
PROJECT SUMMARY: Multiscale Homogenization for Sea Ice

The precipitous loss of Arctic sea ice observed in the past few decades has far reaching
impact on the polar marine environment as well as more broadly on Earth’s climate system.
This reduced ice cover also opens up new opportunities for navigation, exploration and
extraction of energy and food resources, and increased human activity in general. Along
with the Arctic opening up goes the potential for more interactions and competition between
countries. Thus it is of strategic as well as scientific interest to improve projections of how
the sea ice cover may evolve in the future, and to develop more rigorous representations of
sea ice in predictive models of the climate system and marine environment.

One of the fundamental challenges of modeling sea ice and climate is to account for
important processes that occur on scales finer than the coarse grids of numerical models,
and how they influence larger scale effective behavior of the system. This linkage of scales
is particularly interesting, relevant − and challenging − for sea ice, as it exhibits composite
structure on length scales ranging over many orders of magnitude. Millimeter scale brine
inclusions are laced throughout the ice, and coalesce to form meter scale channels through
which fluid can flow. Sea ice has centimeter scale polycrystalline structure which helps
determine its bulk fluid flow and mechanical properties. Convective brine flows with meter
scale structure affect bulk thermal and nutrient transport. Sea ice floes ranging from a few
centimeters to tens of kilometers form the microstructure of the sea ice pack, viewed from an
aircraft or satellite as a time-evolving composite of ice and ocean. The Arctic sea ice surface
in late spring and summer is a complex mosaic of snow and pools of melt water on meter to
kilometer scales, which determine sea ice albedo, a critical parameter in climate models.

Here we propose to develop powerful methods of homogenization, over a broad range
of scales as indicated above, to accurately account for important sub−grid scale sea ice
structures and processes in climate modeling. We consider several key issues critical to
advancing predictive capability, where mathematics of homogenization and statistical physics
can provide a rigorous framework for analysis and computation. They include:

• Advection diffusion processes. Develop bounds and spectral measure computa-
tions for advection enhanced diffusivity, such as the thermal conductivity of sea ice
in the presence of convection, or the diffusion coefficient of a tagged floe in the ice
pack. Develop inverse methods for recovering diffusion and velocity fields in large
scale, effective advection diffusion models of sea ice evolution.

• Ocean waves in sea ice. Develop bounds on the effective complex viscoelasticity of
the sea ice layer for wave propagation in the the marginal ice zone (MIZ), via Stieltjes
integrals with spectral measures which depend on floe geometry and configurations.

• Low order predictors. Explore the use of simplified partial differential equation
models for analyzing and predicting fundamental characteristics of the sea ice pack,
such as MIZ width and sea ice concentration in unobserved regions.

• Statistical physics of melt ponds. Analyze critical exponents of melt pond evo-
lution as long range order or connectivity develops, such as the correlation length
exponent. Develop an Ising model of melt pond geometry that incorporates ice-albedo
feedback, and investigate other low order models of melt pond and albedo evolution.
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Figure 1: Multiscale structure of sea ice. From left to right: sub−millimeter scale brine
inclusions that form the porous microstructure of sea ice [122]; centimeter scale polycrys-
talline structure of sea ice [1]; decimeter to meter scale pancakes forming in a wave field in
the Southern Ocean (Golden); melt ponds on the scale of decimeters to kilometers on the
surface of Arctic sea ice in late spring and summer (Perovich); kilometer scale floes in the
Arctic sea ice pack (Perovich) exhibit local diffusion in their interactions with other floes
and can be advected in larger scale wind and current fields with coherent structure on the
scale of hundreds of kilometers.

1 Technical Approach

1.1 Introduction

One of the fascinating, yet challenging aspects of modeling sea ice and its role in global cli-
mate is the sheer range of relevant length scales of structure − over ten orders of magnitude,
from the sub-millimeter scale to hundreds of kilometers, as indicated in Figure 1. Modeling
sea ice on scales appropriate for global climate models depends on an understanding of the
physical properties of sea ice at the scale of individual floes and even down to the scale
of brine inclusions which control so many of these properties. Climate models challenge
the most powerful supercomputers to their fullest capacity. However, even the largest com-
puters still limit the horizontal resolution to tens of kilometers and typically require clever
approximations and parameterizations to model the basic physics of sea ice.

A central theme of our proposed work is how to use information about smaller scales
to predict effective behavior on larger scales. We observe here that this central problem of
climate science shares commonality with the key challenges, for example, of statistical me-
chanics where knowledge of molecular interactions is used to derive collective or macroscopic
behavior. Moreover, it also shares fundamental similarities with homogenization theory for
composites where larger scale effective properties are calculated from knowledge of the mi-
crostructure. These fields of physics and applied mathematics provide a natural − and
powerful − framework for advancing how we treat sea ice in predictive models of climate,
and improving projections of how Earth’s polar ice packs may evolve in the future.

In particular, the analytic continuation method [9, 77, 41, 44, 79] yields powerful integral
representations for the effective or homogenized transport coefficients of two [41] or multi-
phase [42, 38] composite materials. The method exploits the properties of these coefficients
as analytic functions of the system parameters, such as ratios of the conductivities of the
phases. The geometry of the composite microstructure is encoded into a spectral measure
of a random self adjoint operator G, the key object in the method. Because of the Stielt-
jes form of the integral representation, knowing moments of the measure − or information
about the composite miscrostructure − yields rigorous bounds on the homogenized trans-
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port coefficient [5, 38]. Moreover, in a discrete model of the composite, the operator G
becomes a random matrix, whose eigenvalues and eigenvectors can be used to compute the
spectral measure. The microscale structure, which determines the spectral measure and the
homogenized coefficient, is thus linked to the macroscopic behavior via the operator G.

Here we propose to develop this powerful approach in contexts beyond transport in two
phase composites, that are motivated by considerations of the role of sea ice in the climate
system over a broad range of scales. In so doing, we will significantly advance our ability
to rigorously account for sub-grid scale structures and processes in predictive models. In
particular, we will develop Stieltjes integral approaches to the following homogenization
problems for sea ice: its polycrystalline structure, advection diffusion processes such as the
thermal conductivity in the presence of fluid convection, the trapping constant of a porous
medium which is related to the fluid permeability, and ocean waves propagating through
the marginal ice zone (MIZ). All these problems are put on an equal footing via a resolvent
representation for the relevant local field in each case, such as the electric or strain field.

Moreover, we will explore larger scale homogenization problems such as finding low order
partial differential equation models of sea ice evolution. For example, solutions of Laplace’s
equation have been very useful in objectively measuring the width of the MIZ and its recent
widening [105, 109, 106], and filling in the so-called polar data gap [107, 108]. Natural
generalizations of these simplistic models include a spatially dependent diffusion coefficient,
sources and sinks, and an advective flow field. We will develop numerical models of floe
aggregates which can be used to investigate diffusion of individual floes, jamming states
which may lead to sub-diffusive behavior, and the homogenized problem. Finally we will
investigate melt ponds from a percolation theory viewpoint, and continue development of an
Ising model approach to understanding the evolution of melt pond geometry.

1.2 Mathematical Models of Composites and Phase Transitions

Here we give a brief overview of some of the mathematical models and ideas that we will use
in developing homogenization schemes for linking scales in the sea ice − climate system.

1.2.1 Percolation models

Sea ice is a porous composite of pure ice with liquid brine inclusions. These inclusions host
extensive algal and bacterial communities which support life in the polar oceans [111, 37].
The flow of fluids through sea ice mediates processes important to climate such as melt pond
drainage, which is critical to the evolution of sea ice albedo. Fluid flow through sea ice
also governs the evolution of the salt budget and salinity profiles [111], convection-enhanced
thermal transport [69], ocean-ice-atmosphere CO2 exchanges [98], and the build-up of algal
biomass fueled by fluxes of nutrients [111, 37]. It also drives snow-ice formation, which
accounts for a significant portion of the ice produced in the Southern Ocean [72]. Sea water
percolates upward through the porous brine microstructure, flooding the snow layer, which
subsequently freezes.

Sea ice exhibits a very interesting and important critical phenomenon [47]. For brine
volume fractions φ below about 5%, columnar sea ice is effectively impermeable to fluid
flow, while for φ above 5%, it is increasingly permeable. The critical brine volume fraction
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Figure 2: The two dimensional square lattice percolation model below its percolation thresh-
old of pc = 1/2 in (a) and above it in (b). (c) Divergence of the correlation length as p
approaches pc. The infinite cluster density of the percolation model is shown in (d), and the
effective conductivity is shown in (e). (f) The magnetization of the Ising model.

φc ≈ 5% corresponds to a critical temperature Tc ≈ −5◦ for a typical bulk sea ice salinity of
5 parts per thousand. This critical behavior in the fluid flow properties of sea ice, occurring
at this particular threshold, is known as the rule of fives. Given the broad range of processes
which are governed by fluid flow through the porous microstructure of the ice, this rule can
be thought of, roughly speaking, as the on–off switch for fluid flow in sea ice. Understanding
how the fluid permeability of sea ice depends on temperature T or brine volume fraction φ
is prerequisite to incorporating processes governed by fluid flow into climate models. In [47]
we showed how this on–off switch can be explained in terms of percolation theory, which we
now discuss.

Consider the d−dimensional integer lattice Zd, and the square or cubic network of bonds
joining nearest neighbor lattice sites. In the percolation model [16, 103, 51, 18], we assign
to each bond a conductivity σ0 > 0 with probability p, meaning it is open (black), and with
probability 1−p we assign a 0, meaning it is closed. Two examples of lattice configurations are
shown in Figure 2, with p = 1/3 in (a) and p = 2/3 in (b). Groups of connected open bonds
are called open clusters. In this model there is a critical probability pc, 0 < pc < 1, called
the percolation threshold, at which the average cluster size diverges and an infinite cluster
appears. For the two dimensional bond lattice pc = 1/2. For p < pc the density of the infinite
cluster P∞(p) is 0, while for p > pc, P∞(p) > 0 and near the threshold, P∞(p) ∼ (p− pc)β as
p→ p+

c , where β is a universal critical exponent, that is, it depends only on dimension and
not on the details of the lattice. Let x, y ∈ Zd and τ(x, y) be the probability that x and y
belong to the same open cluster. Then for p < pc, τ(x, y) ∼ e−|x−y|/ξ(p), and the correlation
length ξ(p) ∼ (pc − p)−ν diverges with a universal critical exponent ν as p → p−c , as shown
in Figure 2 (c).

The effective conductivity σ∗(p) of the lattice, now viewed as a random resistor (or
conductor) network, defined via Kirchoff’s laws, vanishes for p < pc like P∞(p) since there
are no infinite pathways, as shown in Figure 2 (e). For p > pc, σ

∗(p) > 0, and near pc,
σ∗(p) ∼ σ0(p − pc)t, p → p+

c , where t is the conductivity critical exponent, with 1 ≤ t ≤ 2
in d = 2, 3 (for an idealized model) [39, 40, 45], and numerical values t ≈ 1.3 in d = 2 and
t ≈ 2.0 in d = 3 [103]. Consider a random pipe network with effective fluid permeability
κ∗(p) exhibiting similar behavior κ∗(p) ∼ κ0(p − pc)

e, where e is the permeability critical
exponent, with e = t [19, 100, 45]. Both t and e are believed to be universal − they depend
only on dimension and not the lattice. Continuum models can exhibit nonuniversal behavior
with exponents different from the lattice case and e 6= t [53, 35, 103, 99, 61].
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1.2.2 Homogenization and spectral measures

Homogenization denotes a field of applied mathematics where the goal is to find a homoge-
neous medium which behaves macroscopically the same as a given inhomogeneous medium.
The methods are focused on finding the effective properties of inhomogeneous media such
as composites. We will see that the spectral measure provides a powerful tool for upscaling
geometrical information about a composite into calculations of effective properties.

We now briefly describe the analytic continuation method for studying the effective prop-
erties of composite materials [9, 77, 41, 44]. This method has been used to obtain rigorous
bounds on effective transport coefficients of composite materials from partial knowledge of
the microstrucure, such as the relative volume fractions of the phases. Later we will show how
this method may be adapted to studies of polycrystalline media [52, 6], advection-enhanced
diffusion processes [2, 3, 86, 87], thermal transport in sea ice enhanced by brine convection,
and wave propagation in the MIZ.

For simplicity we choose the electrical conductivity of a two-phase composite, although
the method applies to any classical transport coefficient. Consider a two-phase random
medium with local conductivity tensor σ(x, ω), a spatially stationary random field in x ∈ Rd

and ω ∈ Ω, where Ω is the set of realizations of the medium. Later, we will consider a
polycrystalline medium where σ is a non-trivial symmetric matrix. Here we consider a
two-phase locally isotropic medium, where σ(x, ω) = σ(x, ω)I, I is the identity matrix, and

σ(x, ω) = σ1 χ1(x, ω) + σ2 χ2(x, ω). (1)

Here χj(x, ω) is the characteristic function of medium j = 1, 2, equaling 1 for ω ∈ Ω with
medium j at x, and 0 otherwise. Let E(x, ω) and J(x, ω) be the stationary random electric
and current fields, satisfying

∇× E = 0, ∇ · J = 0, J = σE, 〈E〉 = ek, (2)

where 〈·〉 is ensemble averaging over Ω or spatial average over all of Rd [41]. For simplicity,
we have set the magnitude of 〈E〉 to 1 and its direction ek is a standard basis vector in the
kth direction. The effective conductivity tensor σ∗ is defined as

〈J〉 = σ∗〈E〉. (3)

We focus on one diagonal coefficient σ∗ = σ∗kk, with σ∗ = 〈σE · ek〉, and since σ∗ depends on
h = σ1/σ2, we define m(h) = σ∗/σ2, which is a Stieltjes function. It is analytic off (−∞, 0]
in the complex h–plane, and maps the upper half plane to the upper half plane [8, 41].

The key step [41, 8, 77, 79] is to obtain an integral representation for σ∗. Consider
F (s) = 1−m(h), s = 1/(1− h), which is analytic off [0, 1] in the s–plane. Then [41]

F (s) = 1− σ∗

σ2

=

∫ 1

0

dµ(λ)

s− λ
, s =

1

1− σ1/σ2

, (4)

where µ is a positive measure on [0, 1]. This formula arises from a resolvent representation
of the electric field (in medium 1),

χ1E = s(sI −G)−1χ1ek , G = χ1Γχ1, (5)
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yielding F (s) = 〈[(s − χ1Γχ1)−1χ1ek] · ek〉, where Γ = −∇(−∆)−1∇· and ∆ = ∇2 is the
Laplacian. In the Hilbert space L2(Ω), the operator G = χ1Γχ1 is self adjoint. Formula (4)
is the spectral representation of the resolvent and µ is a spectral measure of G = χ1Γχ1.

Formula (4) separates the component parameters in s from the geometrical information
in µ. (Extensions to multicomponent media involve several complex variables [42, 38, 81,
78, 29].) Information about the geometry enters through the moments

µn =

∫ 1

0

λndµ(λ) = 〈Gnek · ek〉, (6)

Then µ0 = φ, where φ is the volume or area fraction of phase 1, such as the melt pond
coverage, and µ1 = φ(1−φ)/d if the material is statistically isotropic. In general, µn depends
on the (n+ 1)–point correlation function of the medium. This integral representation yields
rigorous forward bounds for the effective parameters of composites, given partial information
on the microgeometry via the µn [9, 77, 41, 10]. One can also use the integral representations
to obtain inverse bounds, allowing one to use data about the electromagnetic response of a
sample, for example, to bound its structural parameters, such as the volume fraction of each
of the components [74, 75, 23, 20, 24, 124, 14, 22, 28, 50].

In the discrete setting of a square lattice, the action of the operator G is given by
that of a real-symmetric random matrix M , where Γ is a (non-random) projection matrix
which depends only on the lattice topology and boundary conditions, and χ1 is a diagonal
(random) projection matrix which determines the geometry and component connectivity of
the composite medium [85]. In this setting, χ1E and the integral in equations (5) and (4)
have explicit representations in terms of the eigenvalues λi and eigenvectors ui of M [85]

χ1E = s
∑
i

√
mi

s− λi
ui, F (s) =

∑
i

〈
mi

s− λi

〉
, mi = |ui · χ1êk|2, (7)

where êk plays the role of a standard basis vector on the lattice. This shows the discrete spec-
tral measure µ is given explicitly in terms of the eigenvalues λi and orthonormal eigenvectors
ui of the matrix M [85]:

µ(dλ) = 〈Q(dλ)êk · êk〉, Q(dλ) =
∑
i

δλi(dλ)χ1Qi , Qi = uiu
T
i . (8)

Here, Q(dλ) is the projection valued measure associated with M , δλi(dλ) is the delta measure
centered at λi, and the matrix Qi = uiu

T
i is a projection onto the eigenspace spanned by

ui [85]. In the continuum setting, the spectral measure of G still has the form µ(dλ) =
〈Q(dλ)ek · ek〉 but Q(dλ) is abstract in nature and is not given explicitly as in (8) [104].

To compute µ a non-standard generalization of the spectral theorem for matrices is
required, due to the projective nature of the matrices χ1 and Γ [85]. In particular, we
developed a projection method that demonstrates the spectral measure µ in (8) depends
only on the eigenvalues and eigenvectors of random sub-matrices of Γ of size N1 ≈ φN
corresponding to diagonal components [χ1]ii = 1 [85]. Moreover for the periodic setting, the
matrix Laplacian is singular so the matrix representation of (−∆)−1 is not defined. We have
recently extended the results in [85] to the periodic setting, utilizing properties of the singular
value decomposition (SVD) of the matrix gradient ∇. This extension not only alleviated
the issues associated with the 3D RRN discussed in [85] but also gave rise to new spectral
behaviors not previously discovered in related numerical investigations [59].
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1.2.3 Phase transitions and the Ising model of a ferromagnet.

The Ising model of a ferromagnet in a magnetic field H and at temperature T is perhaps
the most studied example of a phase transition in statistical mechanics [112, 26, 43]. We
consider a finite box Λ ⊂ Zd containing N sites. At each site there is a spin variable si
which can take the values +1 or −1. We consider a Hamiltonian with ferromagnetic pair
interaction J ≥ 0 between nearest neighbor pairs < i, j >,

Hω = −H
∑
i

si − J
∑
<i,j>

sisj , (9)

for any configuration ω ∈ Ω = {−1, 1}N of the spins. The average magnetization, which
serves as the principal order parameter in the system, M(T,H) = limN→∞

1
N
〈
∑N

i=1 si〉, where
〈·〉 in this context denotes averaging over ω ∈ Ω with Gibbs weights, can be expressed in terms
of the free energy (per unit site) f as M(T,H) = − ∂f

∂H
. The magnetic susceptibility χ(T,H),

which is the analog of the effective conductivity in Section 1.2.2, is given by χ(T,H) = ∂M
∂H

=

− ∂2f
∂H2 ≥ 0. When H = 0, M(T ) ∼ (Tc − T )β as T → Tc

−, as shown in Figure 2 (f), and
χ ∼ (T − Tc)−γ as T → Tc

+. The universal exponent β here plays a similar role as β for
the percolation model, but has a different numerical value. Below we will discuss how this
framework can be used to model melt ponds.

Principal Scientific Investigations

1.3 Stieltjes integral representations for sea ice parameters

1.3.1 Electromagnetic behavior of polycrystalline materials.

Our recent paper [52] and new analysis (below) of the electromagnetic transport properties
of random, uniaxial polycrystalline media has demonstrated that the underlying, rigorous
mathematical framework is a direct analogue of that for two-phase random media described
in Section 1.2.2. For simplicity, we discuss the theory in terms of conductive polycrystalline
materials, which are composed of many crystallites (single crystals of varying size, shape,
and orientation) that can have different local conductivities along different crystal axes.
The second panel in Figure 1 displays the polycrystalline structure of sea ice and Figure
3 (a) displays a numerically generated polycrystalline structure. In the case of uniaxial
polycrystalline media, the local conductivity along one of the crystal axes has the complex
value σ1, while the conductivity along all the other crystal axes have the value σ2. The local
conductivity tensor of such media is given by [80, 6] σ(x, ω) = R T diag(σ1, σ2, . . . , σ2)R,
where R(x, ω) is a random rotation matrix, and σ can be written in a form which is a direct
analogue of (1), involving the matrices C = diag(1, 0, . . . , 0) and X1 = R TCR,

σ(x, ω) = σ1X1(x, ω) + σ2X2(x, ω), (10)

where X1 is a random projection matrix, X2 = I −X1, XjXk = Xiδjk, j, k = 1, 2, and δjk is
the Kronecker delta.

The propagation properties of a quasistatic electromagnetic wave in a polycrystalline
medium are determined by (2) (or analog D = εE for permittivity), and the effective complex
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Figure 3: Spectral analysis of polycrystalline media. (a) Geometric shapes generated using a
Voronoi diagram, with orientation angles uniformly distributed on the interval (−π/2, π/2).
(b) A graphical, lattice representation of a polycrystalline medium which is isotropic within
the horizontal plane, having checkerboard microstructure comprised of squares with 5 grid
points in length. (c) Electric fields for the polycrystalline microstructure in (b) computed via
equation (7). (d) Spectral function µ(λ) (histogram representations of the spectral measure)
for the polycrystalline microstructure described in (b) computed via equation (8). The
spectral function µ(λ) is displayed with its isotropic theoretical prediction [79] µI(λ) =
(
√

(1− λ)/λ )/π.

conductivity tensor σ∗ is defined by (3). Moreover, in precise parallel with the two component
setting, writing equation (10) as σ = σ2(I − X1/s) yields X1E = s(sI − X1ΓX1)−1X1ek,
an analogue of (5). A Stieltjes integral representation for the diagonal component σ∗ = σ∗kk
of σ∗, is given by equation (4) with F (s) = 〈[(sI − X1ΓX1)−1X1ek] · ek〉. Furthermore,
the positive spectral measure µ on [0, 1] is given by µ(dλ) = 〈Q(dλ)X1ek · ek〉 and Q(dλ) is
the projection valued measure associated with the random, bounded, self-adjoint operator
X1ΓX1 on L2(Ω) with moments µn given by (6) with G = X1ΓX1. The mass µ0 = 〈X1ek ·ek〉
of µ can be thought of as the percentage of the crystals oriented in the kth direction ek [52, 6].

In the discrete setting, the electric field X1E and the summatation formula for F (s) in
equation (7) still hold for polycrystalline media, where λi and ui are the eigenvalues and
eigenvectors of the random matrix M = X1ΓX1. The discrete spectral measure is also given
by equation (7) with X1 in place of χ1. We have developed a projection method for direct
computation of spectral measures, conductivities, and fields via analogues of equations (7)
and (8); see Fig. 3 (b)-(d).

We propose to directly compute spectral measures, corresponding effective transport pa-
rameters, and fields for various polycrystalline microstructures. These media include random
checkerboards (shown in Fig. 3(b) and (c) and more realistic microstructures such as that
displayed in Fig. 3(a) with various crystallite orientation statistics. We will investigate the
associated electromagnetic transport properties of sea ice as a polycrystalline medium, with
particular focus on columnar vs. granular microstructures, which have different fluid flow
characteristics. Electromagnetically distinguishing between these two ice types is of particu-
lar interest. We will also explore the possible characterization of crystallite microstructures
by geometric resonances in the measures, and transitions in the transport properties by
behavior of spectral gaps, eigenvalue correlations, and eigenvector localization properties,
which play a key role in the effective properties of two-component composites [84, 85]. An
extension of the spectral coupling [20, 21, 25, 22] in two component composites to polycrys-
talline media is also of key interest, so as to recover from the computed spectral measures,
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the electromagnetic and thermal transport properties of polycrystalline sea ice.

1.3.2 Advection diffusion and thermal conductivity of sea ice

The enhancement of diffusive transport of passive scalars by complex fluid flow plays a key
role in many important processes in the global climate system [120] and Earth’s ecosys-
tems [31]. Advection of geophysical fluids intensifies the dispersion and large scale transport
of heat [82], pollutants [27, 11, 101], and nutrients [31, 55] diffusing in their environment. In
sea ice dynamics, where the ice cover couples the atmosphere to the polar oceans [120], the
transport of sea ice can also be enhanced by eddy fluxes and large scale coherent structures
in the ocean [121, 67]. In sea ice thermodynamics, the temperature field of the atmosphere
is coupled to the temperature field of the ocean through sea ice, a composite of pure ice with
brine inclusions whose volume fraction and connectedness depend strongly on temperature
[111, 48, 46]. Convective brine flow through the porous microstructure can enhance thermal
transport through the sea ice layer [69, 123, 64].

The effective parameter problem for two-component composites discussed in Section 1.2.2
reduces the analysis of complex composite materials, with rapidly varying structures in space,
to solving averaged, or homogenized equations that do not have rapidly varying data, and
involve an effective parameter. This mathematical framework was extended [73, 71] to
homogenize the advection diffusion equation, involving a complex fluid velocity field with
rapidly varying structures in both space and time, yielding a homogenized equation involving
an effective diffusivity tensor D∗. Moreover, a Stieltjes integral representation of D∗ was
obtained [2, 3, 86, 87, 91, 4, 12], which involves a spectral measure ν of a self-adjoint,
Hermitian operator (or matrix). This representation separates the molecular diffusivity
(or equivalently the Péclet number) from the geometric complexity and dynamics of the
flow [86, 87], which is incorporated in the moments νn =

∫
λn dν(λ) of the measure ν.

As in the setting of composite media, Padé approximants provide rigorous bounds on the
components of D∗ involving the moments νn [5, 3]. The bounds get progressively tighter as
additional moments are incorporated. We now review this mathematical framework in terms
of enhanced thermal conductivity in the presence of a brine velocity field. This framework
can also be used to model the advection enhanced dispersion of sea ices floes by atmospheric
winds and oceanic currents collectively giving rise to a transporting flow.

The enhancement of sea ice thermal conductivity κ by a space-time periodic brine velocity
field u, above the value κ0 of sea ice with no fluid flow, is described by the advection-diffusion
equation

ρ c [ ∂t T + φu · ∇T ] = κ0 ∆T, T (0, x) = T0(x). (11)

Here, κ0 = 2 W/(m K), ρ = 960 kg/m3 is the bulk density of sea ice, c = 2.11 J/(g K) is the
specific heat, and φ is the brine volume fraction - a function of T itself in reality, though taken
here as an independent parameter here for simplicity. Moreover, the bulk brine velocity field
u(t, x) and the initial value T0(x) of the temperature T (t, x) are given, u is incompressible,
∇ · u = 0, and ∂t denotes differentiation with respect to time t.

Non-dimensionalizing and homogenizing (11) shows [73] that the effective behavior of
thermal transport in sea ice is described by a diffusion equation involving an averaged tem-
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Figure 4: Spectal behavior of effective diffusivities (a) Streamlines for BC-flow with
velocity field v = (C cos y,B cosx) and B = C = 1. (b) Padé approximant upper κ∗[M/M ]
and lower κ∗[M − 1/M ] bounds for κ∗, for various values of M , calculated via equation (14)
for BC-flow with C = B, as a function of the flow strength B. (c) The spectral function
(spectral masses mj versus eigenvalues λj) computed via analogues of equations (7) and (8)
[86].

perature T̄ and a symmetric, constant [91] effective conductivity tensor κ∗ [110],

∂t T̄ (t, x) = ∇ · [κ∗∇T̄ (t, x)], T̄ (0, x) = T0(x). (12)

For simplicity, we focus on a diagonal coefficient κ∗kk, k = 1, . . . , d, of κ∗, set κ∗ = (κ∗)kk,
and write the non-dimensional velocity field v = (φ `/τ)u and sea ice thermal conductivity
ε = κ0τ/(`

2 ρ c), where τ and ` are system time and length scales, then [73, 3, 86, 87]

κ∗ = ε(1 + 〈|∇wk|2〉), 〈|∇wk|2〉 =

∫ ∞
−∞

dν(λ)

ε2 + λ2
, (13)

where 〈·〉 denotes averaging over the space-time period cell.
Remarkably, the vector field E(t, x) = ∇wk(t, x) + ek satisfies equation (2) for two-

component composite materials, with J = σE, σ = εI+S, S = (−∆)−1∂t+H, and σ plays
the role of the medium’s conductivity tensor [86, 87]. Here, H(t, x) is the stream matrix, given
in terms of the incompressible velocity field v = ∇ ·H and satisfies HT = −H [3, 2]. When
the flow is time-independent, v = v(x), then wk = wk(x) and S = H. Moreover κ∗ = σ∗, with
σ∗ = (σ∗)kk given [87] in equation (3). The integral representation for κ∗ in equation (13)
follows from the resolvent formula ∇wk = (εI + ıΓSΓ)−1[−ΓHek], an analogue of equation
(5). The self-adjoint operator ıΓSΓ, where ı =

√
−1, involves the same projection operator

Γ = −∇(−∆)−1∇· as the setting of two-component composites. Equation (13) shows that
brine advection enhances the thermal conductivity of sea ice κ∗ ≥ ε.

We have recently extended [86] our numerical methods discussed in Section 1.2.2 to
compute the spectral measure ν for spatially periodic flows, as shown in Fig. 4(c), as well as
the associated effective thermal conductivity κ∗. We have also developed Fourier methods
for computing the spectral measure ν for space-time periodic flows [87]. These computations
show that the origin in the space of the spectral parameter λ for advection-diffusion plays the
role of the spectral endpoints 0 and 1 for composite materials, with an increase in spectral
mass giving rise to an advection-driven enhancement of effective diffusivity above the thermal
conductivity of sea ice with no brine flux. This is a key example of how the behavior of the
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spectral measure ν governs the behavior of the bulk transport coefficient κ∗. We propose to
employ these numerical methods to explore the properties of enhanced thermal conductivity
in sea ice, exploring realistic velocity fields under various circumstances and how they impact
thermal exchange processes, and extend our results to 3D flows such as the ABC-flow [13].

Analytical calculations of the spectral measure ν are extremely difficult except for simple
flows like shear flow [3]. However, Padé approximents [L/M ] provide rigorous, converging
upper and lower bounds [5] for the Stieltjes function f(z) = 〈|∇wk|2〉/z in equation (13),
with z = ε−2, using the moments νn of ν,

[M − 1/M ] ≤ f(z) ≤ [M/M ], f(z) =
∞∑
n=0

(−1)n ν 2n z
n , (14)

where the summation follows from writing 1/(1 + zλ2) as a geometric series. Bounds for κ∗

can also be obtained using variational methods [3, 34]. While the mathematical framework
summarized by equations (12)–(14) provides an elegant, analytic representation for κ∗ and
a means to obtain tight bounds on κ∗, the lack of a method to calculate the moments νn of
ν has impeded progress on obtaining explicit bounds for specific flows using this bounding
procedure [3, 2] since 1991!

We have recently developed a mathematical framework [87, 86] that can be used to
compute, in principle, all of the moments νn associated with a spatially or space-time periodic
brine velocity field v, hence Padé approximant bounds, as shown in Fig. 4(b). This framework
is equivalent to that described above, reproducing the result in (13) with the same measure
ν [87, 86]. Instead of focusing on the vector field ∇wk, the scalar field wk is used, which
has the resolvent formula wk = (ε + G)−1[(−∆)−1vk], G = ı(−∆)−1Dt is a self-adjoint
operator, vk is the kth component of v, Dt = ∂t + v · ∇ for time-dependent v and Dt = v · ∇
for time-independent v. Using this approach, the moments νn of ν, hence the bounds in
equation (14) can be calculated exactly in closed form. Our recent results for BC-flow, with
v = (C cos y,B cosx) and B = C are displayed in Figure 4.

We propose to further develop and investigate rigorous bounds on the convection en-
hanced thermal conductivity of sea ice with brine velocity fields. Field measurements of
this key parameter are notoriously difficult, and there is very little theoretical work in this
direction. We will also further develop this framework and apply it to a broad range of
2D and 3D steady periodic flows, as well as 2D and 3D space-time periodic flows, We also
propose to develop inverse bounds [74, 75, 23, 20, 24, 124, 14, 22, 28, 50], which incorporate
measurements of the effective thermal conductivity of sea ice to potentially recover geometric
and dynamic information about the underlying fluid velocity field.

1.3.3 Fluid permeability and the trapping constant

Pivotal to understanding key processes in the physics and biology of sea ice is its fluid
permeability, k. This parameter controls bulk flow and depends on the fluid volume fraction
and microstructural characteristics. Moreover, sea ice permeability controls the evolution of
melt ponds and the summer sea-ice albedo, a key parameter in climate modeling, as well as
the transport of nutrients and enzymes through the pore matrix of sea ice [49].

While studies of k for sea ice are sparse, rigorous bounds on k in general have been
derived directly on k using variational principles [97], and via variational bounds on the
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trapping constant γ [115, 114, 113], where

k ≤ γ−1I, (15)

with I the identity matrix. Equality is achieved for a certain class of microstructures. The
trapping constant [114, 113] is defined in terms of a porous medium that consists of a pore
region, in which diffusion takes place, and a solid region whose shared boundary with the
pore space contains “traps” which can absorb the diffusing species via a surface reaction.
For a reactant diffusing in this type of porous medium an average survival time τ ∼ γ−1

before a diffusing particle gets absorbed at the boundary. The trapping constant arises in
areas such as nuclear magnetic resonance imaging [100, 33] or enzymatic bacterial foraging
in porous sea ice or the sea floor [117].

We propose here a new method − the first to not rely on variational principles − for ob-
taining bounds on the trapping constant, which will yield bounds on the fluid permeability.
We manipulate the trapping constant formulation and develop it into an analytic continua-
tion method for obtaining rigorous bounds, in terms of the average of Green’s function over
the pore space. We find a Stieltjes integral representation for the trapping constant which
separates the component parameters from the geometry of the composite.

To consider the trapping problem, we let Ω = Ωp ∪ Ωs, where Ωp and Ωs represent the
pore space and solid regions, respectively, Ωp ∩ Ωs = ∅, and let ∂Ωp denote the interface
between the two regions. It was rigorously shown [113] that for statistically homogeneous
isotropic media, γ−1 = 〈u〉, where 〈·〉 denote the ensemble average, and u is a concentration
field that satisfies 

∆u = −1, in Ωp,

u = 0, on ∂Ωp,

u = 0, in Ωs.

(16)

To obtain a Stieltjes integral representation for the trapping constant γ, we consider a
relaxed version of the trapping problem: let D be the local diffusion constant, with

D =

{
DP > 0, on Ωp,

DS > 0, on Ωs,
(17)

instead of DS = 0, where u satisfies
∇ · (D∇u) = −1, x ∈ Ωp,

D ∂u
∂n

+ ζu = 0, x ∈ ∂Ωp,

∇ · (D∇u) = 0, x ∈ Ωs,

(18)

where 0 < ζ < ∞ is a positive surface rate constant. If the solid phase, Ωs, is a connected
domain, we can recover the boundary condition in the limit as DS −→ 0.

Introducing the operator A = ∆−1∇ · χp∇, we obtain an expression for u of the form

u = s(sI − A)−1g, s :=
1

1−DS/DP

, g(x) =
1

DP

∫
Ωp

G(x− y) dy, (19)
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where g is the integral over the pore space of the Green’s function, G(x, y), corresponding to
(18). Using the positive measure µ, corresponding to the spectral resolution of the operator
A, we have derived a Stieltjes integral representation

γ−1 =

∫ 1

0

s dµ

s− λ
, (20)

and obtained algebraic bounds of the form

〈g〉+ s− 1

〈g〉
≤ γ ≤ s

〈g〉
. (21)

Our main goal is to investigate this Stieltjes integral representation, the moments of
the measure, and to obtain a sequence of bounds on the fluid permeability, through its
relations to the trapping constant. An intermediate goal is to obtain explicit expressions of
the bounds on the trapping constant in the 2-dimensional coated cylinder and 3-dimensional
coated sphere models.

1.3.4 Complex viscoelasticity for wave propagation in the marginal ice zone

Striking correlations between Antarctic sea ice extent and wave activity have been found
recently [62]. In both the Arctic and Antarctic, the ice floe size distribution in the marginal
ice zone (MIZ) plays a central role in the properties of wave propagation though it. Ocean
waves break up and shape the ice floes which, in turn, attenuate various wave characteris-
tics. This ice-ocean interaction has become increasingly important in the Arctic, due to the
dramatic decrease of the summer ice extent which is correlated with an increase in the size
of the Arctic MIZ [109].

The MIZ can be thought of as a two component composite layer of ice and slushy wa-
ter atop an inviscid ocean. Continuum models have been developed which describe wave
propagation through the MIZ. However, the two component ice-slush composite microstruc-
ture of the layer is neglected in these models, and is instead described by a homogeneous
layer that is purely elastic [7], purely viscous [60], or viscoelastic [119, 83] (the viscoelastic
case generalizes the viscous and elastic cases). The effective elasticity, viscosity, and com-
plex viscoelasticity, which describe the wave/ice interactions in these models, are difficult
to determine. To help overcome this limitation, we have adapted the analytic continuation
method for describing the transport of electromagnetic waves in two-component composite
materials, discussed in Section 1.2.2, to provide an integral representation for the complex
viscoelasticity [119], which explicitly incorporates the two-component ice-slush composite
microstructure of the layer. This integral representation yields rigorous bounds on the effec-
tive complex viscoelasticity which depend on the geometry of the ice-slush composite and
the complex viscoelasticities of the ice and slush phases.

We now review this mathematical framework. The ice-slush layer is thought of as a
Kelvin-Voight material and modeled by a spring and dashpot. The deviatoric part of the
stress tensor is given by σ = 2(G+ρυ ∂t)ε. HereG is the shear modulus, ρ is the density, υ the
kinematic viscosity, σ is the stress tensor, and ε is the strain tensor. The material is assumed
to be linear and obey Hooke’s law σ = C : ε, where C is the elasticity tensor, ε = ∇su, ∇s
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is the symmetric gradient, and u the displacement. If we consider a simple harmonic wave of
frequency ω, then ∂tε = −iωε, and we may write the deviatoric part of σ as σ = 2νε, where
ν = G − iρωυ. Motivated by [22], we take C = νΛs, where Λs = δikδjl + δilδjk − 2

3
δijδkl.

Then we have that σ = C : ε = 2νε (here : is a contraction) since we assume our material
is incompressible and therefore ∇·u = 0, which implies Λs : ε = 2ε. We may also define the
compliance tensor as L = C−1, in this case we have ε = L : σ where L = ν−1Λs. We will
also take our material to be irrotational, ∇ × ε = 0. The momentum balance equation for
the displacement can be stated as,

∇ · (σ + PI)− ρgez = ρ ∂2
t u. (22)

In the long wavelength, low frequency limit ∇ · PI ≈ ρgez and for harmonic waves ∂2
t u =

−ω2u. In this limit, we can drop terms of order ω2 and simplify (22) with our pressure
approximation, we obtain the quasi-static equation of motion∇·σ = 0. These considerations
lead to the system of equations,

∇ · σ = 0 C : ε = 2νε = σ (23)

∇× ε = 0 L : σ =
1

2ν
σ = ε. (24)

Consider again our constitutive relation, σ(x, α) = C(x, α) : ε(x, α), (involving station-
ary random fields) where x ∈ Rd, α ∈ Ω where Ω is the set of all realizations of the random
elastic medium. Since the ice-slush layer is a two-component composite material, we can
write C(x) = (C1χ1 +C2χ2) Here C i = νiΛs for i = 1, 2.

The effective elasticity tensor is defined to be the constant tensor which relates the average
stress to the average strain 〈σ〉 = C∗ : 〈ε〉. In this particular case we require C∗ = ν∗Λs, this
allows us to obtain bounds for the effective complex viscoelasticity ν∗. The key to obtaining
the bounds is deriving an integral representation for ν∗ involving a positive measure µ on
the interval [0, 1]. In this case it is given by,

F (s) = 1− ν∗

ν2

=

∫ 1

0

dµ(λ)

s− λ
, s =

1

1− ν1/ν2

. (25)

Analogous to the two component composite setting discussed above, the integral represen-
tation in (25) follows from a resolvent formula for the strain,

χ1ε = s (sI − χ1Γsχ1)−1 χ1ε
0, (26)

where ε0 = 〈ε〉, Γs = ∇s(∇ · ∇s)−1∇·, and χ1Γsχ1 is self-adjoint on an appropriate Hilbert
space.

Information about the ice-slush geometry is encoded in the moments µn of the measure µ,
which are given by equation (6) with G = χ1Γsχ1. The mass of the measure is µ0 = p1, the
volume fraction of component 1. This, combined with an analogous integral representation
for σ, allow us to derive bounds for the effective viscoelasticity ν∗. The bounds are derived
by varying over the set of positive measures on [0, 1] which are consistent with a given
geometry. In the case that only the mass of the measure is known, the extreme points of the
set of measures consistent with a prescribed fixed volume fraction are the one point measures
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p1δλ. With this information we can determine that the effective parameter must lie between
between two circular circular arcs [85, 41].

The bounds are presented in Figure 5. At present only the mass of the measure is
known, and due to the high contrast in the real part of the complex viscoelasticities of each
component, 6-8 orders of magnitude, the bounds are very large. However, if more moments
can be calculated tighter bounds can be obtained. The determination of higher moments
can be difficult, assumptions about the geometry often simplify the calculations, such as
assumptions of isotropy or a specific strain field. Assumptions about geometry can also lead
to a restriction of the support of the measure µ, further tightening any known bounds.

Here we propose to significantly tighten these first bounds on the complex viscoelasticity
of the sea ice pack by treating it as a matrix-particle composite, which yields a spectral
gap and much tighter bounds. In previous work on the effective real valued conductivity of
strongly heterogeneous composites [17], it was shown that for a composite composed of high
contrast materials, in which one phase consists of non-touching grains embedded in a matrix
of the other material, the support of the measure µ in the analogous integral representation
of (25) for the effective conductivity, may be restricted. This has the effect of dramatically
tightening the bounds of the effective parameter. In [44] this idea was extended to the
complex case and applied to the electrical permittivity of sea ice. In 2-d we may consider
the inclusions to be disks of radius rinc surrounded by a “corona” of matrix material with
outer radius rmat. In this case, the support of the measure is [Sm, SM ] where,

Sm =
1

2
(1− q2), SM =

1

2
(1 + q2) (27)

and q = rinc/rmat is the ratio of the radius of the inclusion to that of its carona of matrix
material. Note that the further the separation of the inclusions, the smaller the support and
when q = 1, the inclusions touch, and the support is [0, 1].

The ice water composite geometry resembles that of of a matrix-particle composite. That
is, we may think of the ice phase as a set of non touching disks embedded in a matrix of vis-
cous slush. This is especially true near the edge of the MIZ where immense areas of water are
covered in disk shaped pancake ice. Given the similarities between the governing equations
in the complex permittivity and the quasistatic complex viscoelasticity case, we expect the
matrix-particle bounds to apply. Initial calculations suggest that the matrix-particle bounds
do indeed apply to this situation and provide a very compact set of parameters, although
further proof is required. Improvement of the bounds through higher moment calculation
and derivation of a matrix particle bound will be the major focus of our work.

In the long wavelength, low frequency regime, many of the waves which propagate into
the ice pack are effectively plane waves. In this case, we may model wave motion through the
MIZ with a simple 1-d wave equation involving the effective viscoelasticity, uxx = (ρ/2ν∗)utt.
In this situation, both the wave number and attenuation rate of a propagating wave are
determined by the effective parameter as a function frequency. Since the geometry of the
floes determines the effective viscoelasticity, this facilitates a simple propagation model which
still takes into account all of the important properties of the floe geometry. This has potential
use in improving current sea ice models by providing a simple, numerically inexpensive way
to update the rheological properties and wave propagation characteristics of the model ice
pack as it evolves. We have investigated the ability of such simple models to capture some
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Figure 5: Bounds for ν̄∗ plotted for several periods, T = 2π/ω, with G = 107Pa, ν = 5 for
the ice phase and G = 10Pa, ν = 14 × 10−3 for the slush phase and p1 = 0.4. We have
plotted the complex conjugate of ν∗ to better highlight the contrast in the parameters. The
dotted line is data extracted from the work in [36, 76] for periods 6s ≤ T ≤ 25s.

of the properties of the MIZ with some success. Using the effective parameter to define wave
characteristics of waves propagating in the MIZ and following ice-wave breaking criteria in
[32], we were able to capture some of the average properties of the MIZ, which were in good
agreement with measurements of maximum floe sizes observed in [116].

1.4 Low order models and large scale advection diffusion

1.4.1 Advection diffusion in the marginal ice zone

Dense pack ice transitions to open ocean over a region of broken ice termed the marginal
ice zone (MIZ) – a highly dynamic region where the ice cover lies close to an open ocean
boundary and intense atmosphere-ice-ocean interactions take place [65]. The morphology of
the MIZ is governed by coupled thermodynamic and dynamic processes including advection
and diffusion. The width of the MIZ is a fundamental length scale for polar dynamics [118]
in part because it represents the distance over which ocean waves and swell penetrate into
the sea ice cover. Moreover, MIZ width is an important spatial dimension of the marine
polar habitat, and impacts human accessibility to high latitudes [96]. We recently uncovered
a dramatic 39% widening of the summer Arctic MIZ based on objective analysis of three
decades of satellite-derived sea ice concentrations [109]. Here we will investigate the role
of diffusivity in MIZ morphology. We will use cutting edge observational and modeling
strategies that span a range of scales from short-term floe-scale behavior to seasonal-to-
decadal cycles and trends at the scale of the MIZ.

Our MIZ-scale investigation of diffusivity is motivated by our prior work using Laplace’s
equation to study MIZ shape and morphology, and in particular the deviation of MIZ con-
centrations from the solution of Laplace’s equation. The MIZ is in general not geodesically
convex, as illustrated by the example in Fig. 6. Sea ice concentration c(x, y) is used here
to define the MIZ as a body of marginal ice (0.15 ≤ c ≤ 0.80) adjoining both pack ice
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Figure 6: For 29 August 2010: (a) passive microwave sea ice concentrations (shading), (b)
solution to Laplace’s equation within the marginal ice zone (shading), and (c,d) observed
concentration (blue) and solution to Laplace’s equation (red) along two streamlines indicated
by black curves in panel (b).

(c > 0.80) and sparse ice (c < 0.15). To define an objective MIZ width applicable to such
shapes, Strong [105] introduced the idea of an idealized sea ice concentration field ψ(x, y)
satisfying Laplace’s equation within the MIZ

∇2ψ = 0. (28)

We use (x, y) here to denote a point in two dimensional space, it is understood that we are
working on the spherical Earth, and solutions can be obtained in the data’s native stere-
ographic projection because solutions of Laplace’s equation are invariant under conformal
mapping [102]. The solution to (28) for the example in Fig. 6a is shown by color shading in
Fig. 6b. Any curve γ orthogonal to the level curves of ψ and connecting two points on the
MIZ perimeter (a field line through the gradient field ∇ψ; black curves, Fig. 6b) is contained
in the MIZ, and its length provides an objective measure of MIZ width (`). Analogous
applications of Laplace’s equation have been introduced in medical imaging to measure the
width or thickness of human organs, and we have detailed desirable mathematical properties
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of this method including invariance with respect to translation and rotation on the sphere,
uniqueness at every point in the MIZ, and generality including applicability to non-convex
shapes [106]. Building on the advances above, we propose a more general form of (28),

∇ · (σ∇ψ) = 0, (29)

which is a natural generalization, both mathematically and physically, as equation (29) can
be viewed as a steady state version of the effective diffusion equation (12) that is obtained
by homogenizing the advection diffusion (11). Hence, the function ψ is an approximation of
φ̄ which solves the effective diffusion equation (12) when temporal variations in the ice cover
concentrations are neglected. The introduction of a local conductivity field σ = σ(x, y) or a
local diffusivity field D = D(x, y) will enable the idealized sea ice concentration field ψ to
faithfully reflect sea ice rheology and variability, with fluctuations in ψ(x, y) related to the
inhomogeneities in σ or D. In particular, in the electrical analogue, E = −∇ψ plays the role
of an electric field, with J = σE an electric current density, as in classical electrodynamics,
where ψ is thought of as an electric potential.

We will also address the development of a time dependent PDE model for the concen-
tration ψ(x, y, t). The natural way of introducing time dependence is through ∂ψ/∂t =
∇ · (D∇ψ). However, this equation is limited in that it does not allow for advection of the
concentration field through atmospheric, oceanic and thermodynamic forcing. As a first step
in this direction, we will consider the equation

∂ψ

∂t
= ∇ · (D∇ψ)−∇ · (ψv), (30)

where the vector field v represents an effective concentration advection by wind and ocean
currents, and potentially also thermodynamically driven changes in concentration related to
atmospheric and oceanic heat flux.

1.4.2 Inversion of the concentration field for spatially varying diffusivity

Consider an actual satellite-derived concentration field ψ(x, y) satisfying (29) with boundary
conditions ψ = 0.15 where MIZ borders a sparse ice region and ψ = 0.80 where the MIZ
borders a pack ice region. Reconstruction of σ(x, y) from observations of the concentration
field ψ(x, y) in (29), is an inverse problem. Because of its more general form, the idealized
sea ice concentration field given by (29) will more closely correspond to the observed sea ice
field than did the solution from (28). For an isotropic conductivity or diffusivity function
σ(x, y) consider the steady state diffusion equation:

∇ · σ∇w = 0 in Ω, w = ψ in Ω, (31)

where Ω is the region of Earth’s surface of interest. To find the diffusivity σ, we propose to
solve the following constrained minimization problem:

min
σ
||w − ψ||2L2(Ω) subject to ∇ · σ∇w = 0 in Ω. (32)

As a simplified example, let us consider a one-dimensional steady-state problem. In Fig. 6c
and 6d, the one-dimensional profiles of observed ice concentration (blue) are shown along
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two streamlines indicated by black curves in panel (b). In this 1D problem, the diffusivity
could be estimated as a reciprocal of the gradient of the concentration function. However,
instability of this solution indicates the ill-posedness of the problem, which requires regu-
larization to formulate a well-posed problem. We have noticed that the variations in the
concentration function correspond to the particular behavior of the underlying oceanic flow.

Observe that in the steady state equation (31), we assumed that the right hand side of
the equation ∇ · (D∇ψ) = ∂ψ/∂t is small and can be neglected. This corresponds to slow
time variations in the geometry of the ice field. However, the proposed method should work
for a more general case when this assumption is dropped. We plan to investigate the inverse
problem of reconstruction of the diffusivity for a general diffusion equation which corresponds
to the effective large scale, long time behavior of advection diffusion. The reconstructed
diffusivity coefficient will characterize the dynamics and spatio-temporal characteristics of
the fluid flows of the underlying advection-diffusion.

As we show in [87], homogenization of the advection-diffusion equation results in the
effective diffusion equation with the enhanced effective diffusivity D∗ which characterizes
the effective transport by fluid velocity fields. The information about the velocity field is
contained in the spectral measure µ in the Stieltjes integral representation of the effective
diffusivity D∗. In previous work, we developed methods for solving the inverse homogeniza-
tion problem [20, 22, 23] to recover microstructural information from the measured effective
electrical or viscoelastic properties of the composite, or from observations of the effective
properties of the medium, such as the effective conductivity σ∗ associated with σ(x, y). The
approach is based on reconstruction of the spectral measure µ or its moments from the mea-
surements of the effective parameters of the composite. We plan to extend this approach to
the problem discussed here. Reconstruction of the conductivity σ and comparison with vari-
ations in the concentration field, as well as with oceanic, atmospheric, and thermodynamic
forcing will give valuable insights into the components of sea ice physics which are acting
to influence ψ and the PDE’s modeling its evolution. Solving this inverse homogenization
problem will allow us to recover subscale information about the oceanic and atmospheric
flows.

1.4.3 Filling the polar data gap

Our team recently used Laplace’s equation as a foundation for objectively filling the polar
data gaps where satellite orbits do not provide observations (Fig. 7). For many years it
was assumed that this northernmost region of the Arctic was always covered with sea ice.
However, recent precipitous losses in the polar ice pack call into question this assumption,
which can significantly affect overall estimates of Arctic sea ice volume, for example. Such
dramatic changes motivate development of an objective method for estimating unobserved
concentrations within the gap.

We proposed [107] a partial differential equation-based model with tuned stochastic spa-
tial heterogeneity to estimate the concentrations within a region Ω on Earth’s surface,

f(θ, φ) = ψ(θ, φ) +W (θ, φ),

where θ is longitude and φ is latitude, or f(r) = ψ(r) + W (r) where r ∈ Ω. We suggested
prescribing the scalar field ψ to be a solution of Laplace’s equation (28) in spherical co-
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Figure 7: The left image is an example of the polar data gap (dark blue disc) on 30 August
2007 with shading outside the disc indicating concentration. The middle and right images
show the data fill presented here, with the color shading at right similar to that used by the
National Snow and Ice Data Center (http://nsidc.org).

ordinates with boundary conditions taken from observations on the boundary of the polar
data gap ∂Ω. If ∂Ω is sufficiently smooth and the concentration is a continuous function
along ∂Ω, a unique solution for ψ exists, and can be obtained numerically by expressing
the Laplacian as a second-order finite difference operator. The stochastic term W provides
realistic deviations from ψ, and was tuned by collecting samples Ws of the difference between
observed concentrations and ψ in three circular regions Cj, j = 1, 2, 3, around the polar data
gap

Ws(r) = fobs(r)− ψ(r), r ∈ Cj, j = 1, 2, 3,

where fobs denotes observed concentrations. Based on analysis of thousands of samples, we
formulated a seasonally varying amplitude for W and introduced realistic spatial autocor-
relation by convolution of spatially uncorrelated noise with a Gaussian function. Figure 7
shows an example of this model applied to the polar data gap for 30 August 2007. Tests in
regions around the polar data gap showed observation-model correlations of 0.6 to 0.7 and
absolute deviations of order 10−2 or smaller.

We plan to extend this research using several related approaches. First, we will draw on
more detailed formulations for sea ice concentration based on spatially varying diffusivity,
leveraging insights we gain from mathematical investigation described above in Section 1.4.2.
Second, we will extend the gap filling formulation to investigate the case of spatial variations
in diffusivity and spatial and temporal variations in concentration, ∇ · (σ∇ψ) = ∂ψ/∂t.
To model the stochastic term W and temporal variations of the concentration function, we
will use the Wiener (polynomial) chaos expansion method. Finally, we will formulate the
data gap fill as a Cauchy problem. In this approach, we will use the concentration data in
surrounding areas to assign Dirichlet and Neumann conditions on the boundary ∂Ω, meaning
we begin with observations of concentration ψ and ∂ψ/∂n on ∂Ω, where n is normal to ∂Ω.
The Cauchy problem is well known to be a highly ill-posed problem whose solution does
not continuously depend on the boundary data. For such a problem, small errors in the
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given boundary data may result in very large errors in the numerical solution. The ill-
posed Cauchy problem can be solved with appropriate regularization techniques drawing on
our team’s related expertise. We plan to investigate various regularization methods that
will analyze available concentration data in the surroundings to impose constraints on the
solution and ensure well-posedness of the problem and stability of the numerical calculations.

1.4.4 Anomalous diffusion in the marginal ice zone

Understanding the long time, large scale transport of sea ice by atmospheric and oceanic
flows is essential to an understanding of how ice pack characteristics evolve. In recent
work [66], buoys were placed on sea ice floes and the subsequent dynamics were analyzed
using Lagrangian dispersion statistics. This led to the striking discovery that the dynamical
behavior of ice floes can be described in terms of anomalous diffusion. In particular, the
dispersion of the buoys was measured in terms of the absolute mean-squared-displacement
A2 = 〈|xk(t) − xk(0) − 〈xk(t) − xk(0)〉|2 〉 of the location xk of the kth buoy relative to
its starting position, where 〈·〉 denotes ensemble averaging of the positions of appropriate
groups of buoys as a function of time t [67]. The long time temporal scaling A2 ∼ tα of the
dispersion is described by the Hurst exponent α, which is a measure of autocorrelation and
long-time memory of the time series [71].

Diffusive behavior (α = 1) of the buoys was observed in the marginal ice zone (MIZ), im-
plying that the floe trajectories resemble Brownian motion [67]. In coherent flow structures,
such as the transpolar drift stream and the Beaufort Gyre, the ice dynamics exhibit super-
diffusive behavior (α > 1) [67]. This regime captures long-range correlations and organized
structure in the flow field, with ballistic (α = 2), elliptic (α = 5/3), and hyperbolic (α = 5/4)
regimes providing signatures of advection, vorticity-dominated, and shear-dominated flow,
respectively [67]. In more crowded, thicker ice covers, floe-floe interactions suppress kinetic
energy, giving rise to trapping phenomena and sub-diffusive behavior (α < 1) [67]. The
magnitude of the sub-diffusive scaling was shown to correspond spatially with patterns,
characterized by deformation [95, 67], in sea ice concentration and thickness.

We have been developing a framework to model the long time, large scale transport
of sea ice and the observed dynamics. Thus far, our simulations model ice floes as disks
confined to a plane and experiencing forces, F = ma where m is the mass of the particle
and a is acceleration, from flow-particle interactions and particle-particle collisions. Fig. 8
shows numerically simulated stages of vortex formation in the particle flow which mimic a
gyre structure. Verlet-velocity Integration was used to approximate disk motion [54]. After
experimenting with several types of interactions [70, 54], we found that viscous drag and
spring-dashpot collisions best mimicked the behavior and statistical properties of observed
ice floes within a broad parameter range. Physically relevant mechanics such as ridging and
rafting, melting, variable drag and ice floe size can be implemented by varying interactions
and simulation parameters.

As discussed above (see also [91, 94, 87]), we can reduce the analysis of scalar transport
by complex velocity fields v to solving effective or homogenized equations. Homogenization
of the advection-diffusion equation for the concentration, φ, with local diffusivity D, yields
a diffusion equation involving an effective diffusivity tensor D∗. Integral representations
for D∗ encode the complex geometry and flow characteristics of the system via the spectral
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a b c d 

Figure 8: Numerically simulated sea ice floe patterns (a-c) which mimic formation of vortex
structures such as in (d).

measure of a self-adjoint operator [91, 87]. We plan to find effective equations that include
mechanical redistribution and melting to extend our analysis to these phenomena.

Anomalous diffusion of constitutive particles in physical systems which exhibit sea ice-
like dynamics has been modeled by continuous time random walks [94]. In this approach,
we consider probabilistic motion dX of a tracer, such as dX = vdt + dW , where dX and
dW are random variables and vdt is determined from flow fields. From data, the behavior of
dW can be inferred from particle-particle interactions by robust estimation methods. Using
stochastic calculus [94], an equation describing the concentration of particles φ is

dφ

dt
= D1−α

t

[
∆
V ′(x)

mη1

+∇Kα

]
φ(x, t),

where D1−α
t is a fractional differential operator and m, η1, and Kα are computable con-

stants. These equations are fractional space-time diffusion equations [94, 58] for which
inverse methods can be applied to approximate parameters, notably advective terms and
diffusion coefficients, from φ. To apply our work specifically to sea ice, we will use statistical
methods to quantify the ranges of long scale, long time quantities such as α and deforma-
tion. Within these ranges our proposed framework can be used to understand experimental
error and likely dynamical regimes. We are quite interested in the connection between Hurst
exponents describing large scale floe dynamics and the characteristics of the ice pack.

The method can incorporate complicated ice floe interactions into a numerically homog-
enized model of forced motion of ice fields. With inclusion of modes of ice floe interaction
such as ridging, rafting, collisions with variable drag, freezing and melting, we anticipate that
the resulting effective behavior will be described by fractional space-time diffusion equations.
We will use this new numerical model to solve the small scale cell problem for a realistic
sea ice field, noting that this solution is needed to calculate coefficients of the homogenized
problem. This numerical homogenization will extend the technique to realistic features of
sea ice fields in the MIZ.

1.5 Statistical physics of melt pond evolution

The albedo of melting Arctic sea ice, a key parameter in climate modeling, is primarily
controlled by surface melt ponds [93]. As melt ponds form and evolve, their connectivity im-
pacts horizontal melt water transport, facilitates drainage through macro-pores such as seal
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Figure 9: Evolution of melt pond connectivity. (a) Disconnected ponds, (b) transitional
ponds, (c) fully connected melt ponds. The bottom row shows the color coded connected
components for the corresponding image above: (d) no single color spans the image, (e) the
red phase just spans the image, (f) the connected red phase dominates the image. The scale
bars represent 200 m for (a) and (b), and 35 m for (c).

holes, cracks, and leads, and promotes floe breakage and fracture. A critical parameter to
be investigated is the pond area fraction that constitutes the percolation threshold, meaning
the pond coverage for which large scale connectivity emerges. How is the recently discovered
transition in fractal geometry of melt ponds around a critical area of approximately 100 m2

[56] related to triggering of percolation? How are melt pond connectivity and pond size dis-
tribution [92] impacted by initial cryospheric topography and ensuing sea ice albedo feedback
during the melt season? Leveraging our recent advances, we will investigate these questions
using melt pond models based on stochastic surfaces, a thermodynamically-motivated Ising
model, and a physically-based partial differential equation model that incorporates melt
rates and horizontal transport through porous media.

1.5.1 Percolation theory for melt ponds

We have developed a stochastic surface melt pond model in which we formulate the snow and
ice topography using a two dimensional Fourier series with random coefficients. In particular,
we use a finite cosine expansion with phase given by independent identically distributed
uniform random variables and amplitude coefficients given by the physical properties of an
observationally-calibrated autoregressive relation. The melt water level is then simulated by
raising a plane upward through the surface, with the volume between the surface and the
plane representing melt ponds (e.g., Fig. 10, upper row). We have demonstrated that the
stochastic surface model captures the transition in fractal dimension discovered for observed
melt ponds [15].

Our new directions of investigation with the stochastic surface model reveal percolation
behavior that resembles results for simple two-dimensional lattices. To illustrate, we consider
a two-dimensional square lattice with L×L sites and occupation probability p. If the site at
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position vector ri is occupied, the site-site correlation function g(ri, rj) gives the probability
that a site at rj is a member of the same cluster. The function g is assumed to decay with
large distance d = |ri − rj| according to

g(d) ∼ exp

(
− d

ξ(p)

)
, (33)

where ξ(p) is referred to as the correlation length. Theory indicates that ξ(p) should obey

ξ(p) ∼ −ν ln(|p− pc|), p −→ p−c (34)

where ν = 4/3 is the universal critical exponent in two dimensions and pc is the percolation
threshold. For the two-dimensional square lattice, the value pc = 0.59274621 has been deter-
mined numerically [90]. Our preliminary analyses of melt ponds in satellite remote sensing
imagery is limited by small sample size, but suggests that melt ponds have a percolation
threshold which is significantly lower than the value for the two-dimensional square lattice.
Detailed study of large ensembles of stochastic surface model results indicates a percolation
threshold for melt ponds of pc = 0.492 (Fig. 10a). Interestingly, the stochastic surface model
nonetheless exhibits correlation length scale behavior consistent with the critical exponent
ν = 4/3 expected for the simpler case of lattice percolation. This intriguing result suggests
that the spatial correlation structure of melt ponds is sufficiently short-rage so that the sys-
tem falls within a standard universality class [57], meaning powerful analytical results can be
leveraged in developing novel methods for incorporating melt pond evolution into predictive
sea ice models.

We will also investigate melt pond evolution with a model that alters the sea ice topogra-
phy via melting and uses partial differential equations to simulate horizontal transport [68].
The meltwater depth h evolves in the PDE model according to the equation

∂h

∂t
= He(h)

[
−s+

ρice

ρwater

m−∇ · (hu)

]
, (35)

where the Heaviside step function

He(h) =

{
1 if h ≥ 0,

0 if h < 0,
(36)

prevents h from becoming negative. The parameter s = 0.8 cm day−1 is the seepage rate, ρ
is material density, g is gravitational acceleration, and the ice melt rate m increases linearly
with melt pond depth. The horizontal velocity of melt pond water through porous sea ice is
governed by Darcy’s law

u = −gρwater

µ
Πh∇Ψ, (37)

where µ is the dynamic viscosity, Πh is the fluid permeability, and Ψ = z + h is the height
of the surface Z at the location plus any overlying melt pond water depth at that location.
Comparing the stochastic surface model to the more physically-based partial differential
equation (PDE) melt pond model yielded results that were surprisingly similar overall, but
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Figure 10: Upper row shows an example of the stochastic surface we developed for snow/ice
topography (left) and the intersection of this surface with a plane representing the water
level (right). (a) For the stochastic surface model, probability of percolation calculated
within bins of area fraction (circles). The curve is a hyperbolic tangent fit, the shading is a
normalized histogram of the area fraction at which percolation occurred for 500 realizations of
the stochastic surface model, and the vertical dashed line indicates the percolation threshold
pc = 0.492. (b). Comparison of output from the stochastic surface model (filled circles) to
the slope −ν = −4/3 given by the universal exponent ν.

with some important contrasts. Specifically, we found that the limiting fractal dimension of
the plane model is lower than the PDE model on average due to the tendency of the plane
model to flood the surface. In comparison, the PDE model tends to melt downward into the
surface and create complex pond shapes. For both models, we found that properties of the
shift in fractal dimension, such as its amplitude, phase and rate, depend on the anisotropy
and autocorrelation length scales of the topography.

We will continue analyzing arrays of remotely sensed melt pond imagery, and an impor-
tant remaining unknown are the critical exponents that characterize melt pond evolution
as large scale connectivity or percolation is approached. By replicating the evolution of
observed melt pond percolation dynamics and fractal geometry with parsimonious math-
ematical models, we gain fundamental understanding of the underlying mechanisms and
lay the foundation for enhancing the fidelity of numerical prediction frameworks currently
lacking explicit representation of melt pond physics.
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(a) (b) (c)

Figure 11: Illustrating results from the Ising model for melt pond evolution, the spin con-
figurations si (blue is pond and white is ice) on a 128× 128 portion of the lattice for three
time periods: (a) shortly after the model begins with a random initial state, representing
conditions early in the melt season, (b) approximately half way through the melt season
with connected structures beginning to form, and (c) a mature simulated pond configuration
representing conditions late in the melt season.

1.5.2 Ising model for melt ponds

Further insight into the dynamics of melt pond evolution is available by building on models
arising from statistical mechanics. In particular, we have developed an Ising model which
realistically simulates key properties and behavior of observed melt ponds. The general form
of the Ising free energy can be written

H = −
∑
i

H isi −
∑
〈i,j〉

J ijsisj, (38)

where the index i ranges over a two-dimensional square lattice with periodic boundary con-
ditions, and 〈i, j〉 denote nearest neighbors. The state variable is a binary (or spin) variable
si such that si = +1 corresponds to water and si = −1 corresponds to ice. The term H i is
classically the external magnetic field, and we consider it as solar forcing for the melt pond
application. The J ij terms represent coupling constants.

To describe nontrivial spin clustering at zero temperature, the fields H i and/or the bonds
J ij are chosen as random variables, and the resulting models are collectively known as
disordered Ising models [88]. At zero temperature, the system is usually assumed to follow
the Glauber single spin-flip dynamics [63]: at each update step, the attempted spin flip is
accepted if H decreases and rejected if H increases. The system eventually converges to a
local minimum of H, known as a metastable state. Despite their importance, metastable
states are not completely understood theoretically, with analytical results largely restricted
to 1D [30] and many intricate issues remaining in 2D [89].

For melt ponds, the model is initialized with a pre-melt ice topography (h) assumed to
be spatially independent Gaussian random variables with zero mean and unit variance. We
specify the lattice constant a = 0.85 m as the threshold above which observed ice topography
exceeds a null red noise spectrum. We consider a form of H representing the total energy
transfer between neighboring sites

H =
∑
〈i,j〉:

si>0,sj<0

(
α1(hi) + Jα2(hj)

)
, (39)
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where J = 3.5 is the ratio between the thermal conductivity of ice and water, α1 is the water
depth if the site becomes water, α2 is the the ice height if the site becomes ice, and W is
a large negative constant that represents a reference water level far below the pre-melt ice
topography. Here, the sum is taken only over the interfaces between water and ice, assuming
that the energy transfer between two water sites or two ice sites is identically zero. The
pond characteristics simulated by this model evolve from a purely random initial state into
realistic pond configurations (e.g., Fig. 11) which replicate observed size distribution power
law scaling and capture the observed transition in fractal geometry near the critical area of
about 100 m2.

We will advance our Ising melt pond model by incorporating the effects of sea ice-albedo
feedback. In the observed system, albedo decreases as ponds deepen, and the resulting
increase in absorbed solar radiation tends to further deepen meltwater. One approach to
capturing these effects in the model is to modify the interaction terms of the free energy
H to penalize flipping persistent water to ice, and also to penalize retaining ice adjacent to
persistent water. In this way, locations which remain meltwater (si = +1) through many
updates become more resistant to flipping to ice and are also more influential on the tendency
for neighboring ice locations to flip to water. We will investigate whether further realism
may be achieved by scaling the strength of the ice albedo feedback effects according to ice
topography (h) and pond depth (α1). Through these advances to this novel melt pond model,
we retain the elegance of a simple statistical model for phase transitions while incorporating
one of the most important positive feedbacks in the Arctic system.
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matics and its Applications. Cambridge University Press, 1996.

[6] S. Barabash and D. Stroud. Spectral representation for the effective macroscopic
response of a polycrystal: application to third-order non-linear susceptibility. J. Phys.,
Condens. Matter, 11:10323–10334, 1999.

[7] Howard F. Bates and Lewis H. Shapiro. Long-period gravity waves in ice-covered sea.
Journal of Geophysical Research, 85(C2):1095, 1980.

[8] D. J. Bergman. The dielectric constant of a composite material – A problem in classical
physics. Phys. Rep. C, 43(9):377–407, 1978.

[9] D. J. Bergman. Exactly solvable microscopic geometries and rigorous bounds for the
complex dielectric constant of a two-component composite material. Phys. Rev. Lett.,
44:1285–1287, 1980.

[10] D. J. Bergman. Rigorous bounds for the complex dielectric constant of a two–
component composite. Ann. Phys., 138:78, 1982.

[11] M.R. Beychok. Fundamentals of Stack Gas Dispersion: Guide. The Author, 1994.

[12] R. Bhattacharya. Multiscale diffusion processes with periodic coefficients and an ap-
plication to solute transport in porous media. Ann. Appl. Probab., 9(4):951–1020,
1999.

[13] L. Biferale, A. Crisanti, M. Vergassola, and A. Vulpiani. Eddy diffusivities in scalar
transport. Phys. Fluids, 7:2725–2734, 1995.

[14] C. Bonifasi-Lista and E. Cherkaev. Electrical impedance spectroscopy as a potential
tool for recovering bone porosity. 54(10):3063–3082, 2009.

[15] B. Bowen, C. Strong, and K. M. Golden. Modeling the fractal geometry of Arctic melt
ponds using the level sets of random surfaces. Journal of Fractal Geometry. in press.

27



[16] S. R. Broadbent and J. M. Hammersley. Percolation processes I. Crystals and mazes.
Proc. Cambridge Philos. Soc., 53:629–641, 1957.

[17] O. Bruno. The effective conductivity of strongly heterogeneous composites. Proc. R.
Soc. London A, 433:353–381, 1991.

[18] A. Bunde and S. Havlin, editors. Fractals and Disordered Systems. Springer-Verlag,
New York, 1991.

[19] J. T. Chayes and L. Chayes. Bulk transport properties and exponent inequalities for
random resistor and flow networks. Comm. Math. Phys., 105:133–152, 1986.

[20] E. Cherkaev. Inverse homogenization for evaluation of effective properties of a mixture.
Inverse Problems, 17(4):1203–1218, 2001.

[21] E. Cherkaev. Spectral coupling of effective properties of a random mixture. In A. B.
Movchan, editor, IUTAM Symposium on Asymptotics, Singularities and Homogenisa-
tion in Problems of Mechanics, volume 113 of Solid Mechanics and Its Applications,
pages 331–340. Springer Netherlands, 2004.

[22] E. Cherkaev and C. Bonifasi-Lista. Characterization of structure and properties of
bone by spectral measure method. 44(2):345–351, 2011.

[23] E. Cherkaev and K. M. Golden. Inverse bounds for microstructural parameters of
composite media derived from complex permittivity measurements. Waves in Random
Media, 8(4):437–450, 1998.

[24] E. Cherkaev and M.-J. Ou. Dehomogenization: reconstruction of moments of the
spectral measure of the composite. Inverse Problems, 24:065008 (19pp.), 2008.

[25] E. Cherkaev and D. Zhang. Coupling of the effective properties of a random mix-
ture through the reconstructed spectral representation. Physica B: Condensed Matter,
338(1–4):16–23, 2003.

[26] K. Christensen and N. R. Moloney. Complexity and Criticality. Imperial College Press,
London, 2005.

[27] G. T. Csanady. Turbulent diffusion of heavy particles in the atmosphere. J. Atmos.
Sci., 20(3):201–208, 1963.

[28] A. R. Day and M. F. Thorpe. The spectral function of composites: the inverse problem.
J. Phys.: Cond. Matt., 11:2551?2568, 1999.

[29] G. F. Dell’Antonio and V. Nesi. A general representation for the effective dielectric
constant of a composite. J. Math. Phys., 29:2688, 1988.

[30] Bernard Derrida and E Gardner. Metastable states of a spin glass chain at 0 temper-
ature. Journal de physique, 47(6):959–965, 1986.

28



[31] E. Di Lorenzo, D. Mountain, H. P. Batchelder, N. Bond, and E. E. Hofmann. Advances
in marine ecosystem dynamics from us globec: The horizontal-advection bottom-up
forcing paradigm. Oceanography, 26(4):22–33, 2013.

[32] D. Dumont, A. Kohout, and L. Bertino. A wave-based model for the marginal ice zone
including a floe breaking parameterization. Journal of Geophysical Research, 116(C4),
2011.

[33] H. Eicken, C. Bock, R. Wittig, H. Miller, and H.-O. Poertner. Nuclear magnetic
resonance imaging of sea ice pore fluids: Methods and thermal evolution of pore mi-
crostructure. Cold Reg. Sci. Technol, 31:207–225, 2000.

[34] A. Fannjiang and G. Papanicolaou. Convection enhanced diffusion for periodic flows.
SIAM Journal on Applied Mathematics, 54(2):333–408, 1994.

[35] S. Feng, B. I. Halperin, and P. N. Sen. Transport properties of continuum systems
near the percolation threshold. Phys. Rev. B, 35:197–214, 1987.

[36] Colin Fox and Tim G. Haskell. Ocean wave speed in the Antarctic marginal ice zone.
Annals of Glaciology, 33(1):350–354, jan 2001.

[37] C. H. Fritsen, V. I. Lytle, S. F. Ackley, and C. W. Sullivan. Autumn bloom of Antarctic
pack-ice algae. Science, 266:782–784, 1994.

[38] K. Golden. Bounds on the complex permittivity of a multicomponent material. J.
Mech. Phys. Solids, 34(4):333–358, 1986.

[39] K. Golden. Convexity and exponent inequalities for conduction near percolation. Phys.
Rev. Lett., 65(24):2923–2926, 1990.

[40] K. Golden. Exponent inequalities for the bulk conductivity of a hierarchical model.
Comm. Math. Phys., 43(3):467–499, 1992.

[41] K. Golden and G. Papanicolaou. Bounds for effective parameters of heterogeneous
media by analytic continuation. Comm. Math. Phys., 90:473–491, 1983.

[42] K. Golden and G. Papanicolaou. Bounds for effective parameters of multicomponent
media by analytic continuation. J. Stat. Phys., 40(5/6):655–667, 1985.

[43] K. M. Golden. Statistical mechanics of conducting phase transitions. J. Math. Phys.,
36(10):5627–5642, 1995.

[44] K. M. Golden. The interaction of microwaves with sea ice. In G. Papanicolaou,
editor, Wave Propagation in Complex Media, IMA Volumes in Mathematics and its
Applications, Vol. 96, pages 75 – 94. Springer – Verlag, 1997.

[45] K. M. Golden. Percolation models for porous media. In U. Hornung, editor, Homoge-
nization and Porous Media, pages 27 – 43. Springer – Verlag, 1997.

29



[46] K. M. Golden. Climate change and the mathematics of transport in sea ice. Notices
of the American Mathematical Society, 56(5):562–584 and issue cover, 2009.

[47] K. M. Golden, S. F. Ackley, and V. I. Lytle. The percolation phase transition in sea
ice. Science, 282:2238–2241, 1998.

[48] K. M. Golden, H. Eicken, A. L. Heaton, J. Miner, D. Pringle, and J. Zhu. Thermal
evolution of permeability and microstructure in sea ice. Geophys. Res. Lett., 34:L16501
(6 pages and issue cover), 2007.

[49] K. M. Golden, H. Eicken, A. L. Heaton, J. Miner, D. Pringle, and J. Zhu. Thermal
evolution of permeability and microstructure in sea ice. Geophys. Res. Lett., 34:L16501
(6 pages and issue cover), doi:10.1029/2007GL030447, 2007.

[50] K. M. Golden, N. B. Murphy, and E. Cherkaev. Spectral analysis and connectivity of
porous microstructures in bone. J. Biomech., 44(2):337–344, 2011.

[51] G. Grimmett. Percolation. Springer-Verlag, New York, 1989.

[52] A. Gully, J. Lin, E. Cherkaev, and K. M. Golden. Bounds on the complex permittivity
of polycrystalline materials by analytic continuation. Proc. R. Soc. A, 471(20140702),
2015.

[53] B. I. Halperin, S. Feng, and P. N. Sen. Differences between lattice and continuum
percolation transport exponents. Phys. Rev. Lett., 54(22):2391–2394, 1985.

[54] A. Herman. Numerical modeling of force and contact networks in fragmented sea ice.
Ann. Glaciol., 2013.

[55] E. E. Hofmann and E. J. Murphy. Advection, krill, and antarctic marine ecosystems.
Antarctic Science, 16(04):487–499, 12 2004.

[56] C. Hohenegger, B. Alali, K. R. Steffen, D. K. Perovich, and K. M. Golden. Transition
in the fractal geometry of Arctic melt ponds. The Cryosphere, 6(5):1157–1162, 2012.

[57] M. B. Isichenko. Percolation, statistical topography, and transport in random media.
Rev. Mod. Phys., 64(4):961–1043, 1992.

[58] B. Jin and W. Rundell. A tutorial on inverse problems for anomalous diffusion pro-
cesses. Inverse Problems, 31(3):035003, 2015.

[59] T. Jonckheere and J. M. Luck. Dielectric resonances of binary random networks. J.
Phys. A: Math. Gen., 31:3687–3717, 1998.

[60] Joseph B. Keller. Gravity waves on ice-covered water. Journal of Geophysical Research:
Oceans, 103(C4):7663–7669, apr 1998.

[61] A. R. Kerstein. Equivalence of the void percolation problem for overlapping spheres
and a network problem. J. Phys. A, 16:3071–3075, 1983.

30



[62] A. L. Kohout, M. J. M. Williams, S. M. Dean, and M. H. Meylan. Storm-induced
sea-ice breakup and the implications for ice extent. Nature, 509(7502):604–607, may
2014.

[63] Pavel L Krapivsky, Sidney Redner, and Eli Ben-Naim. A kinetic view of statistical
physics. Cambridge University Press, 2010.

[64] D. Liu, J. Zhu, J.-L. Tison, and K. M. Golden. Inversion schemes for recovering the
thermal conductivity of sea ice from temperature data. To be submitted, 2015.

[65] Dan Lubin and Robert Massom. Sea ice. In Polar Remote Sensing Volume I: Atmo-
sphere and Oceans, pages 309–728. Springer Berlin Heidelberg, 2006.

[66] J. V. Lukovich, D. G. Babb, and D. G. Barber. On the scaling laws derived from ice
beacon trajectories in the southern beaufort sea during the international polar year
- circumpolar flaw lead study, 2007–2008. J. Geophys. Res.-Oceans, 116(C9):C00G07
(16pp.), 2011.

[67] J. V. Lukovich, J. K. Hutchings, and D. G. Barber. On sea-ice dynamical regimes in
the Arctic Ocean. Ann. Glac., 56(69):323–331, 2015.

[68] M. Luthje, D. L. Feltham, P. D. Taylor, and M. G. Worster. Modeling the summertime
evolution of sea-ice melt ponds. J. Geophys. Res., 111(C2):C02001, 17 pp., February
2006.

[69] V. I. Lytle and S. F. Ackley. Heat flux through sea ice in the Western Weddell Sea:
Convective and conductive transfer processes. J. Geophys. Res., 101(C4):8853–8868,
1996.

[70] C. Heussinger M. Maiti, A. Zippelius. Friction-induced shear thickening: A microscopic
perspective. Europhys. Lett., 2016.

[71] A. Majda and P. R. Kramer. Simplified Models for Turbulent Diffusion: Theory,
Numerical Modelling, and Physical Phenomena. Physics reports. North-Holland, 1999.

[72] T. Maksym and T. Markus. Antarctic sea ice thickness and snow-to-ice conversion
from atmospheric reanalysis and passive microwave snow depth. J. Geophys. Res.,
113:C02S12, doi:10.1029/2006JC004085, 2008.

[73] D. McLaughlin, G. Papanicolaou, and O. Pironneau. Convection of microstructure
and related problems. SIAM J. Appl. Math., 45:780–797, 1985.

[74] R. C. McPhedran, D. R. McKenzie, and G. W. Milton. Extraction of structural infor-
mation from measured transport properties of composites. Appl. Phys. A, 29(1):19–27,
1982.

[75] R. C. McPhedran and G. W. Milton. Inverse transport problems for composite media.
MRS Proceedings, 195, 1 1990.

31



[76] Michael H. Meylan, Luke G. Bennetts, and Alison L. Kohout. In situ measurements
and analysis of ocean waves in the Antarctic marginal ice zone. Geophysical Research
Letters, 41(14):5046–5051, jul 2014.

[77] G. W. Milton. Bounds on the complex dielectric constant of a composite material.
Appl. Phys. Lett., 37:300–302, 1980.

[78] G. W. Milton. Multicomponent composites, electrical networks and new types of
continued fractions I, II. Comm. Math. Phys., 111:281–327, 329–372, 1987.

[79] G. W. Milton. Theory of Composites. Cambridge University Press, Cambridge, 2002.

[80] G. W. Milton and K. Golden. Thermal conduction in composites. In T. Ashworth and
David R. Smith, editors, Thermal Conductivity 18, pages 571 – 582. Plenum Publishing
Corporation, 1985.

[81] G. W. Milton and K. Golden. Representations for the conductivity functions of mul-
ticomponent composites. Comm. Pure. Appl. Math., 43:647–671, 1990.

[82] H. K. Moffatt. Transport effects associated with turbulence with particular attention
to the influence of helicity. Rep. Prog. Phys., 46(5):621–664, 1983.

[83] Johannes E. M. Mosig, Fabien Montiel, and Vernon A. Squire. Comparison of
viscoelastic-type models for ocean wave attenuation in ice-covered seas. Journal of
Geophysical Research: Oceans, 120(9):6072–6090, sep 2015.

[84] N. B. Murphy, E. Cherkaev, and K. M. Golden. Anderson transition for classical
transport in composite materials. Phys. Rev. Lett., 118:036401.

[85] N. B. Murphy, E. Cherkaev, C. Hohenegger, and K. M. Golden. Spectral measure
computations for composite materials. Commun. Math. Sci., 13(4):825–862, 2015.

[86] N. B. Murphy, E. Cherkaev, J. Zhu, J. Xin, and K. M. Golden. Spectral analysis and
computation of effective diffusivities for steady random flows. 42 pp., Submitted, 2016.

[87] N. B. Murphy, E. Cherkaev, J. Zhu, J. Xin, and K. M. Golden. Spectral analysis
and computation of effective diffusivities in space-time periodic incompressible flows.
Annals of Mathematical Sciences and Applications, 2(1):3–66, 2017.

[88] T. Nattermann. Spin Glasses and Random Fields, chapter Theory of the Random
Field Ising Model, page 277. World Scientific, Singapore, 1998.

[89] CM Newman and DL Stein. Metastable states in spin glasses and disordered ferro-
magnets. Physical Review E, 60(5):5244, 1999.

[90] M. E. J. Newman and R. M. Ziff. Efficient monte carlo algorithm and high-precision
results for percolation. Phys. Rev. Lett., 85:4104–4107, Nov 2000.

[91] G. A. Pavliotis. Homogenization theory for advection-diffusion equations with mean
flow. PhD thesis, Rensselaer Polytechnic Institute Troy, New York, 2002.

32



[92] D. K. Perovich, W. B. Tucker III, and K.A. Ligett. Aerial observations
of the evolution of ice surface conditions during summer. J. Geophys. Res.,
107(C10):doi:10.1029/2000JC000449, 2002.

[93] D. K. Perovich and C. Polashenski. Albedo evolution of seasonal Arctic sea ice. Geo-
physical Research Letters, 39(8), 2012. L08501.

[94] J. Klafter R. Metzler. The random walk’s guide to anomalous diffusion: A fractional
dynamics approach. Physics Reports, (339):1–77, 2000.

[95] P. Rampal, J. Weiss, D. Marsan, R. Lindsay, and H. Stern. Scaling properties of sea ice
deformation from buoy dispersion analysis. J. Geophys. Res.-Oceans, 113(C3):C03002
(12pp.), 2008.

[96] T. S. Rogers, J. E. Walsh, T. S. Rupp, L. W. Brigham, and M. Sfraga. Future Arctic
marine access: analysis and evaluation of observations, models, and projections of sea
ice. The Cryosphere, 7(1):321–332, 2013.

[97] J. Rubinstein and S. Torquato. Flow in random porous media: Mathematical formu-
lation variational principles, and rigorous bounds. J. Fluid Mech., 206, 1989.

[98] S. Rysgaard, J. Bendtsen, L. T. Pedersen, H. Ramlωv, and R. N. Glud. Increased
CO2 uptake due to sea ice growth and decay in the Nordic Seas. J. Geophys. Res.,
114:C09011, doi:10.1029/2008JC005088, 2009.

[99] M. Sahimi. Applications of Percolation Theory. Taylor and Francis Ltd., London, 1994.

[100] M. Sahimi. Flow and Transport in Porous Media and Fractured Rock. VCH, Weinheim,
1995.

[101] P. J. Samson. Atmospheric transport and dispersion of air pollutants associated with
vehicular emissions. In A. Y. Watson, R. R. Bates, and D. Kennedy, editors, Air
Pollution, the Automobile, and Public Health, pages 77–97. National Academy Press
(US), 1988.

[102] R. Schinzinger and P. Laura. Conformal mapping: methods and applications. Dover,
2003.

[103] D. Stauffer and A. Aharony. Introduction to Percolation Theory, Second Edition.
Taylor and Francis Ltd., London, 1992.

[104] M. H. Stone. Linear Transformations in Hilbert Space. American Mathematical Society,
Providence, RI, 1964.

[105] C. Strong. Atmospheric influence on Arctic marginal ice zone position and width in
the Atlantic sector, February-April 1979-2010. Climate Dynamics, 39:3091–3102, 2012.

[106] C. Strong, D. Foster, E. Cherkaev, I. Eisenman, and K. M. Golden. On the definition
of marginal ice zone width. Journal of Atmospheric and Oceanic Technology, 0(0):in
press, 2017.

33



[107] C. Strong and K. M. Golden. Filling the polar data gap in sea ice concentration fields
using partial differential equations. Remote Sensing, 8(6), 2016.

[108] C. Strong and K. M. Golden. Filling the sea ice data gap with harmonic functions.
SIAM News, 50, 2017.

[109] Courtenay Strong and Ignatius G. Rigor. Arctic marginal ice zone trending wider in
summer and narrower in winter. Geophys. Res. Lett., 40(18):4864–4868, September
2013.

[110] G. I. Taylor. Diffusion by continuous movements. Proc. London Math. Soc., 2:196–211,
1921.

[111] D. N. Thomas and G. S. Dieckmann, editors. Sea Ice, 2nd Edition. Wiley-Blackwell,
Oxford, 2009.

[112] C. J. Thompson. Classical Equilibrium Statistical Mechanics. Oxford University Press,
Oxford, 1988.

[113] S. Torquato. Random Heterogeneous Materials: Microstructure and Macroscopic Prop-
erties. Springer-Verlag, New York, 2002.

[114] S. Torquato and D. C. Pham. Optimal bounds on the trapping constant and perme-
ability of porous media. Phys. Rev. Lett., 92:255505:1–4, 2004.

[115] S. Torquato and J. Rubinstein. Diffusion-controlled reactions. II. Further bounds on
the rate constant. J. Chem. Phys., 90:1644–1647, 1989.

[116] Takenobu Toyota, Christian Haas, and Takeshi Tamura. Size distribution and shape
properties of relatively small sea-ice floes in the Antarctic marginal ice zone in late
winter. Deep Sea Research Part II: Topical Studies in Oceanography, 58(9-10):1182–
1193, may 2011.

[117] Y. A. Vetter, J. W. Deming, P. A. Jumars, and B. B. Krieger-Brockett. A predictive
model of bacterial foraging by means of freely released extracellular enzymes. Microb.
Ecol., 36:75–92, 1998.

[118] Peter Wadhams. Ice in the Ocean. Gordon and Breach Science Publishers, London,
2000.

[119] Ruixue Wang and Hayley H. Shen. Gravity waves propagating into an ice-covered
ocean: A viscoelastic model. Journal of Geophysical Research, 115(C6), June 2010.

[120] W. M. Washington and C. L. Parkinson. An Introduction to Three-dimensional Climate
Modeling. University Science Books, 1986.

[121] E. Watanabe and H. Hasumi. Pacific water transport in the western Arctic Ocean
simulated by an eddy-resolving coupled sea ice–ocean model. J. Phys. Oceanogr.,
39(9):2194–2211, 2009.

34



[122] W. F. Weeks and A. Assur. Fracture of lake and sea ice. Research Report 269, USA
CRREL, Hanover, NH, 1969.

[123] M. G. Worster and D. W. Rees Jones. Sea-ice thermodynamics and brine drainage.
Phil. Trans. R. Soc. A, 373:20140166, 2015.

[124] D. Zhang and E. Cherkaev. Reconstruction of spectral function from effective per-
mittivity of a composite material using rational function approximations. J. Comput.
Phys., 228(15):5390–5409, 2009.

35




