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We devise a new algorithm to obtain the pair-connectedness function Per) for continuum
percolation models from computer simulations. It is shown to converge rapidly to the infinite
system limit, even near the percolation threshold, thus providing accurate estimates of Per) for 
a wide range of densities. We specifically consider an interpenetrable-particle model (referred 
to as the penetrable-concentric-shell model) in which D-dimensional spheres (D = 2 or 3) of 
diameter U are distributed with an arbitrary degree of impenetrability parameter A, O<A< 1. 
Pairs of particles are taken to be "connected" when the interparticle separation is less than u. 
The theoretical results of Xu and Stell for Per) in the case offully penetrable spheres (A = 0) 
are shown to be in excellent agreement with our simulations. We also compute the mean 
cluster size as a function of density and A for the case of 2D, and, from these data, estimate the 
respective percolation thresholds. 

I. INTRODUCTION 

The subject of physical clustering and percolation in 
"continuum" (off-lattice) models of random media has been 
receiving considerable attention in recent years. 1-12 Contin
uum-percolation models, although less tractable than their 
lattice counterparts, are better able to capture the essential 
physical aspects of real systems. Examples of phenomena in 
which continuum-percolation models and concepts are ex
pected to be useful include transport and mechanical proper
ties of fluid-saturated· porous media,13 composite materi
als,14 microemulsions,6 gelation, IS conductor-insulator 
transition in liquid metals,16 and the structure of liquid wa
ter.s 

A typical continuum model consists of a system of gen
erally interacting particles at number density p. One estab
lishes a criterion for "bound" and "unbound" pairs, as first 
suggested by Hill,17 in order to define the physical clusters. 
From this formulation of physical clusters, one can then ob
tain the pair-connectedness function P(r l ,r2) I: a quantity of 
fundamental importance. The quantity p2P(rl,r2)drldr2 
represents the probability of finding two particles centered 
in volume elements dr 1 and dr 2 about r 1 and r 2' respectively, 
and are physically connected, i.e., belong to the same cluster. 
For statistically isotropic media (the subject of the present 
study), the pair-connectedness function just depends upon 
the relative distance r = irl -r2i,i.e.,P(rl,r2) =P(r).Giv
en P( r), one can then determine the mean cluster size S from 
the relation 1 

S= 1 +p f P(r)dr. (1) 

aJ Author to whom all correspondence should be addressed. 

At the percolation density Pc, the mean cluster size of course 
becomes infinite. 

Theoretical techniques used to determine P( r) focus on 
solving the connectedness Omstein-Zemike integral equa
tion. 1.4.S.8.12 Closure ofthe integral equation requires one to 
employ an approximation for the "direct" connectedness 
function. A commonly employed closure is the Percus-Ye
vick approximation. This was first used by Chiew and 
Glandt4 to study permeable spheres. DeSimone et al.8 em
ployed this approximation to study the penetrable-concen
tric-shell (PCS) model introduced by Torquato. 18 More re
cently, Xu and Stell l2 solved the connectedness Omstein
Zemike equation using a generalized-mean-spherical ap
proximation for the model of fully penetrable (randomly 
centered) spheres. 

Until the pioneering papers of Seaton and Glandt9 and 
of Sevick et al., 10 computer simulations of P( r) for contin
uum-percolation models were nonexistent and hence inte
gral-equation theories could not be tested. Seaton and 
Glandt obtained Per) for the "sticky-sphere" model. Sevick 
et al. measured Per) for the 3D PCS model. They also ob
tained the cluster size distributions and mean cluster size for 
this model. 

In this study, we develop, among other things, a new 
algorithm to obtain Per) from computer simulations for 
continuum-percolation models. Specifically, we consider the 
D-dimensional PCS model (where D = 2 and 3). In the PCS 
model l8 (depicted in Fig. I), each sphere (disk) of diameter 
u is composed of an impenetrable core of diameter AU, en
compassed' by a perfectly penetrable-concentric shell of 
thickness (1 - A)u/2. The extreme limits of the impenetra
bility parameter A = 0 and 1 correspond to the cases offully 
penetrable and totally impenetrable particles, respectively. 
DeSimone et al. have noted that the PCS model may serve as 
a useful first step in studying percolation in liquid water and 
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• 

FIG. 1. A computer-generated realization of a distribution of disks of radius 
0/2 (shaded region) in the pes model. The disks have a hard core of diame
ter ,.1.0 indicated by the smaller, black circular region. Here A = 0.5 and 
volume fraction of disks is approximately 0.3. 

in liquid metals. Our results for P(r) in the 3D case are 
compared to the data of Sevick et 01. and it is shown that our 
algorithm converges to the infinite-system behavior more 
rapidly than their results do. Our 20 data for P(r) are new. 
Moreover, in the 20 case, we obtain the mean cluster size S 
as a function of density (and volume fraction) for fixed A 
and, from it, estimate the percolation thresholds for the se
lected values of A. 

In Sec. II, we describe the simulation technique we de
velop to determine P(r) and S. In Sec. III, we report our 
results for these quantities for the D;dimensional PCS model 
(D = 2 and 3) as a function of the density and impenetrabil
ity parameter A. There we compare our data to previous 
simulation and theoretical results. Finally in Sec. IV, we 
make some concluding remarks. 

II. SIMULATION PROCEDURE 

Obtaining statistical measures, such as the pair-connec
tedness function and mean cluster size, from computer simu
lations is a two-step process. First, one must generate real
izations of the random medium. Second, one samples each 
realization for the desired quantity and then averages over a 
sufficiently large number of realizations. In the ensuing dis
cussion, we describe the details of our simulation methods to 
obtain the aforementioned cluster measures for eqUilibrium 
distributions of identical disks or spheres in the PCS mod
eLlS 

Consider each D-dimensional sphere to have a diameter 
0' and an inner impenetrable core of diameter AU. In order to 
generate random realizations for fixed A and reduced num
ber density 7J = p1ruD I[D(D - 1)], we employ a conven
tional Metropolis algorithm. 19 Particles are initially placed 
in a cubical cell of volume L D on the sites of a regular array 
(square and simple cubic lattices for D = 2 and 3, respective
ly). The cell is surrounded by periodic images of itself. Each 

particle is then moved by a small distance to a new position 
which is accepted or rejected according to whether OJ: I)ot the 
inner hard cores overlap. This process is repeated· many 
times until eqUilibrium is achieved. Each of our simulation 
consists of 5()()(}-20 000 moves per particle, the first 200-400 
of which were discarded before sampling the equilibrium 
properties. Realizations were selected every 10-20 moves 
per particle. 

Before computing P( r) and S, one must first make use of 
an algorithm which distinguishes the various clusters in the 
system. By definition, two particles are assumed to be "di
rectly" connected if their interparticle distance is less than 0'. 

Pairs of particles may be "indirectly" connected, however, 
i.e., pairs can be connected through chains of other particles. 
Existing cluster-counting algorithms which can distinguish 
such clusters include the "cluster-labeling" method20 and 
the "connectivity-matrix" method. 10 The former was origin
ally developed for lattice percolation20 and subsequently 
adapted for continuum percolation.3 The latter was original
ly developed for continuum percolation 10 but can be applied 
to lattice percolation as well. In this study, we employ a 
modified cluster labeling method. 

A. Palr-connectedness function 

Computing the pair-connectedness function is, in prin
ciple, straightforward. First, one constructs concentric 
shells of radii 

rn = nlir, n = 1,2,3, ... (2) 

up to r = L 12 around each particle in the system (where lir 
is a distance which is small compared to 0'). One then counts 
the number of particles in each shell which are connected to 
each of the central particles. The pair-connectedness func
tion P( r) is readily obtained from the number of connected 
particles for each n. The most subtle aspect of measuring 
P(r) from computer simulations is extracting infinite-sys
tem behavior from a finite-sized experiment. 

In order to minimize the effect of system size in simula
tions, one typically surrounds the central cell with replicas of 
itself. 2 

1 Cluster identification depends upon the type of 
boundary conditions employed. This is a crucial point since 
determination of which particles are members of the same 
cluster will affect measurements of P(r). Previous investiga
tors9

,10 in their 30 simulations utilized what we term "sim
ple" periodic boundary conditions over the central cell. The 
essence of our technique to compute P( r) involves the appli
cation of "free boundary conditions" over the central and 
replicating cells. It shall be shown that our method leads to a 
pair-connectedness function which converges to the infinite
system behavior more rapidly than previous techniques 
which employ the straightforward use of periodic boundary 
conditions. 

In order to illustrate these two different techniques, con
sider a 20 realization shown in Fig. 2. Figure 2(a) shows 
clusters as obtained by the use of periodic boundary condi
tions over the central cell.9

•
IO Figure 2(b) depicts clusters as 

obtained by the use of free boundary conditions over central 
and replicating cells. Clearly, even though the same realiza-
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FIG. 2. A computer generated 2D realization for the penetrable-concentric
shell (peS) model for A. = 0.3 and 1] = 0.81: (a) central cell in which clus
ters are obtained by the use of periodic boundary conditions over the central 
cell; (b) central and replicating cells in which clusters are obtained by the 
use of free boundary conditions over the central and replicating cells. 

tion is involved, cluster identification is different. Consider 
two specific cases: (i) the particle pairs i andj and (ii) the 
particle pairs i and k. In case (i) (r < L /2), the pairs of 
particles are in tpe same cluster in Fig. 2(a), while in Fig. 
2(b) they are not in the same cluster. In case (ii) the parti
cles i and k are in the same cluster; however, since the inter
particle distance r> L /2, this pair is not counted at all as an 
event in determining P( r). 22 Instead, one must consider the 
"image" particle k " assuming particle i is the central parti
cle. Clearly, particles i and k' are in different clusters. The 
two examples (i) and (ii) were assumed to contribute to 
P( r) in Ref. 10 [in case (ii), particles i and k ' were taken to 
be connected because particles i and k are connected; they 
use the distance between iand k']. Thus, theP(r) presented 
in Ref. 10 is, in general, overestimated (especially as the 
threshold is approached from below), as shall be shown in 
the subsequent section. In the present work, the pairs i andj, 
and i and k ' are not considered to be connected to one an
other. Our technique to obtain P(r) shall be shown to con
verge to the infinite-system behavior relatively rapidly. Of 

course the two different methods become identical and "er
ror-free" in the limit of an infinite system. Application of 
free boundary conditions over the central and replicating 
cells requires considerable computer time; it is essential, 
however, to do so in order to appreciably reduce finite-size 
errors in P(r). It should be noted that the "connectivity
matrix" method 10 for cluster counting can be modified to 
incorporate the free boundary conditions employed in this 
study, albeit at the expense of additional computer time. 

B. Mean cluster size and percolation threshold 

The mean cluster size S is alternatively defined as the 
second moment of the cluster size distribution normalized 
by the first moment, 1 

!"s:rns S=---, 
!"ssns 

(3) 

where ns is the mean number of clusters of size s. We employ 
this definition to compute S from our simulation as opposed 
to the alternative definition in terms of P( r), Eq. (1). Unlike 
the determination of P(r), the mean number of clusters of 
size s, ns , and hence S, will be the same for both periodic 
boundary conditions applied to the central cell [cf. Fig. 
2(a)] and free boundary conditions applied to the central 
and replicating cells [cf. Fig. 2 (b) ]. Since the former bound
ary condition (used in Ref. 10) is much less computer inten
sive, it is the one we utilize to compute S. Because Sevick et 
al. have already accurately determined S for. the 3D PCS 
model, we shall present results for S only for the 2D case. In 
light of the fact that the mean cluster size S becomes infinite 
at 7J = 7Jc> we can estimate 7Jc by extrapolating the data for 
the inverse mean cluster size as a function of 7J to the S - 1 -+ 0 
limit. 

III. RESULTS AND DISCUSSIONS 

We have carried out a number of simulations for the 
PCS model for both D = 2 and 3. Two values of the impen
etrability parameter A were selected (A = 0 and 2/3) for 
D = 3 in order to compare our results for P( r) (which were 
obtained using the new algorithm described in Sec. II) with 
previous data reported by Sevick et al.23 and with the theo
retical results of Xu and Stell. 12 For D = 2, we present new 
results for P(r) atA = 0, 0.5, and 0.8 and for S atA = 0, 0.5, 
0.8, and 0.9. In order to study the dependence of our results 
upon the size of system, we have carried our simulations 
with 64, 125,216, and 512 particles for D = 3 and with 100, 
225, 400, and 625 particles for D = 2. 

A. Pair-connectedness function 

1_3Dmedia 

Our results are compared to the previous simulations of 
Sevick et al.1O and the accurate theoretical results recently 
obtained by Xu and Stell. 12 It shall be shown that this theory 
is in excellent agreement with our simulations. 

Figures 3 and 4 show our 3D data for P(r) atA = 0 and 
2/3, respectively. For the purposes of comparison, we in-
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FIG. 3. The pair-connectedness function PCr) from Monte Carlo simula
tions of the 3D PCS model for A. = 0 (fully penetrable spheres) with the 
numberofparticIes N = 64, 125, and S12. Filled symbols are our data and 
unfilled symbols are from the algorithm of Ref. 10. 

cIude the corresponding results obtained in Ref. 10. The Se
vick et al. data were generated by us using their boundary 
conditions and found to reproduce their results extremely 
well. The pair-connectedness function determined from 
these two algorithms differ in three key ways. 

First, for a particular size of the system, our data always 
lie below those of Ref. 10. For smaller systems, such as 
N = 64 and 12S, the data of Ref. 10 appear to have been 
generally overestimated. As N increases or 1/ decreases, the 
difference between the two algorithms becomes unimpor
tant. For 1/ = 0.2 and N = S12, e.g., the two results nearly 
overlap one another, indicating that they provide consistent 
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;\=2/3 
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0.6 -"" ....., 
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FIG. 4. As in Fig. 3, with A. = 2/3. 

results. However, as 1/-+1/c' deviations are appreciable even 
for relatively large systems. For example, for 1/ = 0.3, 
marked deviations are apparent already for N = S12. For 
1/ = 0.34 in the case of fully penetrable spheres,24 i.e., very 
close to percolation point (1/c = 0.3S, cf. Refs. 2, 4, 6, and 
10), the data obtained from the algorithm of Ref. 10 deviate 
significantly from our results. It should be noted that Sevick 
et al. were already aware of the fact that they would need a 
large number of particles to diminish finite-size effects very 
near 1/c' 

Second, the dependence of P( r) on the size of system in 
our study is opposite to the trend they found. Whereas Per) 
decreases as N increases in the work of Sevick et al., our data 
indicates that finite-size effects result in a slight underesti
mation in per). This trend found in Ref. 10 is inconsistent 
with their finding that the mean cluster size is underestimat
ed (i.e., S increases as N increases). In other words, an un-. 
derestimation (overestimation) of either P( r) or S generally 
implies an underestimation (overestimation) of the other 
[cf. Eq. (1)]. 

Last, our data converge to the infinite-system limit more 
rapidly than the data of Ref. 10. For example, Per) for 
1/ = 0.3andN = 12SisalreadyveryclosetothedataforSl2-
particle system in either the case A. = 0 or 2/3. The differ
ences between the 216-particle system (not shown) and the 
Sl2-particle system essentially vanish. This is in contrast to 
the results of Ref. 10 where appreciable differences are still 
apparent between 216- and S12-particle system. 

We now compare our 3D simulation results for Per) to 
theory. In particular, we consider comparing our data for 
N = S12 in the case of fully penetrable spheres (A. = 0) to 
the Percus-Yevick (PY) approximation obtained by Chiew 
and Glandt4 and the generalized mean-spherical (GMS) ap
proxiJIlation developed by Xu and Stell. 12 The agreement 
between our simulation and the PY approximation is in gen
eral poor except at very low densities. As the percolation 
threshold is approached from below, the PY approximation 
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0.8 

-"" 0.6 ....., 
"l=0.3 p.. 

0.4 
"l=0.2 

0.2 

0.0 
0 2 3 4 

ria 

FIG. 5. The pair-connectedness function Per) for fully penetrable spheres 
(A. = 0). Our simulation results with 512 particles (circles); theoretical re
sults of Ref. 12 (solid line). 
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FIG. 6. The pair-connectedness function P(r) from our Monte Carlo simu
lation of the 2D PCS model for A. = 0 (fully penetrable disks) with 
N = 100, 225, and 625. 

considerably underestimates P(r) and hence significantly 
overestimates the percolation transition. This conclusion re
garding the accuracy of the PY approximation was first 
reached by Sevick et al. On the other hand, the GMS approx
imation agrees remarkably well with our simulations as 
shown in Fig. 5. As is well known, the PY approximation 
leaves out important cluster integrals from the exact expres
sion for P(r).5,8.12 The GMS theory of Xu and Stell approxi
mately but accurately corrects these deficiencies. 

For..t = 2/3, the only theoretical result for P(r) is the 
PY approximation obtained by DeSimone et aI.8 Again the 
PY approximation is seen to considerably underestimate 
P(r), especially as 1]-1]c' This conclusion was also first 
reached by Sevick et al. The critical density 1] c is estimated to 
be about 0.33 (cf. Refs. 6 and 10). 
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FIG. 7. As in Fig. 6, with A. = 0.5. 

2 

ria 

A=O.5 
0"'1=0.6 
c '7=0.4 
'" "'1=0.2 

3 • 

0.5_-..,...--..,.--..,--...,...--r---'"T""--' 

A=O.8 
2.0 

0"'1=0.5 0 

0.4 0"'1=0.3 
0 

1.6 
0 

0 
c , 

0.3 

- 000 s.. 
1.2 

c , 
c , 

0: , -0.. 0 

P 0 
0 

0.2 
:o~o 

0 , 
0.8 L..-_-'--_...I......-'--~ 

0.75 0.85 0.95 1.05 

o 

0.1 

c 

0.0~---J~~~~~~!St~1ZIIZI~=~ 
0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 

ria 

FIG. 8. As in Fig. 6, with A. = 0.8. 

2.2DmtHIls 

Our simulation results for the 2D pes model are new. 
In Figs. 6-8, we present data for P(r) ai..t = 0,0.5, and 0.8, 
respectively. For the case..t = 0, data are given for various 
system sizes. For 1] = 0.6, the data depend weakly on system 
size, i.e., results for N = 100,225, and 625 are not very dif
ferent from one another. We find, as in the 3D case, that P( r) 
is not very sensitive to system size provided that the system is 
not too small (N < 100). 

For..t = 0.5 and 0.8, the effect of system size is similar to 
the case of..t = 0, and thus we present P(r) in Figs. 7 and 8 
for N = 625 only. In the case of fully penetrable disks, P(r) 

• A = 0.0 

• A R 0.5 

• A - 0.8 

• A - 0.9 

0.6 
fIl 
""-..-4 

0.4 

0.2 

0.0 
0.0 0.2 0 .• 0.6 0.8 

f/>2 

FIG. 9. The inverse mean cluster size S - I as a function of the particle phase 
volume fraction (12 for A. = 0, 0.5, 0.8, and 1 in the 2D PCS model. The 
symbols are our simulation results and the solid lines are spline fits of the 
data. 
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TABLE I. The inverse mean cluster size S - 1 for fully penetrable disks 
(A. = 0) extrapolated to the N -I .... 0 limit. The error bounds are determined 
from the linear regression. From these data, the critical volume fraction of 
the particle phase t/J~ is estimated to be 0.68. 

'T/ t/J2 S-I 

0.10 0.0952 0.6770 ± 0.0011 
0.20 0.1813 0.4644 ± 0.0025 
0.30 0.2592 0.3152 ± 0.0010 
0.40 0.3297 0.2125 ± 0.0012 
0.50 0.3935 0.1382 ± 0.0014 
0.60 0.4512 0.0854 ± 0.0008 
0.70 0.5034 0.0497 ± 0.0008 
0.80 0.5507 0.0229 ± 0.0006 
0.90 0.5934 0.0094 ± 0.0002 
1.00 0.6321 0.0028 ± 0.0002 

monotonically decreases with increasing r and shows behav
ior which is qualitatively similar to the corresponding 3D 
instance. For cases in which the impenetrable core is non
zero (A > 0), the 2D pair-connectedness function again 
monotonically decreases with increasing r, provided that 1/ is 
small. In such instances, however, if 1/ is sufficiently large, 
the maximum in P(r), for r> 0', occurs for rslightly greater 
than 0' (say r = r \) rather than at r = 0' as in the 3D analog. 
This implies that the probability of finding a connected par
ticle at , = '\ is greater than at r = 0' for D = 2. This is due 
simply to the topological difference between 2D and 3D. 

B. Mean cluster size and percolation threshold 

Here we present new results for S as a function of 1/ and 
estimate 1/c for the 2D pes model. The data are obtained by 
extrapolating S -\ for various system sizes (N = 100, 225, 
400, and 625) to the N - \ ...... 0 limit. Following Sevick et al. 
for the 3D case, we estimate 1/ c by extrapolating these data to 
the S -\ --+ 0 limit. Tables I-IV show our results for S -\ as a 
function of reduced number density 1/ and of the volume 
fraction of particle phase ¢2' The volume fraction ¢2 was 
estimated for each A and 1/ from our previous work.25,26 The 
error bounds given in the tables are determined from errors 
associated with the linear regression. 

TABLE II. The inverse mean cluster size S - 1 for the pes model for A. = 0.5 
extrapolated to the N -1 .... 0 limit. The error bounds are determined from 
the linear regression. From these data, the critical volume fraction of the 
particle phase t/J~ is estimated to be 0.68. 

'T/ t/J2 S-I 

0.10 0.0979 0.7347 ± 0.0010 
0.20 0.1915 0.5255 ± 0.0008 
0.30 0.2806 0.3583 ± 0.0019 
0.40 0.3649 0.2282 ± 0.0020 
0.50 0.4441 0.1323 ± 0.0015 
0.60 0.5183 0.0636 ± 0.0010 
0.65 0.5583 0.0387 ± 0.0004 
0.70 0.5867 0.0206 ± 0.0003 
0.75 0.6187 0.0080 ± 0.0002 
0.80 0.6493 0.0024 ± 0.0002 

TABLE III. The inverse mean cluster size S - 1 for the pes model for 
A. = 0.8 extrapolated to the N - 1 .... 0 limit. The error bounds are determined 
from the linear regression. From these data, the critical volume fraction of 
the particle phase t/J~ is estimated to be 0.71. 

'T/ t/J2 S-I 

0.10 0.09972 0.8515 ± 0.0025 
0.20 0.1987 0.6966 ± 0.0015 
0.30 0.2966 0.5349 ± 0.0003 
0.40 0.3933 0.3729 ± 0.0006 
0.50 0.4880 0.2216 ± 0.0020 
0.55 0.5344 0.1509 ± 0.0023 
0.60 0.5803 0.0907 ± 0.0008 
0.65 0.6262 0.0421 ± 0.0019 
0.70 0.6721 0.0100 ± 0.0004 

In general, the mean cluster size S depends upon the size 
of system for the entire range of volume fractions. For low 
concentrations, the slope of the extrapolation is smaller, in
dicating that finite-size effects are small. As 1/ increases, the 
slopes increase significantly, demonstrating that finite-size 
effects are indeed important near the threshold, as expected. 
Thus, for any finite-sized system, 1/ c is considerably overesti
mated. This is expected since the mean cluster size in a simu
lation cannot be greater than the total number of particles, 
even for 1/ close to 1/c' In contrast, S ...... 00 as 1/ ...... 1/c for an 
infinite system. This underestimation of S implies that the 
pair-connectedness function will be underestimated, which 
is consistent with the findings of our simulations. In Fig. 9, 
our extrapolated results are plotted as a function of ¢2' Per
colation points are estimated from this plot. For A = 0, 0.5, 
0.8, and 0.9, we fi,nd ¢~ = 0.68, 0.68, 0.71, and 0.75, respec
tively (where ¢~ is the critical volume fraction of the particle 
phase),26 The corresponding number densities are 1.13, 
0.85, 0.75, and 0.76, respectively. These estimates are rea
sonably close to recent simulation results.6 

The percolation thresholds could have been estimated 
using the scaling law for the mean cluster size and finite-size 
scaling analysis,27 This procedure is more accurate than the 
one used in this study. We discovered, however, that for 
A > 0 (i.e., for finite-sized hard cores) the region in which 
the scaling law holds is extremely narrow. Hence, it is quite 
nontrivial to accurately measure thresholds for A > 0 using 

TABLE IV. The inverse mean cluster size S - 1 for the pes model for 
A. = 0.9 extrapolated to the N - 1 .... 0 limit. The error bounds are determined 
from the linear regression. From these data, the critical volume fraction of 
the particle phase t/J~ is estimated to be 0.75. 

'T/ t/J2 S-I 

0.10 0.0999 0.9169 ± 0.0003 
0.20 0.1998 0.8185 ± 0.0016 
0.30 0.2994 0.6995 ± 0.0017 
0.40 0.3986 0.5538 ± 0.0027 
0.50 0.4973 0.3825 ± 0.0021 
0.60 0.5950 0.1995 ± 0.0026 
0.65 0.6437 0.1099 ± 0.0022 
0.70 0.6925 0.0396 ± 0.0013 
0.75 0.7413 0.0034 ± 0.0004 
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such an analysis. Elsewhere we have carried out such de
tailed calculations~ 28 

IV. CONCLUDING REMARKS 

We have devised a new algorithm which enables us to 
accurately measure the pair-connectedness function both for 
2D and 3D continuum percolation models. Our results for 
P(r) converge rapidly to the infinite-system limit, thus pro
viding accurate numerical estimates of P(r) for the pes 
model in both 2D and 3D. We have also determined that the 
GMS approximation for P(r) developed by Xu and Stell 
provides good estimates of it for the case of fully penetrable 
spheres. Lastly, we have presented numerical estimates of 
mean cluster size as a function of ¢J2 for fixed A in 2D, and 
used this information to estimate percolation thresholds for 
the selected values of A. 
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