Mathematics 1220 PRACTICE EXAM III Spring 2002

- 1. Use the geometric series to find the Taylor series for $f(x) = \ln(1+x)$ around x = 0. Determine the radius of convergence of this series. Explain your result for the radius in terms of the singularity of f. Do the same for $f(x) = 1/(1+x)^2$.
- 2. Find the Taylor series for $\cosh x$ around x = 0 by using the series for e^x . What is its radius of convergence?
- 3. Find the convergence set for the following power series. For (a), also analyze the type of convergence (or divergence) at the enpoints of the convergence set.

(a)
$$\sum_{n=1}^{\infty} \frac{(3x+1)^n}{n \, 2^n}$$
 (b) $\sum_{n=1}^{\infty} f_n \, x^n$, where $\{f_n\}$ is the Fibonacci sequence

4. Find the following limits. Be sure to fully justify your answers.

(a)
$$\lim_{n \to \infty} e^{-n} \sin n$$
 (b) $\lim_{n \to \infty} (2n)^{1/2n}$

(c)
$$\lim_{n \to \infty} \left(1 - \frac{1}{n} \right) \cos n\pi$$
 (d) $\lim_{n \to \infty} \sum_{k=1}^{n} \left(\exp\left(\frac{k}{n}\right)^2 \right) \frac{1}{n}$

- 5. A (zero dimensional) bull frog initially jumps a meter. On each successive jump, he can only go $\frac{3}{4}$ of the distance of the previous jump. If he takes infinitely many jumps, how far does he travel?
- 6. Consider solving the equation x = e^x 2 for the root just to the right of x = 1, using the fixed point iteration scheme x_{n+1} = g(x_n), where g(x) = e^x 2. Even with a close initial guess of x₁ = 1 or x₁ = 1.5, the iteration scheme fails to converge, because g'(x) > 1. (a) Find h(x) such that for the transformed problem x = h(x), the iteration scheme x_{n+1} = h(x_n) converges, and show that h'(x) < 1 for all x. (b) Sketch the simultaneous graphs of x and h(x). With an initial guess of x₁ = 2, diagram on these graphs the convergence of the iteration scheme to the fixed point, as in Figure 4 of section 11.4. Demonstrate the divergence of the original iteration scheme x_{n+1} = g(x_n) with a similar diagram.
- 7. Use Euler's method to discretize the logistic equation $\frac{dy}{dt} = ay by^2$, and write your solution as a fixed point iteration scheme.
- 8. Determine whether the following infinite series converge or diverge. If a series converges, determine whether the convergence is absolute or conditional. Be sure to justify your answers completely.

(a)
$$\sum_{n=1}^{\infty} (-1)^{n+1} \frac{\tan^{-1} n}{1+n}$$
 (b) $\sum_{n=1}^{\infty} \sqrt{1 - \cos\left(\frac{1}{n}\right)}$ (c) $\sum_{n=1}^{\infty} \frac{n^{100}}{n!}$
(d) $\sum_{n=1}^{\infty} \left(1 - \frac{1}{n}\right)^n$ (e) $\sum_{n=2}^{\infty} \frac{1}{n(\ln n)^{\pi}}$ (f) $\sum_{n=1}^{\infty} \frac{n^n}{(2n)!}$