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SEA  ICE  covers ~12% of Earth's ocean surface
boundary between ocean and atmosphere

indicator of climate change 

mediates exchange of heat, gases, momentum 
global ocean circulation  
hosts rich ecosystem   
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polar ice caps critical to global climate 
 in reflecting incoming solar radiation

white snow and ice
              reflect

dark water and land
              absorb

0.0

0.2

0.4

0.6

0.8

1.0

Al
be

do

Snow

Ocean

Earth’s refrigerator

α = re�ected sunlight

incident sunlight
albedo



September

1978 1983 1988 1993 1998 2003 2008 2013
3

4

5

6

7

8

RECORD LOW  2012

the summer Arctic sea ice pack is melting
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Arctic sea ice extent          September 15, 2020
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feedback



recent losses 
in comparison to 
the United States

Perovich
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thicker multiyear ice being replaced by thinner �rst year ice

... and sea ice 
     volume is 
     declining
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WHAT’S
  NEXT ?

Predicting what may come next 
requires lots of math modeling.
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Represent sea ice more realistically in 
climate models to improve projections.

challenge:

Account for key processes

e.g. melt pond evolution

... and other sub-grid scale structures and processes. 

linkage of scales

Flocco, Schroeder, Feltham, Hunke, JGR Oceans 2012

Including PONDS in simulations LOWERS 
predicted sea ice volume over time by 40%.

How do patterns of 
dark and light evolve?



Gully et al. Proc. Roy. Soc. A 2015Golden et al. GRL 2007
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Sea Ice is a Multiscale Composite Material
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HOMOGENIZATION for Composite Materials

∗

Einstein 1906 : e�ective viscosity of a dilute suspension of rigid spheres in a �uid
Maxwell 1873 : e�ective conductivity of a dilute suspension of spheres

         e�ective
conductivity

Wiener 1912 : arithmetic and harmonic mean bounds on e�ective conductivity 
Hashin and Shtrikman 1962 : variational bounds on e�ective conductivity 

widespread use of composites in late 20th century due in large part
to advances in mathematically predicting their e�ective properties

LINKING
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FORWARD
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What is our research about?
Using methods of  homogenization and statistical physics to model sea ice e�ective 
behavior and advance representation of sea ice in climate models, process studies, ...
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Linking Scales

mm
scale
brine
inclusions

Linking         Scales

meter
scale
snow
topography

km
scale
melt
ponds

basin scale -
grid scale
albedo

How do scales
interact in the
sea ice system?

Perovich

NASA



sea  ice  microphysics

�uid transport



sea ice may appear to be a 
barren, impermeable cap ...
   

 



micro - brine channel (SEM)

                      sea ice is a 
    porous composite

D. Cole

brine channels (cm) 

brine inclusions in sea ice (mm)

R. Obbard

pure ice with brine, air, and salt inclusions

horizontal section vertical section



- ocean-ice-air exchanges of heat, CO

evolution of Arctic melt ponds and sea ice albedo

C. Haas

C. KrembsACE CRCK. Golden

2

Antarctic surface �ooding 
and snow-ice formation 

nutrient �ux for algal communities

- evolution of salinity pro�les 

�uid �ow through the porous microstructure of sea ice
governs key processes in polar climate and ecosystems 

22%

September
snow-ice
estimates

26%28%

27%

T. Maksym and T. Markus, 2008



sea  ice  ecosystem

                   sea ice algae
support life in the polar oceans



-15 C,   = 0.033° -3 C,   = 0.143° -6 C,   = 0.075°φ φ φT = T = T =

-8 C,   = 0.057° φT = -4 C,   = 0.113° φT =

brine volume fraction and connectivity increase with temperature

X-ray tomography for brine in sea ice                                Golden et al., Geophysical Research Letters, 2007



critical brine volume fraction φc ~~ 5%

Critical behavior of �uid transport in sea ice

c ~~ -5  C, S ~~ 5 ppt

RULE  OF  FIVES 

T
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brine volume fraction    
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Arctic �eld data

Golden, Eicken, Heaton, Miner, Pringle, Zhu   GRL 2007
Golden, Ackley, Lytle   Science   1998

Pringle, Miner, Eicken, Golden   J. Geophys. Res.   2009
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sea ice algal 
communities

D. Thomas 2004

nutrient replenishment 
controlled by ice permeability

biological activity turns on
or o� according to 
rule of �ves

Golden, Ackley, Lytle Science 1998

Fritsen, Lytle, Ackley, Sullivan     Science 1994
Convection-fueled algae bloom
         Ice Station Weddell

critical behavior of microbial activity



p = 1/3 p = 2/3

impermeable permeable

percolation theory
probabilistic theory of connectedness

percolation threshold
  pc = 1/2   for  d = 2 

open    with probability  p
closed  with probability 1-p

smallest p for which there is an infinite open cluster

bond

  open
cluster
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p

 compressed 
     powder

sea ice

Golden, Ackley, Lytle, Science, 1998

Continuum  percolation  model  for   stealthy  materials
applied to sea ice microstructure explains Rule of Fives
and Antarctic data  on  ice production and  algal growth

radar absorbing 
      composite

φc ~~ 5 %

sea ice is radar absorbing

B-2 Stealth Bomber
F-117 Nighthawk
Stealthy Helicopters



X-ray tomography for
brine inclusions

microscale

governs

mesoscale
processes

Thermal evolution of permeability and microstructure in sea ice
Golden, Eicken, Heaton , Miner, Pringle, Zhu,    Geophysical Research Letters    2007 

    percolation theory 
for �uid permeability

hierarchical model

network model

con�rms rule of �ves

theories agree closely 
         with �eld data

k ( ) = k 2
0

 k   = 3 x 100
-8

m2

 critical
exponent

t
φ φ − 0.05(               )

Pringle, Miner, Eicken, Golden
J. Geophys. Res. 2009

rigorous bounds

melt pond
evolution

from critical path analysis 
in hopping conduction 

*

rock physics



How does EPS a�ect �uid transport?

2D random pipe model with bimodal distribution of pipe radii

Rigorous bound on permeability k; results predict observed drop in k

Ste�en, Epshteyn,  Zhu, Bowler, Deming, Golden
        Multiscale Modeling and Simulation, 2018

How does the biology a�ect the physics?
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Sea ice algae secrete extracellular polymeric substances (EPS)
                     a�ecting evolution of brine microstructure.

without EPS with EPS

Krembs, Eicken, Deming, PNAS 2011
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tracers flowing through inverted sea ice blocks 



develop electromagnetic methods 
of monitoring �uid transport and 
microstructural transitions

extensive measurements of �uid and 
electrical transport properties of sea ice:

2007    Antarctic   SIPEX 
2010    Antarctic   McMurdo Sound 
2011    Arctic           Barrow AK
2012    Arctic           Barrow AK
2012    Antarctic   SIPEX II
2013    Arctic           Barrow AK
2014    Arctic           Chukchi Sea

Arctic and Antarctic �eld experiments



Remote sensing of sea ice
Recover sea ice
properties from
electromagnetic
       (EM) data 

 INVERSE PROBLEM

sea ice thickness
ice concentration

brine volume fraction
brine inclusion connectivity

ε*
   effective complex permittivity  

(dielectric constant, conductivity)
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Bounds on the complex permittivity
           of polycrystalline materials 
              by analytic continuation

      Adam Gully, Joyce Lin, 
Elena Cherkaev, Ken Golden

Stieltjes integral representation for
e�ective complex permittivity 

Forward and inverse bounds 

Proc. Roy. Soc. A       8 Feb 2015

Applied to sea ice using 
two-scale homogenization

Inverse bounds give method for 
distinguishing ice types using 
remote sensing techniques

Milton (1981, 2002), Barabash and Stroud (1999), ...

orientation statistics



columnar granular

higher threshold for �uid �ow in granular sea ice

5% 10%

microscale details impact “mesoscale” processes 
nutrient �uxes for microbes
melt pond drainage
snow-ice formation

Golden, Sampson, Gully, Lubbers, Tison 2021

electromagnetically distinguishing ice types 
    Kitsel Lusted, Elena Cherkaev, Ken Golden 



wave propagation in the marginal ice zone (MIZ) 
   Stieltjes integral representation and bounds for 
the complex viscoelasticity of the ice - ocean layer �rst theory of key parameter 

in wave-ice interactions only 
�tted to wave data before Sampson, Murphy, Cherkaev, Golden 2021

quasistatic, long wavelength regime
 

           
homogenized

parameter
depends on

sea ice 
concentration

and ice �oe
geometry

Bergman (78) - Milton (79)
integral representation for
Golden and Papanicolaou (83) 

ε*

Analytic Continuation Method

Milton, Theory of Composites (02)

like EM waves



Masters, 1989

advection enhanced di�usion

e�ective di�usivity
nutrient and salt transport in sea ice 
heat transport in sea ice with convection 
sea ice floes in winds and ocean currents 
tracers, buoys diffusing in ocean eddies 
diffusion of pollutants in atmosphere

homogenize

Drake
Passage

sea ice vortices

Gulf Stream Aghulas Current

e�ective di�usivity
Stieltjes integral for         with spectral measure

Avellaneda and Majda, PRL 89, CMP 91

Murphy, Cherkaev, Xin, Zhu, Golden, Ann. Math. Sci. Appl. 2017 
Murphy, Cherkaev, Zhu, Xin, Golden, J. Math. Phys. 2020

Wells et al. 2011



major drivers in polar climate
key challenge for global climate models

Perovich

melt pond formation and albedo evolution: 

     Are there universal features of the evolution 
similar to phase transitions in statistical physics?

numerical models of melt pond evolution, including 
            topography, drainage (permeability), etc. Flocco, Feltham 2007 Flocco, Feltham, 

Hunke 2012

Skyllingstad, Paulson, 
Perovich 2009

Luthje, Feltham, 
Taylor, Worster 2006

..



fractal curves in the plane
they wiggle so much that their dimension is >1

D = 1 D = 1.26

simple curves Koch snow�ake

D = 2

space �lling curves

Brownian 
motion

Peano curve
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complexity grows with length scale

Transition in the fractal geometry of Arctic melt ponds
Christel Hohenegger, Bacim Alali, Kyle Steffen, Don Perovich, Ken Golden

The Cryosphere, 2012

~ 30 m

simple pond transitional pond complex pond



Ising Model for a Ferromagnet

si ={+1
−1

spin up
spin down

nearest neighbor Ising Hamiltonian

H
applied 
magnetic
field

Tc

M

T

        Curie point 
critical temperature

blue

white

islands of
like spins

energy is lowered when nearby spins align 
with each other, forming magnetic domains

magnetic domains 
in cobalt

magnetic domains 
in cobalt-iron-boron

melt ponds (Perovich) melt ponds (Perovich)

effective magnetization



100 101 102 103 104

D

A (m2 )

1

2

observed

model

            pond size 
distribution exponent

observed   -1.5

model        -1.58

Ma, Sudakov, Strong, Golden,  New J. Phys.,  2019

(Perovich, et al. 2002)

Starting with random initial configurations, as Hamiltonian energy is minimized 
by Glauber spin flip dynamics, system “flows” toward metastable equilibria. 

ONLY MEASURED INPUT = LENGTH SCALE (GRID SIZE) from snow topography data

Order from Disorder

Ising 
model

melt pond 
photo (Perovich)

Ising model for ferromagnets Ising model for melt ponds

= { +1

−1 ice       (spin down)

water   (spin up)

pond area fractionmagnetization (M + 1)
2~ albedo

random magnetic field 
represents snow topography

only nearest neighbor 
patches interactF = 

Scienti�c American
EOS, PhysicsWorld, ...



no bloom bloom

massive under-ice algal bloom
Arrigo et al., Science 2012

WINDOWS

Have we crossed into a 
new ecological regime?

       The frequency and extent of sub-ice 
phytoplankton blooms in the Arctic Ocean

(2015 AMS MRC)

Horvat, Rees Jones, Iams, Schroeder, 
Flocco, Feltham, Science Advances 2017

Horvat, Flocco, Rees Jones, Roach, Golden
Geophys. Res. Lett. 2019

The e�ect of melt pond geometry on the distribution 
                of solar energy under �rst year sea ice

Melt ponds control transmittance
of solar energy through sea ice,
impacting upper ocean ecology.

Perovich



Gap radius: 611 km
06 January 1985

Gap radius: 311 km
30 August 2007 

Filling the polar data gap with 
partial di�erential equations 

    hole in satellite coverage 
of sea ice concentration �eld

previously assumed 
ice covered

�ll with harmonic function satisfying 
   satellite BC’s plus stochastic term

Strong  and Golden, SIAM News 2017
Strong  and Golden, Remote Sensing 2016

∆ψ=0

NOAA/NSIDC Sea Ice Concentration CDR 
product update will use our PDE method. 



Conclusions
1. Sea ice is a fascinating multiscale composite with structure 

similar to many other natural and man-made materials.

2. Mathematical methods developed for sea ice advance the 
theory of composites and other areas of science and engineering. 

3. Homogenization and statistical physics help link scales in sea ice 
and composites; provide rigorous methods for �nding e�ective 
behavior; advance sea ice representations in climate models.

4. Fluid �ow through sea ice mediates melt pond evolution and many 
processes important to climate change and polar ecosystems.

5. Field experiments are essential to developing relevant mathematics.

6. Our research is helping to improve projections of climate change,
the fate of Earth’s sea ice packs, and the ecosystems they support.
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Sydney Morning Herald
         23 July, 1998

2:45 am  July 22, 1998

``Please don’t be alarmed but we
   have an uncontrolled fire in the
   engine room ....”

14

4

about 10 minutes later ...

``Please don’t be alarmed but 
   we’re lowering the lifeboats ....”
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