a, b) =

∫ 1

0

xa−1(1 − x)b−1dx =
Γ(a)Γ(b)

Γ(a + b)
, a > 0, b > 0.

This is another heavy-tailed diffusion. The moments of order 2n exist when
2n < b. Only finitely many discrete eigenvalues exist, and they are given by the
formula

λn =
θ

b − 2
n(b − 2n), 0 ≤ n ≤

⌊
b

4

⌋
, b > 2.

The cut-off for the discrete spectrum is

Λ =
θb2

8(b − 2)
, b > 2,

so that the essential spectrum lies in (Λ,∞). The essential spectrum has multiplic-
ity one, see Avram, Leonenko and Šuvak [10]. The orthogonal polynomials have
no common name in this case; in [10] they are called Fisher-Snedecor polynomi-
als since they are orthogonal with respect to the Fisher-Snedecor density. These
polynomials {F̃n(x), n = 0, 1, . . . , ⌊b/4⌋} are given by the Rodrigues formula:

F̃0(x) = 1,

F̃n(x) = x1−(a/2)(ax + b)(a+b)/2 dn

dxn

[
2nx(a/2)+n−1(ax + b)n−(a+b)/2

]
,

n ∈
{

1, . . . ,

⌊
b

4

⌋}
.

Remark 7.17. The heavy tailed Pearson diffusions (4–6) have only a finite number
N of orthogonal polynomials, because only a finite number of moments exist for the
invariant distribution. Since Qn(x) is the polynomial of degree n, Q2

n(x) has degree
2n. For case (4), moments of order 2n exists only for 2n < ν, so N = ⌊ν/2⌋. For case
(5), these moments exists only for 2n < b, so N = ⌊b/2⌋. For case (6), moments of
order 2n < b/2 exist, so that N = ⌊b/4⌋.
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Section 7.4 Pearson Diffusions 229

Proposition 7.18. For the Pearson diffusions (1–3) the series

p(x, t; y) = m(x)
∞∑

n=0

e−λntQn(y)Qn(x), (7.58)

where {Qn, n ≥ 0} are Hermite, Laguerre or Jacobi polynomials, converges for fixed
t > 0, x, y ∈ E. Equation (7.58) can be differentiated term by term on any finite
intervals t ∈ [t1, t2], 0 < t1 < t2, x, y ∈ [x1, x2] ⊂ E, and hence the function p(x, t; y)
in (7.58) satisfies the backward and forward equations (7.39) and (7.29).

Proof. Recall that the eigenvalues are λn = θn in the Hermite and Laguerre cases
(1–2), and λn = n(n + a + b + 1) in the Jacobi case (3). In the rest of the proof, we
will assume without loss of generality that µ = 0 and σ = 1 in the OU case (1), and
a = 1 in the CIR case (2).

The orthonormal Hermite polynomials

H̄n(x) = Hn(x)/ ∥Hn(x)∥ =
1√
n!

Hn(x), n = 0, 1, 2, .....

satisfy (7.45) with Qn = H̄n and c2
n = 1 for all n. For orthonormal Hermite polyno-

mials (e.g., see Sansone [173, p. 369])

H̄n(x) ≤ Kex2/4n−1/4(1 + |x/
√

2|5/2), (7.59)

where K is a constant that does not depend on x.
To make the system of Laguerre polynomials orthonormal, we use the fact that

∫ ∞

0

|L(b−1)
n (x)|2xb−1e−xdx =

Γ(b + n)

n!
.

The orthonormal system of polynomials in this case is given by

L̄(b−1)
n (x) =

L(b−1)
n (ax)

√
Γ(b + n)/(Γ(b)n!)

.

For orthonormal Laguerre polynomials [173, p. 348]

L̄(b−1)
n (x) = O

(
ex/2

x(2b−1)/4
n−1/4

)
, (7.60)

uniformly for x in finite intervals [x1, x2].
Finally, for Jacobi polynomials using the fact that

∫ 1

−1

(P (a,b)
n (x))2(1 − x)a(1 + x)bdx = c2

n =
2a+b+1

2n + a + b + 1

Γ(n + a + 1)Γ(n + b + 1)

Γ(n + 1)Γ(n + a + b + 1)
,

we obtain the orthonormal system

P̄ (a,b)
n (x) =

P (a,b)
n (x)

cn
. (7.61)

Brought to you by | Brown University Rockefeller Library
Authenticated | 128.148.231.12

Download Date | 4/28/14 11:53 PM



230 Chapter 7 Applications and Extensions

From [198, p. 196] we have

P̄ (a,b)
n (x) = C(x, a, b) cos(Nθ + γ) + O(n−1), (7.62)

where x = cos θ, N = n + 1/2(a + b + 1), and γ = −(a + 1/2)π/2.
Convergence of the series (7.58) for fixed x, y ∈ E and t > 0 follows from the above

relations. Specifically, in the Hermite case,

|e−λntQn(y)Qn(x)| ≤ C(x, y)e−nθt

n1/2
.

In the Laguerre case,

|e−λntQn(y)Qn(x)| ≤ C(x, y)e−nθt

n1/2
.

In the Jacobi case

|e−λntQn(y)Qn(x)| ≤ C(x, y)e−n(n+a+b+1)t.

Above and later in the proof, we use notation C(x, y) for constants not all equal
but not dependent on n. These constants may also depend on the parameters of the
distributions (i.e., the coefficients v(x) and D(x) in (7.30)).

Now we show that the series in (7.58) can be differentiated term by term, and
in view of standard results in analysis (e.g., see Rudin [168, Theorem 7.16, p. 151;
Theorem 7.17, p. 152]) this would follow from absolute and uniform convergence on
finite intervals of the series that involve the derivatives:

∞∑

n=0

∂

∂t
e−λntQn(y)Qn(x),

∞∑

n=0

e−λntQ′n(y)Qn(x),

∞∑

n=0

e−λntQ′′n(y)Qn(x).

For the derivative with respect to t, we have
∣∣∣∣
∂

∂t
e−λntQn(y)Qn(x)

∣∣∣∣ ≤ C(x, y)θn1/2e−nθt

for the Hermite and Laguerre cases, and for the Jacobi case
∣∣∣∣
∂

∂t
e−λntQn(y)Qn(x)

∣∣∣∣ ≤ C(x, y)n(n + a + b + 1)e−n(n+a+b+1)t.

The terms on the right hand side of the two inequalities above form series that converge
uniformly for t ∈ [t1, t2] , x, y ∈ [x1, x2] ⊂ E. For the derivatives with respect to y,
we use the properties of Hermite, Laguerre, and Jacobi polynomials. For the Hermite
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Section 7.4 Pearson Diffusions 231

series involving derivatives in y, we use the relation (e.g., see Abramowitz and Stegun
[3, p. 783]):

d

dx
Hn(x) = nHn−1(x).

For orthonormal Hermite polynomials,

d

dx
H̄n(x) =

n√
n!

Hn−1(x) =
√

nH̄n−1(x),

and so in this case

∣∣e−λntQ′n(y)Qn(x)
∣∣ ≤ C(x, y)e−nθt

(
n

n − 1

)1/4

.

For the second derivative in space, use the differential equation (7.44):

H ′′
n(y) = yH ′

n(y) − nHn(y).

The series involving the first derivative in space was treated above, and for the second
term ∣∣e−λntnH̄n(y)H̄n(x)

∣∣ ≤ C(x, y)e−nθt√n,

and this upper bound leads to the series that converge uniformly for t ∈ [t1, t2].
For Laguerre polynomials (e.g., see Szegő [198, p. 102 ])

d

dx
L(b−1)

n (x) = −L(b)
n−1

(x),

and for orthonormal Laguerre polynomials

d

dx
L̄(b−1)

n (x) = − (n − 1)b/2

n(b−1)/2
L̄(b)

n−1
(x).

The last quantity behaves like C(x, b)n1/4 uniformly on finite intervals (see Sansone
[173, p. 348]). Therefore in this case

∣∣e−λntQ′n(y)Qn(x)
∣∣ ≤ C(x, y)e−nθt

and the rest of the argument for the series involving the first derivative in space is
the same as for Hermite polynomials. The same argument also applies to the second
derivative in space because, for Laguerre polynomials, equation (7.44) has the form

y
d2

dy2
L(b−1)

n = (y − b)
d

dy
L(b−1)

n (y) − nL(b−1)
n (y).

For Jacobi polynomials,

(2n + a + b)(1 − x2)
d

dx
P (a,b)

n (x) = n(a − b − (2n + a + b)x)P (a,b)
n (x)+

2(n + a)(n + b)P (a,b)
n−1

(x)
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and for orthonormal Jacobi polynomials

d

dx
P̄ (a,b)

n (x) =
n(a − b − (2n + a + b)x)

(2n + a + b)(1 − x2)
P̄ (a,b)

n (x)

+
2(n + a)(n + b)

(2n + a + b)(1 − x2)

√
n/(n − 1)P̄ (a,b)

n−1
(x).

The first term in the last relation leads to the series
∑

n

ne−λntP̄ (a,b)
n (y)P̄ (a,b)

n (x)

that converges because it is dominated by the absolutely convergent series

C(x, y)
∑

n

ne−n(n+a+b+1)t.

The second term in the expression for the derivative of the normalized Jacobi polyno-
mial behaves in the same way as the first, and finally, the expression for the second
derivative from (7.44) is

(1 − y2)
d2

dy2
P (a,b)

n (y) = −((b − a) − (a + b − 2)y)
d

dy
P (a,b)

n (y)

− n(n + a + b + 1)P (a,b)
n (y).

The term with the first derivative was treated above. The second term leads to the
series ∑

n

e−λntn(n + a + b + 1)P̄ (a,b)
n (y)P̄ (a,b)

n (x)

which is dominated by the series C(x, y)
∑

n n2e−n(n+a+b+1)t. This completes the proof
of term by term differentiation of (7.58).

It remains to note that each term of the series in (7.58) satisfies the backward and
forward equations. For the backward equation, with operator G acting on y,

Gm(x) e−λntQn(y)Qn(x) = −λnm(x) e−λntQn(y)Qn(x) =
∂

∂t
m(x) e−λntQn(y)Qn(x),

since Qn(y) is an eigenfunction of (−G) with the eigenvalue λn. For the forward
(Fokker-Planck) equation, the left hand side is

∂

∂t

[
m(x) e−λntQn(y)Qn(x)

]
= −λnm(x) e−λntQn(y)Qn(x).

For the right-hand side, use the fact that m(x) satisfies time-independent Fokker-
Planck equation, and therefore

1

2

d2

dx2

[
σ2(x)m(x)

]
e−λntQn(y)Qn(x) − d

dx

[
µ(x)m(x)

]
e−λntQn(y)Qn(x) = 0.
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Section 7.5 Fractional Pearson diffusions 233

Then the right-hand side of the equation is

1

2

∂2

∂x2

[
σ2(x)m(x)e−λntQn(y)Qn(x)

]
− ∂

∂x

[
µ(x)m(x)e−λntQn(y)Qn(x)

]

=
1

2
σ2(x)m(x) e−λntQn(y)Q′′n(x) +

d

dx

[
σ2(x)m(x)

]
e−λntQn(y)Q′n(x)

+
1

2

d2

dx2

[
σ2(x)m(x)

]
e−λntQn(y)Qn(x)

− d

dx

[
µ(x)m(x)

]
e−λntQn(y)Qn(x) − µ(x)m(x) e−λntQn(y)Q′n(x)

=
1

2
σ2(x)m(x) e−λntQn(y)Q′′n(x) +

d

dx

[
σ2(x)m(x)

]
e−λntQn(y)Q′n(x)

− µ(x)m(x) e−λntQn(y)Q′n(x).

(7.63)

Using the fact that m(x) satisfies (7.37) with C1 = 0, i.e,

d

dx

[
σ2(x)m(x)

]
= 2m(x) µ(x),

equation (7.63) reduces to

1

2
σ2(x)m(x) e−λntQn(y)Q′′n(x) + 2m(x) µ(x)e−λntQn(y)Q′n(x)

− µ(x)m(x) e−λntQn(y)Q′n(x)

=
1

2
σ2(x)m(x) e−λntQn(y)Q′′n(x) − m(x) µ(x)e−λntQn(y)Q′n(x)

= m(x) e−λntQn(y)[GQn(x)] = −λnm(x) e−λntQn(y)Qn(x)

which finishes the proof.

Remark 7.19. As discussed in Feller [66], it follows from Proposition 7.18 that the so-
lutions of Cauchy problems for the forward equation (7.32) and the backward equation
(7.35) are given by

T ∗t f(x) =

∫
p(x, t; y)f(y) dy

and
Ttf(x) =

∫
p(x, t; y)g(x) dx

respectively, where the transition density p(x, t; y) is given by (7.58).

7.5 Fractional Pearson diffusions

The time-fractional diffusion equation with constant coefficients

∂β
t p(x, t) = − ∂

∂x

[
vp(x, t)

]
+

∂2

∂x2

[
Dp(x, t)

]
(7.64)
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234 Chapter 7 Applications and Extensions

from (4.52) governs the scaling limit of a CTRW with finite variance jumps and power
law waiting times, see Remark 4.23. The CTRW scaling limit process A′(Et) whose
probability densities p(x, t) solve this time-fractional diffusion equation is a Brownian
motion with drift, where the time variable t has been replaced by an independent
inverse stable subordinator Et. In this section, we allow the coefficients of the time-
fractional forward equation (7.64) to vary in space, thereby extending the results
of Section 7.4 to the case of a time-fractional derivative. First we consider a time-
fractional backward equation

∂β
t p = Gp(y, t) = v(y)

∂

∂y
p(y, t) + D(y)

∂2

∂y2
p(y, t) (7.65)

with initial condition p(y, 0) = g(y). Note that x is a constant in this equation. The
Caputo fractional derivative ∂β

t of order 0 < β ≤ 1 in (7.65) is defined by (2.31). Equa-
tion (7.65) is the time-fractional analog of the backward equation (7.35) considered in
Section 7.4.

The fractional backward equation (7.65) governs a stochastic process that is not
Markovian. Let Dt be a standard stable subordinator with Laplace transform

E[e−sDt ] = exp{−tsβ}, s ≥ 0. (7.66)

As in Section 2.3, we define the inverse (hitting time, first passage time) process

Et = inf{x > 0 : Dx > t}. (7.67)

Let X1(t) be a Pearson diffusion whose transition densities p1(x, t; y) solve the back-
ward Kolmogorov (7.35) and forward Fokker-Planck equation (7.29) with the point
source initial condition p1(x, 0; y) = δ(x − y). Define the fractional Pearson diffusion
process

Xβ(t) = X1(Et), t ≥ 0. (7.68)

Since Et rests for periods of time whose distribution is not exponential, Xβ(t) is not
a Markov process.

Given a C0 semigroup Tt on some Banach space B, Theorem 3.16 shows that q(t) =
Ttf solves the Cauchy problem

d

dt
q = Lq; q(0) = f (7.69)

for any f ∈ Dom(L). If we replace the first derivative d/dt in (7.69) by a Caputo
fractional derivative of order 0 < β < 1, we obtain the fractional Cauchy problem

∂β
t p = Lp; p(0) = f. (7.70)

Then a general result on semigroups, Baeumer and Meerschaert [17, Theorem 3.1],
shows that

p(t) = Stf =

∫ ∞

0

T(t/r)βf gβ(r) dr (7.71)
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Section 7.5 Fractional Pearson diffusions 235

solves the fractional Cauchy problem (7.70) for any f ∈ Dom(L). Here gβ(r) is the
probability density function of a standard stable subordinator D1 with Laplace trans-
form (7.66). A simple change of variable u = (t/r)β in (7.71) leads to an equivalent
form

Stf =

∫ ∞

0

Tuf
t

β
u−1−1/βgβ(tu−1/β) du. (7.72)

The main ideas behind the proof of [17, Theorem 3.1] were illustrated in the derivation
of (4.48). In particular, using equation (4.47) we can see that

Stf =

∫ ∞

0

Tuf h(u, t) du (7.73)

where h(u, t) is the pdf of the inverse stable subordinator (7.67).

Remark 7.20. The mathematical study of fractional Cauchy problems was initiated
by Kochubei [100, 101] and Schneider and Wyss [179]. Fractional Cauchy problems
were also invented independently by Zaslavsky [207] as a model for Hamiltonian chaos,
see also Saichev and Zaslavsky [170].

Now we apply (7.73) to the time-fractional backward equation (7.65) of a Pearson
diffusion. Proposition 7.24, in the details at the end of this section, shows that

T ∗t g(y) = E[g(X1(t))|X1(0) = y]

is a C0 semigroup, and then it follows from Theorem 3.16 that

q(y, t) = T ∗t g(y) = E[g(X1(t))|X1(0) = y] =

∫
p1(x, t; y)g(x)dx

solves the Cauchy problem

∂q

∂t
= Gq, q(y, 0) = g(y) (7.74)

for any g ∈ Dom(G), where the transition density p1(x, t; y) is given by (7.49). Then
(7.73) implies that

p(y, t) = Stg(y) =

∫ ∞

0

Tug(y) h(u, t) du (7.75)

solves the fractional Cauchy problem (7.65) for any g ∈ Dom(G). Now write

Stg(y) =

∫ ∞

0

Tug(y) h(u, t) du

=

∫ ∞

0

E[g(X1(u))|X1(0) = y]h(u, t) du

= E[g(X1(Et))|X1(0) = y]

= E[g(Xβ(t))|Xβ(0) = y]

(7.76)
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236 Chapter 7 Applications and Extensions

since E0 = 0 almost surely. This shows that the fractional Pearson diffusion Xβ(t) =
X1(Et) is governed by the time-fractional backward equation (7.65).

We will say that the non-Markovian Pearson diffusion process Xβ(t) has a transition
density pβ(x, t; y) if

P[Xβ(t) ∈ B|Xβ(0) = y] =

∫

B
pβ(x, t; y) dx

for any Borel subset B of the state space E. That is, the transition density is the
conditional probability density of Xβ(t), given Xβ(0) = y. Since p1(x, t; y) is the
transition density of the Pearson diffusion X1(t), a simple conditioning argument shows
that the transition density of the fractional Pearson diffusion X1(Et) is

pβ(x, t; y) =

∫ ∞

0

p1(x, u; y)h(u, t) du (7.77)

where h(u, t) is the pdf (4.47) of the inverse stable subordinator (7.67). Then we can
write (7.76) in the form

Stg(y) = E[g(Xα(t))|X0 = y] =

∫
pβ(x, t; y)g(x) dx. (7.78)

The transition density pβ(x, t; y), along with the initial distribution of the random
variable Xβ(0) = X1(0), determine the distribution of Xβ(t) for any single t > 0.

An explicit formula for the transition density (7.77) can be obtained by separation
of variables. Here we sketch the argument. For complete details, see Leonenko, Meer-
schaert and Sikorskii [109, Theorem 3.2]. Suppose that p(y, t) = S(t)ϕ(y) solves the
fractional backward equation (7.65), where the functions S and ϕ may depend on x
and β. Write

∂β
t S(t)ϕ(y) = S(t)Gϕ(y) or

1

S(t)
∂β

t S(t) =
Gϕ(y)

ϕ(y)
.

Set both sides equal to a constant to obtain the Sturm-Liouville equation Gϕ = −λϕ
and the fractional time equation

∂β
t S(t) = −λS(t). (7.79)

Recall from Section 2.3 that solutions to equation (7.79) have the form

S(t) = Eβ

(
−λtβ

)
=

∞∑

j=0

(
−λtβ

)j

Γ(1 + βj)
(7.80)

for any λ > 0, where S(0) = 1, and Eβ(·) is the Mittag-Leffler function (2.27). For
Pearson diffusions of type (1–3), the Sturm-Liouville equation has polynomial solutions
GQn(x) = −λnQn(x) for all n, where 0 = λ0 < λ1 < λ2 < · · · and λn → ∞. For each
n, we also have that

∂β
t Sn(t) = −λnSn(t)
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Section 7.5 Fractional Pearson diffusions 237

where the Mittag-Leffler eigenfunctions Sn(t) = Eβ(−λntβ) solve the fractional time
equation. Then p(y, t) = Eβ(−λntβ)Qn(y) solves the time-fractional backward equa-
tion (7.65) with initial condition p(y, 0) = Qn(y). Since any finite linear combination
of functions of this form will also solve the backward equation, is it reasonable to
consider the infinite sum

p(y, t) =
∞∑

n=0

bnEβ(−λntβ)Qn(y). (7.81)

If g(y) is a function such that (7.47) holds, where the series converges uniformly on
compact intervals y ∈ [c, d], then the Caputo fractional derivative and the generator
G can be applied to the series (7.46) term-by-term, so that the function p(y, t) in
(7.81) solves (7.65). If the polynomials Qn are normalized so that c2

n = 1 for all n
in (7.45), then (7.81) solves the backward equation (7.39) with the initial condition
p(y, 0) = g(y) given by (7.47).

Equating (7.78) to (7.81) we see that

p(y, t) = Stg(y) =
∞∑

n=0

bne−λntQn(y)

=
∞∑

n=0

(∫
g(x)Qn(x)m(x) dx

)
Eβ(−λntβ)Qn(y)

=

∫ (

m(x)
∞∑

n=0

Eβ(−λntβ)Qn(x)Qn(y)

)

g(x) dx.

It follows that the transition density of the fractional Pearson diffusion is

pβ(x, t; y) = m(x)
∞∑

n=0

Eβ

(
−λntβ

)
Qn(x)Qn(y). (7.82)

Since we always have Q0(x) ≡ 1, and since λn > 0 for all n > 0, it follows from (7.82)
that pβ(x, t; y) → m(x) as t → ∞ for any y, i.e., the fractional Pearson diffusion
Xβ(t) tends to the same steady state distribution m(x) regardless of the initial state
Xβ(0) = y. See [109] for complete details.

A very similar separation of variables argument shows that

Ttf(x) =

∫ (

m(x)
∞∑

n=0

Eβ(−λntβ)Qn(x)Qn(y)

)

f(y) dy

solves the time-fractional forward equation (7.29) with initial condition p(x, 0) = f(x),
for any initial function such that (7.50) holds uniformly on compact intervals x ∈ [c, d].
See [109, Theorem 3.3] for details.

Remark 7.21. If β = 1, then (7.82) becomes

p1(x, t; y) = m(x)
∞∑

n=0

e−λntQn(x)Qn(y),
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238 Chapter 7 Applications and Extensions

which agrees with (7.58).

Remark 7.22. The transition density (7.77) for a fractional Pearson diffusion Xβ(t)
of type (1–3) can also be obtained by a different argument. Use (7.49) to write

p1(x, t; y) = m(x)
∞∑

n=0

e−λntQn(x)Qn(y) (7.83)

Bingham [37] and Bondesson, Kristiansen, and Steutel [39] show that the inverse stable
subordinator Et has a Mittag-Leffler distribution with

E
[
e−sEt

]
=

∫ ∞

0

e−suh(u, t) du = Eβ(−stβ). (7.84)

Write

Stg(y) =

∫ ∞

0

Tug(y) h(u, t) du

=

∫ ∞

0

(∫
p1(x, u; y)g(x) dx

)
h(u, t) du

=

∫ ∞

0

(∫
m(x)

∞∑

n=0

e−λnuQn(x)Qn(y)g(x) dx

)

h(u, t) du

=

∫
m(x)

∞∑

n=0

(∫ ∞

0

e−λnu h(u, t) du

)
Qn(x)Qn(y)g(x) dx

=

∫ (

m(x)
∞∑

n=0

Eβ(−stβ)Qn(x)Qn(y)

)

g(x) dx.

(7.85)

It follows that (7.77) is the transition density of Xβ(t). See [109, Lemma 4.1] for
complete details.

Remark 7.23. For more on the connection between Lévy-type Markov processes,
semigroups, and generators, see for example Schilling [178]. When the Lévy char-
acteristics [a,Q,φ] in (6.21) vary with x, the resulting generator is called a pseudo-
differential operator, see Jacob [92].

Details

The backward semigroup (7.34) can be defined on the Banach space C0(E) of bounded
continuous real-valued functions on E, such that the limits

A = lim
x↓a

f(x) and B = lim
x↑b

f(x)

exist, with A = 0 if a = −∞, and B = 0 if b = +∞, with the supremum norm. The
semigroup property T ∗t T ∗s = T ∗t+s follows from the Chapman-Kolmogorov equation
(7.52). The backward semigroup is bounded, and in fact ∥T ∗t f∥ ≤ ∥f∥ for all f ∈
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Section 7.5 Fractional Pearson diffusions 239

C0(E) and all t ≥ 0: We say that {T ∗t } is a contraction semigroup. In the terminology
of Rogers and Williams [163, Definition 6.5, p. 241], this is also called a Feller-Dynkin
semigroup.

Proposition 7.24. The backward semigroup defined in (7.34), where p(x, t; y) is the
transition density (7.49) of the Pearson diffusion process with diffusion coefficients
v(x) and D(x) defined in (7.30), is strongly continuous on C0(E). That is, ∥T ∗t g−g∥ →
0 in the supremum norm as t → 0 for any g ∈ C0(E).

Proof. In view of Friedman [70, Theorem 3.4, p. 112], the operators {T ∗t : t ≥ 0} form
a uniformly bounded semigroup on C0(E). In addition, for any fixed y ∈ E we have

T ∗t g(y) − g(y) =

∫
p(x, t; y)(g(x) − g(y))dx

=

∫

|x−y|≤ε
p(x, t; y)(g(x) − g(y))dx

+

∫

|x−y|>ε
p(x, t; y)(g(x) − g(y))dx

≤ sup
|x−y|≤ε

|g(x) − g(y)|
∫

|x−y|≤ε
p(x, t; y)dx

+ C

∫

|x−y|>ε
p(x, t; y)dx,

where C = supx, y |g(x) − g(y)| is finite since function g is bounded. It follows from
the form of the generator of the semigroup {T ∗t } that

∫

|x−y|>ε
p(x, t; y)dx → 0

as t → 0 for any ε > 0 (see Feller [67]), therefore the second term in the above
expression tends to zero as t → 0. The first term is bounded by

sup
|x−y|≤ε

|g(x) − g(y)|,

which tends to zero as ε → 0. This proves point-wise continuity of the semigroup:
For every fixed y, T ∗t g(y) → g(y) as t → 0. Then Rogers and Williams [163, Lemma
6.7, p. 241] yields strong continuity of the semigroup: ∥T ∗t g − g∥ → 0 as t → 0 in the
Banach space (supremum) norm.

To prove that (7.82) is the transition density of a type (1–3) fractional Pearson
diffusion, use [109, Remark 3.4] to see that any smooth function g(y) with compact
support in E can be written in the form (7.47), where the series converges uniformly
on compact sets. Since the indicator function of any compact interval B ∈ E can be
approximated arbitrarily closely by such functions, it follows that

P[g(Xt)|x0 = y] =

∫

x∈B
p(x, t; y)g(x) dx

Brought to you by | Brown University Rockefeller Library
Authenticated | 128.148.231.12

Download Date | 4/28/14 11:53 PM



240 Chapter 7 Applications and Extensions

for all such intervals. Then it follows that p(x, t; y) is the conditional density of Xt,
given X0 = y. The Fubini argument in (7.48) can be justified using Lemma 7.25.

Lemma 7.25. For the three classes of fractional Pearson diffusions with discrete
spectrum (OU, CIR, Jacobi) and 0 < β ≤ 1, The series

pβ(x, t; y) = m(x)
∞∑

n=0

Eβ

(
−λntβ

)
Qn(y)Qn(x) (7.86)

converges for fixed t > 0, x, y ∈ E.

Proof. For a Mittag-Leffler function with 0 < β < 1 (see Mainardi and Gorenflo [119,
Eq. (5.26)])

Eβ(−λntβ) ∼ 1

Γ(1 − β)λntβ

as the argument λntβ → ∞. The eigenvalues are λn = θn in the Hermite and Laguerre
cases, and λn = n(n + a + b + 1) in the Jacobi case. In the rest of the proof, we will
assume without loss of generality that µ = 0 and σ = 1 in the OU case, and a = 1 in
the CIR case. For orthonormal Hermite polynomials (Sansone [173], p. 369)

H̄n(x) ≤ Kex2/4n−1/4(1 + |x/
√

2|5/2),

where K is a constant that does not depend on x.
For orthonormal Laguerre polynomials ([173], p. 348)

L̄(b−1)
n (x) = O

(
ex/2

x(2b−1)/4
n−1/4

)
,

uniformly for x in finite intervals [x1, x2].
For orthonormal Jacobi polynomials

P̄ (a,b)
n (x) = C(x, a, b) cos(Nθ + γ) + O(n−1),

where x = cos θ, N = n + 1/2(a + b + 1), and γ = −(a + 1/2)π/2.
Convergence of the series (7.86) for fixed x, y, t follows from the above relations.

Specifically, in the Hermite case,

|Eβ

(
−λntβ

)
Qn(y)Qn(x)| ≤ C(x, y, t,β)

n1+1/2
.

In the Laguerre case,

|Eβ

(
−λntβ

)
Qn(y)Qn(x)| ≤ C(x, y, t,β)

n1+1/2
.

In the Jacobi case

|Eβ

(
−λntβ

)
Qn(y)Qn(x)| ≤ C(x, y, t,β) cos(Nθ + γ)

n2
.

When β = 1, we have Eβ(−λntβ) = e−λnt, and the proof is similar.
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Section 7.6 Fractional Brownian motion 241

7.6 Fractional Brownian motion

Fractional Brownian motion is the fractional derivative (or fractional integral) of a
Brownian motion. Suppose that B(t) is a standard Brownian motion with character-
istic function E[eikB(t)] = e−tk2/2 for all t ≥ 0. Extend B(t) to the entire real line by
taking another independent Brownian motion B1(t) with the same distribution, and
setting B(t) = B1(−t) when t < 0. Then we have E[eikB(t)] = e−|t|k2/2 for all t ∈ R.
Recall from (2.21) that the Caputo fractional derivative of order 0 < α < 1 can be
written in the form

dαf(x)

dxα
=

1

Γ(1 − α)

∫ x

−∞
f ′(u)(x − u)−αdu.

Heuristically, we would like to define the fractional Brownian motion

1

Γ(1 − α)

∫ t

−∞
(t − s)−αB′(s)ds

but there are some technical issues. We review the basic ideas here. For complete
details, see Pipiras and Taqqu [154].

First of all, the derivative B′(s) does not exist (the paths of a Brownian motion
are almost surely nowhere differentiable). This is similar to a problem we often face
in probability. If X is a random variable with cdf F (x) and pdf f(x) = F ′(x), then
we define E[g(X)] =

∫
g(x)f(x) dx =

∫
g(x)F ′(x) dx. If the cdf is not differentiable,

we use the Lebesgue-Stieltjes integral E[g(X)] =
∫

g(x)F (dx) instead (see details). A
similar approach works for stochastic integrals, and thus for continuous functions g(s)
we can define ∫ b

a
g(s)B(ds) ≈

n∑

i=1

g(si)B(∆si) (7.87)

where ∆s = (b − a)/n, si = a + i∆s for i = 0, 1, . . . , n, B(∆si) = B(si) − B(si−1), and
the approximating sum on the right converges in probability to the stochastic integral
on the left as n → ∞ (see details at the end of this section). Note that B(∆si) is
normal with mean zero and variance (si − si−1), and that B(∆s1), . . . , B(∆sn) are
independent, since B(t) has independent increments. Then

∑
i g(si)B(∆si) is normal

with mean zero and variance
∑

i g(si)2∆s, and it follows by taking limits that
∫ b

a
g(s)B(ds) ≃ N

(

0,

∫ b

a
|g(s)|2ds

)

. (7.88)

assuming that |g(s)|2 is integrable over a < s ≤ b. The improper integral is defined,
as usual, as a limit of proper integrals

∫ b

−∞
g(s)B(ds) = lim

a→−∞

∫ b

a
g(s)B(ds) in probability,

and then ∫ b

−∞
g(s)B(ds) ≃ N

(

0,

∫ b

−∞
|g(s)|2ds

)

(7.89)
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assuming that |g(s)|2 is integrable over −∞ < s ≤ b.
Now we may try to define a fractional derivative of Brownian motion by the formula

I(t) =
1

Γ(1 − α)

∫ t

−∞
(t − s)−αB(ds)

but this does not work either, because for g(s) = (t − s)−α we have
∫ t

−∞
|g(s)|2ds = ∞.

To work around this, we first define

Ia(t) =
1

Γ(1 − α)

∫ t

a
(t − s)−αB(ds)

and we consider the difference

BH(t) = lim
a→−∞

Ia(t) − Ia(0)

= lim
a→−∞

1

Γ(1 − α)

∫ t

a
(t − s)−αB(ds) − 1

Γ(1 − α)

∫ 0

a
(0 − s)−αB(ds)

=
1

Γ(1 − α)

∫ ∞

−∞

[
(t − s)−α

+ − (0 − s)−α
+

]
B(ds)

(7.90)

where

(x)+ =

{
x if x > 0

0 if x ≤ 0
(7.91)

and we adopt the convention 00 = 0. This stochastic integral is defined for any
−1/2 < α < 1/2, since the function g(s) = (t−s)−α

+ −(0−s)−α
+ satisfies

∫
g(s)2ds < ∞

in that case (see details). Hence we have to restrict to −1/2 < α < 1/2 in this
approach. Then we can define the fractional derivative of Brownian motion of order
0 < α < 1/2, and also the fractional integral of the same order. See the details at the
end of this section for a brief introduction to fractional integrals.

The Hurst index H = (1/2) − α for 0 < H < 1 governs the self-similarity of
the fractional Brownian motion (7.90). First note that the random measure B(ds)
has a scaling property B(c ds) ≃ c1/2B(ds), since for an interval V = [a, b] we have
B(V ) ≃ N (0, |V |) and B(cV ) ≃ N (0, |cV |) ≃ c1/2B(V ). Then a change of variables
s = cs′ yields

BH(ct) =
1

Γ(1 − α)

∫ ∞

−∞

[
(ct − s)H−1/2

+ − (0 − s)H−1/2

+

]
B(ds)

=
1

Γ(1 − α)

∫ ∞

−∞

[
(ct − cs′)H−1/2

+ − (c 0 − cs′)H−1/2

+

]
B(c ds′)

≃ 1

Γ(1 − α)

∫ ∞

−∞
cH−1/2

[
(t − s′)H−1/2

+ − (0 − s′)H−1/2

+

]
c1/2B(ds′)

= cHBH(t).

(7.92)

Brought to you by | Brown University Rockefeller Library
Authenticated | 128.148.231.12

Download Date | 4/28/14 11:53 PM



Section 7.6 Fractional Brownian motion 243

To justify the change of variables in (7.92), use (7.87) and note that B(c∆si) ≃
c1/2B(∆si) (see details). Then we certainly have BH(ct) ≃ cHBH(t) for all c > 0
and t ∈ R. It is also possible to extend this argument to show that BH(ct) ≃ cHBH(t)
in the sense of finite dimensional distribution (e.g., see Samorodnitsky and Taqqu [172,
Corollary 7.2.3]).

In the special case H = 1/2, we have α = 0, and then for t ≥ 0 we get

BH(t) =
1

Γ(1 − α)

∫ ∞

−∞
[I(t − s > 0) − I(0 − s > 0)]B(ds)

=

∫ ∞

−∞
[I(0 ≤ s < t)]B(ds) = B(t) − B(0) = B(t),

while for t < 0 we get

BH(t) =

∫ ∞

−∞
[I(t ≤ s < 0)]B(ds) = B(0) − B(t) = −B1(t) ≃ B(t).

Hence BH(t) is a Brownian motion on t ∈ R when H = 1/2.
It follows from self-similarity BH(ct) ≃ cHBH(t) that a fractional Brownian motion

satisfies BH(t) ≃ tHBH(1) for all t ∈ R, where the stochastic integral BH(1) is normal
with mean zero. Hence BH(t) has a pdf p(x, t) with FT

p̂(k, t) = E[e−ikBH (t)] = e−Dt2Hk2

for any t > 0, for some constant D > 0. Then clearly

d

dt
p̂(k, t) = 2HDt2H−1(ik)2p̂(k, t)

and hence the pdf p(x, t) of a fractional Brownian motion BH(t) solves a diffusion
equation with variable coefficients

∂

∂t
p(x, t) = 2HDt2H−1 ∂2

∂x2
p(x, t) (7.93)

for t > 0. The case 1/2 < H < 1 is a kind of super-diffusion, and 0 < H < 1/2 is a
sub-diffusion.

Because fractional Brownian motion BH(t) is a fractional integral or derivative
of Brownian motion, it averages B(t) over the entire interval (−∞, t], and so the
increments

BH(t2) − BH(t1) =
1

Γ(1 − α)

∫ ∞

−∞

[
(t2 − s)H−1/2

+ − (t1 − s)H−1/2

+

]
B(ds)

are not independent. However, a straightforward change of variables shows that the
increments are stationary: BH(t2) − BH(t1) ≃ BH(t2 − t1). The fractional Brownian
motion BH(t) with H ̸= 1/2 is not a Lévy process, since it does not have independent
increments. There are many Gaussian stochastic processes whose pdf p(x, t) solves
(7.93) (e.g., the process t 7→ tHZ where Z ≃ N (0, 2D) is one). However, fractional
Brownian motion is the only self-similar Gaussian process with stationary increments
(e.g., see [172, Lemma 7.2.1]), and so it is the only self-similar Gaussian process with
stationary increments that is governed by (7.93).
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Remark 7.26. The graph of a fractional Brownian motion BH(t) is a random fractal
with dimension d = 2−H, see for example Falconer [62, Theorem 16.7]. As the Hurst
index H increases from 1/2 to 1, we are applying a fractional integral of increasing
order, so the graph becomes smoother.

Remark 7.27. It is a simple matter to compute the covariance structure of a frac-
tional Brownian motion BH(t), using the self-similarity and stationary increments.
First consider 0 < s < t. Since BH(t) ≃ tHBH(1) we have E[BH(t)2] = t2HC where
C = E[BH(1)2]. Now write

(BH(t) − BH(s))2 = BH(t)2 + BH(s)2 − 2BH(t)BH(s)

and take expectations to get

C(t − s)2H = Ct2H + Cs2H − 2E[BH(t)BH(s)].

Now solve to get

E[BH(t)BH(s)] =
C

2

[
t2H + s2H − (t − s)2H

]
.

The case 0 < t < s is similar, and we can combine these two cases to write

E[BH(t)BH(s)] =
C

2

[
|t|2H + |s|2H − |t − s|2H

]
. (7.94)

The case where t < 0 or s < 0 is again similar, and leads to the same result (7.94).
For those cases, note that BH(1) ≃ BH(−1). This follows easily from the fact that
BH(t) has stationary increments.

The fractional Brownian motion (7.90) is the positive fractional derivative (or in-
tegral) of a Brownian motion. Applying the same construction using the negative
fractional derivative leads to the process

1

Γ(1 − α)

∫ ∞

−∞

[
(s − t)H−1/2

+ − (s − 0)H−1/2

+

]
B(ds)

where x+ = xI(x > 0), and again we adopt the convention 00 = 0. This form averages
B(ds) over the interval extending to +∞. A mixture of positive and negative fractional
derivatives leads to the general form

BH(t) =
p

Γ(1 − α)

∫ ∞

−∞

[
(t − s)H−1/2

+ − (0 − s)H−1/2

+

]
B(ds)

+
q

Γ(1 − α)

∫ ∞

−∞

[
(s − t)H−1/2

+ − (s − 0)H−1/2

+

]
B(ds)

(7.95)

for p, q ≥ 0. Taking p = q = 1 leads to the form

BH(t) =
1

Γ(1 − α)

∫ ∞

−∞

[
|t − s|H−1/2 − |0 − s|H−1/2

]
B(ds), (7.96)

based on the Riesz fractional derivative or integral (see details).
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Section 7.6 Fractional Brownian motion 245

Remark 7.28. The definition (7.95) of a fractional Brownian motion is based on the
Caputo fractional derivative (2.21) of a function defined on the entire real line. Another
kind of fractional Brownian motion uses the Caputo fractional derivative (2.31) of a
function defined on the positive half-line. The Lévy fractional Brownian motion (also
called type two fractional Brownian motion) is defined for t ≥ 0 by

B(2)
H (t) =

1

Γ(1 − α)

∫ t

0

(t − s)H−1/2B(ds). (7.97)

where 0 < H < 1. Since the function g(s) = (t − s)H−1/2 is square integrable over
the interval s ∈ [0, t], this construction is simpler. However, the definition (7.95) is
preferred in many applications, because it has stationary increments.

A discrete analogue of fractional Brownian motion can be constructed using frac-
tional differences. Take (Zn) iid normal with mean zero, and let

Yn = ∆
αZn = (I − B)αZn =

∞∑

j=0

(
α
j

)
(−1)jZn−j (7.98)

using the backward shift operator BZn = Zn−1. In time series, Yn is called a frac-
tional ARIMA(0, d, 0) process where d = −α = −H + (1/2) is the order of fractional
integration (e.g., see Brockwell and Davis [41, Section 13.2]). If 0 < d < 1/2 (i.e.,
1/2 < H < 1) then this mean zero process has long range dependence since its auto-
covariance function decays very slowly:

E[YnYn+j ] ∼ Cj2H−2 as j → ∞.

Hurst [90] noted this kind of long range dependence in flood levels of the Nile river.
The time series (Yn) is stationary. It can be considered as a discrete analogue of the
increments of a fractional Brownian motion. In fact, if we let Sn = Y1 + · · ·+ Yn then
it follows from Whitt [204, Theorem 4.6.1] that

σ−1
n S[nt] ⇒ BH(t)

in the Skorokhod space D[0,∞), where Cσ2
n = Var(Sn) and C = E[BH(1)2]. Hence

it is reasonable to approximate fractional Brownian motion by a random walk whose
jumps come from a fractional ARIMA(0, d, 0) process.

Remark 7.29. Another popular method for simulating fractional Brownian motion
uses FT methods. Use (7.90) to write

BH(ti) ≈ Ja(ti) − Ja(0)

on a finite discrete grid sj = a + j∆t, where

Ja(ti) =
1

Γ(1 − α)

n∑

j=1

(ti − sj)
−α
+ B(∆sj) ≈ Ia(ti).
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Since Ja(ti) is a discrete convolution, it can be efficiently computed using a numerical
method called the fast Fourier transform, a streamlined algorithm for computing the
discrete FT (e.g., see Press, et al. [157]). Simply multiply the discrete FT ĝ(kj) =∑

j e−isjkj g(sj) of the filter g(sj) = (sj)
−α
+ /Γ(1 − α) by the discrete FT B̂(∆kj) of

the noise sequence B(∆sj), invert the product of these two discrete Fourier transforms
Ĵa(kj) = ĝ(kj)B̂(∆kj) to get the convolution Ja(ti), and then subtract Ja(0) (e.g., see
Dieker and Mandjes [58]). Some additional efficiency can be obtained by simulating
the discrete FT of the noise sequence B̂(∆kj) directly (e.g., see Voss [201]). Since
ĝ(kj) ≈ (ikj)α−1 with α = (1/2) − H, taking limits after Fourier inversion leads to

Ĵa(x) − Ĵa(0) ≈
∫

(eikx − 1)(ik)−H−1/2B̂(dk).

This stochastic integral with respect to the complex-valued Gaussian random measure
B̂(dk) is called the spectral representation of a fractional Brownian motion (e.g., see
Samorodnitsky and Taqqu [172, Section 7.2]). Roughly speaking, Ja(t) represents the
H + 1/2 order fractional integral of the white noise B(dt), i.e., the H − 1/2 fractional
integral of B(t).

Remark 7.30. Starting with a stable Lévy motion A(t) on t ≥ 0 with index 0 < γ < 2,
extend to t ∈ R as before, by setting A(t) = A1(−t) for t < 0, where A1(t) is another
independent Lévy motion identically distributed with A(t). The stochastic integral

AH(t) =
1

Γ(1 − α)

∫ ∞

−∞

[
(t − s)−α

+ − (0 − s)−α
+

]
A(ds) (7.99)

can be defined in the same way as for Brownian motion, using the stable random
measure A(a, b] = A(b)−A(a). The stochastic process (7.99) is called a linear fractional
stable motion. The stable stochastic integral

∫
g(s)A(ds) ≈

∑
i g(si) A(∆si) is defined

when
∫
|g(s)|γds < ∞. The self-similarity A(ct) ≃ c1/γA(t) of the stable process

implies that A(c ds) ≃ c1/γA(ds), and then it follows that AH(ct) ≃ cHAH(t), by the
same argument as in the Gaussian case, where the Hurst index H = (1/γ) − α. A
linear fractional stable motion has stationary increments, which are not independent
(unless α = 0). For more details, see [172, Section 7.4].

A discrete analogue of linear fractional stable motion with 1 < γ < 2 comes from
taking (Zn) iid γ-stable with mean zero in (7.98). Since the covariance does not exist
in this case, the long range dependence of the fractionally integrated time series (Yn)
in the case H > 1/γ is defined in terms of the moving average coefficients: We say
that Yn =

∑
j cjZn−j has long range dependence if

∑
j |cj | = ∞. In view of (2.5) we

can see that (7.98) is long range dependent if α < 0 (fractional integration).
If we let Sn = Y1 + · · · + Yn then it follows from Whitt [204, Theorem 4.7.2] that

n−HS[nt] ⇒ AH(t)

in the Skorokhod space D[0,∞). Hence the fractional ARIMA(0, d, 0) process with
stable innovations (Zn) approximates the increments of a linear fractional stable mo-
tion. The FFT method outlined in Remark 7.29 can also be used to simulate linear
fractional stable motion, see Stoev and Taqqu [195] and Biermé and Scheffler [33].
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Section 7.6 Fractional Brownian motion 247

Remark 7.31. If we take (Zn) iid normal with mean zero, then the sequence (Yn)
in (7.98) models a correlated sequence of mean zero finite variance particle jumps. In
a CTRW framework with iid power law waiting times P[Jn > t] = Ct−β for some
0 < β < 1, independent of the particle jumps, the CTRW scaling limit is BH(E(t))
where E(t) is the inverse stable subordinator (4.27). If we take (Zn) iid stable with
mean zero, then the CTRW scaling limit is AH(E(t)), a linear fractional stable motion
time-changed via the inverse stable subordinator. If the mean zero sequence (Zn)
belongs to some normal or stable domain of attraction, the same scaling limit applies.
For more details, see Meerschaert, Nane and Xiao [131]. The governing equation of
these CTRW limits is currently unknown.

Details

In order to clearly understand stochastic integrals, we begin with a review of deter-
ministic integrals. If X is a random variable with cdf F (x) = P[X ≤ x], and g(x) is
a Borel measurable function, we define the expectation of g(X) through a Lebesgue-
Stieltjes integral E[g(X)] =

∫
g(x)F (dx) =

∫
g(x)µ(dx), a Legesgue integral with

respect to the probability measure µ defined by µ(a, b] = F (b)−F (a). Recall that the
Lebesgue integral is defined as follows: If g(s) = I(s ∈ V ) for some Borel set V , then∫

g(s)µ(ds) = µ(V ). For a simple function g(s) =
∑n

i=1
aiI(s ∈ Vi) where V1, . . . , Vn

are mutually disjoint Borel sets,
∫

g(s)µ(ds) =
∑n

i=1
aiµ(Vi). Then for g ≥ 0, we

define ∫
g(s)µ(ds) = lim

n→∞

∫
gn(s)µ(ds) (7.100)

where

gn(s) =

{
(k − 1)/n if (k − 1)/n < g(s) ≤ k/n for some 1 ≤ k ≤ n

0 otherwise.
(7.101)

Since
∫

gn(s)µ(ds) is an increasing sequence, the limit
∫

g(s)µ(ds) in (7.100) always
exists (although it may equal infinity). If g(s) takes both positive and negative values,
we can write g = g+−g− the difference of two non-negative Borel measurable functions,
and then we define

∫
g(s)µ(ds) =

∫
g+(s)µ(ds) −

∫
g−(s)µ(ds), provided that both

integrals exist and are finite. The integral
∫ b

a
g(s)F (ds) =

∫
g(s)I(a ≤ s ≤ b)µ(ds) (7.102)

is defined since g(s)I(a ≤ s ≤ b) is a Borel measurable function.
The Riemann-Stieltjes integral is defined by

∫ b

a
g(s)F (ds) = lim

∆s→0

n∑

i=1

g(si)∆F (si) (7.103)

where ∆s = (b−a)/n, si = a+ i∆s for i = 0, 1, . . . , n, and ∆F (si) = F (si)−F (si−1). If
g(s) is continuous, then g(s) is also bounded and uniformly continuous on the interval
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248 Chapter 7 Applications and Extensions

[a, b]. Given any positive integer n, choose δ > 0 such that |g(s) − g(t)| < 1/n
whenever |s − t| < δ. If ∆s < δ, then since 0 ≤ g(s) − gn(s) ≤ 1/n for each s, for n
sufficiently large, eventually |gn(s) − g(si)| ≤ |gn(s) − g(s)| + |g(s) − g(si)| ≤ 2/n for
all si−1 < s ≤ si and all i = 1, 2, . . . , n, and then

∣∣∣∣∣

∫
gn(s)F (ds) −

n∑

i=1

g(si)∆F (si)

∣∣∣∣∣

=

∣∣∣∣∣

∫
gn(s)F (ds) −

∫ (
n∑

i=1

g(si)I(si−1 < s ≤ si)

)

F (ds)

∣∣∣∣∣

≤
n∑

i=1

∫ si

si−1

|gn(s) − g(si)|F (ds) ≤ (2/n)[F (b) − F (a)]

for all n. Then it follows from (7.102) and (7.103) that the Riemann-Stieltjes integral
exists and equals the Lebesgue-Stieltjes integral for continuous functions on bounded
intervals. Equality on unbounded intervals follows. For example, for g(s) ≥ 0 the
Riemann-Stieltjes integral of g(s) with respect to F (ds) on −∞ < s ≤ b is defined by

∫ b

−∞
g(s)F (ds) = lim

a→−∞

∫ b

a
g(s)F (ds). (7.104)

Suppose that this limit is finite. Since the Riemann-Stieltjes integral on the right-hand
side of (7.104) equals the Lebesgue-Stieltjes integral over that same interval, it follows
from the dominated convergence theorem that (7.104) also holds for the Lebesgue-
Stieltjes integral, and hence these two integrals are equal over the unbounded interval.

Given a Brownian motion B(t) with E[eikB(t)] = e−|t|k2/2 for all t ∈ R, we now define
the stochastic integral

∫
g(s)B(ds). Here we outline the basic ideas. For more details

on stochastic integration, see Samorodnitsky and Taqqu [172, Chapter 3]. First we
define a random measure B(ds) on the real line by setting B(a, b] = B(b)−B(a). Then
B(a, b] ≃ N (0, (b − a)), since B(t) has stationary increments. Extend to Borel sets
V to see that B(V ) ≃ N (0, |V |) where |V | =

∫
I(s ∈ V ) ds is the Lebesgue measure

of the set V . This construction uses the Kolmogorov consistency theorem, see [172,
Chapter 3] for complete details. If U and V are disjoint intervals, then B(U) and B(V )
are independent, since B(t) has independent increments. Extend to Borel sets to see
that B(ds) is independently scattered, i.e., B(U) and B(V ) are independent when U
and V are disjoint Borel sets. Given a simple function g(s) =

∑n
i=1

ciI(s ∈ Vi) where
V1, . . . , Vn are mutually disjoint bounded Borel sets, we define

∫
g(s)B(ds) =

n∑

i=1

ciB(Vi). (7.105)

For example, if g(s) = I(a < s ≤ b) then

∫
g(s)B(ds) =

∫ b

a
1 B(ds) = B(b) − B(a).
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The stochastic integral (7.105) is normal with mean zero and variance

n∑

i=1

c2
i |Vi| =

∫
|g(s)|2ds.

Now for g ≥ 0 Borel measurable, we define
∫

g(s)B(ds) = lim
n→∞

∫
gn(s)B(ds) in probability (7.106)

where the simple function gn is given by (7.101), and
∫
|g(s)|2ds < ∞. To show that

this limit exists, it is simplest to work with L2 convergence: Let I(gn) =
∫

gn(s)B(ds),
a sequence of Gaussian random variables. Use the dominated convergence theorem to
see that

∥I(gn) − I(gm)∥2 := E[|I(gn) − I(gm)|2]
= E[|I(gn − gm)|2]

=

∫
|gn(s) − gm(s)|2ds → 0

as m, n → ∞, i.e., the sequence {I(gn)} is Cauchy. Since the Banach space L2 of finite
variance random variables with the norm ∥X∥2 =

√
E[X2] is Cauchy complete, there

exists a limit I(g) in this space. Since L2 convergence (convergence in mean square)
implies convergence in probability, (7.106) holds, and since convergence in probability
also implies convergence in distribution,

∫
g(s)B(ds) ≃ N

(
0,

∫
|g(s)|2ds

)
. (7.107)

(Note: This L2 convergence argument does not extend to stable stochastic integrals,
since a stable law does not have a finite second moment. One can still prove conver-
gence in probability, but the argument is harder, see [172, Chapter 3].) The reason for
taking limits in probability in the definition (7.106), rather than a point-wise limit, is
that the sample paths of B(t) are almost surely of unbounded variation, so that the
point-wise limit might not exist.

If g(s) is continuous on the interval [a, b], then we can also write

∫ b

a
g(s)B(ds) = lim

∆s→0

n∑

i=1

g(si)B(∆si) in probability (7.108)

where ∆s = (b − a)/n, si = a + i∆s for i = 0, 1, . . . , n, and B(∆si) = B(si) − B(si−1).
To see this, note that for all large n we have |gn(s)− g(si)| ≤ 2/n for all si−1 < s ≤ si

and all i = 1, 2, . . . , n, where gn is the simple function approximation of g defined by
(7.101). Then

∫ b

a
gn(s)B(ds) −

n∑

i=1

g(si)∆B(si) ≃ N
(

0,
n∑

i=1

∫ si

si−1

|gn(s) − g(si)|2 ds

)
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for all n. Since the variance is bounded above by (2/n)2|b− a|, the difference between
these two stochastic integrals converges in probability to zero, and then (7.108) follows.

Define g(s) = (t − s)−α
+ − (0 − s)−α

+ using the notation (7.91). We want to show
that

∫
g(s)2ds < ∞ when −1/2 < α < 1/2. Suppose that t > 0. Then g(s) = 0 for

s > t. For s < 0 we have g(s) = (t− s)−α − (0− s)−α. Write g(s) = f(t− s)−f(0− s)
where f(u) = u−α. The mean value theorem implies that g(s) = tf ′(w) = −tαw−1−α

for some 0 − s ≤ w ≤ t − s. Then |g(s)| ≤ t|α||s|−α−1 for all s < 0. It follows that
∫ −1

−∞
g(s)2ds ≤

∫ −1

−∞
(tα)2|s|−2α−2ds =

∫ ∞

1

(tα)2s−2α−2ds < ∞

provided that −2α − 2 < −1, i.e., α > −1/2. If α ≤ 0, then g(s) is bounded on the
interval [−1, t], and so the function g(s)2 is integrable on the entire real line. If α > 0,
then the integrand g(s) blows up at s = t and s = 0. On the interval (−1, 0) we have
0 < (t − s)−α < (0 − s)−α so that g(s)2 = [(0 − s)−α − (t − s)−α]2 ≤ (0 − s)−2α and
hence ∫ 0

−1

g(s)2ds ≤
∫ 0

−1

|s|−2αds =

∫ 1

0

s−2αds < ∞

provided −2α + 1 > 0, i.e., α < 1/2. Finally, on the remaining interval 0 < s < t we
have g(s) = (t − s)−α and a change of variables u = t − s shows that

∫ t

0

g(s)2ds =

∫ t

0

(t − s)−2αds =

∫ t

0

u−2αdu < ∞

provided α < 1/2. Hence it follows that
∫

g(s)2ds < ∞ for −1/2 < α < 1/2 when
t > 0. The proof for t < 0 is similar. If α /∈ (−1/2, 1/2), it can be shown using similar
arguments that

∫
g(s)2ds = ∞.

For suitable functions f(t), the (positive) Riemann-Liouville fractional integral of
order α > 0 is defined by

I
α
t f(t) =

1

Γ(α)

∫ ∞

−∞
f(u)(t − u)α−1

+ du.

Note that (2.25) is valid for p > −1, and substitute p = α−1 to see that s−α is the LT
of tα−1/Γ(α). Then for bounded continuous functions f(t) on t ≥ 0, extended to the
entire real line by setting f(t) = 0 when t < 0, it follows from the convolution property
of the LT that Iα

t f(t) has LT s−αf̃(s). Some authors define the Riemann-Liouville
and Caputo fractional derivatives in terms of the Riemann-Liouville fractional integral:
For example, when 0 < α < 1 we can write

D
α
t f(t) =

d

dt

[
I
1−α
t f(t)

]
and ∂α

t f(t) = I
1−α
t

[
d

dt
f(t)

]
,

which reduces to (2.21) and (2.22). The negative Riemann-Liouville fractional integral
of order α > 0 is defined by

I
α
(−t)f(t) =

1

Γ(α)

∫ ∞

−∞
f(u)(u − t)α−1

+ du.
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The Riesz fractional integral of order α > 0 is Jα
t f(t) = CpIα

t f(t) + CqIα
(−t)f(t) with

p = q = 1/2. Hence we can also write

J
α
t f(t) =

C

Γ(α)

∫ ∞

−∞
f(u)|t − u|α−1du.

This integral exists for bounded continuous functions such that f(t) → 0 sufficiently
fast as |t| → ∞, since the function |t|α−1 is integrable at t = 0 for any α > 0. The
constant C > 0 is chosen so that Jα

xf(x) has FT |k|−αf̂(k) for suitable functions f(x).
The Riesz fractional integral is also called the Riesz potential. For more information,
see Samko, Kilbas and Marichev [171].

To justify the change of variables in (7.92), suppose first that g(s) ≥ 0 is continuous
on s ∈ [a, b]. Then (7.108) defines the stochastic integral

∫ b
a g(s)B(ds). Given c > 0,

define B(c∆si) = B(csi) − B(csi−1). Then

n∑

i=1

g(csi) B(c∆si) ≃
n∑

i=1

g(csi) c1/2B(∆si)

and taking limits in probability as n → ∞ shows that
∫ cb

ca
g(s′)B(ds′) =

∫ b

a
g(cs) c1/2B(ds).

For a different proof, use the fact that the integrand g(t, s) = (t− s)−α
+ − (0− s)−α

+ in
(7.90) has the scaling property g(ct, cs) = c−αg(t, s) = cH−1/2g(t, s). Note that

BH(ct) =

∫
g(ct, s)B(ds) ≃ N

(
0,

∫
|g(ct, s)|2ds

)
,

and
cHBH(t) =

∫
cHg(t, s)B(ds) ≃ N

(
0, c2H

∫
|g(t, s)|2ds

)
.

Then use the scaling and a change of variables s = cs′ to check that
∫

|g(ct, s)|2 ds =

∫
|g(ct, cs′)|2c ds′

= c2H−1

∫
|g(t, s′)|2c ds′

= c2H

∫
|g(t, s′)|2 ds′

so that both integrals have the same distribution.

7.7 Fractional random fields

In this section, we develop multiparameter extensions of the fractional Brownian mo-
tion introduced in Section 7.6. We begin with an independently scattered Gaussian
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252 Chapter 7 Applications and Extensions

random measure B(dx) on Rd such that, for any bounded Borel subset V ⊂ Rd,
B(V ) is a mean zero normal random variable with variance equal to |V |, where
|V | =

∫
I(x ∈ V ) dx is the Lebesgue measure of that set. In R2, |V | is the area

of the set V , and in R3, |V | is the volume of the set V . Define the d-dimensional
rectangle

(a, b] = {x ∈ R
d : aj < xj ≤ bj for all j = 1, . . . , d}

and the vector 1 = (1, . . . , 1) ∈ Rd. Now we define the stochastic integral
∫

(a,b]
f(x) B(dx) ≈

∑

j

f(xj)B(∆xj) (7.109)

where ∆xj are rectangles (xj , xj + h1] in Rd and xi = a + jh is a discrete lattice with
spacing h = ∆x > 0. Here j = (j1, . . . , jd) is a vector of integers, and the sum is taken
over all j such that xj ∈ (a, b]. The approximating sum is mean zero normal with
variance

∑
j f(xj)2(∆x)d since the random variables B(∆xj) are iid N (0, (∆x)d). It

converges in probability to the stochastic integral for continuous functions f(x) (see
details), and the limit

∫

x∈(a,b]
f(x) B(dx) ≃ N

(

0,

∫

x∈(a,b]
|f(x)|2 dx

)

.

A random field is a stochastic process A(x) indexed by x ∈ Rd. The (Lévy) fractional
Brownian field in Rd is a scalar-valued random field defined by

BH(x) =

∫

y∈Rd

[
∥x − y∥H−d/2 − ∥0 − y∥H−d/2

]
B(dy), (7.110)

for 0 < H < 1, H ̸= 1/2. This form extends the fractional Brownian motion (7.96)
based on the Riesz fractional derivative (0 < H < 1/2) or the Riesz fractional integral
(1/2 < H < 1), see details. The stochastic integral (7.110) is well-defined because the
function f(y) = ∥x− y∥H−d/2 − ∥0 − y∥H−d/2 satisfies the condition

∫
|f(y)|2dy < ∞

when 0 < H < 1, H ̸= 1/2. Since the volume (Lebesgue measure) of the set cV =
{cx : x ∈ V } in Rd is cd|V |, the Gaussian random measure B(dx) has the scaling
B(c dx) = cd/2B(dx). For example, if V is a cube with sides of length h in R3, then
B(V ) has variance |V | = h3, and cV is a cube with sides of length ch, so that B(cV )
has variance |cV | = c3h3. Then it follows that BH(cx) ≃ cHBH(x):

BH(cx) =

∫ [
∥cx − y∥H−d/2 − ∥0 − y∥H−d/2

]
B(dy)

=

∫ [
∥cx − cy′∥H−d/2 − ∥c0 − cy′∥H−d/2

]
B(c dy′)

≃
∫

cH−d/2

[
∥x − y′∥H−d/2 − ∥0 − y′∥H−d/2

]
cd/2B(dy′)

= cHBH(x).

(7.111)

A straightforward extension of this argument shows that BH(cx) and cHBH(x) have
the same finite dimensional distributions.
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Section 7.7 Fractional random fields 253

Remark 7.32. A fractional stable field can be defined in a similar manner. Take
an independently scattered stable random measure A(dx) on Rd such that A(V ) ≃
Sγ(β, σ(V ), 0) in the notation of Proposition 5.3, where σ(V )γ = |V |, and define

AH(x) =

∫ [
∥x − y∥H−d/γ − ∥0 − y∥H−d/γ

]
A(dy) (7.112)

for 0 < H < 1 with H ̸= 1/γ. The stable stochastic integral
∫

(a,b]
f(x) A(dx) ≈

∑

i

f(xi)A(∆xi) (7.113)

exists if
∫
|f(x)|γdx < ∞, see Samorodnitsky and Taqqu [172, Chapter 3]. Since

A(c dx) = cd/γA(dx), it follows that the fractional stable field is self-similar with Hurst
index H: AH(cx) ≃ cHAH(x). Fractional stable fields have been used to parameterize
flow and transport models in highly heterogeneous aquifers, see Herrick et al. [79],
Kohlbecker et al. [102], and additional discussion later in this section.

The random field (7.110) is isotropic: If R is an orthogonal matrix (see Remark 6.3)
then ∥Rx∥ = ∥x∥ for all x ∈ Rd, and a change of variables y = Ry′ shows that

BH(Rx) =

∫ [
∥Rx − y∥H−d/2 − ∥0 − y∥H−d/2

]
B(dy)

=

∫ [
∥Rx − Ry′∥H−d/2 − ∥R0 − Ry′∥H−d/2

]
B(R dy′)

≃
∫ [

∥x − y′∥H−d/2 − ∥0 − y′∥H−d/2

]
B(dy′)

= BH(x)

(7.114)

since |RV | = |V | for any Borel set V . Increments of the fractional Brownian field
(7.110) are given by

BH(x) − BH(y) =

∫

z∈Rd

[
∥x − z∥H−d/2 − ∥y − z∥H−d/2

]
B(dz), (7.115)

and then an easy change of variables shows that BH(x) − BH(y) ≃ BH(x − y), i.e.,
the random field has stationary increments.

A stationary isotropic random field can provide a reasonable model for a physical
parameter that varies in the same manner in all directions, and exhibits stationary
behavior (that is, the nature of the physical parameter is the same at every point
in space). Temperature or atmospheric pressure might be considered isotropic on a
two dimensional rectangle at a fixed altitude, in a small enough region so that the
atmospheric conditions remained the same. If you photograph a meadow, forest,
desert, or other homogeneous landscape from above, on a cloudy day, it would appear
isotropic. One cannot easily tell north from east.

For a more detailed example, consider the traditional vector advection dispersion
equation (ADE) for the movement of contaminants in ground water. Here p(x, t)
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254 Chapter 7 Applications and Extensions

denotes the relative concentration of the contaminant at location x and time t > 0,
the solution to the ADE

∂

∂t
p(x, t) = −v ·∇p(x, t) + ∇ · Q∇p(x, t). (7.116)

The advective velocity v controls the plume center of mass, and the dispersivity matrix
Q governs the dispersion of individual particles away from their center of mass. In
practical applications, it is common to allow v and Q to vary with the spatial location
x. Darcy’s Law states that

v =
−K∇h

η
(7.117)

where η is the porosity of the medium (percent of volume through which fluid can
flow), h is the hydraulic head (height of the water level relative to some fixed depth),
and K is the hydraulic conductivity. The scalar K field describes how easy it is for
fluid to flow through the porous medium at the point x, which reflects the structure
of the medium (e.g., K values in sand are larger than K values in clay). If the
porous medium is isotropic, then a fractional Brownian field or a fractional stable field
(see Remark 7.32) is often used to generate a synthetic K field, consistent with the
statistics of measured data. At a typical experimental site, K is measured at points in
a vertical column (in a well) and then the statistics of the K field are examined from
several wells. This gives an indication of the moments, pdf, and correlation structure.
Typically the sampling wells produce on the order of 103 K values. Solving the ADE
(7.116) on a computer usually requires values of the velocity field v at around 106 data
points in two dimensions, or 108 in three dimensions (since the model domain in the
vertical dimension is usually thinner). In order to parameterize this computer model,
a random field simulator is used to generate a synthetic K field consistent with the
statistical properties of the measured K data. The Darcy equation (7.117) is then
used to generate the velocity field, and finally the ADE is solved on a computer (e.g.,
by particle tracking, or a finite difference method). Often the dispersivity is assumed
constant, or in some cases it is assumed that Q = aI where a(x) = a0∥v(x)∥ for some
a0 > 0.

Many studies of K field data have found evidence of long range dependence, leading
to the widespread use of fractional Brownian fields to simulate the K field (actually
log K). Some authors have noted that log K data often has a heavier tail than a Gaus-
sian, and here a fractional stable field (see Remark 7.32) has also been used (e.g., see
Painter [151]). However, it is probably not reasonable to model the porous medium for
groundwater flow as isotropic. A typical aquifer is laid out by a depositional process,
roughly in layers. If you think of an exposed hillside or cliff face (e.g. after a hillside
has been cut through for road construction) there are often prominent vertical layers.
Rotating a picture of the hillside (or rotating the camera) changes the orientation.
Isotropic pictures have no preferred orientation. To adequately model situations with
a preferred orientation requires anisotropic fields. Anisotropy is very common in na-
ture. Temperature varies with altitude (or depth). Gravity provides a fundamental
orientation to most physical systems. To develop anisotropic Brownian (and stable)
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Section 7.7 Fractional random fields 255

fields, we will employ anisotropic fractional derivatives (the Riesz fractional derivative
with Fourier symbol −∥k∥α is the only isotropic fractional derivative).

The basic construction in Biermé et al. [32, Theorem 4.1] replaces the filter ϕ(x) =
∥x∥H−d/2 in (7.110) by a different filter with operator scaling. Define the scaling
matrix E = diag(a1, . . . , ad) where 1 = a1 ≤ · · · ≤ ad. Then it is easy to check that
the filter

ϕ(x1, . . . , xd) =

⎛

⎝
d∑

j=1

Dj |xj |2/aj

⎞

⎠
1/2

(7.118)

for some constants Dj > 0 has operator scaling: ϕ(cEx) = cϕ(x) for all x ∈ Rd and
all c > 0. Define the Gaussian random field

Bϕ(x) =

∫

y∈Rd

[
ϕ(x − y)H−q/2 − ϕ(0 − y)H−q/2

]
B(dy), (7.119)

where q = a1+· · ·+ad = trace(E). The stochastic integral exists for any 0 < H < 1, see
[32, Theorem 4.1]. The random field (7.119) has stationary increments, and operator
scaling: Define AV = {Ax : x ∈ V } and note that |AV | = | det(A)||V | for any matrix
A and any Borel set V ⊂ Rd. Here det(A) is the determinant of matrix A, and when
A = cE , det(A) = ca1 · · · cad = cq. Then B(cE dy) ≃ cq/2B(dy), and a change of
variables y = cEy′ leads to

Bϕ(cEx) =

∫ [
ϕ(cEx − y)H−q/2 − ϕ(0 − y)H−q/2

]
B(dy)

=

∫ [
ϕ(cEx − cEy′)H−q/2 − ϕ(cE0 − cEy′)H−q/2

]
B(cE dy′)

≃
∫

cH−q/2

[
∥x − y′∥H−d/2 − ∥0 − y′∥H−d/2

]
cq/2B(dy′)

= cHBϕ(x).

(7.120)

An extension of this argument shows that Bϕ(cEx) ≃ cHBϕ(x) in the sense of finite
dimensional distributions [32, Corollary 3.2]. If ϕ(x) = c∥x∥ then E = I the identity
matrix, q = d, and Bϕ(x) is a fractional Brownian field. In general, each one dimen-
sional slice Bi(xi) = Bϕ(x1, . . . , xd) is a well-balanced fractional Brownian motion
whose Hurst index Hi = H/ai varies with the coordinate. This model was invented
to simulate natural K fields in Benson et al. [26]. Typically the Hurst index Hi is
the highest in the flow direction (say H1 ≈ 0.9), somewhat lower in the horizontal
direction transverse to the flow (say H2 ≈ 0.6), and in the negative dependence range
for the vertical direction (say H3 ≈ 0.3). An extension using more general operator
scaling filters allows the Hurst index to vary with an arbitrary set of coordinate axes,
see [32].

Remark 7.33. An operator scaling fractional stable field can be defined in a similar
manner. Take an independently scattered stable random measure A(dx) on Rd such
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256 Chapter 7 Applications and Extensions

that A(V ) ≃ Sγ(β, σ(V ), 0) where σ(V )γ = |V |, and define

Aϕ(x) =

∫

y∈Rd

[
ϕ(x − y)H−q/α − ϕ(0 − y)H−q/α

]
A(dy), (7.121)

for 0 < H < 1. Since A(cE dx) ≃ cq/αA(dx), it follows that the fractional stable field
is operator self-similar: AH(cEx) ≃ cHAH(x).

Remark 7.34. Some researchers have proposed modeling natural K fields using prob-
ability models that are neither Gaussian nor stable. For example, the Laplace distribu-
tion has been proposed by Meerschaert, Kozubowski, Molz and Lu [128]. It is possible
to construct stochastic integrals and random fields based on any infinitely divisible dis-
tribution, but they will not have the same nice scaling properties. Some mathematical
properties of one dimensional fractional Laplace motion are discussed in Kozubowski,
Meerschaert and Podgórski [107].

Remark 7.35. Similar to Remark 7.29, the spectral representation of a fractional
Brownian field is

BH(x) =

∫
(eik·x − 1)∥k∥−H−d/2B̂(dk).

Remark 7.36. Various studies of physical systems have collected data on the velocity
distribution in complex systems, which often exhibits a heavy tail, see for example
Solomon, Weeks and Swinney [192]. Roughly speaking, if the velocity distribution in
the ADE (7.116) follows a power law, then it is reasonable to imagine that the plume
may follow a fractional diffusion at late time, due to the accumulation of power-law
particle jumps. Mathematically, this leads to a conjecture that a highly variable
velocity field in a traditional diffusion equation with variable coefficients could lead
to a fractional diffusion in the scaling limit. This conjecture remains open. One
complication is that, for a very rough velocity field like the ones simulated from fractal
random fields, the standard theory of diffusions does not apply, since the coefficients
are not Lipschitz functions.

Details

Given an independently scattered Gaussian random measure B(dx) on Rd such that
E[eikB(V )] = e−|V | k2/2 for Borel sets V ⊂ Rd, we now define the stochastic integral∫

g(s)B(ds). Given a simple function g(s) =
∑n

i=1
ciI(s ∈ Vi) where V1, . . . , Vn are

mutually disjoint bounded Borel subsets of Rd, we define
∫

g(s)B(ds) =
n∑

i=1

ciB(Vi) (7.122)

in exactly the same way as the one dimensional stochastic integral (7.105). This
stochastic integral (7.122) is normal with mean zero and variance

n∑

i=1

c2
i |Vi| =

∫
|g(x)|2dx.
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Section 7.8 Applications of fractional diffusion 257

Now for g ≥ 0 Borel measurable, we define
∫

g(x)B(dx) = lim
n→∞

∫
gn(x)B(dx) in probability (7.123)

where the simple function gn is given by (7.101). Then
∫

g(x)B(dx) ≃ N
(

0,

∫
|g(x)|2dx

)
. (7.124)

and the stochastic integral exists if
∫
|g(x)|2dx < ∞. For more details, see Samorod-

nitsky and Taqqu [172, Chapter 3].
If g(x) is continuous on the d-dimensional rectangle [a, b], we can also write

∫

x∈(a,b]
g(x)B(dx) = lim

∆x→0

n∑

i=1

g(xi)B(∆xi) in probability (7.125)

where ∆xi are rectangles (xi, xi +h1] in Rd, the vector 1 = (1, . . . , 1) ∈ Rd, xi = a+ ih
is a discrete lattice with spacing h = ∆x > 0, i = (i1, . . . , id) is a vector of integers,
and the sum is taken over all i such that x + ih ∈ (a, b]. To verify (7.125), use the
uniform continuity of g on the compact set [a, b] to see that for any given h, for all
large n we have |gn(x) − g(xi)| ≤ 2/n for all x ∈ (xi, xi + h] and all i = 1, 2, . . . , n,
where gn is the simple function (7.101). Then

∫

x∈(a,b]
gn(x)B(dx) −

∑

i

g(xi)∆B(xi) ≃ N
(

0,
∑

i

∫

(xi,xi+h]
|gn(x) − g(xi)|2 dx

)

for all n. Since the variance is bounded above by (2/n)2
∏

j(bj −aj), the difference be-
tween these two stochastic integrals converges in probability to zero, and then (7.108)
follows.

The Riesz fractional integral is defined for suitable functions f : Rd → R by

J
α
xf(x) =

C

Γ(α)

∫
f(y)∥x − y∥α−ddy.

Similar to the one variable case, the integral exists for bounded continuous functions
such that f(x) → 0 sufficiently fast as ∥x∥ → ∞, since the function ∥x∥α−d is integrable
at x = 0 for any α > 0. To see this, change to spherical coordinates. The constant
C > 0 is chosen so that Jα

xf(x) has FT ∥k∥−αf̂(k) for suitable functions f(x). The
Riesz fractional integral is also called the Riesz potential. For more information, see
Samko, Kilbas and Marichev [171].

7.8 Applications of fractional diffusion

Fractional diffusion is an interesting theoretical construction that links probability,
differential equations, and physics. Its practical importance stems from the fact that
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258 Chapter 7 Applications and Extensions

many real world situations fit the model. We begin our discussion of real world ap-
plications with the problem of contaminant transport in underground aquifers. Here
fractional diffusion was found to be useful because it solved an important open prob-
lem.

The classical advection dispersion equation (ADE) for contaminant transport as-
sumes that the relative concentration of particles p(x, t) solves

∂p

∂t
= −v

∂p

∂x
+ D

∂2p

∂x2
(7.126)

where v is the average drift and D is the dispersivity. The underlying physical model is
a random walk, where individual particles take random jumps away from the center of
mass with mean zero and finite variance proportional to D. A Gaussian pdf provides
the analytical solution for a point source initial condition. According to this model, a
contaminant plume should spread away from its center of mass like t1/2, since the pdf
p(x, t) has standard deviation

√
2Dt. The one dimensional ADE has been applied at

many experimental sites in order to check the accuracy of the model (e.g., see Gelhar et
al. [72, 71]). One consistent observation is that the best fitting value of the parameter
D typically grows with time. Wheatcraft and Tyler [203] review this literature, and
propose a fractal model of heterogeneous porous media as an explanation for the
empirical observation that D ≈ Ctρ for some ρ > 0. Benson et al. [27, 29] developed
the fractional ADE

∂p

∂t
= −v

∂p

∂x
+ D

∂αp

∂xα
. (7.127)

to connect these fractal concepts with fractional derivatives. This research was success-
ful, in that it allowed hydrologists to use a fractional ADE with constant coefficients
instead of a traditional ADE with variable coefficients. Since these coefficients are
supposed to represent physical properties of the aquifer that do not vary over the time
scale of the experiment, this is an important scientific achievement.

Remark 7.37. The units of the FADE coefficients can be determined using the Grün-
wald finite difference formula (2.1) for the fractional derivative: Write

∆p

∆t
= −v

∆p

∆x
+ D

∆αp

(∆x)α

where the relative concentration p(x, t) = C(x, t)/
∫

C(x, t) dx is dimensionless, t is in
time units T , and x is in length units L. Then the left-hand side has units of 1/T so
each term on the right-hand side has the same units. This implies that v has units of
L/T , and D has units of Lα/T , since ∆x has units of L, and (∆x)α has units of Lα.

Point source solutions to the fractional ADE or FADE (7.127) with 1 < α < 2 are
stable densities that spread away from their center of mass at the rate t1/α, a super-
diffusion. They exhibit positive skewness and a heavy power-law leading tail, features
often observed in real data.

Figure 7.2 shows plume data collected at the Macro-dispersion Experimental Site
(MADE) in Columbus, Mississippi, USA, and the best-fit concentration curves from
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c) Snapshot 3 (day #224)
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d) Snapshot 4 (day #328)

Figure 7.2. Tracer plume from the MADE site with fitted stable and Gaussian pdf, from
Benson et al. [28].

the FADE (7.127) with constant coefficients: α = 1.1, v = 0.12 meters per day, and
D = 0.14 metersα per day. The data represent measured concentrations from sampling
wells distributed along the natural flow path of ground water at the site. A tritium
tracer was injected into the ground water at day t = 0 and monitored over the course of
the experiment. The best fitting ADE curves (normal pdf) from a variable coefficient
model are also shown (i.e., the best fitting Gaussian pdf is shown for each data set).
These concentration snapshots clearly illustrate the skewness and non-Gaussian shape
typically seen in ground water plumes. It seems apparent that the ADE, even with
a dispersion coefficient that varies with time, does not capture the plume shape. A
log-log plot of the same data at day t = 224 and day t = 328 was shown in Figure
1.5. That figure illustrates the power-law decay of the concentration p(x, t) ≈ x−α−1

for x large, consistent with the stable pdf solution to the FADE. Additional analysis
in that paper verified that the peak concentration falls at a power law rate ≈ t−1/α

and that the empirical plume variance (which can be estimated from a histogram of
particle concentration, even though the theoretical variance does not exist) increases
at a power law rate ≈ t2/α. The parameter α was estimated a priori from the statistics

Brought to you by | Brown University Rockefeller Library
Authenticated | 128.148.231.12

Download Date | 4/28/14 11:53 PM



260 Chapter 7 Applications and Extensions

of the hydraulic conductivity (K field, see additional discussion in Section 7.7). The
empirical agreement between this α estimate and the fitted plume provides additional
evidence in favor of the FADE model.

The fractional advection dispersion equation (7.127) is based on a random walk
model with power law jumps. Real contaminant plumes may also experience retarda-
tion caused by particle sticking and trapping. The space-time fractional ADE

∂β
t p(x, t) = −v

∂

∂x
p(x, t) + D

∂α

∂xα
p(x, t) (7.128)

introduced in Section 2.4 is based on a CTRW with power law waiting times between
jumps. Because the waiting time has infinite mean for 0 < β < 1, a segregation
of particles into two phases, mobile and immobile, leads to a more detailed model
described in Schumer et al. [180]. That model predicts mobile plume mass will decay
like a power law. This power law decay of mobile mass was also observed in the MADE
tritium plume, supporting the use of a space-time fractional diffusion model at that
site.

Another kind of evidence for power law retention time comes from examination of
the breakthrough curve t 7→ p(x, t) at a fixed location x. Solutions to (7.128) with
0 < β < 1 decay like ≈ t−β−1 at late time, see Schumer et al. [180]. Haggerty, Wondzell
and Johnson [74] observed a power law breakthrough curve during a tracer test in a
mountain stream. Those data were fit to a space-time fractional ADE with β = 0.3
in Schumer et al. [180]. The long waiting times in this setting are caused by tracer
particles that become trapped in sediment at the bottom of the stream.

Power law waiting times are very common in practical applications. Barabasi [20]
studied the waiting time between emails from a single user. The distribution follows
a Pareto model with β ≈ 1. Aoki, Sen and Paolucci [6] use fractional time derivatives
of order 0 < β < 1 to model heat transfer on a metal plate. Voller [200] uses a space-
time fractional diffusion equation for heat transfer, with a fractional time derivative
of order 0 < β < 1 and a fractional space derivative of order 1 < α < 2, to model a
melting front. Weiss and Everett [202] use a time-fractional diffusion equation with
0 < β < 1 to model the anomalous diffusion of electromagnetic eddy currents in
geological formations.

One of the modeling issues involving (7.128) is the range of the power law index.
If α > 2, then power law jumps have a finite variance, and the traditional second
derivative in space applies at late time. If β > 1 then the power law waiting times
have a finite mean, and the first order time derivative applies at late time. However,
the traditional diffusion equation may not be an appropriate model for such a system
on an intermediate time scale. Hence there is an ongoing effort to extend the fractional
diffusion model to a larger range of α and β. For example, applying a two scale limit
procedure to waiting times with 1 < β < 2 leads to a time-fractional ADE

∂β
t p(x, t) − a∂tp(x, t) = −v

∂

∂x
p(x, t) + D

∂α

∂xα
p(x, t), (7.129)

with a > 0, see Baeumer, Benson and Meerschaert [14].
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Méndez Berhondo et al. [145] found that waiting times between solar flares follow
a power law model with 1 < β < 2. Then a time fractional equation such as (7.129)
could be applied. Smethurst and Williams [189] find that the waiting times between
doctor visits for an individual patient follow a power law model with β ≈ 1.4.

Another interesting application of heavy tails and fractional diffusion comes from
the theory of complex systems. An instructive review article of Shlesinger, Zaslavsky
and Klafter [187] describes how Lévy flights are used to model chaotic dynamical
systems. Chaotic dynamical systems are deterministic systems of nonlinear differential
equations that can exhibit wild behavior, in which the later state is so sensitive to the
initial condition that its behavior is essentially random. This sensitive dependence
on initial conditions was noted by Lorenz [116], who observed chaotic behavior in
computer models from atmospheric science. The book of Strogatz [197] provides an
accessible reference to this subject, see also [125, Section 6.4]. A particle tracing out a
chaotic trajectory follows a fractal set called a strange attractor. The velocity of such
particles can often follow power law statistics, i.e., the proportion of displacements
exceeding size ∆x falls off like a power law (∆x)−α over a fixed time interval ∆t. Even
though the system is deterministic, the behavior is so unpredictable that a random
walk model is appropriate. The Lévy flight is the name used in this field to refer to
a random walk with power law jumps in some α-stable domain of attraction. The
scaling property (self-similarity) of the limiting stable Lévy motion that approximates
the random walk in the long-time limit has a strong appeal. Shlesinger et al. [187]
also consider Lévy walks, a coupled CTRW in which the waiting time between jumps
also follows a power law distribution. The coupled CTRW, an extension of the CTRW
model presented in Section 4.3, was developed to impose physical limits on heavy
tailed random walks. In the coupled CTRW model, the iid random vectors (Ji, Yi)
describe the jumps Yi of a particle, and the time Ji required to make this jump.
The components of this random vector are dependent, to enforce physical limits. For
example, particles cannot travel faster than the speed of light, so that the ratio Yi/Ji

has an upper bound. The mathematical theory of coupled CTRW limits considered in
Becker-Kern, Meerschaert and Scheffler [23] leads to fractional diffusion equations that
involve coupled space-time fractional derivatives, see Example 7.44 for more details.

Remark 7.38. Applications of fractional diffusion require estimation of the proba-
bility tail p = P[X > x] ≈ Cx−α from experimental data. Taking logs on both sides
yields log p ≈ log C − α log x, which is the basis for some common tail estimation
procedures. Given a data set X1, . . . , Xn that is supposed to follow this model, at
least approximately for x large, sort the data in decreasing order X(1) ≥ · · · ≥ X(n).
if this model is appropriate, then we should have log(i/n) ≈ log C − α log X(i) for the
largest order statistics. In some cases, if a large number of upper order statistics follow
this model reasonably closely, a simple linear regression on a log-log plot of the order
statistics versus the ranks i/n can be used to estimate the tail parameter. Since order
statistics are not independent, the estimation problem is not a standard regression.
Aban and Meerschaert [2] show that correcting for the mean and covariance structure
under an assumed Pareto model leads to a sharper estimation procedure known as the
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Figure 7.3. Log-log plot of the exceedence probability for the 100 largest observations
of positive daily total precipitation in Tombstone, Arizona USA between July 1, 1893 to
December 31, 2001, with best fitting Pareto (dotted line), Pareto with truncated Pareto
parameters (dashed line), and truncated Pareto (solid line) tail distribution. From Aban,
Meerschaert and Panorska [1].

Hill estimator, originally developed by Hill [83] and Hall [83]. Since it is quite common
to encounter power law data in many fields of science and engineering, this estimation
problem has attracted much attention. There are dozens (at least) of different tail
estimators, many of which are reviewed in Baek and Pipiras [13]. There are also some
interesting variations that are useful in practice, including truncated Pareto laws, see
Aban, Meerschaert and Panorska [1].

Lavergnat and Gole [108] found that waiting times between large raindrops follow
a power law model with 0 < β < 1. Aban, Meerschaert and Panorska [1] fit a
Pareto with α = 3.8 to the largest observations of daily precipitation in city with a
very dry climate, see Figure 7.3. As noted in Remark 7.38, Hill’s estimator of α is
commonly used in practice. For the data in Figure 7.3, there is evidence that the
largest observations do not follow a pure power law. The curved line in Figure 7.3
represents the best fitting truncated Pareto distribution. The dashed line represents
the Pareto distribution with α = 2.9 taken from the fitted truncated Pareto. This may
be appropriate if there was some truncation effect in measurement that reduced the
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Figure 7.4. Breakthrough data for a tracer test on the Grand River in Michigan, with fitted
stable density, from Chakraborty, Meerschaert and Lim [46].

largest observations. Malamud and Turcotte [120] find that the waiting time between
large earthquakes in California follows a power law model with β ≈ 1.0.

Sabatelli et al. [169] find that waiting times between trades follow a (truncated)
power law with β ≈ 0.4. Since log returns also follow a power law distribution, this
suggests that a space-time fractional diffusion model

∂β
t p(x, t) = D

∂α

∂|x|α p(x, t) (7.130)

may be useful to model the symmetric log returns. A tempered fractional derivative
in time may also be considered, as developed in Section 7.3, to capture the deviation
from a power law for long waiting times, see Carr, Geman, Madan and Yor [43]. For
a survey of recent research that applies continuous time random walks and fractional
diffusion to finance, see Scalas [175].

Deng et al. [56, 57] applied the fractional advection dispersion equation (FADE)

∂p(x, t)

∂t
= −v

∂p(x, t)

∂x
+ pD

∂αp(x, t)

∂xα
+ qD

∂αp(x, t)

∂(−x)α
(7.131)

to model contaminant transport in rivers. They use a negatively skewed stable with
α = 1.7 and β = −1 (i.e., p = 0 and q = 1) to capture the heavy trailing tail for a
tracer test in the Missouri River in Iowa USA, caused by particles that get trapped in
the sediment at the bottom of the river. A related fractional model was developed by
Shen and Phanikumar [186]. Figure 7.4 shows how the model (7.131) with α = 1.38
and β = −1 fits data from a tracer test on the Grand River in Michigan USA. In
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Figure 7.5. Breakthrough data for a tracer test in the Red Cedar River in Michigan, fit to
a time-fractional diffusion model, from Chakraborty, Meerschaert and Lim [46]. The lower
panel shows the same data on a log-log plot, to illustrate the power law decay of concentration
at late time.

this type of analysis, it is typical to plot the breakthrough curve t 7→ p(x, t) at fixed
locations x. A heavy tail on the right-hand side of the breakthrough curve is therefore
an indication of negative skewness in the pdf x 7→ p(x, t). In this application, the
breakthrough curve is measured by pouring buckets of tracer into the river over the
side of a bridge, and then measuring concentration over time at other bridges further
downstream. As we mentioned in Chapter 1, this model has caused some controversy
in hydrology. The random walk model behind (7.131) with q = 1 has only negative
jumps, so the model in [56, 57] assumes that particles “jump” upstream (relative to the
plume center of mass). Chakraborty, Meerschaert and Lim [46] fit another tracer test
on the Red Cedar river in Michigan USA using the model (7.131) with α = 1.5 and
β = −1 (not shown). An alternative time-fractional diffusion model, equation (7.128)
with α = 2 and β = 0.978, was also fit to the same data, with reasonably good results,
see Figure 7.5. Since the time-fractional model does not assume upstream jumps, it is
preferred by some hydrologists.
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Figure 7.6. Monthly average flow in the Salt river near Roosevelt, Arizona from October
1912 to September 1983, from Anderson and Meerschaert [5].

Power law tails with 2 < α < 4 are also commonly seen in river flow time series.
Figure 7.6 shows a time series of monthly average flows from the Salt river, upstream
of Phoenix, Arizona in the USA. This river runs from the mountains through the
desert, and experiences a wide range of variability in flow. The occasional sharp
spikes are indicative of heavy tails, see discussion in Brockwell and Davis [41, Section
13.3]. A log-log plot of the largest order statistics in Figure 7.7 shows a power law
tail with α ≈ 3.0. Sums of iid random variables having a power law tail with α > 2
are asymptotically normal, since the variance is finite. The data are significantly
correlated, and a statistical estimate of the correlation is useful to model the process. A
typical time series model to represent the dependence between successive observations
is a moving average Xt = µt +

∑
j cjZt−j where (Zj) are iid with mean zero and

P[|Zj | > x] ≈ Cx−α. The sample covariance

1

n

∑

t

(Xt − µt)(Xt+h − µt+h) =
1

n

(
∑

i

ciZt−i

)⎛

⎝
∑

j

cjZt+h−j

⎞

⎠

= n−1

(
∑

i

ciZt−i

) (
∑

k

ck+hZt−k

)

= n−1

⎛

⎝
∑

i

cici+hZ2
t−i +

∑

i

∑

k ̸=i

cick+hZt−iZt−k

⎞

⎠ .

Since P[Z2
j > x] = P[|Zj | > x1/2] ≈ Cx−α/2 where 2 < α < 4, the first term involves

squared noise variables with an infinite second moment. It turns out that this term
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dominates as n → ∞, so that the asymptotic limit of the sample covariance involves
a stable law, see Davis and Resnick [54, 55]. Hence, even though the time series has
finite variance, the Extended Central Limit Theorem 4.5 is important to understand
the covariance structure.
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Figure 7.7. The river flow data from Figure 7.6 has a power law tail with α ≈ 3.0.

Fractional diffusion is also useful in biology. The famous paper of Viswanathan et
al. [199] proposed a Lévy flight model (no pun intended) for the wanderings of an
albatross foraging for food in the open ocean. This model is based on tracking data
from individual birds. The birds make many small flights, searching for food. Then
occasionally they make a very long flight, seeking a new fishing spot. The power law
statistics of the flight length suggest a random walk in the domain of attraction of
a stable law, and hence a stable Lévy process provides a convenient model for the
long-time behavior of these birds. The trajectory of a single bird over time is similar
to the sample path in Figure 5.32. Some biologists argue that animals follow a stable
Lévy motion because it represents a better search strategy than a Brownian motion,
see discussion in Shlesinger et al. [187]. Ramos-Fernández et al. [160] use a Lévy walk
to model the foraging of spider monkeys.

Baeumer, Kovács and Meerschaert [15, 16] use a fractional diffusion equation to
model the spread of invasive species. Data from biological studies often show that
offspring migrate a distance from their parents that falls off like a power law. The
dispersal kernel that models these movements represents the distance between parent
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Section 7.8 Applications of fractional diffusion 267

and offspring, so that the repeated convolution of dispersal kernels gives the location
of subsequent generations. This is mathematically equivalent to a random walk over
the generations, where the dispersal kernel gives the pdf of the jump variable. A heavy
tailed dispersal kernel leads to a stable Lévy motion after a number of generations.
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Figure 7.8. Solution to the reaction-diffusion equation (7.132) with α = 2 (top panel)
and α = 1.7 (bottom panel), illustrating the effect of anomalous dispersion. From Baeumer,
Kovács and Meerschaert [16].

Since the population can increase, a fractional reaction-diffusion equation is useful
to represent growth and dispersal:

∂

∂t
p(x, t) = λp(x, t)

(
1 − p(x, t)

K

)
+ Cp

∂α

∂xα
p(x, t) + Dq

∂α

∂(−x)α
p(x, t). (7.132)

The first term λp(x, t) models exponential population growth at the rate λ, until
population reaches the environmental carrying capacity K. This model is not mass-
preserving, so the solution p(x, t) can no longer be interpreted as a pdf. Figure 7.8
illustrates the effect of fractional dispersion on an invasive species moving across a slit
barrier. In traditional dispersion, there is slow movement through the slit. Note that
in this case, the population on the right-hand side of the barrier is centered at the slit

Brought to you by | Brown University Rockefeller Library
Authenticated | 128.148.231.12

Download Date | 4/28/14 11:53 PM
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location. In anomalous dispersion, the population jumps directly over the barrier. In
a practical application, the slit might represent a long river with one crossing point.

A very interesting study in Brockmann et al. [40] analyzed human movements by
tracking bank notes, using the biological model of dispersal kernels. They found that
the distance traveled by bank notes (carried by humans) over a four day period follows
a power law model with α ≈ 0.6. The authors observe that fractional diffusion of
human populations has significant implications for modeling the spread of infectious
disease, which can be expected to spread faster than a traditional diffusion model
predicts.

Mandelbrot [121] and Fama [63] pioneered the use of heavy tail distributions in fi-
nance. Data on cotton prices from the seminal paper of Mandelbrot [121] indicate that
a stable Lévy motion provides a more appropriate model for price fluctuations than
the usual Brownian motion. Let P (j) denote the price of cotton, or other speculative
commodity, on day j. The log return is defined by L(j) = log[P (j)/P (j − 1)]. Then
P (n) = P (0) exp[L(1) + · · · + L(n)]. Since log(1 + z) = z + O(z2), the log-return
approximates the relative change in price. The log return is useful in finance, be-
cause this nonlinear transformation typically produces a sequence of centered random
variables with essentially no serial correlation: E[L(j)] ≈ 0 and E[L(j)L(j − 1)] ≈ 0.
For this reason, it is common in finance to represent prices by an exponential model
P (t) = P (0) exp[X(t)] where X(t) is some Lévy process. For example, the famous
Black-Scholes model for option pricing is based on a Brownian motion model of log
returns. Alternative option pricing formulas based on stable Lévy motion have been
developed by Mittnik and Rachev [146] and Janicki et al. [93].

The application of stable models in finance remains controversial, and much of the
controversy revolves around the very delicate problem of tail estimation. Jansen and
de Vries [94] argue that daily returns for many stocks and stock indices have heavy tails
with 3 < α < 5, and discuss the possibility that the October 1987 stock market crash
could be explained as a natural heavy tailed random fluctuation. Loretan and Phillips
[117] use similar methods to estimate heavy tails with 2 < α < 4 for returns from
numerous stock market indices and exchange rates. This indicates that the variance is
finite but the fourth moment is infinite. Both daily and monthly returns show heavy
tails with similar values of α in this study. Rachev and Mittnik [159] fit a stable pdf
with 1 < α < 2 to a variety of stocks, stock indices, and exchange rates. McCulloch
[123] re-analyzed the data in [94, 117], and fit a stable pdf with 1.5 < α < 2. The
papers [94, 117] estimate α based on a Pareto distribution with α ∈ (0,∞) while the
authors in [123, 159] apply a stable distribution with α ∈ (0, 2]. A nice discussion of
this controversy appears in McCulloch [124].

Aban, Meerschaert and Panorska [1] examined absolute daily price changes in U.S.
dollars for Amazon, Inc. stock from January 1, 1998 to June 30, 2003. They fit a Pareto
with α = 2.3 to the largest observations, see Figure 7.9. A truncated Pareto with
α = 1.7 was also fit. The truncated Pareto estimate of α may be more appropriate,
if there were significant truncation effects in the observations. For example, there
are automatic trading limits that can limit the largest price fluctuations. Figure 7.10
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Figure 7.9. Log-log plot of the largest absolute values of daily price changes in Amazon,
Inc. stock, with best fitting Pareto (straight line) and truncated Pareto (curved line) tail
distribution. From Aban, Meerschaert and Panorska [1].

shows trading volume (shares per day) for the same data set. There is a clear power
law trend with α = 2.7. Trading volume can be used to infer waiting times between
trades for a CTRW model of stock prices.

Remark 7.39. Power laws are quite prevalent in scientific data, see for example
the book of Sornette [193]. One possible explanation involves mixture distributions.
Exponential and related distributions (e.g., gamma) can arise from random arrival
processes and relaxation phenomena (e.g., cooling). In a heterogeneous environment,
the exponential rate parameter may vary. Suppose P[X > x] = e−λx where λ itself
follows an exponential distribution with P[λ > y] = e−by for some b > 0. Then the
unconditional distribution of X is a power law:

P[X > x] =

∫ ∞

0

P[X > x|λ = y]be−bydy

=

∫ ∞

0

e−yxbe−bydy =
b

b + x
≈ b

x
as x → ∞.

If λ has a gamma pdf g(y) with Laplace transform g̃(s) = (1 + βs)−α for some α > 0,
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Figure 7.10. Trading volume for Amazon, Inc. stock from January 1, 1998 to June 30, 2003.
The data fit a power law with α = 2.7.

then

P[X > x] =

∫ ∞

0

e−yxg(y)dy = (1 + βx)−α ≈ Cx−α as x → ∞

where C = β−α > 0. Karamata’s Tauberian Theorem (e.g., see Feller [65, Theorem
3, p. 445]) implies that any pdf that decays like a power law at zero has a Laplace
transform that decays like a power law at infinity (the formal statement involves
regular variation). Since the mixture above is mathematically equivalent to the Laplace
transform of the mixing density, any such pdf for λ (e.g., Weibull or beta) also produces
random variables with a power law tail. For more details, and an application to
sediment transport, see Hill et al. [84].

7.9 Applications of vector fractional diffusion

In this section, we summarize some recent applications of vector fractional diffusion,
to illustrate the practical application of the theory developed in Chapter 6.

Example 7.40. Schumer et al. [181] applied the generalized fractional diffusion equa-
tion (6.115) as a conceptual model for contaminant transport in ground water. In
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Section 7.9 Applications of vector fractional diffusion 271

Chapter 1, we discussed an experiment at the MADE site, see Figure 1.5. Figure 7.11
shows that the two-dimensional MADE plume spreads at a rate t1/α1 in the direction of
flow, where the tail index α1 = 1.2 is reasonably consistent with the one dimensional
model. The plume spreads like t1/α2 in the direction transverse to the flow, where
α2 = 1.5. The spreading rate was determined by plotting the measured plume vari-
ance against distance. Since the average plume velocity is constant, the mean travel
distance x = vt is proportional to time. Since the plume width grows like a power
law with distance, it also grows like a power law with time, with the same power law
index. Then an operator stable Lévy motion with drift is an appropriate model for the
movement of individual particles, and the GADE (6.115) with B = diag(1/1.2, 1/1.5)
can be used to model relative concentration in two dimensions. A second study, at
an experimental site in Cape Cod, found α1 = 1.6 and α2 ≈ 2. The plume spreading
at this site can be well approximated by the GADE (6.113). The underlying operator
Lévy motion has one stable component in the direction of flow, and one normal com-
ponent in the direction transverse to flow. The plume shape is similar to Figure 6.10,
which represents the view from above, where flow is in the positive x2 direction.
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Figure 7.11. Apparent plume variance in the direction of flow (circles) and transverse to
flow (squares) at the MADE site, from Meerschaert, Benson and Baeumer [126].

Example 7.41. If a data set of random vectors exhibits a heavy tail in each coordi-
nate, it is often the case that the tail index varies with the coordinate. Figure 7.12
displays n = 2, 853 daily log returns, based on the exchange rates of the German
Deutsche Mark x1 and Japanese Yen x2 against the US dollar. (See Section 7.8 for a
discussion of Lévy process models in finance based on log returns.) A one dimensional
analysis similar to Figure 1.5 indicates that the exchange rate data in each coordinate
x1 and x2 fits a mean zero stable pdf with α ≈ 1.6. This was the basis for the multi-
variable stable model proposed by Nolan, Panorska and McCulloch [149]. That paper
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also includes a method for estimating the spectral measure (6.49). Then the pdf of
the accumulated log return X(t) solves a vector fractional diffusion equation (6.63).
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Figure 7.12. Exchange rates against the US dollar from Meerschaert and Scheffler [139].
The new coordinates z1, z2 uncover variations in the tail parameter α.

A further analysis reveals that the tail behavior varies with the coordinate, once we
adopt a suitable rotated coordinate system. For an X ∈ GDOA(Y ) where the operator
stable law Y has exponent B = diag(1/α1, 1/α2) with α2 < α1, it follows from the
spectral decomposition discussed near the end of Section 6.8 that each component
X · ej is in the domain of attraction of a stable random variable Yj = Y · ej with index
αj . Then Theorem 4.5 shows that V0(r) = P[|X · ei| > r] is RV(−αj), and Proposition
4.9 implies that for any δ > 0 we have

r−δ−αj < P[|X · ej | > r] < rδ−αj

for all r > 0 sufficiently large. Since any one dimensional projection X · θ is a linear
combination of the coordinates X · ej , it follows that

r−δ−α1 < P[|X · θ| > r] < rδ−α1
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for all θ ̸= ±e2, i.e., the heavier tail dominates. (For an extension of this property to
arbitrary exponents, see Meerschaert and Scheffler [135, Theorem 6.4.15].) Applying
this idea to the exchange rate data, the fact that the coordinates x1 and x2 show the
same tail behavior with α ≈ 1.6 does not rule out the possibility of another coordinate
system in which the tail behavior varies.

To investigate this possibility, we consider a rotated coordinate system z1 (line with
slope −1) and z2 (line with slope +1) as noted in Figure 7.12. Now we find that the
z1 coordinate has a lighter tail with α1 ≈ 2.0 and the z2 coordinate has a heavier tail
with α2 ≈ 1.6. The original coordinates mask the variation in tail behavior. Now a
reasonable model for X(t) is an operator stable Lévy process in the new coordinates
z1 and z2, where the z1 coordinate is a Brownian motion, and the z2 coordinate is a
stable Lévy motion with index α2. It follows from the Lévy representation (6.21) that
these two coordinate processes are independent. Then the pdf of the accumulated log
return process X(t) solves a fractional diffusion equation

∂

∂t
p(z, t) = D1

∂2

∂z2
1

p(z, t) + D1

∂1.6

∂|z2|1.6
p(z, t) (7.133)

using the symmetric fractional derivative as in (6.68). One interpretation of this model
is that both currencies are reacting to the same principal effect, the US dollar, and
variations due to other currencies are less extreme.

The new coordinates in this example are the eigenvectors of the sample covariance
matrix of the exchange rate data in Figure 7.12. Theorem 10.4.8 in [135] implies that,
if B = diag(1/α1, 1/α2) with α2 < α1 in some coordinates, the eigenvalues of the
sample covariance matrix converge in probability to the coordinate system that makes
B diagonal. This result is a heavy tailed version of principal component analysis.
Even though the covariance matrix does not exist in this case, the sample covariance
matrix indicates a useful set of coordinates. For details, see Meerschaert and Scheffler
[139, Example 8.1].

The exponential Lévy process model P (t) = P (0) exp[X(t)] fails to capture one very
interesting feature of financial data: Typically the log returns are uncorrelated, but
their absolute values (or squared values) are highly correlated. This is an interesting
and useful example of a real world situation in which variables are uncorrelated, but
not independent. The problem of constructing good models for vectors of log returns
in finance, that capture heavy tails as well as nonlinear correlations, is an active
research area. One promising approach is to subordinate the Lévy process X(t) to
some independent waiting time process, see for example Barndorff-Nielsen [22], Carr,
Geman, Madan and Yor [43], and Kotz, Kozubowski and Podgórski [106]. Some related
models were developed by Bender and Marquardt [25], Finlay and Seneta [68], Heyde
[80], and Leonenko, Petherick and Sikorskii [110]. The CTRW introduced in Section
2.4 can provide a strong motivation for considering such models.

Example 7.42. An application to geophysics in Meerschaert and Scheffler [138] con-
siders a data set of fracture aperture x1 and fluid velocity x2 in fractured rock, from
a site under consideration for a nuclear waste depository in Sweden. A one variable
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tail estimation shows that the aperture data has a heavy tail with α1 = 1.4, and the
fluid velocity data has a heavy tail with α2 = 1.05. Then an operator stable model
with exponent B = diag(1/1.4, 1/1.05) could be appropriate. Since the components of
the operator stable law have infinite second moment, the covariance cannot be used
to model dependence. Instead, the spectral measure Λ(dθ) in (6.111) governs the
dependence between these two variables. The spectral measure in Figure 7.13 was
approximated using the nonparametric estimator of Scheffler [176]. The spectral mea-
sure governs the direction of jumps that make up the operator stable limit. In the
data, the largest jumps are traced back to the unit sphere using the Jurek coordinates
from Remark 6.40, and this gives a nonparametric estimate of the spectral measure.
See [138] for more details.
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Figure 7.13. Estimated spectral measure for an operator stable model of fracture statistics,
from Meerschaert and Scheffler [138].

Example 7.43. An application to fracture flow in Reeves et al. [161] models a con-
taminant plume moving through fractured rock as a random walk that converges in
the long-time scaling limit to an operator stable Lévy motion. The eigenvalues ai of
the scaling matrix B code the power law jumps, related to fracture lengths. The eigen-
vectors vi of B determine the coordinate system, related to fracture orientation. The
mixing measure is concentrated in the eigenvector directions, so that a contaminant
particle jumps in the vi direction with some probability M(vi), and the random jump
length L follows a power law distribution with P[L > r] ≈ r−αi with ai = α−1

i . The
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eigenvector directions reflect the fracture geometry. Typically the fracture orientation
is determined by the crystalline structure of the rock, and there are just a few pre-
ferred fracture orientations. If the orientations are orthogonal, then the contaminant
plume follows the vector fractional diffusion equation (6.113), and the plume shape
is similar to Figure 6.5. More typically, the fracture orientations are separated by an
angle less than 90 degrees. This can be related to the orthogonal case by a simple
(non-orthogonal) change of coordinates. In some cases, the number of fracture orien-
tations is larger than the number of dimensions. Then the mixing measure determines
the relative number of jumps in each direction. Because there are a finite number of
possible orientations, the mixing measure is always discrete in these applications.

Example 7.44. Figure 7.14 shows tick-by-tick data on LIFFE bond futures from
September 1997. The plotted data are Xn = (Yn, Jn)′ where Yn is the log return
after the nth trade, and Jn is the waiting time between the n − 1st and nth trades.
The log returns are roughly symmetric, and exhibit a power law tail with α ≈ 1.8.
The waiting times also show a heavy tail, with index β ≈ 0.9. There appears to be
some significant dependence between the two coordinates, and it seems that large log
returns are associated with long waiting times. This is consistent with a model where
(Xn) are iid with X ∈ GDOA(V ) and V has dependent components. This leads to a
coupled CTRW model for the price at time t > 0, see Meerschaert and Scalas [133].
The coupled CTRW is similar to the model introduced in Section 2.4 except that the
space-time random vectors Xn have dependent components. A convenient dependence
model is Yn = Jβ/2

n Zn where Zn are iid normal, independent of Jn. Then the CTRW
limit has a pdf that solves a coupled fractional diffusion equation

(
∂

∂t
− ∂2

∂x2

)β

p(x, t) = δ(x)
t−β

Γ(1 − β)

where β is the tail index of the waiting times. The coupled space-time fractional
derivative operator on the left-hand side is defined through its Fourier-Laplace symbol
ψ(k, s) = (s + k2)β , i.e., the FLT of the left-hand side is ψ(k, s)p̄(k, s). The theory of
coupled CTRW, their limit laws, and their governing equations is based on operator
stable laws, since the space-time vector Xn belongs the GDOA of some operator stable
law. For more details, see Becker-Kern et al. [23], Jurlewicz et al. [96], Meerschaert
and Scheffler [141], and Straka and Henry [196].

Example 7.45. For a general operator stable process, where the components are
not independent, solutions to the generalized fractional advection-dispersion equation
(6.115) can be obtained via particle tracking. Figure 7.15 shows a particle tracking
solution to the GADE with B = diag(1/1.5, 1/1.9). The mixing measure is concen-
trated on seven discrete points: M(e1) = 0.3, M(±v1) = 0.2, M(±v2) = 0.1, and
M(±v3) = 0.05, where vi = Rθie1 with θ1 = 6◦, θ2 = 12◦, and θ3 = 18◦. Here
Rc is the rotation matrix from Example 6.35. This conceptual model represents the
flow and dispersion of tracer particles in ground water. Many particle jumps follow

Brought to you by | Brown University Rockefeller Library
Authenticated | 128.148.231.12

Download Date | 4/28/14 11:53 PM



276 Chapter 7 Applications and Extensions

-0.003 -0.001 0.001 0.003

log.return

0

5000

10000

15000

w
a

it

Figure 7.14. Waiting times in seconds and log returns for LIFFE bond futures, from
Meerschaert and Scalas [133].

the direction of flow (the positive x1 coordinate) but some particles deviate to avoid
obstacles in the porous medium. The particle tracking solution shows level sets from
a histogram of particle location, based on n = 10, 000, 000 particles. Each particle
follows a simulated operator stable process Zt + vt with v = (10, 0)′ indicating a
drift from left to right. The process Zt was approximated using a random walk with
jump vectors WBΘ (mean-corrected) where P[W > r] = 1/r and Θ has distribution
M(dθ), as in Theorem 6.43. To validate the accuracy of the particle tracking method,
a numerical method was used to compute the inverse FT of the operator stable. As
compared to the vector diffusion in Figure 6.2, the plume in Figure 7.15 is skewed in
the direction of flow, and the spreading rate is greater in the direction of flow. The
operator stable Lévy process Zt represents the location of a randomly selected particle.
In this case, the x1 component is stable with index α1 = 1.5, the x2 component is
symmetric stable with index α2 = 1.9, and the two components are dependent. For
more details, see Zhang et al. [210]. An interesting experiment reported in Moroni,
Cushman and Cenedese [148] performs particle tracking on actual individual particles
through a porous medium in a laboratory setting. Particle tracking for time-fractional
diffusion equations is treated in Germano, Politi, Scalas and Schilling [73], Magdziarz
and Weron [118] and Zhang, Meerschaert and Baeumer [211].
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Figure 7.15. Particle tracking solution of the generalized fractional advection-dispersion
equation (6.115) from Zhang, Benson, Meerschaert, LaBolle and Scheffler [210], with diagonal
exponent B = diag(α1, α2), velocity v = (v1, v2)

′, and mixing measure as indicated.
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coupled fractional diffusion equation, 275
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Darcy’s Law, 254
diffusion equation, 4
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directional derivative, 170
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dispersion tensor, 149
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Dominated Convergence Theorem, 7, 9, 59
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tempered fractional diffusion, 209, 212
tempered stable, 207
tight, 77, 162
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