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Preface to the Second
Edition

This edition is enlarged not only by a second author, but also by additional
material, needed because of the progress in research since the first edition. In
addition to correction of errors, omission of topics which are no longer active
and updating of references, the new edition puts more emphasis on fractals
and on the relations between the fractal geometry of percolation clusters and
their physical properties. It also puts more emphasis on the crossover (as func-
tion of length scale) between the critical behaviour at and near the percolation
threshold and other types of behaviour, and on the presentation of the
renormalization group as a working tool. Dimensions above three are no
longer ignored.

Most of the new material in this edition is contained in Chapters 5, 6 and
7, and in Appendix B. New concepts which are introduced, at least briefly,
include distribution functions, fluctuations, multifractals, minimal (chemical)
paths, continuum percolation, elastic networks, superlocalization, fractons,
hulls and perimeters, diffusion fronts, growth, self-affine curves, invasion
percolation and self-organized criticality. We also discuss the role played by
percolation theory in describing Ising model droplets, leading to the very fast
modern Monte Carlo simulation techniques in statistical physics. Many of the
concepts listed here are not limited to percolation clusters. They arise in many
modern branches of statistical physics and other disciplines which involve the
interplay of geometry, statistics and physics. Examples include polymer sci-
ence, aggregation, etc. Percolation theory is still the simplest context in which
all these tools can be introduced and explained.

Another new element in this edition is the set of exercises. Many of these
were originally research problems, and their solutions are hidden in the
‘further reading’ lists or in references therein. However, any student who
follows the text should be able to solve these exercises, and use them to test
his or her ability to actively use the tools offered here in research.

Obviously, this book still represents our biased view of percolation. One
cannot do justice to all the topics which have appeared in the literature, and
it is also beyond the scope of such an introductory text. Since this book is not
a review monograph, we also avoided giving a full list of references. In many



Vil Introduction to Percolation Theory

cases we have preferred to list a recent review or research article which con-
tains many of the earlier references. In any case, the responsibility for these
omissions, as well as for the remaining and new errors, rests fully with my
coauthor.

Joan Adler, Preben Alstrom, Etienne Guyon, Shlomo Havlin, Rudolf
Hilfer, Ury Naftaly and Gene Stanley made comments on the first version
which were helpful in improving the book.

Dietrich Stauffer
Amnon Aharony
Tel Aviv, January 1991



Preface to the First Edition

This book is an attempt to introduce the reader to a research field which is
already more than forty years old but which has become very fashionable in
the research publications of the last ten years. More than a hundred publi-
cations are printed each year where ‘percolation’ or similar words appear in
the title. But in contrast to many other modern research fronts, percolation
theory is a problem which is, in principle, easy to define. It is, however, not
so easy to solve. Thus percolation theory gives the reader the opportunity to
enter current research without having to hear many specialized courses or to
read voluminous textbooks. Percolation theory has been taught to first year
undergraduates and even younger students by this author and by others, but
it has also been utilized in courses for more advanced students on disordered
systems or on computer simulations. The present book tries to be useful for
all these purposes. Since percolation is not, and in my opinion should not be,
a standard subject for university examinations, it is addressed mainly to
readers interested in research. But it is aimed at one who is just starting
research in this field, not to readers who have already worked in percolation
theory. These experts will doubtless notice my biased selection of material.

The prerequisites are familiarity with computer programming (e.g.
Fortran), integration and differentiation of functions of one variable, and
probabilistic elements like averages or statistical independence. Therefore the
book should be understandable to students in computer science, mathematics,
chemistry or biology who might be interested in stretching a big computer to
its limits by efficient programming, in simple applications of probability
theory, in theories for the gelation of branched macromolecules, or in the
spread of epidemics in an ensemble of living beings. But presumably the book
will be read mostly by physics students since the methods by which it attacks
the percolation problem are taken from the theory of phase transitions like
ferromagnetic Curie points. For these we will mention throughout the book
analogies between the geometrical aspects of percolation and the physical
aspects of thermal phase transitions. Any modern textbook on Statistical
Physics will give the background to understand these analogies, and students
not interested in the analogies may simply ignore them.

Some readers may be acquainted with the scaling theory of phase tran-
sitions developed during the last twenty years and honoured by the 1982 Nobel
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prize for Kenneth G. Wilson. They will notice that many aspects of perco-
lation theory are simply borrowed from the physics of phase transitions, as
will be mentioned in the text. On the other hand, a reader who has not yet
learned scaling theory or renormalization group methods for general phase
transitions, but who wants to know something about them, may use perco-
lation theory as a starting point. In many respects percolation is the simplest
not exactly solved phase transition and thus may serve as an introduction to
the sometimes more difficult review articles or books on phase transitions and
critical phenomena.

What this book does not try to be is mathematically rigorous or complete
in dealing with the actual state of research. We only give cursory mention to
the applications of percolation since they require a more specialized reader-
ship. We will try however to list in the literature some of the more thorough
review articles on percolation for those who want to study this field further.
However, because of the rapid development of percolation, the reader should
not assume that these references are still the most recent relevant reviews or
original articles at the time he reads this book.

I am indebted to J. Kertész for information about his percolation seminar
at Munich Technical University, and his comments and those of D. W.
Heermann, H. J. Herrmann, A. Margolina, B. Miihlschlegel, R. B. Pandey,
S. Redner, and M. Sahimi on a preliminary version of the manuscript (though
I did not follow all of their suggestions, like calling this book ‘My biased view
of percolation’). M. Suessenbach for producing Figure 2, and A. Schneider
for drawing the other figures. The manuscript was written using the text
editing system of a PDP 11/34 computer, thanks to the efforts of A.
Weinkauf and M. Schulte; needless to say this computer should be blamed for
all the errors in the book. °

Dietrich Stauffer
January 1985



CHAPTER 1

Introduction: Forest Fires,
Fractal QOil Fields, and
Diffusion

1.1. WHAT IS PERCOLATION?

Imagine a large array of squares as shown in Fig. 1(a). We imagine this array
to be so large that any effects from its boundaries are negligible. Physicists call
such an array a square lattice, mathematicians denote it by Z2; common sense
identifies it with a big sheet of ruled paper. (You may complain that the
square lattice in Fig. 1(a) is not very large, but the publisher did not allow us
to fill all remaining pages of this book with these squares, which would have
greatly simplified our task of writing the book and yours of reading it.) Now
a certain fraction of squares are filled with a big dot in the centre, whereas
the other squares are left empty, as in Fig. 1(b). We now define a cluster as
a group of neighbour squares occupied by these big dots; these clusters are
encircled in Fig. 1(c). From this picture we see that squares are called
nearest neighbours if they have one side in common but not if they only touch
at one corner. Physicists call squares with one common side ‘nearest neigh-
bour sites on the square lattice’, whereas squares touching at one corner only
are ‘next nearest neighbours’. All sites within one cluster are thus connected
to each other by one unbroken chain of nearest-neighbour links from one
occupied square to a neighbour square also occupied by a big dot. The
graphical ‘cluster’ explanation through Fig. 1(c) seems more appropriate for
our purposes here than a precise mathematical definition. Percolation theory
now deals with the number and properties of these clusters; perhaps the reader
will agree with us that there are not many requisites needed to understand
what percolation theory is about.

How are the dots distributed among the squares in Fig. 1? One may
assume that the dots love to cling together, or that they hate each other and
try to move as far away as possible. But the simplest assumption is that they
ignore each other, not unlike scientists working in similar fields. Then the
occupation of the squares is random, that is each square is occupied or empty
independent of the occupation status of its neighbours. We call p the prob-
ability of a site being occupied by a big dot; that means that if we have N
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squares, and N is a very large number, then pN of these squares are occupied,
and the remaining (1 — p)N of these squares are empty. This case of random
percolation is what we concentrate on here:

Each site of a very large lattice is occupied randomly with probability p,
independent of its neighbours. Percolation theory deals with the clusters thus
formed, in other words with the groups of neighbouring occupied sites.

Of course, the reader may replace ‘occupied by a big dot’ with ‘black’
and ‘empty’ with ‘white’ (or ‘red’, if he likes politics); or he may use any other
suitable pair of words denoting two mutually exclusive states of the site.

Figure 2 shows a computer-generated sample of a 60 x 50 square lattice,
with probability p increasing from 50% to 70%. We see that for p > 0:6 one
clustér extends from top to bottom and from left to right of the sample; one
says that this cluster percolates through the system rather like water percolates
through a coffee machine. A large part of this book deals with the peculiar
phenomena of percolation near that concentration p. where for the first time
a percolating cluster is formed. These aspects are called critical phenomena,
and the theory attempting to describe them is the scaling theory.

Historically, percolation theory goes back to Flory and to Stockmayer
who during World War II used it to describe how small branching molecules
form larger and larger macromolecules if more and more chemical bonds are
formed between the original molecules. This polymerization process may lead
to gelation, that is to the formation of a network of chemical bonds spanning
the whole system. Thus the original small molecules correspond to our
squares, the macromolecules to our clusters, and the network to our per-
colating cluster. You may be an experienced researcher in percolation without
having been aware of it, for the boiling of an egg, which is first liquid and
then becomes more solid-like (‘gel’) upon heating is an example. Flory and
Stockmayer developed a theory which today one calls percolation theory on
the Bethe lattice (or Cayley tree) and which will be explained later. But until
recently it was controversial whether critical phenomena for gelation are
described correctly by percolation theory and its assumption that chemical
bonds are formed randomly (de Gennes, 1976; Kolb and Axelos, 1990).

Usually, the start of percolation theory is associated with a 1957 publi-
cation of Broadbent and Hammersley which introduced the name and dealt
with it more mathematically, using the geometrical and probabilistic concepts
explained above. Hammersley, in his personal history of percolation in
Percolation Structures and Processes, mentions that the new computers
which became available to scientists at that time were one of the reasons for
developing percolation theory as a problem where the computers could be
useful. We will see later that even today computers play a crucial role for
percolation, with lattices containing thousands of millions of sites being
simulated and analysed.

The percolation theory as described here, with its particular emphasis on



s vuwuLiun, curest ires, rracial Uil Flelds, and Diffusion 5

critical phenomena, was developed since the 1970s; one may regard a note by
Essam and Gwilym in 1971 as one of the starting points of the later avalanche
of publications. Instead of going through the details now we describe three
simple ‘games’ which can be easily simulated on a computer and which may
serve as an introduction to a reader preferring to learn percolation by a
‘hands-on’ approach. These example are somewhat unusual, and the reader
may skip them and proceed with Chapter 2.

1.2. FOREST FIRES

This section introduces a simple model for forest fires. Its aim is not so much
to help fighting fires but to help to understand the idea of a percolation
threshold, the concept of a sharp transition with diverging times, and
computer simulation.

French scientists in Marseilles and elsewhere are interested, for obvious
reasons, in understanding and controlling forest fires. They told us of the fol-
lowing percolation problem which can easily be simulated on a computer.
How long does a forest fire take to either penetrate the forest or to be
extinguished?

As is well known, a diligent student should make hundreds of indepen-
dent experiments to reduce statistical errors before reporting the results in his
thesis. If for every thesis, a hundred fires were initiated in the forests sur-
rounding the university, society’s respect for research might be diminished. It
is much more practical to simulate numerous such fires on a computer. For
this purpose we approximate the forest by a square lattice. Each square in
Fig. 1 is either occupied by a tree, in which case we call that site ‘green’, or
it is empty, in which case we call it ‘white’. The probability for a green square
is p, that for a white square is (1 — p). For p = 1 all squares would correspond
to trees, which would be appropriate to a garden of apple trees but not for
a natural forest. The fact that p <1 allows for holes (white squares) which
cause disorder in the forest. This distribution of white and green sites
(squares) is our initial state.

Now let some trees burn and call those squares which correspond to
burning trees ‘red’ sites. The simplest choice is to light all the trees in the first
row of the lattice, whereas the remaining trees, in lines 2, 3, ..., L of the L X L
lattice, remain green. Does this fire on one side of the forest penetrate through
the whole forest down to line L of our array?

For this purpose we have to clarify how a tree can ignite the other trees.
To simplify the computer simulation we go through our lattice regularly, first
scanning the first line of trees from left to right and checking which neigh-
bours they ignite, then scanning the second line in the same way, and so on
until we reach the last line of trees. During the whole simulation, a green tree
is ignited and becomes red if it neighbours another red tree which at that time
is still burning. Thus a just-ignited tree ignites its right and bottom neighbour
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within the same sweep through the lattice, its top and left neighbour tree at
the next sweep. Reaching the end, we start again with the tree at the extreme
left in the first line. Each sweep through the whole lattice (experts call that one
Monte Carlo step per site) constitutes one time unit in our simulation. We
assume that the fire can spread only to green nearest neighbour trees, not to
trees which are farther away. Furthermore, a tree which has burnt during one
time unit is regarded as burnt out (‘black’) and no longer ignites any other
tree. We regard the forest fire as terminated if it either has reached the last
line or if no burning trees are left. (In the first case, the fire would ignite the
next line of trees if a larger lattice had been stored in the computer; in the
second case, only black trees and green trees adjoining white places are left
over, the black trees constituting formerly burning trees which have burnt out,
the green trees never having been touched by the fire since they were separated
safely from the burning trees). The lifetime of the forest fire is defined as the
number of sweeps through the lattice until termination is reached, averaged
over many distributions of trees among the sites of the same lattice at the same
probability p.

Figure 3 shows this lifetime of forest fires as a function of the probability
p that a square is occupied with a tree. These simple computer simulations
indicate that there is a sharp transition, for the above case near p = 0-6, where
the lifetime seems to approach infinity. Of course, in the simulation of finite
lattices the reader cannot expect truly infinite times; but one can simulate the
forest fires at the same ‘critical’ value of p near 0-5928 for different lattice
sizes and show that the lifetime increases with increasing size of the forest.

Why is there a special value of p, which we call the percolation threshold
Pe, where the lifetime seems to diverge? For p near unity, each row can imme-

200 -
Time

150

1

100

0 r{ L L L I
04 05 06 07 p

Fig. 3. Average termination time for forest fires, as simulated on a square lattice. The
centre curve corresponds to the simplest case described in the text. The lefthand curve
gives data if the fire can spread to both nearest and next nearest neighbours. For the
righthand curve two burning trees are needed to ignite a nearest or next-nearest
neighbour.
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diately ignite the trees in the next row, and thus after one sweep through the
lattice the fire may already have reached the last row. For p near zero, most
burning trees have no neighbours at all, and the fire stops there after the tree
has burnt out; thus after a few sweeps nothing burns anymore. If we increase
p from small values to large values, then at some critical value p = p. a path
of neighbouring trees appears which connects the top row with the bottom
row for the first time, that is we see a percolating cluster. The shortest path
which, for p slightly above p., this percolating network creates to connect top
and bottom is called the minimal, or chemical path. It will in general be very
different from a straight line. Fig. 4 shows a typical path. (See also Section
5.2))

Because of the simplified way in which we construct our model, the fire
spreads preferentially from top to bottom, or left to right, and needs a much
longer time to move backwards from right to left or from bottom to top. For
four consecutive forward steps, say top to bottom, it needs just one time unit,
whereas four backward steps require four time units, as the reader can easily
check on this figure by going through the above algorithm. Thus now the fire
needs a long time to penetrate the forest. If p is diminished to a value slightly
below pc, then some trees, for example the one marked by an X in Fig. 4, may
be missing. The fire then needs a long time to find out that it cannot penetrate
the forest, and thus only after many sweeps through the lattice will the fire
be extinguished. Therefore the lifetime will become very large if p approaches
pe from below or above.

We also show in Fig. 3 the results for two modifications of the above
model. In one case we allow the fire to spread not only to the nearest neigh-
bour trees (squares which have one side in common) but also to next-nearest
neighbours (squares which have only one corner in common). Then the critical

. PY ° B . . °
[ J .

[ ]
[ .

[
[ .
o [
[ o

Fig. 4. Example of the shortest path connecting the top line of a small square lattice
with the bottom line, for p slightly above p.. The straight sections of this line connect
the centres of occupied squares, the X marks the site which, if missing due to a small
reduction of p, would disconnect top and bottom lines but would still give a long
termination time for the forest fire simulation.
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point is shifted to about 0-4; experts have shown that it is at one minus the
above critical value, i.e. 1—0-5928 =0-4072. But even without much
thinking and computing one can understand that now the fire can spread more
easily since it can jump over longer distances; therefore the percolation
threshold is lowered.

The other modification goes in the opposite direction: We assume that the
weather is more like in Nova Scotia (Canada) than in Marseilles (France).
Since it is quite cold, a tree needs two burning neighbours, instead of only
one, before it can ignite. Now it is more difficult for the fire to percolate
through the forest, and the percolation threshold is shifted upwards, as the
simulations in Figure 3 show.

The reader may complain that the above algorithm gives the fire a pre-
ference to spread to the right and the bottom and may dislike these similarities
with political or economic trends, respectively. But for forest fires, such trends
can be justified as representing a wind blowing in one ‘diagonal’ direction. In
reality this preference is introduced to save computer time.

For readers interested in the physics of phase transitions it should be
mentioned that the percolation threshold at p = p. gives the position of a
phase transition (for experts only: without ‘broken symmetry’). At a phase
transition, a system changes its behaviour qualitatively for one particular
value of a continuously varying parameter. In the percolation case, if p
increases smoothly from zero to unity, then we have no percolating cluster for
p < p. and (at least) one percolating cluster for p > p.. Thus at p = p., and
only there, something peculiar happens: for the first time a path of neigh-
bouring green trees connects top and bottom. Also the divergence of charac-
teristic times (in our case the ‘fire lifetime) at the critical point has analogies
in other phase transitions where it is called ‘critical slowing down’. For
example, for a temperature only slightly below the liquid—gas critical tem-
perature, the fluid is quite unsure whether it wants to be liquid or vapour, and
thus takes a lot of time to make its choice; this time can be measured by light
scattering. Similarly, relaxation times near magnetic Curie points are very
large.

1.3. OIL FIELDS AND FRACTALS

Percolation can be used as an idealized simple model for the distribution of
oil or gas inside porous rocks in oil reservoirs. In Fig. 1, imagine that the
unoccupied (white) squares represent regions filled with hard rock, while the
occupied squares represent pores that are filled with oil or gas. The average
concentration of oil in the rock is represented by the occupation probability
p. (In the oil terminology, p is called ‘porosity’.) In real reservoirs, the
mechanisms that created the oil deposits imply some correlations between
occupied pores, owing to the way the rock was originally cracked or the way
the different deposits were put in place. The simple percolation model ignores
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these correlations, and assumes that each basic square (or cube, if this is
repeated in three dimensions) is occupied or empty independently of its neigh-
bours. However, the qualitative features described below also hold in the
more realistic models.

It is obvious from Fig. 2, that when p is smaller than p, the oil is found
only in finite connected clusters. Therefore if we place a well at a random site,
it will most probably hit a small cluster, produce a finite small amount of oil
and be a very bad investment. To produce a large amount of oil, we need a
reservoir which has p > p., and we need to have the well at a site that belongs
to the largest cluster.

The oil people are very interested in predicting how much oil they would
produce from a well. To help in these predictions, they take out rock samples
from the well. These come in long rock logs, with a typical diameter of order
5—10 cm. One can then measure the porosity (percentage of pores) in a piece
of linear size 5 cm, and try to extrapolate to the reservoir scale, which could
be many kilometres. Is such extrapolation legitimate?

To address this question, let us identify our ‘well’ as one site sitting in
the square example of Fig. 2 and belonging to the largest cluster for p > p..
Let us next put a frame of size L X L around this point, and count how many
points within this frame belong to the same cluster, M(L). The reader can
easily try this exercise with frame sizes L =3, 5, 7,9, etc. Looking at the last
example in Fig. 2, it is clear that M (L) practically grows linearly with the area
of the frame, L2, and we can define the average density of points connected
to our well as P= M(L)/Lz. P is then independent of L, and is mono-
tonically decreasing as p decreases. However, the situation is very different
for p very close to pc, e.g. p=0-6. In that case, the largest cluster is rather
ramified, and it has many ‘holes’ in it. Those holes contain other clusters,
which may be quite large, but whose oil is not reachable through our well.
Looking at the picture for p=0-6 in Fig. 2, one sees ‘holes’ on many length
scales. As we shall see later, the occurrence of phenomena on all length scales
is very basic for many of the interesting phenomena, which occur near p..

If one measures M (L) as function of L at p., the result is no longer linear
in the area L2. In fact, if one plots log M(L) versus log L for bigger lattices
(see also Fig. 15), one finds a straight line with slope 1-9, implying that at p.
one has

M(L)o L'?

(We use the symbol o to indicate proportionality. In many cases this propor-
tionality is meant to be accurate only in the asymptotic limit, here of large L.)
The exponent 19 is called a ‘fractal dimensionality’, or fractal dimension.
You may have noticed with sadness that a small bottle of scotch, half as
high as the customary whisky bottle, does not contain half as much of the pre-
cious fluid but only one eighth; not only the height is reduced by a factor 2
but also the width and the depth, with the volume being the product of these
three lengths. In other words, a bottle is a three-dimensional object. For two
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dimensions, a piece of paper which has a length and a width both twice as
large as those of another piece weighs four times as much. Only a one-
dimensional object, like a long wire, is simple. A wire half the length of
another weighs half as much as the longer wire. In all these cases, the mass
M scales with the linear size L as M« L% and d is the usual Euclidean
dimension. Benoit Mandelbrot introduced ‘fractal geometry’ as a unifying
description of natural phenomena which are not uniform but still obey simple
power laws of the form

M« LP

with non-integer dimensions D. For three-dimensional percolation clusters at
pe one finds D=2-5. We shall see more examples of fractals below.

" The fact that M(L) grows as L' implies that the average density
M(L)[L? is not constant, but rather decays as L~°"!. Therefore, the average
density of the extractable oil in a field with porosity near p., of size 100 km,
is smaller by a factor of about (106)~%"! = 0-25 than that of a sample of size
10 cm. The remaining 75 per cent is not directly connected to the drill hole.
Such a factor is crucial if we are to base the economy of oil production on
it! The corresponding factor in three dimensions is (10%)~%°=10"3!

In fact, the situation is not so bad, since the density does become uniform
for large L above p.. As we shall see, there exists a typical length £(p), called
the correlation length, such that M(L) « L' for L < &, and M(L) o L? for
L > £. £is a measure of the largest hole in the largest cluster, and it decreases
as we increase p above p.. However, the oil people should use a sample larger
than £ in order to estimate the correct amount of oil they can get. A more
quantitative discussion of this problem will be given below, in Section 3.4.

The problem of extracting oil from the rock involves not only estimating
the amount of such oil, but also discussing the flow of the fluid inside the
porous medium. This brings up many questions concerning dynamics on
the percolation clusters, that we shall discuss below. The simplest example,
concerning diffusion, is briefly introduced in the next section.

The reader should be warned, however, that both these remarks on oil
flow, as well as the earlier ones on forest fires, are meant as illustrations, not
as proven engineering applications.

1.4. DIFFUSION IN DISORDERED MEDIA

Hydrogen atoms are known to diffuse through many solids, an effect which
might become important for energy storage. If the solid is not a regular
lattice, this diffusion takes place in a disordered, not an ordered medium. A
particularly simple disordered medium is our percolation lattice, where only
a fraction p of all sites (squares) is occupied, the rest are empty. Let us assume
the hydrogen atom can move only from one occupied site of the lattice to a
nearest neighbour which is also occupied. Then the motion is restricted to the
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cluster of percolation theory to which the atom belongs initially. It can never
jump to another cluster since then it would have to move at least once over
a distance larger than that between nearest neighbours. This problem was
called the ‘ant in the labyrinth’ by de Gennes in 1976. At the beginning of the
1980s this problem became very fashionable, particularly at the percolation
threshold p = p..

Another useful application of this would concern the diffusion of test
particles through the oil in the porous rock, mentioned above. Such diffusion
is sometimes used to study the properties of the pore structure.

Let us not care whether hydrogen atoms move through solids, an ant tries
to escape a labyrinth, or the reader desperately searches for a way through this
book. We simply have a point, called an ant, which sits on an occupied square
of our square lattice and which at every time unit makes one attempt to move.
This attempt consists in randomly selecting one of its four neighbour squares.
If that square is occupied, it moves to that square; if instead it is empty, the
ant stays at its old place. In both cases the time 7 is increased by one unit after
the attempt. After a certain time ¢, one calculates the squared distance
between the starting point and the end point. One repeats the simulation by
giving the ant a different occupied square as a starting point; finally, one aver-
ages the squared distance obtained in this way over many ant movements on
many lattices at the same p and same lattice size. How does R, the square root
of this averaged squared distance (also called the root mean square or rms dis-
placement) depend on time #?

For p=1 one has diffusion on a regular lattice without disorder, and
elementary statistical considerations give R* = ¢ exactly, if our squares have
a length equal to unity. (Proof: For each such random walk, the end-to-end
vector R is the vector sum of ¢ displacement vectors di,i=1, 2, ..., . When we
calculate the square of that sum and then its average, we have to calculate the
averages of the scalar products d;d;. For i = j, this scalar product is simply
the square of the nearest neighbour distance, which is unity. For i and j
different, the scalar product can be +1 or — 1 with equal probability since we
assumed that the motion is completely random. Moreover, in half of the cases
the scalar product is zero since d; and dj; are perpendicular to each other. Thus
on average this product cancels out except for / = j where it gives unity. There-
fore the squared sum equals ¢. This proof is not necessary to understand the
remainder of the book since we will mainly deal with problems which are not
exactly solved.)

Figure 5 shows the results of simple computer simulations on the square
lattice. On this double-logarithmic plot one sees the power law R = const X t*
more easily than on a normal diagram. It seems to describe the relation
between distance R and time ¢ for sufficiently large ¢. Since
log R =log (const) + k log (), power laws show up as straight lines in such
log-log plots, with the slope giving the exponent &k of the power law. We see
that for a concentration p far above p. = 0-59, k is near 1/2 for large times,
whereas for p far below p. the distance R approaches a constant for large
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Fig. 5. Example of the distance R travelled by an ant in a labyrinth, as simulated on

a square lattice for p < pc, p = p. =0-5928, and p > p.. Note the double-logarithmic
scales.

times, that is k= 0. Right at p., k takes on a value in between these two
extremes and is roughly equal to 1/3. This effect, that the exponent is neither
that for normal diffusion (k = 1/2) nor that for a constant distance (k = 0) was
called anomalous diffusion by Gefen, Aharony and Alexander. Again it has
an analogue in critical points near thermal phase transitions. For example,
spin diffusion in ferromagnets at T= T. or mass diffusion at liquid—gas
critical points no longer follows the normal diffusion laws but is often
described by an anomalous diffusion exponent k or 1/z.

It is easy to understand why the ant moves so differently for p above and
below the percolation threshold p.. For p < p. there are only finite clusters
present, and the ant sits on one of them. Thus it moves only within that
cluster (if this cluster happens to be an isolated occupied square, the ant
cannot move at all.) Therefore its motion is restricted over finite distances,
and R approaches a value connected to the cluster radius if ¢ is very large. For
p > p., on the other hand, the ant can move to infinity if it starts on the per-
colating network. There are certain holes in this network; but for distances
larger than the typical hole size, the ant feels only an average over the small
holes, just as the tyres of your Rolls-Royce average over the small pores of
the asphalt over which your chauffeur is driving you. Thus the disorder acts
as a friction which slows down the diffusion process but does not prevent it:
k =1/2 for long times. Only at the border case p = p., does the ant not know
which of the two power laws it should follow.

Considering ¢ as the number of steps the ant performs, and R as the linear
size of the region visited by the ant, the relation t « R¥ can also be inter-
preted as stating that the number of steps in a region of linear size R is fractal,
with a fractal dimension equal to 1/k. For regular lattices, and in the homo-
geneous regime describing the largest percolation cluster on large length scales
above p., this exponent 1/k is equal to 2. At pc, the ant is restricted to move
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on clusters which are themselves fractal. It is thus forced to move back and
forth within a small piece of the cluster, until it finds its way out. This takes
a long time and therefore the number of steps within a restricted area is large,
and the fractal dimension of the walk, 1/k, is larger than 2.

At intermediate concentrations, like p=0-7, the ant feels some fractal
structure on short distances (R < £). On those distances, the slope k is close
to its value at pc, i.e. k=1/3. Only when R » £ does the slope approach the
uniform value k = 1/2. As seen from Fig. 5, the curve for p = 0-7 has not yet
become completely parallel to that of p=1, even at = 500. Better quality
data, on larger samples, are needed to confirm the details of the crossover
from anomalous to normal diffusion. The low-quality data of Fig.5 are
mainly meant to exhibit results that a student can readily produce on a per-
sonal computer. We shall present a more quantitative discussion of diffusion
in Chapter 6.

1.5. COMING ATTRACTIONS

This introduction should have given you an impression of modern percolation
theory. If you want to learn more, then Chapter 2 gives you a very detailed
heuristic derivation, based on the exact solutions in one dimension and on
Bethe lattices, of the crucial scaling assumption, Eq. (33), for the average
number ng(p) of clusters, containing s sites each. The first and second
moments of this cluster size distribution then give the ‘strength’ of the infinite
cluster (critical exponent ) and the mean cluster size (critical exponent 7).
The fractal geometry of clusters is the main content of Chapter 3. Finite size
scaling and renormalization group methods are explained in Chapter 4.
Chapter 5 deals with c6nductivity and multifractality and Chapter 6 discusses
diffusion and related dynamic phenomena. The connection with thermal
critical phenomena is discussed in Chapter 7. Appendix A deals with some
numerical aspects, and Appendix B describes some dimension-dependent
approximations.

FURTHER READING

General reviews are collected in the book Percolation Structures and Processes, edited
by G. Deutscher, R. Zallen and J. Adler, published in 1983 by Adam Hilger, Bristol,
as Annals of the Israel Physical Society 5. Out of the 21 articles there, our introduction
is related in particular to that of Hammersley on the origins of percolation theory, of
Jouhier et al. on gelation of macromolecules, and of Mitescu and Roussenq on ant
diffusion.

For a more recent review, see Aharony, A. in: Directions in Condensed Matter
Physics, edited by Grinstein, G. and Mazenko, G. (Singapore: World Scientific, 1986).

Mathematical aspects, mostly ignored by us, are emphasized by H. Kesten’s book
Percolation Theory for Mathematicians, (Boston: Birkhauser, 1982).
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CHAPTER 2
Cluster Numbers

Percolation is a random process. Therefore, different percolation lattices will
contain clusters of different sizes and shapes. In order to discuss their average
properties, one must study the statistics of these clusters. This is done by
studying the number of clusters with s sites per lattice site, ns(p). We start
this chapter with exact calculations of these cluster numbers for the simple
cases of one dimension, lattice animals and on Bethe lattices. These exact
solutions first suggest a simple functional form, and this is then generalized
to the scaling form of Eq. (33). The moments of the cluster numbers yield the
strength P of the infinite cluster and the mean cluster size S, and scaling
implies relations among the corresponding critical exponents and amplitudes.
Series expansions and Monte Carlo simulations are used to check these
theoretical predictions.

2.1. THE TRUTH ABOUT PERCOLATION

We did not tell you the whole truth: life is more than just a square lattice.
There are also the triangular lattice, the honeycomb lattice, and other two-
dimensional structures. In three dimensions we have the simple cubic lattice,
the body-centred cubic (bcc) lattice, the face-centred cubic (fcc) lattice, the
diamond lattice, among others. Dimensions higher than three are also useful
to test theories, and usually are treated by the Aypercubic lattice. In Fig. 1 we
defined the square lattice through the centres of the squares shown there. We
could also have defined it equivalently through the points where the lines in
Fig. 1 cross.

Now in Fig. 6(a) the situation is different. When we put the sites of the
lattice on the crossing points of the lines of Fig. 6(a) we obtain the triangular
lattice; if instead we put them in the centres of the triangles with equal dis-
tance from the surrounding lines, we get the honeycomb lattice. (We do not
recommend the use of the term hexagonal lattice.) Figure 6(b) consists of
cubes and is called Z3 by mathematicians; it does not matter whether we put
the lattice sites in the centres or on the corners of the cube. In a FORTRAN
computer program one could store the sites of the simple cubic lattice in an
array A (i, j, k) whose indices /, j and & vary independently from 1 to L, where
L is a large integer. The sites of the bcc lattice are both the corners and the
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Fig. 6. Definition of triangular, honeycomb and cubic lattices. For the triangular
lattice, every intersection of the lines in (a) is a lattice site; for the honeycomb lattice,
the centres of the triangles in (a) form the lattice sites. The simple cubic lattice consists
of the corners of the cubes in (b); for the bcc lattice the centres of the cubes, and for
the fcc lattice the centres of the six faces of each cube, are added to the simple cubic
lattice.

centres of the cubes, whereas the fcc lattice consists of the corners of the cubes
and the centres of the six faces surrounding each cube. Diamond lattices are
not the programmer’s best friends. A five-dimensional hypercubic lattice is
much easier to program, for example by using a FORTRAN array
A(i, j, k,m,n) with five independent natural numbers as indices (or different
FORTRAN statements to the same effect) to simulate a part of Z°.

To demonstrate percolation experimentally on a triangular lattice we may
put numerous small spheres of equal size but with two different colours (black
and white, for example) into a large box. These balls will roll around on the
bottom of the box if the box is large enough to prevent the spheres being on
top of each other. Now if the box is slightly inclined all the balls will roll to
one side of the bottom plane. By shaking the box slightly, the balls are
persuaded to form a triangular lattice with a few defects. The two different
colours then symbolize occupied and empty sites, and one sees the clusters
quite directly. With an equal number of black and white balls, one is studying
the behaviour at the percolation threshold p. = 1/2 (see below). If the black
balls are electrically conducting and the white balls are insulating, one can
measure percolation electrically; but as the Marseilles group of Clerc et al.
found out, such experiments are more difficult than the visual inspection
recommended here.

For all these lattices, each site is randomly occupied with probability p
and empty with probability (1 — p) and clusters are groups of neighbouring
occupied sites.

Everything we have defined so far is called ‘site percolation’. Its counter-
part is called ‘bond percolation’ and is defined as follows. Imagine each site
of the lattice to be occupied, and lines drawn between neighbouring lattice
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Table 1. Selected percolation thresholds for
various lattices. ‘Site’ refers to site percolation
and ‘bond’ to bond percolation. In all cases,
only nearest neighbours form clusters, and no
correlations are allowed between different sites
or bonds. If the result is not exact (see text), the
error probably affects only the last decimal.

Lattice Site Bond
Honeycomb 0-6962 0:65271
Square 0-592746 0-50000
Triangular 0- 500000 0-34729
Diamond 0-43 0-388
Simple cubic 0-3116 0-2488
BCC 0-246 0-1803
FCC 0-198 0-119
d = 4 hypercubic 0-197 0-1601
d =5 hypercubic 0-141 0-1182
d = 6 hypercubic 0-107 0-0942
d =7 hypercubic 0-089 0-0787

sites. Then each line can be an open bond with probability p, or a closed bond
with probability (1 — p). (Simply identify yourself with a water molecule in
a coffee percolator, or an oil molecule in a porous rock; you then can only
flow through the open channels, not through the closed ones.) A cluster is
then a group of sites connected by open bonds. When measuring the size of
a cluster one has to define whether one counts the site content or the bond
content. For example, are two sites which are connected by an open bond with
each other and by closed bonds with all other sites called a cluster of size two
(site) or of size one (bond)? Because of this ambiguity this book deals mostly
with site percolation, even though bond percolation historically came first.

The percolation threshold p., Table 1, is that concentration p at which
an infinite network appears in an infinite lattice. For all p > p. one has a
cluster extending from one side of the system to the other, whereas for all
D < pc no such infinite cluster exists. In finite systems as simulated on a com-
puter one does not have in general a sharply defined threshold; any effective
threshold values obtained numerically or experimentally need to be extrapo-
lated carefully to infinite system size (called the thermodynamic limit by phy-
sicists accustomed to thermodynamics). If one has a mathematically exact (or
at least plausible) calculation for p., then of course no such extrapolations are
needed. Moreover, such exact results can be tested to check the reliability of
numerical methods.

In Chapter 4 we will deal in greater detail with computer simulations to
determine p. accurately. ‘Series’ extrapolations will be explained in Section
2.7. Mathematical methods to calculate this threshold exactly are restricted so
far to two dimensions, consistent with the experience in the field of phase
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transitions that three-dimensional problems in general cannot be solved
exactly. The review of Essam (1972, in vol. 2 of Domb and Green; refer to
introduction), as well as Kesten (1982), explain how two-dimensional
thresholds can be derived mathematically for many simple lattices. But
progress in this field is not easy. It took about two decades from the first
numerical estimates in 1960 for square bond percolation, over non-rigorous
arguments that p. = 1/2 exactly, to a mathematical proof. But today we also
know p.=1/2 for the triangular site, p.=2 sin (x/18) for the triangular
bond, and p.=1-2sin (n/18) for honeycomb bond percolation. For the
honeycomb site problem, p. seems to be smaller than 1/2; and for square site
percolation, no plausible guess for a possibly exact result is known to us at
present.

For Bethe lattices (Cayley trees), where every site has z nearest neigh-
bours and there are no closed loops, we show below (Section 2.4) that
pe =1/(z—1). In hypercubic lattices in d dimensions, each site has 2d nearest
neighbours (e.g., 4 and 6 nearest neighbours on the square and simple cubic
lattices). As we mention in Section 2.4, when d is very large then loops
become irrelevant, and the behaviour on hypercubic lattices approaches that
on Bethe lattices, hence p.=1/(2d —1). Table 1 summarizes exactly and
approximately known percolation thresholds, for both site and bond perco-
lation. Note that although the values for site percolation on the square and
the simple cubic lattice seem to suggest the rule p.=1/(2d -2), this is
definitely wrong at high d, where p. = 1/(2d — 1). One should thus be careful
when one tries to conjecture general formulae based on a few numbers! How-
ever, we shall see that looking at results for different dimensions d does help
to identify trends, and gives hints on the underlying mechanisms and
structures.

In all the examples of the table, clusters are defined as groups of nearest
neighbours which are occupied or connected by open bonds. One may also
allow next-nearest neighbours to form clusters. Then in Fig. 1 not only the
squares which have one side in common, but also those touching each other
only at a corner, belong to one cluster if they are occupied. Even connections
over longer distances have been introduced. The percolation thresholds then
go to zero if this connection range goes to infinity. In this case, p. also
approaches zero as 1/(z — 1) where z is the number of ‘neighbours’ connected
to each site. One may even get rid of the lattice completely and look at circles
distributed randomly on a piece of paper.

Another important variant, which helps us to go continuously from site
to bond percolation, is called site-bond percolation. Then the sites of the
bond percolation problem are no longer all occupied; only a fraction p of sites
is occupied, the rest are empty. Bonds between neighbouring occupied sites
are open with probability x, and we look for clusters of occupied sites con-
nected by open bonds. The bond percolation threshold x. now decreases from
unity, if p equals the site percolation threshold, to the normal bond threshold
if p=1. See Fig. 21, Section 4.2.
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Numerous other modifications of percolation have been invented as
models for various processes occurring in nature. The purpose of the present
book is to offer an introduction to percolation theory, not a comprehensive
review. Thus we will ignore all these complications of connections with next-
nearest neighbours, and other processes, and will work with site percolation
on various random lattices in d dimensions, except when otherwise stated.

2.2. EXACT SOLUTION IN ONE DIMENSION

Like so many other problems of theoretical physics, the percolation problem
can be solved exactly in one dimension, and some aspects of that solution
seem to be valid also for higher dimensions.

Let us study site percolation on an infinitely long linear chain, where ‘lat-
tice’ sites are placed in fixed distances (Fig. 7). Each of these lattice sites is
randomly occupied with probability p. A cluster is a group of neighbouring
occupied sites containing no empty site in between. A single empty site would
split the group into two different clusters. In order that the cluster is separated
from the other clusters, the site neighbouring the left end of the cluster must
be empty; and the same is true for the right end of the cluster. Thus for the
central cluster of Fig. 7 consisting of five occupied sites, we need these five
sites occupied and their two neighbours empty.

The probability of each site being occupied is p. Since all sites are occu-
pied randomly, the probability of two arbitrary sites being occupied is p?, for
three being occupied is p>, and for five being occupied is p>. (This product
property of the probabilities is valid only for statistically independent events,
as for random percolation). The probability of one end having an empty
neighbour is (1 — p), and again the two ends are statistically independent.
Therefore the total probability, that a fixed lattice site is the left end of a five-
cluster is p>(1 — p)*.

How many clusters of size five do we have in our chain, if the total chain
length is L, with L — o, much larger than the cluster length? Every site has
the probability p*(1 — p)? of being the left hand end of such a cluster, and
there are L such sites (when we ignore the small number of sites on the end
of the whole chain for which the situation is different since there no place is
left for five occupied and two empty sites). Thus the total number of five-
clusters, apart from effects from the chain ends, is Lp>(1 — p)*. We see that
it is practical to talk about the number of clusters per lattice site, which is the
total number divided by L and thus p’(1 — p)®. This normalized cluster
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Fig. 7. Example of clusters in a one-dimensional lattice. The central cluster has five
sites; the one to its left is a pair; the one to its right is a cluster of size one, that is
an isolated occupied site. The empty sites are not shown.
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number is thus independent of the lattice size L and equals the probability
that a fixed site is the end of a cluster.

For clusters containing s sites, we define n; as the number of such
s-clusters per lattice site. In our one-dimensional case, the above consider-
ation for five-clusters is easily generalized to

ny=p*(1 - py’ (1)

This normalized cluster number is crucial for many of our later discussions
in two or three dimensions. It equals the probability, in an infinite chain, of
an arbitrary site being the left hand end of the cluster. For p < 1, the cluster
numbers go exponentially to zero if the cluster size s goes to inifinity.

The probability that an arbitrary site is part of an s-cluster, and not only
its'left end, is larger by a factor s; for now that site can be any of the s cluster
sites. Thus that probability is n;s. Many authors prefer to work with the prob-
ability n;s, instead of with the cluster number n;5. To avoid confusion with the
probability p we will not introduce a special symbol for n;s and will work with
the cluster numbers. This cluster number is also the more natural quantity if
one counts all clusters in a lattice of a fixed large size by a computer
simulation.

Where is the percolation threshold? For p =1, all sites of the chain are
occupied, and the whole chain constitutes one single cluster. For every p
smaller than unity, there will be some holes in the chain where a site is not
occupied. Thus a chain of length L will have on average (1 — p)L empty sites.
For L going to infinity at fixed p, this number is also increasing to infinity.
Thus there will be at least one empty site somewhere in the chain, and that
means that there is no continuous row of occupied sites, i.e. no one-
dimensional cluster, connecting the two ends. In other words, there is no per-
colating cluster for p below unity. Thus the percolation threshold is unity:

Dc = 1 (2)

Therefore it is not possible to observe the region p > p. in one dimension.
Only one side of the phase transition is accessible since at least these authors
cannot occupy a site with a probability p > 1. Nevertheless, this somewhat
unusual phase transition has some similarities with percolation in higher
dimensions, and also with certain aggregation processes (Kolb and Herrmann,
1985). Thus we will try to squeeze out some more information from this
simple result.

The probability that a site belongs to a cluster of size s is nss, as
discussed above. Every occupied site must belong to one cluster since single
occupied sites surrounded by empty neighbours are also clusters of size unity.
The probability that an arbitrary site belongs to any cluster is therefore equal
to the probability p that it is occupied. Thus

Yns=p (p<pc) A3)
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The sum runs from s =1to s = co. This law can also be checked directly from
Eq. (1) and the formula for the geometric series:

SpU-pis=(-pF Ty d—ff—p—)
4z )
=(1-pylp ———+~

dp
_ 1 2, 90/ - p)
=(1-p)p dp
=p

For higher dimensions, Eq. (3) is also valid except that one has to take
into account the sites in the infinite cluster separately, if one does not include
them in the sum over all cluster sizes. Therefore Eq. (3) is restricted to p < pc;
even in one dimension at p = p.=1 there is only one cluster covering the
whole lattice, thus s = 0 and n; = 0, which makes Eq. (3) undefined at p = 1.
(The above trick to calculate a sum by expressing it as a derivative is also
useful in other parts of statistical physics.)

How large on average is the cluster we are hitting if we point randomly
to a lattice site which is part of a finite cluster? There is a probability nss that
an arbitrary site (occupied or not) belongs to an s-cluster and a probability
Lsnss that it belongs to any finite cluster. Thus ws = ngs/Esnss is the prob-
ability that the cluster to which an arbitrary occupied site belongs contains
exactly s sites. The average cluster size S which we are measuring in this
process of randomly hitting some cluster site is therefore

S=ZW;S

nss?
=3 s @)
Although we will learn later that different types of averages exist, the
term mean cluster size is in widespread use for S and will also be used here.
(For example, X nss/Z; n, is the average cluster size if every cluster, and not
every site as in Eq. (4), is selected with equal probability.) We have defined
S here in such a way that Eq. (4) is also our definition for higher dimensions
provided that the infinite cluster is excluded from the sums.
Let us now calculate this mean cluster size explicitly. The denominator
is simply p, as Eq. (3) shows. The numerator is

2
(1-p)Y 2 s*p*=(1-p) (p ;—) 2P
s D s

where again the sums go from s =1 to infinity, and where the trick from our
derivation of Eq. (3) is applied twice in order to calculate sums by using
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suitable derivatives of easier sums. Thus

(1+p)
S=—"£7
(1-p)

The mean cluster size diverges if we approach the percolation threshold. We
will obtain similar results later in more than one dimension. This divergence
is very plausible, for if there is an infinite cluster present above the percolation
threshold, then slightly below the threshold one already has very large (though
finite) clusters. Thus a suitable average over these cluster sizes is also getting
very large, if one is only slightly below the threshold.

We may define the correlation function or pair connectivity g(r) as the
probability that a site a distance r apart from an occupied site belongs to the
same cluster. For r = 0 that probability g(0) equals unity, of course. For r =1
the neighbouring site belongs to the same cluster if and only if it is occupied;
this is the case with probability p. For a site at distance r, this site and the
(r—1) sites in between this site and the origin at r=0 must be occupied
without exception, which happens with probability p’. Thus

g(r)=p’ (6)

for all p and r. For p < 1 this correlation function, which is also called a con-
nectivity function, goes to zero exponentially if the distance r goes to infinity:

g(r)=exp (%)

gl _ 11
In (p) (pc-p)

The last equality in Eq. (7) is valid only for p close to p. =1 and uses
the expansion In(l — x)= — x for small x. (In many cases we shall be
interested only in the asymptotic behaviour near p., and then use the equality
sign as in Eq. (7). In the literature one also uses the symbol = in such cases.)
The quantity £ is called the correlation (or connectivity) length and we see that
it also diverges at the threshold. We will see later in higher dimensions that
the correlation length is‘proportional to a typical cluster diameter. This
relation is quite obvious here. The length of a cluster with s sites is (s — 1),
not much different from s if s is large. Thus the average length £ varies as the
average cluster size S:

(p < pc) )

where

Q)

St (P~ pe) ®)

Unfortunately we will see later that this relation becomes more compli-
cated in higher dimensions. Rather more generally valid is a relation between
the sum over all distances r of the correlation function, and the mean cluster

size:
>, e(r)=S )]
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(The reader who wants to check this and has difficulties should keep in mind
that the sum in Eq. (9) not only includes r=0, 1, 2, ..., i.e. the neighbours to
the right, but also the neighbours to the left. They cannot be treated through
r= -1, —2, however, since r is a non-negative distance. Thus one should
calculate the sum over the right neighbours and the centre, r=0,1,2,...,
multiply it by 2 to take into account the left part of the lattice, and subtract
the contribution unity from the centre, which otherwise would be counted
twice.)

We see from this exact solution for one dimension, that certain quantities
diverge at the percolation threshold, and that the divergence can be described
by simple power laws like 1/ (pc — p), at least asymptotically close to p.. The
same seems true in higher dimensions where the problems have not been
solved exactly.

The quantities S and ¢ have counterparts for thermal phase transitions.
In fluids near their critical point, critical opalescence is observed in light-
scattering experiments, since the compressibility (analogous to S) and the
correlation length ¢ diverge there. The van der Waals equation for fluids in
his thesis of 1873 was the first successful theory to describe aspects of such
thermal phase transitions.

One may utilize one-dimensional percolation further by calculating the
cluster numbers in finite one-dimensional chains. Then one can check the
general concepts of finite-size scaling and universality. We leave these prob-

lems to Chapter 4.

The one-dimensional case is now solved exactly, whereas for the
d-dimensional case only small clusters will be treated exactly in Section 2.3.
There is another case with an exactly known solution, the Bethe lattice, with

which we deal in Section 2.4.

2.3. SMALL CLUSTERS AND ANIMALS IN d DIMENSIONS

If the one-dimensional solution of Eq. (1) is so simple, why cannot we apply
the same principle to higher dimensions and find the exact solutiop there?. To
answer that question, let us look again at the square lattice of Fig. 1.. First,
what is the probability that an arbitrary site is a cluster of size s=1, i.e. an
isolated occupied site? For this purpose, the site itself has to be occuplfad
(probability p) while its four neighbour squares have to be empty (prgbablhty
(1 — p) for each). Again the occupation of these five sites happens mgepen-
dently, and thus the combined probability is the product 7; = p( - p)*. The
number of pairs, nz, can also be calculated easily: Two sites haye to be
occupied, their six neighbour squares have to be empty, and the pair can pe
oriented either horizontally or vertically. Thus the average number of pairs
per lattice site is n, = 2p%(1 — p)S. Similarly, three sites on a straight line hav.e
eight neighbours, and the average number (per lattice site) of 51.xch cluster.s is
2p3(1 — p)b. Generally, the number of clusters of s sites forming a straight
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line is 2p*(1 — p)***? on a square lattice, since each such cluster has (2s + 2)
empty neighbour squares.

In three dimensions, on the simple cubic lattice, each straight cluster with
s sites has (4s + 2) empty neighbours, and three orientations are possible,
leading to an average cluster number (per lattice site) of 3p*(1 — p)**2.

In a d-dimensional hypercubic lattice, each site has 2d neighbours, and
for the sites in the interior of an s-cluster forming a straight line, (2d — 2) of
these sites have to be empty. Including the two end points, the s-cluster has
in this case 2+ (2d — 2)s empty neighbours, resulting in a cluster number
dp*(l — p)(Zd—Z):+2.

This general d-dimensional result includes the above cluster numbers for
d =2 and d =3 as well as the one dimensional result (d = 1) of Eq. (1). Have
we thus solved the percolation cluster problem exactly in d dimensions,
leaving the evaluations of mean cluster size and correlation length as an
exercise analogous to the one-dimensional case?

Unfortunately, our straightforward, exact, simple and complete solution
has one slight disadvantage:

IT IS WRONG

The world is not straight. Three sites of a cluster on a square lattice do not
necessarily follow a straight line; they can also form a corner, as shown here:

(0]
0O X O
O X X O
oo

The three occupied cluster sites are marked by an x, the seven empty
neighbour sites by an 0. Four orientations of this corner are possible; thus the
average number (per lattice site) of such corners is 4p3(1 — p)’.

Combined with the above result for straight lines we thus get
ny=2p3(1 - p)®+4p3(1 - p)’ for the average number of triplets on the
square lattice. Figure 8 shows the 19 possible configurations for s =4 on the
square lattice; it is a nice classroom exercise to find, in a long collaborative
effort, all 63 configurations for s=>5.

Such an exercise will convince you that the configurations of larger
clusters are counted faster and more reliably by a computer. Up to s =24 on
the square lattice this has been done by Redelmeier, who kept a PDP 11/70
computer busy for ten months to count the 10'? configurations. A short and
complete FORTRAN program for this purpose was published by Redner as
cited by Mertens (1990). One calls these configurations ‘/attice animals’ since

they have a certain similarity with multicellular living beings which might
enter your nightmares if you counted them too long.

But for our purpose it is not sufficient to count these animals; we have
to classify them according to the number of empty neighbours each of them
has. For example, of the six triplet configurations, two have eight empty
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12 2 4 2 8 4 4 1

Fig. 8. List of all cluster configuration (‘lattice animals’) on the square lattice up to
s=4. For each structure, mirror images and rotated configurations are not shown;
only the total number of such configurations, including the one shown, is indicated
under each structure.

neighbours and the remaining four have seven. This difference entered into
our above result for the average number of triplets. Generally, the number of
empty neighbours of a cluster is called its perimeter for which we use the
symbol ¢ here (not to be confused with time, of course). (One should not
identify the perimeter with a cluster surface since ¢ includes internal holes, like
in a Swiss cheese.) Triplets thus have the perimeters £=7 or t=8 on the
square lattice. If the number of lattice animals (cluster configurations) with
size s and perimeter ¢ is denoted by g, then

ng= Z gs«p°(1—p)* (10)

is the average number of s clusters per lattice site. All our above formulae for
cluster numbers are special cases of this general formula, which is valid for
every lattice. For example, the triplets (s=3) on the square lattice have
perimeter ¢ =8 (g5 =2 configurations) or =7 (gs =4 configurations), and
the total cluster number is the sum of these contributions.

The difficulty with Eq. (10) is that it involves a sum over all possible per-
imeters ¢, and thus each possible configuration has to be found and carefully
analysed to find the g, Tables of such animal numbers, often in the form of
so-called perimeter polynomials

Ds(‘])=‘§:‘§= Z gsq* where g =(1 — p)
t

have been published mainly by the King’s College group (see Further
Reading). There seems to be no exact solution for general ¢ and s available
at present, and that is why the percolation cluster problem has not yet been
solved exactly.

Nevertheless, some asymptotic results are known for very large animals.
They are listed here without proof since according to our present knowledge
these animals, even if domesticated by exact solutions, do not help us in an
exact solution for percolation clusters at the threshold. The perimeter ¢, aver-
aged over all animals with a given size s, seems to be proportional to s for
s — oo, Thus it is appropriate to classify different animals of the same large
size s by the ratio a=1[s. If a is smaller than (1 — pc)/p. on any lattice in
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more than one dimension, then g varies as

a+17s
[‘iﬂ—] (1)

a

for large animals, apart from factors varying less strongly with s (B.
Souillard, unpublished; see the reviews of Stauffer (1979) and Essam (1980)
cited in Chapter 1). Therefore also the total number g;= L, g5 of animals,
irrespective of their perimeter, increases exponentially with animal size s,
apart from less strongly varying prefactors:

[

gs o< s~ % const’® (12)

In two dimensions 8 = 1, whereas # = 3/2 in three (Parisi and Sourlas, 1981);
6 =5/2 for d above 8, as in the Bethe lattice. Finally, the average radius or
diameter of big animals increases as the square root of the animal mass s for
large s in three dimensions, in contrast to the impression you may have got
in the zoo. (No exact solution for two-dimensional animal radii is known thus
far, one of the rare cases where d =3 is better known than d=2.)

Inspection of Eq. (10) tells us that averages over percolation clusters of
one fixed size correspond, in the limit p — 0, to average over lattice animals.
For then the factor (1 — p)’, by which percolation clusters with different per-
imeters ¢ are distinguished from animals, approaches unity and thus can be
omitted. Thus for very small p, the average squared radius of percolation
clusters, discussed later in Section 3.2, also varies as s for large s in three
dimensions. The numbers of such large percolation clusters are very small, of
course, as follows from Eq, (12):

ns(p = 0) < s~ p* const® (13)

which goes to zero rapidly for increasing s if p < 1/const. Thus the
percolation clusters to which our animal limits apply are very rare.

2.4. EXACT SOLUTION FOR THE BETHE LATTICE

Besides the one-dimensional case, another case can also be solved exactly
which in some sense corresponds to infinite dimensionality: the Bethe lattice
(or Cayley tree) of Fig. 9. The Bethe approximation is a method used to treat
magnetism and works exactly on Cayley trees; that is why physicists call these
structures ‘Bethe lattices’.

What has the Bethe lattice to do with infinite dimensionality d? For
d =2, the area of a circle with radius r is wr? whereas its circumference is 27r.
The surface of a three-dimensional sphere of radius r is 4wr> whereas its
volume varies as r*. In d dimensions, the volume of a ‘sphere’ is proportional
to r% its surface to r%~'. Thus

surface « volume =1/ (14)
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Fig. 9. A small Cayley tree or Bethe lattice, where each site except the many surface
sites has z =3 neighbours. Percolation theory started with the exact solution on this
somewhat artificial structure.

in d dimensions. We see that in the limit d — o the surface becomes
proportional to the volume; this is also true if we look at squares, cubes,
‘hypercubes’ etc.

Another argument concerns the probability of finding loops in high
dimensions. We can demonstrate this by looking at clusters of four sites. For
very large d, the number of ways to embed a chain of four sites on a hyper-
cubic lattice is proportional to (2d — 1)? (each of the last three sites can be
placed along another axis). However, the number of ways to have a ‘loop’,
in which the four sites sit on the same plane and form a square, is pro-
portional to d(d — 1). Therefore, loops become relatively unimportant when
d — oo, and the results are the same as on ‘trees’.

For the Bethe lattice in Fig. 9, one starts with a central point (‘origin’),
having z bonds, with z=3 in the example of Fig. 9. Each bond ends in
another site from which again z bonds emanate; one of these z bonds is the
connection with the origin, the other (z — 1) bonds lead to new sites. This
branching process is continued again and again. Thus if we have reached one
site in the interior of a Bethe lattice, then we can go on in (z — 1) other direc-
tions in addition to the direction from which we came. Only at the surface of
the lattice, where the branching has stopped, is only one bond connecting the
surface site to the interior (‘dead end road’). There are no closed loops in this
structure, which means that we always reach new sites if we never go back.

We see from Fig. 9 that the number of sites increases exponentially with
the distance from the origin, whereas in any d-dimensional structure it would
increase with (distance)®. In our example with z = 3, the origin is surrounded
by a shell of three sites (‘first generation’), in the second shell we have six sites,
followed by a third generation of twelve sites, etc. Thus a sphere of r gener-
ations contains 1+ 3(1 +2+4+ .- +2¢"D)=3 x 27— 2 sites, of which the
last generation of 3 x 2"~V sites are surface sites. Thus for large r half of the
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sites are surface sites, the other half are in the interior of the sphere. With
z instead of three neighbours for each site, the fraction of surface sites
approaches (z — 2)[(z — 1), as an analogous calculation shows. Thus the ratio
of surface to volume approaches a finite limit. Equation (14) shows that this
special behaviour occurs for 1/d = 0 only, that is for infinite dimensions. We
thus see that the Bethe lattice is something very peculiar. When we now talk
about percolation in the Bethe lattice, we therefore always have in mind the
behaviour in the interior of the Bethe lattice, and not the effects due to the
surface, which are also important.

Let us now find the percolation threshold in the Bethe lattice. We start
at the origin and check if there is a chance of finding an infinite path of occu-
pied neighbours, starting from that origin. If we go on such a path in the
outward direction, we find (z — 1) new bonds emanating from every new site,
apart from the direction from which we came. Each of these (z — 1) bonds
leads to one new neighbour, which is occupied with probability p. Thus on
average we have (z — 1)p new occupied neighbours to which we can continue
our path. If this number (z — 1)p is smaller than unity, the average number
of different paths leading to infinity decreases at each generation by this factor
< 1. Thus, even if all z neighbours of an occupied origin happen to be occu-
pied, giving us z different chances to find a way out, and even if z is very large,
the probability of finding a continuous path of occupied neighbours goes to
zero exponentially with path length if p <1/(z—1). Therefore we have
derived

1
Pe=— (15)
, z—1
for the Bethe lattice with z neighbours for every site. (The above argument is
also valid if each bond between neighbour sites is open or blocked randomly;
thus Eq. (15) is valid for both bond percolation and site percolation.)

Even if p is larger than the percolation threshold 1/(z — 1), the origin
does not always have a connection to infinity. For example, if it is occupied
and its z neighbours are empty, then it does not belong to the infinite network.
We define the percolation probability P as the probability that the origin or
any other arbitrarily selected site belongs to the infinite cluster. Clearly this
probability is zero for p below the percolation threshold p., and we want to
calculate it therefore only for p > 1/(z—1). As we saw in Section 1.3, this
quantity P also makes sense for general lattices, not only for Bethe lattices.
(In one dimension our p is never > p. and thus we did not introduce it there.)
To distinguish the two probabilities P (probability of an arbitrary site
belonging to the infinite network) and p (probability of an arbitrary site being
occupied) we may also call P the strength of the infinite network and p the
concentration. ‘Strength’ here means only the relative amount and should not
be confused with the elastic property.

Figure 10 shows the immediate surroundings of the origin and defines
what we mean by branch, neighbour, and subbranch. We want to calculate
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Fig. 10. The surroundings of the origin of a Bethe lattice. This figure defines what
we mean by neighbour, branch and subbranch in our derivation of the exact solution.

the strength of the infinite network, that is the probability P that the origin
(or any other site) is connected to infinity by occupied sites. We call Q the
probability that an arbitrary site is not connected to infinity through one fixed
branch originating from this site. Taking z = 3 for simplicity, as we have done
in Fig. 10, we now calculate Q from the rule that probabilities for statistically
independent events are simply multiplied by each other. The probability that
the two subbranches which start at the neighbour are not both leading to
infinity is Q2. (A subbranch is connected to infinity with the same probability
as a branch since all sites are equivalent in the interior of the Bethe lattice.)

Thus pQ? is the probability that this neighbour is occupied but not con-
nected to infinity by any of its two subbranches. This neighbour is empty with
probability (1 — p), in which case even well connected subbranches do not
help it. Thus Q=1— p + pQ? is the probability that this fixed branch does
not lead to infinity, either because the connection is already broken at the first
neighbour, or because later something is missing in a subbranch.

This quadratic equation for Q has two solutions Q=1 and Q = (1 — p)/p.
The probability (p — P) that the origin is occupied but not connected to
infinity through any of its three branches is pQ>. Thus P = p(1 — Q*), which
gives zero for the solution Q = 1 (apparently belonging to p < p. = 1/2), and

gives

_ 3

P_,_ [l_ﬁ] (16)
p p

for the other solution, which corresponds to p > p. = 1/2.

Figure 11 displays this result, which goes back to Flory (1941), for it is
in polymer chemistry that the first percolation theory was developed by
studying bond percolation on this Bethe lattice. (As we saw above, for this
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Fig. 11. Order parameter P (strength of the infinite network) versus concentration p,
in the Bethe lattice with £ = 3. From equation (16) shown as a solid line and compared
with computer simulations of the triangular lattice (dashed line). In both cases the
threshold is at p. = 1/2.

special case the difference between bond and site percolation is not very
important.) P is then identified with the fraction of atoms which belong to the
infinite network. For example, if one prepares a pudding it is first a fluid (no
elasticity, finite viscosity, finite macromolecules, finite clusters, p < p.). After
some time it is a jelly with a finite elasticity, and no longer fluid. This process
is called gelation and is also observed if an egg is boiled for breakfast, if milk
becomes cheese, if rubber is vulcanized etc. Flory identified this polymeriza-
tion process with percolation and solved the percolation problem by using the
Bethe lattice, which approximates reality by not allowing any closed loops.
Indeed, certain Scottish cows have learned since then to follow Eq. (16) quite
closely when their milk is transformed to cheese. For more gelation details we
refer to the review of Kolb and Axelos (1990) listed after Chapter 1.

Just as in one dimension, we can also calculate the mean cluster size §
for the Bethe lattice. This is the average number of sites of the cluster to which
the origin belongs. Again we take z =3 for simplicity. Let T be the mean
cluster size for one branch, that is the average number of sites to which the
origin is connected and which belongs to one branch. Again, subbranches
have the same mean cluster size 7 as the branch itself. If the neighbour is
empty (probability (1 — p)), the cluster size for this branch is zero. If the
neighbour is occupied (probability p), it contributes its own mass (unity) to
the cluster, and adds the mass 7 for each of its two subbranches. Thus,

T=(-p)0+p(+2T)

with the solution 7= p/(1 —2p) for p below the threshold 1/2. The total

cluster size is zero if the origin is empty and (1 + 37T) if the origin is occupied;

therefore the mean size is

_1+p
1-2p

We have thus derived exact formulae for the mean cluster size S below the

S=1+3T

a7
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percolation threshold (Eq. (17)) and the strength P of the infinite cluster for
concentrations p above the percolation threshold (Eq. (16)).

If there is an infinite cluster above p. it is plausible that slightly below
De the mean cluster size is very large, and indeed the denominator of Eq. (17)
vanishes for p=1/2 = p., giving

1
DPe—Pp

if p approaches p. from below. On the other hand, if there is no infinite
network below p. it is very possible that slightly above p. one has only a very

weak infinite network, that is P is very small. Indeed, Eq. (16) tells us that
P=0at p=1/2, and

S«

(18a)

Po (p—pc) (18b)

if p approaches p. from above. (To obtain the proportionality factor in
Eq. (18b) you should make a Taylor expansion of Eq. (16) in powers of p — 1.
We recommend that you do this as an exercise; see exercise 2.5, p. 174. Note
that this Taylor expansion also gives corrections of order (p — p.)?, which can
be used to estimate the range of validity of Eq. (18b)).

Equation (18) is an example of critical phenomena: Quantities of interest
go to zero or infinity by simple power laws. We will discuss similar power laws
later when we go to regular d-dimensional lattices instead of the Bethe lattice,
only then the power laws are not so simple, with P for example vanishing as
(p — pc)*’?¢ in two dimensions. The power laws are so particularly simple in
the Bethe lattice because it is exactly solved (you may also see it the other way
round); a simple formula like Eq. (16) can hardly give a critical exponent
5/36.

Critical phenomena also occur for thermal phase transitions; the Bethe
lattice approximation for percolation theory then is somewhat analogous to
the molecular field approximation for magnetism, or the van der Waals
equation for fluids. (More precisely, one should use the better Bethe approxi-
mation for magnetism, which is exact on the Bethe lattice but has the same
critical exponents as the molecular field approximation.) In all three cases,
rather simple formulae for the order parameter can be derived exactly, leading
to a simple power law very near to the critical point. For example, the differ-
ence between liquid and vapour density, or the spontaneous magnetization,
vanish in both approximations as (7. — T)"2. Thus the analogy between
thermal critical phenomena and percolation is not complete since the critical
exponent for the order parameter is 1/2 for thermal phase transitions and
unity for percolation, in these approximations.

In both the thermal phase transitions and percolation, the order par-
ameter goes to zero continuously if one approaches the critical point. Such
phase transitions are called continuous phase transitions or second-order
phase transitions. If instead the order parameter jumps to zero, one has a
first-order phase transition. Such transitions can occur in more complicated
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situations, like ‘bootstrap percolation’ (as reviewed by Adler, 1991), where on
a square lattice a site remains occupied only if three or four of its neighbours
are still occupied.

The above derivations make clear why it is important to have a Bethe
lattice with no loops as in the square lattice but only branches as in a tree.
If there had been any connections between the different branches or sub-
branches, except for the site or neighbour where the (sub-)branches separate,
then we could not have calculated the probabilities for different branches
together as products of probabilities for each branch separately. QQQ would
no longer have been the probability that none of the three branches is con-
nected to infinity, had the three branches not been statistically independent.

Another reason why Bethe lattices are easier to solve than square lattices
becomes clear if one calculates n;( p), the average number (per site) of clusters
containing s sites each. As in one dimension and in contrast to two or three
dimensions, the size s of a cluster is uniquely related to its perimeter ¢, that
is to the number of empty neighbours of occupied cluster sites. A single iso-
lated site has three empty neighbours in Fig. 9, a pair has four. In the general
case of z neighbours per site, the isolated bachelor is surrounded by z per-
imeter sites whereas the married couple has (2z — 2) empty neighbours. Each
child added to that cluster increases ¢ by (z — 2). Thus t =(z — 2)s + 2 is the
total perimeter of s-clusters in the Bethe lattice, just as in the square or simple
cubic lattices for straight-line clusters. We see that for large s the perimeter
is proportional to s, as is also the case in more realistic lattices. Moreover, the
asymptotic ratio t/s equals (1 — p;)/p. since this ratio is (z—2) and since
Pc=1/(z—1). We will see later (Section 3.1) that this relation is valid at the
percolation threshold for all lattices, not only for the Bethe lattice.

Now we apply our general result given by Eq. (10) for the cluster
numbers, inserting = (z — 2)s + 2:

ns=gp°(l — p)**==2s

(Since for each s only one value for 7 is possible we do not have to sum over
t.) Since we are lazy, we set z = 3 for simplicity (similar results hold generally),
avoid the calculation of the number g; of different configurations for
s-clusters on the Bethe lattice, and instead look at the ratio

ns(p) _ [(1 - p)]z[(g) a —p)]‘
ns(pc) (1-pc) pe) (1= pc)
_ 2
= [_(l____ﬂ] - a(p—pp)z] s

(1 -pc)
o exp( — cs) (19)

Here
a=4 c=—1In[1-a(p-p) = (p—p)

We see that a very simple exponential decay is obtained in Eq. (19) for



Cluster Numbers 33

this ratio of cluster numbers. Later we will see that this simplicity is a
peculiarity of the Bethe lattice. In two or three dimensions a decay law as
exp(—cs) is valid only for large clusters, and only for p < p.. We call this
decay as exp(—cs) ‘animal-like’ since for very small p, that is in the animal
limit of Section 2.3, the cluster numbers decay as (p X const)®, Eq. (13). The
Bethe lattice clusters are always animal-like, whereas in two or three
dimensions only very large percolation clusters below p. behave like animals.

We now want to find the asymptotic behaviour of the cluster numbers at
the threshold, ns(p.). We have seen generally, not only for Bethe lattices, in
Eq. (4) that

Sx D, stn
S

since the denominator remains finite at the threshold. Thus for p = p. this
sum (also called the second moment of the cluster size distribution) is infinite,
whereas for any other p it remains finite. If ns(p.) decayed exponentially with
s, then the mean cluster size S would remain finite at p = p.. Thus a power
law decay is more plausible and defines the Fisher exponent 7 (Fisher droplet
model; Fisher, 1967) through

ns(pc) s’ (20)
for large s. Again this law is valid rather more generally, not only in the Bethe
lattice.

Let us now evaluate S and then calculate 7 by comparing the result with
Eq. (18). The calculation which follows now uses tricks which occur again and
again in the scaling theory of percolation clusters. We assume p to be only
slightly smaller than p,:
S ) s%ns

x D, 5277 exp(—cs)

o | s277 exp(—cs) ds

=c™ 3 [z " exp(—z) dz

o cr—3

o (pe— p)*° @1

where we used the above result that ¢ vanishes quadratically in p — p.
Equation (18) shows that S must diverge with an exponent — 1:

271—6= -1
Thus the Fisher exponent is

in the Bethe lattice. We thus can rewrite Eq. (19) for large s:

~-5/2

ns(p) < s™’* exp(—cs)  cox (p-pe) (23)
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where the first proportionality holds for all p and large s, the second one only
for p near p..

Of course one can also derive Eq. (23) differently (see for example
Essam’s 1980 review). It is even possible to calculate the cluster numbers at
the threshold exactly by calculating the number g, of ‘animals’ of the Bethe
lattice. The resulting expression involving binomial coefficients is, however,
less useful for our later studies of two and three dimensions than the above
derivation.

Having derived the Fisher exponent 7 = 5/2 from the critical behaviour of
the mean cluster size S, we can check whether it also gives the correct critical
behaviour (Eq. (18)) of P, the strength of the infinite network. For this
purpose we use a general equation, valid for all site percolation problems, not
only in the Bethe lattice:

P+ ns=p (24)

where the sum runs over all finite cluster sizes s and excludes the infinite
cluster. This equation simply states that all occupied sites (probability p)
either belong to the infinite cluster (probability P) or to one of the finite
clusters (probability Xn,s); it generalizes our one-dimensional result, Eq. (3),
to p > p. where an infinite network has to be taken into account. (Note again
that isolated sites are regarded as clusters of size s=1.) You may now check
Eq. (18) yourself, finding help in Eqgs. (28) and (29) using ¢ = 1/2 and 7= 5/2.

(Let us mention in passing that besides the Bethe lattice approximation
there also exists the effective medium approximation, in particular for
percolation properties other than cluster numbers. The critical exponents of
this approximation agree neither with those of three-dimensional lattices nor
with those of the Bethe lattice, but the behaviour predicted somewhat away
from the percolation threshold is quite realistic. For details we refer to
Kirkpatrick’s (1973) review article mentioned after Chapter 1.)

In summary, the Bethe lattice solution, Egs. (18) and (23) as well as the
one-dimensional solution, Eq. (1), show that cluster numbers follow rather
simple laws, and that exponential decay is quite common. We will utilize these
results in the next section to make plausible the scaling law for cluster
numbers in general, not jusf for one- and infinite-dimensionality.

2.5. TOWARDS A SCALING SOLUTION FOR CLUSTER NUMBERS

In this section we try to invent a simple formula which contains the previously
discussed one-dimensional and Bethe lattice solutions as special cases. While
that formula still is not the final one to be discussed in Section 2.6, it already
has many of its properties and in particular already yields the desired scaling
laws.

Both Eq. (1) for one dimension and Eq. (23) for ‘infinite-dimensionality’
(Bethe lattice) are dominated for large cluster sizes s by a simple exponential
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decay law, log(ns) o« —s. Thus we may first postulate for d-dimensional
percolation:

ns < exp(—cs)

where the factor of proportionality and the parameter ¢ depend on the con-
centration p. Indeed, if we use the exact result for s=1,2,3 in the square
lattice mentioned at the beginning of Section 2.3, we find for p=0-1 the
cluster numbers 7, to be 0-06561, 0-01063, and 0-00277 for s=1,2, and 3,
indicating at least a very rapid decay. However, this nice exponential is not
consistent with Eq. (23), where for the Bethe lattice we also found, in contrast
to the one-dimensional case, a power law factor s~” by which the exponential
is multiplied. Thus instead we postulate more generally:

nsoc 577 exp(—cs) (25)

This law is supposed to be valid for large s only, as was Eq. (23). Again, the
proportionality factor and the parameter ¢ depend on p, whereas we assume
the exponent 7 to be a constant, though not necessarily equal to 5/2 as in
Eq. (23). Moreover, near the percolation threshold we no longer require ¢ to
vanish as (p — p.)? but instead allow a more general power law:

ce|p—pc|Y° (P~ pc) (26)

Here o is another free exponent, not necessarily equal to 1/2 as in the Bethe
lattice solution given by Eq. (23).

Note that the exponential factor in Eq. (25) acts as an effective cutoff on
the cluster sizes: only clusters with s < s;=1/coc|p— pc| ~'/° contribute
significantly to cluster averages. For these clusters, n; is effectively equal to
ns(pc) o< s77. Clusters with s > s; are exponentially rare, and their properties
are no longer dominated by the behaviour at p.. The size s; can thus also be
identified as representing a crossover from the behaviour of ‘critical’ clusters
to that of ‘non-critical’ ones.

Obviously, Egs. (25) and (26) are a generalization of our results for the
Bethe lattice; does it also contain the one-dimensional result given in Eq. (1)
as a special case? Using p.=1 and p = exp(In p) = exp(p — 1) = exp(p — pc)
for p — p., we rewrite Eq. (1) as

ns(p) = (pc — p)* exp(— (pc — p)s)

Obviously, this result is not a special case of Eq. (25) since instead of a power
of s we have a power of p — p. in front of the exponential. We shift the resol-
ution of this discrepancy to the next section by beginning in a more general
way. Now we have to choose between a generalization of the one-dimensional
result and our generalization Eq. (25) of the Bethe lattice solution. We prefer
the Bethe lattice as being more realistic than a one-dimensional chain in that
it has at least a percolative phase transition: p. is smaller than unity, in con-
trast to one dimension, and thus both sides of the threshold can be reached.
Thus, for the time being we will work with Eq. (25).



Equation (25) was assumed to be valid for large s only; perhaps we can
get rid of some of the deviations for smaller clusters by investigating the ratio
ns(p)/ns(pc), which we call vs(p) instead of n;. Then Eq. (25) reads

vs o< exp( — cs) 27)

where now the exponent = has cancelled out; it is only implicitly contained in
Eq. (27) since, from Eq. (25),

T

ns(pc) < s~

as in Eq. (20). Equation (27) is so simple that it is perhaps worth being trusted
by the reader; at least even though not entirely correct it allows us to make
many calculations quite easily. (You might violate the Official Secrets Act if
you now conclude and say loudly that this is what theoretical physicists do;
make calculations if they are easy irrespective of whether the assumptions are
correct or wrong.)

First, let us calculate the fraction P of sites belonging to the infinite net-
work. A site is either empty or occupied, and if it is occupied it belongs either
to a finite cluster (including isolated sites which are treated as clusters of size
s = 1) or to the infinite network. If we simply set s = oo in Eq. (25) we get zero,
but that has to be expected. In an infinitely large lattice, which contains at
most one infinite network, the number of infinite networks per lattice site is
indeed zero. The fraction of lattice sites in the infinite network is calculated
by subtracting from the occupied sites those belonging to finite clusters, that
is those described by Eq. (24). Right at the critical point p = p. we have P=0
and thus I nss = p.. To have this sum converge we need 7> 2. Then we
rewrite Eq. (24) as ,

P= Zs) [ns(pc) — ns(p)ls+ O(p — pe)

o) 5! 1 — exp(—cs)] (28)

If p is close to pe, the factor ¢ in the exponent will be quite small, and
only large s values of the order of 1/c will give the main contribution to the
sum. We may therefore replace the sum by an integral if we are interested only
in the leading behaviour near the threshold:

P‘o: §s'7 71 — exp(—cs)] ds
Integration by parts tells us that | f'gds= —{ fg' ds+ (fg); here we take
fls)=s*""7  g(s)=1--exp(-cs)
and get with z=cs:
Pocc|s> "exp(—cs)ds=c"2[z> " exp(—z) dz

(In this definite integral from zero to infinity, the term fg of our integration
by parts vanishes since r < 3). The integral over z is known as the gamma
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function I'(3 — 7) and is available in tabular form. For some applications the
reader might need the general rule I'(x + 1) = xI'(x) and I" (1) = 1, but here we
do not need to know anything about gamma functions since the whole integral
is simply a numerical factor (note that r was assumed to be constant):

)(-r— 2)/o

Pxc 2o (p—pe =(p-p)

with the critical exponent

B= 29

Thus we have found that the much simpler result of the Bethe lattice sol-
ution given by Eq. (18b) is not valid generally. Instead a critical exponent 3
is introduced which describes how the strength of the infinite network goes to
zero at the percolation threshold.

Secondly, let us calculate how the mean cluster size S diverges at the
threshold. As for Eq. (21), we have S o Is’n; since the denominator in
Eq. (4) remains finite (Eq. (24)). The same techniques can be applied, but now
we may even avoid the integration by parts:

s%n;
S=
; Pe

x [snsds

x [s277 exp(—cs) ds
e 3 [z2 T exp(—z) dz

(The careful reader will notice that our calculation neglects the influence of
the single infinite cluster. All sums over all cluster sizes from now on are
understood to exclude the infinite cluster, if one is present. For one dimension
in Eq. (4) we did not need that warning since there one cannot have p > pc.)
Again the integral over z = c¢s, which equals I'(3 — 7), is less interesting than
the exponent v for the divergence of S:

Sacr—3
o | p—pe| TV
=|p—pc|™”
Thus
7=3;T (30)

gives the critical exponent for the mean cluster size S. In order that both 8
and v are positive we need 2 < 7 < 3. For thermal critical phenomena an anal-
ogous quantity is the susceptibility of magnets or the compressibility of fluids;
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both diverge at the critical point with an exponent . The numerical value of
v can, of course, be different for different phase transitions. In general the
exponent v is not a simple number like unity for percolation or for thermal
critical phenomena. This is in contrast to Eq. (18a) for the Bethe lattice and
the analogous Curie—Weiss law for the mean-field approximation of the
susceptibility.

Does this mean that we have to introduce a new exponent about which
we know nothing for every new variable? Obviously this is not the case; for
all other quantities derived in this way from the cluster numbers n; have ¢ and
7 as free parameters in the exponents, but nothing else. Thus if we know these
two exponents, we know all others. More explicitly, let us calculate the sum

M=, s*ns (31a)

which experts also call the kth moment of the cluster size distribution n; (if

k is an integer). The mean cluster size corresponds to k = 2, the strength of

the infinite cluster to k=1, and we now allow k to be an arbitrary number

> (r—1).

My o D) sK77 exp(—cs)
s

o [ sK7 exp(—cs) ds

— C7—l—k s zk—-r exp(—z) dz

Thus, apart from a gamma function incorporated into the proportionality
factor, we have

MkOCCT_l_koclp"‘pcl(T_l_k)/a (31b)

Thus the exponent (k + 1 — 7)/o is again expressed through o and 7 and there-
fore is not independent of ¢ and 7. In fact, instead of ¢ and 7 we may also
regard 3 and v as the fundamental exponents and calculate from them

o=1/(B+y) 1=2+B[(B+7)

As the reader can easily check, this is the solution of Egs. (29) and (30). Thus
the critical exponent for the kth moment is 8 — (8 + v)(k — 1) according to
Eq. (31b). Setting k=1 we recover the exponent 3 for the strength of the
infinite network, whereas for kK =2 we get — v for the mean cluster size, as it
should be.

Some caution is necessary if a sum is not diverging, that is if k < 7—1.
We have this problem already in the evaluation of the first moment; to get the
strength P of the infinite network we had to subtract from the sum its value
at p = p., and then replace the sum by an integral. A simple and more general
way is to calculate the first derivative (or second, third, ... derivative, if
needed) of the desired sum with respect to ¢ or p. If that derivative diverges,
one can replace the sum by an integral, evaluate the result with Eq. (31b), and
then go back to the original sum. For example, for the first moment (k = 1),
Eq. (31b) cannot be applied directly since the sum does not diverge. Instead,



Cluster Numbers 39

we calculate

_dM,
dc

M < const + ¢~

= Z s*ns= My c™3

2

in agreement with what we derived immediately before Eq. (29).
For the zeroth moment My = L n, (the total number of clusters), we take
the second derivative:

d2M,

_ 7-3
FpCaie M; xc

Thus,

M, = const; + constac + constsc” !

The ‘singular’ or non-analytic part of the total number M, of clusters thus
varies as
Mosin; o< cT_l

<|p—pc|TD°

o« |p— pe |(2—a)
with
r—1

2—a= =28+7 (32)

(Are you doubtful about whether or not you are allowed to evaluate a
sum by replacing it directly with an integral? One way to clarify that question
is simply to try it. If it does not work you will notice that fact by realizing
that the final integral over z (which should be a constant incorporated into the
factor of proportionality) does not exist because it diverges at the lower
boundary. In that case you should look at suitable derivatives before replacing
the sum by an integral.) If you question the accuracy of replacing sums by
integrals you might look at the exact example

exp(—¢)
[1—exp(—c)]?

as used already after Eq. (3). Approximating the sum by an integral as above
we get l/cz. The exact result is more complicated, but for very small ¢ (and
this is what we are looking at in a theory of critical exponents), the exact
formula can be expanded into (1 — 5¢/12 + ---)/c?. Thus, the leading term is
calculated correctly by our approximation.)

Unfortunately, there is something wrong with our assumption. Not only
does it fail to include the one-dimensional solution as a special case. It also
does not work properly for the strength of the infinite network. Nowhere in
our above derivation of the exponent did we actually assume p > p; thus,

Y, s exp(—cs) =
s=1
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our formulae would predict an infinite network both above and below the per-
colation threshold, vanishing only at p.. Clearly this is wrong, and will be cor=
rected in the following section. To do so we will have to avoid any assumption
leading to a maximum of ns(p) at p = p. for a fixed large s, when considering
the ratio vs in Eq. (27). This maximum must be located below the percolation,
threshold, for if it is at p. then ns(pc) — ns(p) is positive both above ani
below p., giving a non-zero strength P of the infinite network (see derwatlog
after Eq. (27)) even below p..

There is another property of our assumptions in Egs. (25) and (26) whicly
should make us suspicious. In Section 2.3 we learned that for a fixed clusteg
size s the number ns(p) of such clusters is a finite polynomial in p. Neitheg
ns(p) nor any of its p-derivatives is allowed to diverge at p.. But fro
Eq. (26) we find divergences in p-derivatives if 1/o is not an integer. oj
example, if o is close to 0-4 as in two-dimensional percolation, theg
coc | p—pc| %3, and the third derivative of ¢ and thus of ns with respect g
p diverges roughly as 1/ | p — pc| ?. A more reliable assumption therefag
has to avoid the expression z=cso|p— p.|"°s as an argument of tlj
exponential. Instead we may try z o« (p— pc)s” and replace Eq. (27) i
vs o« exp(—z). This assumption is known as the Fisher droplet model and:§
numerically quite good above the percolation threshold. The whole analygjj
above can be repeated easily with this droplet model formula; basically onj§
the arguments of the gamma functions are changed, which enter the propg i
tionality factors only. Historically this approach was one of the first scalig
theories of thermal critical phenomena and also helped in the applications
percolation. As desiréd, n;(p) now is perfectly smooth at p.. But still {is
Fisher model can hardly be correct below p. since now ns(p) goes to infinif§
instead of zero, for s — oo. i

Nevertheless, our approximation shows the essentials of modern phg
transition theory. Everything depends on only two critical exponents. It g
not matter whether we call them o and 7, or § and y; we only have to
in mind that from two exponents we can derive the others. For example,
B8 and v we can derive the ‘specific heat’ exponent « via (2 — a) = (28 %
These relationships, known as scaling laws, have been used since the 1960sj§
thermal phase transitions and in the 1970s were extended to percola
theory. By going through the above formalism the reader will have a b
feeling for the more general derivations which follow in the next sectiof

2.6. SCALING ASSUMPTION FOR CLUSTER NUMBERS

If you have read this far through the book it is presumably too late fof
to return it and get a refund. Thus now we can tell you the truth: w
unable to offer you the exact solution for the cluster numbers. Instead yoy
merely offered a further generalization of the above assumption, involvi
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scaling function so general that everything we discussed so far is contained in
it as a special case. No deviations from this scaling assumption have been
found (yet) for usual percolation in two and three dimensions.

- What have the Fisher model formula, vs=exp[—const(p— pc)s’]
and the simple exponential formula of Egs.(25) and (26),
Us=exp[—const| p— p.| /°s] in common? In both cases, the function
p.(p) = ns(p)[ns(pc), which depends on the two variables s and (p — p.), is
g function of the combination | p — p. | s° only. In the first case the function
s, an exponential of this combination; in the second it is an exponential of
gome power of this combination. Thus we may write in both cases:

vs(p)=f(z) z=(p—Dp)s°

A equation supposed to be valid for p near p. and large clusters. Inserting
"4‘; usual law (Eq. (20)) at the critical point into this assumption we arrive at
aur final form:

ns(p)=s""fl(p— pc)s°] (p—= Ppe, s ©) (33)

precise form of the scaling function f= f(z) has to be determined by
tomputer) experiments and other numerical methods and is not predicted by
Bur assumption. While this assumption replaces Eq. (25), our previous results
£4qs. (24), (29)—(32)) and our definition (Eq. (4)) remain valid. However, f(z)
Rearly always turns out to approach a constant value for | z| < 1 (i.e. s < sz),
Bd to decay rather fast for | z| > 1. Thus, the role of sz o< | p— p.| =V as
butoff and as a crossover size is maintained.

i As we will discuss in more detail later, the assumption that there exists
Bly one crossover size s is the main basis for a single-variable scaling like
8- (33). The renormalization group theory (Chapter 4) gives some theoretical
Qsis for this assumption, for space dimensions d < 6. For d > 6, it turns out
&it one needs additional lengths. For 6 < d < 8, Harris and Lubensky (1981)
ived a two-variable scaling behaviour of ns(p). For d > 8, however, these
mplicated arguments still reproduce the form (33). In fact, for d > 8 one
ftoduces the Bethe lattice results 7=5/2 and o= 1/2. The Bethe lattice
lts for the moments, e.g. Eq. (31), hold for all d > 6. We shall say more
fthe cluster structure for d > 6 later. For simplicity we restrict our
ussions from now on to 1 < d < 6.

dér assumption. But now we may take o =1, z=(p — pc)s’, and rewrite
one-dimensional case as

ns(p)=s"2f(z)=s"%2" exp z (34

for p near unity and s large. Thus we see that now one dimension
to the picture and corresponds to ¢ = 1 and 7= 2. It is somewhat unusual
Jat p = p. there are no clusters left. Mathematically this effect results in
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f(0)=0, but we see no objections why that function cannot be zero at zero
argument.

Can we now avoid the appearance of an infinite cluster even below p.
when we apply Egs. (24) and (28)? The first part of Eq. (28) is still valid, and
then we proceed as in the integrations of the preceding section, using
dz/ds=o0a/s and 3 from Eq. (29):

- P= Z [ns(p) — ns(pc)ls

= {s'"T[f(z) - f(0)] ds
=|p—pc |V (| z| T2 f(z) - £(0)] dzfo
=(B+y) | p—p|® 11217 P Lf(2) - £(O)) dz

Here the integration over z = (p — pc)s° goes from 0 to o for p > p. and
from 0 to — o for p < p.. Thus the mystery of the infinite cluster is solved.
The scaling function f(z) has to behave, for negative arguments, such that

§1z]7'P1f(z) = £(0)) dz=0

-s{df| 4,
121 [dz] dz=0

For positive arguments, that is above p., the corresponding integral should
not vanish in order to give a non-zero strength of the infinite network.
In order to give a vanishing integral below the percolation threshold, the
function f(z) has to be sometimes larger and sometimes smaller than f(0) and
cannot always increase if z increases from — oo (where f vanishes) to zero.
Nature made it simple for us: f(z) has only one maximum, and not many, for
usual percolation problems. We call that value of f(z) at this maximum fnax,
and the negative value of z at this maximum is called Zmax. Thus,

f(zmax) = fmax f(Z) < fmax for 2 # Zmax (35a)

For a fixed cluster size s, the cluster number n; thus has a maximum at pmax
below pc, with

or

~

Pmax = Pc + ZmaxS~° (35b)

As a further test, before we go to numerical checks, we want to find out
whether our assumption (Eq. (33)) leads to prohibited divergences in deriva-
tives of cluster numbers with respect to p, as did Eq. (25). From what we have
assumed so far we cannot exclude that possibility since, after all, Eq. (25) is
a special case of our Eq. (33) with log fo —z'/°. Therefore we now assume
in addition that f(z) is an ‘analytic’ function, which means very(!) roughly
that all derivatives of f(z) with respect to z are finite everywhere and in
particular at z=0. Since dz/dp = s° that means also that all derivatives of
ns(p) with respect to p remain finite at p = p., as they should. Thus the three
problems mentioned at the end of the last section seem to be solved.
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Finally, let us check whether the exponent v of Eq. (30) can now be
rederived:

So Y sin
o« [5*7"f(z) ds
=|p=pc|T¥ | 2|V f(2) dzfo
<|p=p| = |p~pe|"

Thus Eq. (30) has been rederived. The total number of clusters can also be
treated in a similar way, leading again to Eq. (32) and thus to the scaling law

2-a=2B8+7v

as already mentioned above. Of course, these purely theoretical consistency
arguments do not yet prove assumption (33). There have been so-called
renormalization group arguments in favour of (33) but mainly numerical
evidence suggests assumption (33) to be correct.

The critical exponents like 8 and v are important since they are ‘uni-
versal’, i.e. independent of the lattice structure and dependent only on the
dimensionality. More precisely, in the scaling relation

ns=qos~ "f((p = Pc)q15°), (36)

the exponents 7 and ¢ as well as the scaling function f are lattice independent,
whereas only the proportionality factors go and g, as well as p. depend on the
lattice details. If we now repeat the above calculation of S=I"(p. — p)~" (for
p<p:) and I''(p— p.)~" (for p> p.), and keep all the proportionality
factors, then the ‘amplitudes’ I and I’ are equal to gog: "/ pc multiplied by
two integrals involving the ‘universal’ function f at positive and negative
arguments.
Thus, the ratio

RoSe=e) T
S(p.+¢€) TV

i.e. the ratio of the amplitudes I" on both sides, is also universal and equal
to about 200 in two dimensions and 10 in three dimensions. Many other such
amplitude ratios have been studied and also found to be universal, as reviewed
by Privman efal. in Domb and Lebowitz (details in Further Reading of
Chapter 1) (Vol. 14).

2.7. NUMERICAL TESTS

First, let us look at the exact cluster numbers of Section 2.3. For the square
lattice we had n; = p(l - p)* for the number of isolated sites and
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ny=2p*(1 — p)® for the number of pairs. Do they have a maximum below p.
at fixed cluster size s, as the above argument requires? We find this maximum
by setting the p-derivative of n; equal to zero. For s=1 we thus get

(1-p)y—4p(1-p)=

with the solution p=1/5, whereas for s=2 the same procedure leads to
p=1/4. In both cases, the position of the maximum is below the percolation
threshold p. = 0-5928, and for the larger cluster the maximum (1/4) is closer
to p than for the smaller cluster (1/5). This agreement with our theoretical
expectation does not yet prove it, since our scaling assumption (Eq. (33)) is
supposed to be valid only for large s. But if one plots n;(p) using the
polynomials as calculated for various lattices by Sykes et al. until s=10to 20,
one can determine the position of pmax(s) for intermediate s and can show
that pmax extrapolates for s — « to a value at least very close to pc, just as
Eq. (35) requires. In fact, similar methods have been used to determine p.
quite accurately.

One may also test Eq. (33) directly by calculating vs(p) = ns(p)[ns(pc)
from these exact polynomials and plotting the ratio versus z=(p — pc)s’.
Equation (33) then asserts that for different s the results all lie on the same
curve f= f(z). (Some people call this effect ‘data collapsing’.) Of course, in
reality they do not all lie on the curve since even s=20 is rather far from
s=o, and Eq. (33) is only assumed to be valid for very large clusters.
However, a rough confirmation of Eq. (33) has been obtained in this way.

The real strength of the exact polynomials for n,(p) lies in the determi-
nation of critical exponents like 8, v, and ¢. For this purpose one is expanding
all terms (1 — p)’ by the binomial law and orders the result in powers of p.
Thus, one arrives at a power series

My = Ziaip' 37

for the moment My one is interested in, as defined in Eq. (31a). By looking
at the radius of convergence of this series, for example for k = 2, one finds
the percolation threshold p.. Of course, this determination is inaccurate since
only cluster numbers until s = 10 to 20 are known. Therefore only the first 10
to 20 terms of the series expansion (Eq. (37)) can be calculated. Suitable extra-
polation methods have been developed, however, to find the threshold and the
critical exponent with great accuracy from a limited number of expansion
terms. (See for example the review of Gaunt and Guttman in vol. 3 of the
Domb—Green series and of Adler et al. (1990).)

One of these extrapolations is called the ratio method. Consider, for
example, M>(p), or S(p). As we saw, S(p) diverges as (p. — p)~" when p
approaches p.. The power series in p for S(p) should thus have a finite radius
of convergence, p.. The function (p. — p)~" has the simple series expansion

- (y+1) Y+ DGy +2) 3
(pe—p) "= ’[1+ +X + L
—P pe De p 2pt P 6p:




Cluster Numbers 45

Therefore, the ratio of two consecutive coefficients here is

@ _y+i-1_ 1 ([ y-1

ne = (1025) o
Plotted against (1/i),this ratio exhibits a straight line, with slope (y — 1)/pc
and intercept (1/pc).

The actual series for S(p) is not identical to that for (p. — p)~7, since it
may contain additional, less divergent, parts. However, for large / the series
should be dominated by the most divergent parts, and therefore its ratio ui
should approach the behaviour (38). Although some series have an oscillatory
approach of g; to (1/pc), one often obtains good estimates for both p. and v
with rather few terms.

More accurate estimates are often found using the Dlog—Padé method.
Since we expect that S=T'(p.— p)~"” close to p., we also expect that

log S=logI' — y log (p: — p), or
dlog §_ v
dp pc-p
Given the series for S(p), we can transform it into a series for log S, using

the expansion log(l + x) = x —1x2 +1x%—1x*.... We can then take a deriv-
ative, and find

N .
dlog S _ bip'
dp i=0

We next try to represent this polynomial as the ratio of two other
polynomials,

L
N Z cip'
Z bipi = i=0
i=0 Z dipi
i=0
with L + M= N and do = 1. The righthand side has (N + 1) unknown coeffi-
cients (co, ..., cr and dj, ..., dui). However, the requirement that the ratio on
the righthand side has exactly the same Taylor expansion as the lefthand side
is equivalent to the set of (V+ 1) linear equations (obtained by multiplying
both sides by the denominator on the right)

M
D) bidk-i=cx  k=0,..,N
i=0

with cx =0 for k > L. Having solved these equations, we find several Padé
approximants (depending on the choice of M and L) for d log S/dp. If they
are to behave as — y/(pc — p), then the polynomial in the denominator should
vanish at p.. We thus find the zeros of the denominator, i.e. the poles of the
ratio. Usually only one of them will be a reasonable approximation for p.
(which must be real and obey 0 < p. < 1). Having chosen p., we replace the



“40 I UUULEIUNE (U & CILUIMaIUne 1 v -

denominator by

M-1

M
Z;) dip'= (pc— p) 26 ep'

and our estimate for y becomes
L .
Z Cipe
_ _ =0
Ly ” =5 Sa—

eipc
i=0

We next prepare a plot of the estimated p. versus  for all L and M. If
many of these pairs concentrate around one particular point in the p.—v plane
then we have a good estimate. Usually the best estimates are found when L
and M are close to NJ2.

For percolation, usually these series expansions give the most accurate
estimates for the exponents. The determination of the threshold is often less
accurate than that by the Monte Carlo method described in Chapter 4. Some-
times the best results are obtained from a Padé approximation which uses a
Monte Carlo determination of p. as input. Of course, when p. is known
exactly, that problem vanishes. Perhaps the greatest triumph of accurate
series determinations for percolation was that Domb and Pearce (1976) esti-
mated o= —0-668 +0-004 for triangular site percolation long before
a= —2[3 was first guessed and then nearly proved by theoretical methods
(Nienhuis, 1982).

Note that the derivation of the series can be separated into two stages:
one program is needed to evaluate the polynomials ns(p, d). This can be done
for general dimensionality d. For example, for bond percolation on the hyper-
cubic lattice one has

m(p,d)=dp(1-p)**~*  m(p,d)=d@d-1)p*(1-p)**..

Once these are tabulated, we need a second program to evaluate the cluster
property that we want to average. For M, this property was simply s*. For
another property As (e.g. the average time it takes the ant of Section 1.4 to
go from any site to any other site on the cluster) we need a separate program.
However, for many applications A; depends only on the topology of the
cluster (i.e. which site is neighbouring which) and not on the particular way
the cluster sits on the d-dimensional lattice. Therefore A; is calculated once
for all d. The series for the average (A) for these topological quantities is
then obtained via

(AY = 2 (Asdns(p, d)
where (A;) is the average over all clusters of size s. Analogous series, in
powers of (1 — p) instead of p, have also been derived and analysed, yielding
information for p > p..
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Now we come to the second method of numerically estimating properties
of percolation, the Monte Carlo simulation. For thermal systems, the Metrop-
olis algorithm is an old technique to simulate thermal fluctuations. However,
for percolation the problem is usually much simpler since the system now is
completely random, without memory effects. Thus, we may produce a picture
like Fig. 2 by simply going through the lattice once and occupying each place
randomly with probability p. After the production of the configuration one
may analyse it by eye or by computer. We shift the latter problem to
Appendix A where we describe how one can efficiently count the clusters in
such a lattice or check whether the system is percolating. Here we concentrate
on how to produce a configuration and what to do with the resulting cluster
numbers.

Most computers have a built-in random number generator, and even pro-
grammable hand calculators often produce random numbers. These random
numbers are generated neither at the roulette tables of Monte Carlo, where
the name comes from, nor by students who failed in an examination, but by
the electrons in the computer circuits. Simple arithmetic or logical operations
produce in a completely predictable way a series of numbers which for the
outsider, and the simulation, look quite random although they are not. The
generation of such pseudorandom numbers is most easily explained on a
32-bit IBM computer, using FORTRAN language. Take IBM to be a large odd
positive integer, called the ‘seed’ of this particular sequence of random
numbers. Then a new odd positive and seemingly random integer can be
produced (at least on IBM computers) by

IBM = IBM=*65539
IF(IBM.LT.0) IBM = IBM + 2147483647 + 1

The product of IBM and 65539 in general has more than ten decimal digits,
that is more than 31 bits, and the computer loses the leading digits (bits) and
stores only the last 32 bits in the storage place called IBM. The first of these
32 bits is interpreted as the sign of the number, and thus the product of two
positive large integers may lead to a negative result. To avoid that accident
one adds 23! to IBM if IBM happened to come out negative (though one can
also work successfully with negative IBM). The resulting IBM is an odd
integer randomly distributed between zero and 23!; it can be used as the input
for the next random number to be generated, and so on. To get a real
number between zero and unity one has to multiply the integer IBM by
0-465566 E—9 = 273!, This method of producing random numbers is often
available as subroutine RANDU; but computation time is saved if the state-
ments are written directly into the main program. At most 23 different
random numbers can be generated in this way, since there are no more odd
integers between zero and 23!. After at most 23° steps, exactly the same
sequence of pseudorandom numbers will be produced again; if you have bad
luck, this happens after an even shorter period. In some applications, even
with only several thousand lattice sites, problems occur which show that these
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pseudorandom numbers are not really random. Then a program published by
Kirkpatrick and Stoll (1981) may help and is nearly as fast. On other com-
puters, where this method may not work, you may use other subroutines, for
example the function RANF( ) on Cray computers. In general the production
of random numbers is an art and not a science; careful investigations should
try different methods to check that the result does not depend on the method
used.

As a simple introduction to random numbers and Monte Carlo simu-
lation, let us calculate the number 7 = 3-14159 ..., which is the area within a
circle of radius unity. We take a random number which we call x and then
another random number called y. Both random numbers are distributed with
equal probability between zero and unity. Then we increase a counter, set
initially to zero, by one unit if x2+ y* < 1; otherwise we leave this counter
unchanged. We repeat this computer experiment again and again, increasing
the same counter if and only if the resulting x?+ y? is smaller than unity.
After, say, one million such pairs of random numbers have been used, our
counter will be at about 10%7/4. The pair (x, y) gives a point within the square
of all points with 0 < x < 1 and 0 < y < 1. This point lies within the circle of
radius unity with probability 7/4. Thus counting the number of points with
x*+ y? < 1 measures the area of that circle.

How does one occupy a lattice randomly using these pseudorandom
numbers? Let us assume we want to have in the array M(20, 20), which rep-
resents a 20 x 20 square lattice similar to that of Fig. 2, a zero stored for
empty places and a one for occupied places, with concentration p. After using
the above IBM random number generator we simply state

M(I,K) = 0 '
IF(IBM.LT.IP) M(I,K) = 1

where IP is the integer part of p*23'. Thus, instead of normalizing the
random integer IBM by a factor 1/23! for each site M(I,K) we only multiply
p by 23! once. Then the integer IBM has a probability p of being smaller than
IP, and has a probability (1 — p) of being larger. Thus, the above statements
fill the lattice with the desired probability.

In a finite lattice of ; say, one million sites with concentration p =0-3 one
does not occupy exactly 300 000 sites by this method; it should be several
hundred more or less. Different techniques are necessary should one need
exactly 300 000 occupied sites. If one merely wants to produce pictures where
sites occupied for a lower p are also occupied for larger p, then one can do
that easily, though not efficiently, by restarting with all sites empty for every
new p, but always using the same initial seed IBM for the random number
generator. Then for different p the same sequence of random numbers is used
and if such a random number is smaller than p = 0-3 (after normalization) it
is also smaller than p = 0-4. Here the fact that our random numbers are not
really random has been used to our advantage, since now a site occupied for
small p is automatically also occupied for large p.
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Having produced a randomly occupied lattice we may check by eye
whether or not it percolates, or we may count clusters. If it is done manually
we will get such bad statistics that a meaningful test of the scaling hypothesis
is hardly possible. If we do it on a computer we will get much better results.
For s=1,2, up to 10 or 20 we can plot the results by hand, and then we will
get tired and the statistics for ns will get bad. But up to that size exact cluster
numbers are available (see above), and there is no need to produce these
clusters by Monte Carlo simulation. Therefore we have to concentrate on
larger clusters up to size 1000. Then, as usual in computer work, we must
protect ourselves against a flood of data in which we drown before we have
analysed it. One way to do that is to combine different neighbouring cluster
sizes in one bin. For example, one bit contains all clusters with 8 to 15 sites,
the next bin corresponds to s between 16 and 31, then comes the interval 32
to 63, and so on, the bin size increasing exponentially. One may plot the result
at the geometric mean of the two border sizes s, for example at s = 45 for the
interval 32 to 63. Then even for very large lattices and very good statistics one
does not have too much data to deal with.

Figure 12 shows the cluster numbers for a 95 000 x 95 000 triangular
lattice at the exact p = p. = 1/2, based on one run which took nearly 14 hours
on a CDC Cyber 76 computer. We see a nice straight line in this log-log plot,
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Fig. 12. High-quality data on cluster numbers at the percolation threshold, based on
one simulation of a 95 000 x 95 000 triangular lattice. The slope of the straight line in
this log-log plot gives — 7, the Fisher exponent of Eq. (20). From Margolina et al.
(1984); see also Rapaport (1985, 1992).
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corresponding to the Fisher power law, Eq. (20). The exponent 7, as given by
the negative slope of the straight line, seems to be very close to 2, as it should
be. Theoretically, 7 =2-055. There are, however, two exceptions. For small
s the data points fall below the line since the simple power laws of scaling
theory are valid only for large s. And for very large s near 10°, the data points
seem to be too high, since the boundaries of the lattice cut the infinite cluster
into several pieces, thus enlarging the number of clusters. We see that even
a lattice size 95 000 is far from infinity. (Often one can reduce these boundary
perturbations by working with periodic boundary conditions. For example, in
a 20 x 20 lattice, the right neighbour of the rightmost site M(i, 20) is taken as
the leftmost site M(/, 1) in the same row, and the topmost line M(1, k) has the
bottom line M(20, k) as top neighbours. This was not done in the example of
Fig. 12.)

Having tested the validity of scaling theory right at the percolation
threshold, we now want to test Eq. (33) above and below p.. Instead of giving
high-quality data again as reviewed, for example, in Stauffer (1979) (see
Further Reading, Chapter 1), we now take poor data which the reader may
easily squeeze out of a medium-size computer overnight. Appendix A.3 gives
a complete FORTRAN program and computer output for the simulation of one
500 x 500 lattice at concentrations of 38, 39,40, ..., 62 per cent. A fast CDC
76 computer needed slightly more than one second for each concentration. We
ignore the first four bins in the cluster size distribution, that is the sizes
1,2-3,4-7, and 8-15, since for such small clusters scaling is not good. Let
us take the fifth bin, 16—31, as an example. At p=0-5 we found 195 clusters
in this size range, at p = 0-62 only 4. Near p = 0-39 is the concentration pPmax
for this size range, with 878 clusters observed, more than at lower or higher
concentrations. We take the ratio ns(p =0-39)/ns(p =0-50) = 878/195=4"5
and plot this number at z=(p—pc)s’= —0-11x (22:6°3%¢) = —0-378,
using 22-6 as the (geometric) average cluster size and o = 36/91. The other
data can be processed in a similar way and lead to Fig. 13.

We see in Fig. 13 that the different symbols, representing four different
size ranges, all follow roughly the same bell-shaped curve. This is exactly what
the scaling assumption (Eq. (33)) asserted—that all data points follow the
same curve f(z). Thus,~within the very limited accuracy of this test run we
have confirmed the scaling theory. Better data, for higher dimensions
(Nakanishi and Stanley, 1980), confirm this validity with greater precision.
Figure 13 also shows clearly the maximum below the percolation threshold,
as opposed to the symmetric scaling function for the Bethe lattice.

If we therefore believe in scaling we may collect the present values of the
various critical exponents from the literature. The above scaling laws relate
them to each other and to other exponents to be introduced later. Therefore,
if one exponent is not estimated directly with sufficient accuracy, we calculate
it from other exponents. In this way, Table 2 gives d-dimensonal exponents
as well as their ‘classical’ counterparts for the Bethe lattice. The two-
dimensional exponents are believed to be exact on the basis of theoretical
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Fig. 13. Low-quality test of the scaling assumption (Eq. 33) for the cluster numbers,
using the computer output in Appendix A. Different symbols correspond to different
size ranges: dots to 16—31, crosses to 32—63; pluses to 64—127; squares to 128—255.
Equation (33) requires all these ratios vs(p) = ns(p)/ns(pc) to follow the same curve
f(z), where z=(p — p;)s°. Within the strong scattering of the data that rule seems to
be fulfilled.

analogies with thermal phase transitions, which are beyond the scope of this
book. The ‘striptease’ method to be explained in Chapter 4 confirmed them
with accuracies of the order of 10™%. The higher-dimensional exponents are
much less accurate.

Table 2 does not distinguish between different types of two-dimensional
lattice, such as square, triangular or honeycomb lattice. All presently
available evidence strongly suggests that the critical exponents as well as
certain ratios like fnax depend only on the dimensionality of the lattice, but
not on the lattice structure itself. In other words, if you have seen one two-
dimensional lattice you have seen them all for these simple percolation
problems. The same is true for d dimensions. Also, bond and site percolation
have the same exponents. This simple fact, that critical exponents are indepen-
dent of the lattice structure, is known in the trade under the complicated name
of ‘universality’ and also holds for thermal phase transitions. For each study
of critical exponents it allows us to select that lattice for which our work is
easiest.

Our computer output in Appendix A also gives the size ‘INF’ of the
largest cluster and the second moment ‘CHI’ of the cluster size distribution
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Table 2. Percolation exponents for d=2,3,4,5,6—¢ and in the Bethe lattice
together with the page number defining the exponent. Rational numbers give (pre-
sumably) exact results, whereas those with a decimal fraction are numerical estimates.

Exponent d=2 d=3 d=4 d=5 d=6-¢ Bethe Page
o -2/3 -062 -0-72 -0-86 -1+¢/7 -1 39
g 5/36 0-41 0-64 0-84 1-¢/7 1 37
¥ 43/18 1-80 1-44 1-18 1+¢/7 1 37
v 4/3 0-88 0-68 0.57 1+ 5¢/84 1/2 60
g 36/91 0-45 0-48 0-49 1+ 0Ed 1/2 35
T 187/91 2-18 2:31 2-41 2-3¢/14 5/2 33
D(p=pc) 91/48 2-53 3-06 3.-54 4 — 10¢/21 4 10
D(p < pc) 1.56 2 12/5 2-8 - 4 62
D(p > pc) 2 3 4 5 - 4 62
$(p < pe) 1 1 1 1 - 1 56
S(p> pe) 1/2 2/3 3/4 4/5 - 1 56
6(p < pc) 1 3/2 19 22 - 5/2 54
6(p > pc) 5/4 -1/9 1/8 —449/450 - 5/2 54
Simax 50 1-6 1-4 1-1 1 42
u 1-30 20 24 27 3 - 5¢/21 3 91
s 1-30 0-73 0-4 0-1s 0 93
Dg 1-6 1-74 1-9 2:0 2+¢/21 2 95
Duin(p = pc) 1-13 1-34 1-5 1-8 2-¢/6 2 97
Dwin(p < pc) 1-17 1-36 1-5 - 2 98
Dmax(p = pc) 1-4 1-6 1.7 1-9 2—¢l42 2 97

For the exponents at p., the Bethe lattice values are exact at d > 6. A dash means that
6 is not the upper critical diménsion for the e-expansion.

(excluding the largest cluster). The first is supposed to vanish at the threshold
with an exponent 3, whereas the second should diverge with the same expo-
nent v whether p. is approached from below or above. We plot data points
in Fig. 14; they do not seem to follow a straight line. Of course, for such a
‘small’ lattice one should not expect perfect agreement with theory since the
boundaries cut smaller pieces off the largest cluster, etc. Finite-size scaling
theory, Chapter 4, deals with such effects. One may repair part of these syste-
matic errors due to the finite system size by working with an effective perco-
lation threshold which differs from the true p. = 1/2 but approaches the true
threshold if the system size goes to infinity. Thus, we shift a trial value for
the effective threshold until the exponent v is the same above and below the
threshold. Using all our data from p=0-4 to p=0-6 we find (via log-log
paper, hand calculator, or personal computer) that for an effective threshold
at 0-50827 the two exponents agree and have the value y = 2-39, in excellent
agreement with the desired 43/18. Figure 14 shows these data too. By
measuring the distance between the two parallel lines on the log-log plot for
this shifted threshold value, one finds that the second moment of the cluster
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Fig. 14. Log-log plot of the strength P of the infinite cluster (right) and of the second
moment M; of the cluster size distribution (left) for the triangular lattice, using the
low-quality data of the computer output in Appendix A (500 x 500 triangular lattice).
For pc = 1/2, the exact value, the data are difficult to analyse (dots). If p. is shifted
to 0-5083 to take into account some finite size effects (crosses), we get reasonable
straight lines with slopes close to the exponents found in more accurate studies.

size distribution is about 200 times larger below the threshold than at an equal
distance above the (shifted) threshold, in agreement with determinations from
larger lattices. This is the universal ratio R mentioned after Eq. (36). Using
this same effective p. and all data for the largest cluster from p=0-51 to
p=0-6, we find the exponent 8 to be about 0-17, in reasonable agreement
with the desired 5/36. Thus, by suitable analysis one can squeeze out good
results even from bad data. Also we see here that the usual formulae to esti-
mate error bars for straight-line fits are unreliable, since they ignore the syste-
matic errors due to finite system size (somehow corrected here), finite p — p.,
etc.

Besides the Monte Carlo method described here the reader can find other
methods to produce clusters. For example, Leath (1976) starts from one site
and then again and again adds, with probability p, a neighbour to the already
existing cluster.

2.8. CLUSTER NUMBERS AWAY FROM p,.

Not everything in life is connected with critical phenomena near p.. There are
also interesting effects in the cluster numbers far away from the percolation
threshold. It may be possible that some of their aspects are then approximated
reasonably well by the Bethe lattice solution, or by effective medium theories.
We concentrate here on (presumably) exact results for large clusters. In a way
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similar to a good politician, nature provides us with a compromise here:
Sometimes it agrees with our Bethe lattice solution and sometimes it disagrees.

First let us argue why for concentrations below the percolation threshold
the cluster numbers decay exponentially with cluster size s, that is

log ns x —s (s— o0, p< pc) (39)

We saw in Eq. (12) that the total number g of cluster configurations (‘lattice
animals’) varies exponentially with s, that is

log gsox +s  (s— )

apart from the less important contribution from the pre-exponential factor.
Equation (13) has already explained why an analogous result should be valid
for the cluster numbers, for small p, since then ns(p) = gsp°. From this result
we immediately get Eq. (39), as well as less important contributions,
logarithmic in s, from the pre-exponential factor. Kunz and Souillard (1978)
as well as Schwartz (1978) have shown that this exponential decay is valid for
all p below some characteristic value p' which in turn is smaller than p..
Numerical tests, as performed, for example, with the exact cluster numbers
of Section 2.3, already support Eq. (39) for medium s.

However, there is a general belief, supported by renormalization group
arguments to be discussed later, that Eq. (39) is valid for all p below p., in
other words, p' = p.. Thus, we may write this unproven result as

ns(p < pc)ocs™® const® (s ) (40)

where we also use an exppnent 6 (see Egs. (12) and (13)) for the pre-
exponential factor. This exponent is thought to be the same for all p below
pe. Since Eq. (40) is supposed to be valid for all p below the threshold it is
also valid for small p; therefore, everywhere 6 equals its values 1 and 3/2 for
two- and three-dimensional animals, respectively, as mentioned after Eq. (12).
However, as mentioned after Eqs. (26) and (33), Eq. (40) holds only when
§> S:.

The behaviour above the percolation threshold is more interesting in that
the dimensionality d enters the asymptotic decay law:

log ny(p > pe) o< — s' V4 (41)

o ny(p > pc)oc s~ exp(—Cs'™) (42)
Again this law is supposed to be valid for large s only, i.e. s > s;. Equation
(41) was proved for all p above some p” which is larger than p., and Eqgs. (41)
and (42) are thought to be valid for all p above the threshold for simple
percolation problems.

The term 53 (for d =3 dimensions; the exponent is (1 -1/d) in d
dimensions) in the exponential of Eq. (42) suggests a behaviour dominated by
a surface, since the surface area varies as (volume)*~¥ (see Eq. (14)).
Indeed, following Kunz and Souillard (1978), we can make this surface term
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plausible by the following argument. Let us look at the infinite network, to
which above p. a finite fraction of all lattice sites belongs. How much effort
is needed to cut out from this network a finite, roughly spherical, cluster of
radius r (in units of the lattice spacing)? The geometrical surface of this sphere
is 4wr?. To transform the interior of this sphere into a finite cluster we have
to cut all its connections with the outside infinite network. This can be done
by making all sites on the surface of the sphere empty, that is less than about
4xr? sites. The probability for a fixed configuration of s occupied and # empty
sites generally is p*(1 — p), as Eq. (10) told us. To cut a finite sphere out of
the infinite network, the change in both s and ¢ is proportional to the surface
area 4xr2, and the probability that such a cut occurs randomly varies there-
fore as exp(— const r2). The number of large finite clusters is at least as large
as the number of spherical clusters cut out randomly in this fashion. There-
fore, n; cannot be smaller than exp(— const r2) in three dimensions, provided
one has an infinite network present. In d dimensions we get analogously

ns(p > pe) > exp(—const r?~1) o exp(—const s¢ -1V D)

since the number s of network sites in a (hyper)sphere of radius r varies as
r?. This result means that the cluster numbers cannot decay with a simple
exponential as in Eq. (39), since that decay would be too fast. For large s, s
is always larger than any term proportional to s V%,

This simple argument explains why Eq. (39) below the threshold is
replaced by Eq. (41) above the threshold. From another inequality one can
show that |log ns| is indeed proportional to s~1"?’ and not only smaller.
Again this latter result is not rigorously proven for all p above p. but widely
believed to be valid in that whole range for simple percolation provided
s » s Numerical data, for example from the exact cluster numbers at inter-
mediate s, confirm that Eq. (41) is a good approximation already for s near
10. (The exact exponent 6’ in Eq. (42) is 5/4 in two and —1/9 in three dimen-
sions according to Lubensky and McKane, 1981.) In the Bethe lattice we have
no such difference between Eq. (39) and Eq. (41) but we also see why. The
Bethe lattice corresponds to infinite d, and then (and only then) (1 — 1/d) and
1 are identical. Unfortunately, these exactly known exponents like (1 — 1/d)
have not led to an exact solution for the three-dimensional percolation expo-
nents near the threshold.

There is no contradiction between Egs. (39)—(42), presumably exact away
from p., and the scaling assumption (33), presumably true near p.. For p
close to pc but s so large that | z| = | p — pc | s” is much larger than unity, both
Eqgs. (39)—(42) and Eq. (33) are expected to be valid. Therefore, the scaling
function f(z) in Eq. (33) must behave for large | z| in such a way that Eq. (40)
is fulfilled below and Eq. (42) is fulfilled above the threshold. For p > p., for
example, we need

(@) o< 2707 exp(—const’ z (=)

to achieve that aim, with a simpler law below p.. Monte Carlo data is in
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reasonable agreement with this seemingly complicated formula (see, for
example, Stauffer (1979) cited in Chapter 1).

We may summarize the main result of this section with the help of an
exponent ¢ defined through

log nyoc — st (s— o0, p fixed) (43a)

Then
S(p<p)=1 $(p>p)=1-1]d (43b)

In the next chapter we will investigate whether we also see this difference
between above and below p. (where a surface term only appears above p.),
in the structure of clusters. What this chapter has tried to do, in a somewhat
unhistorical way, is to explain why percolation cluster numbers have to
behave the way they do. Then we resorted to numerical tests to check that we
were right. Historically it was much more a case of the opposite: Computers
told us that we were wrong until our brains hit the right solution.
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CHAPTER 3
Cluster Structure

So far, we have looked only on the distribution of cluster sizes. We now turn
to discuss the geometry of the clusters. We first look at the ‘surface’ of a
cluster, i.e. its ‘perimeter’. We then introduce the cluster’s linear size, via its
radius. In Section 1.3 we saw that the incipient infinite cluster has an internal
Jractal geometry, reflected by the dependence of its density on the length
scale. We now discuss similar fractal relations between the radii of finite
clusters at p. and their masses (Eq. (48)). Scaling arguments are then pre-
sented to show that these results also hold for p # p., for length scales small
compared with the correlation length £. For larger length scales one observes
a crossover to different behaviours. Similar scaling arguments are then
applied to quantify the description of Section 1.3 and to relate the fractal
dimension D to other exponents (Eq. (54)). These discussions also introduce
hyperscaling.

3.1. IS THE CLUSTER PERIMETER A REAL PERIMETER?

In Section 2.3 we introduced the ‘ perimeter’ t of a cluster, which is the number
of empty sites neighbouring an occupied cluster site. We may call the size s
of a cluster, the number of occupied sites, the mass of this cluster; then ¢ is
one of the quantities which define the structure of this mass. The word per-
imeter suggests that it is some sort of surface, similar to the perimeter of a
circle, which is 27 X radius and thus proportional to the square root of the
‘mass’ (area) of =72 of the circle. Thus one might expect, at first sight, that
t is also proportional to s* =¥ in d dimensions, analogously to Eq. (14). The
aim of this section is to show that this is not so.

We only have to look at Fig. 2 to see that the infinite cluster for concen-
trations p above the percolation threshold p. has some holes in its interior.
Each of these holes gives a contribution to the perimeter. If we have one hole
for, say, every thirty sites we have a perimeter proportional to the number of
sites in the infinite network. For a very large but finite cluster one may expect
the same behaviour as for the infinite network and thus also a perimeter
proportional to the number of sites in the cluster. Thus,

txs (s )
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:ems plausible according to these arguments. If correct, this quantity ¢ is not
quantity which may be identified directly with a cluster surface.

Do you want a proof? Leath (1976) (as cited in Chapter 2) has given one.
‘irst we have to define the average perimeter #; of a cluster containing s sites,
or Eq. (10) tells us that different clusters with the same mass s have different
serimeters. We take

n
N

ts=21

where

nse= gup’(l — p)’

is the average number of s-clusters having r perimeter sites each, as is obvious
from Eq. (10); of course, I, ns gives n,. If we differentiate the quantity ns
with respect to p we get

d s 55— § -
3y = Trgalsp’T A= p) = p - )Y
which leads to
I1-p d In(ns)
ts= - (1 =p) ———= 44
s=S§ > (1-p) dp (44a)
Now we insert what we learned in the last section, that In(ns) = — Cs® apart

from terms varying less strongly with s, with a p-dependent factor C. Thus
also d In(ns)/dp varies as s°, and

ts=s +const s§  (s— ) (44b)

l-p
p

We see from Eq. (44b) that for sufficiently large clusters the perimeter f
is always proportional to the mass s. Thus, the perimeter is not a surface in
the usual sense. Even deep in the interior of the cluster one has perimeter sites,
just as holes in a Swiss cheese (or water in a Norwegian fjord) prevent the
solid cheese (or earth) from filling the space completely. Only the second term
in Eq. (44b) may correspond to a usual surface contribution, since for p > p.
we have {=(1-1/d) from Eq. (43), giving a perimeter contribution pro-
portional to the usual surface.

You may think that the perimeter does give a real surface if one restricts
it to the external perimeter, that is to those sites which are connected by a
chain of empty sites to the space far away from the cluster. Indeed, in the
Swiss cheese the interior holes have no connection to the outside air and thus
do not correspond to the external perimeter. However, for the simple cubic
lattice at least, we can see easily that even this external perimeter varies as the
volume s, and not as a surface o s2>. Let us take p between 0-4 and 0-6.
Thus p lies between p. = 0-312 and (1 ~ p.). Now not only the occupied sites
(concentration p) percolate through the lattice but also the empty sites (con-
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centration (1 — p)). Nearly every occupied site is part of the infinite network
of occupied sites, and nearly every empty site belongs to the infinite network
of connected empty sites. Every large cluster of occupied sites is penetrated
by a web of empty sites connected with the outside. Thus, even the external
perimeter will be proportional to s, and not to s*3. In two dimensions, this
argument is not valid. At p., every cluster has many internal ‘holes’, which
cannot be reached from the outside. One can thus separate ‘external’ and
‘internal’ perimeter sites, and only their total combined number obeys
Eq. (44). As we shall show below (Section 6.4), there are several ways to
define the ‘external’ perimeters, and these have interesting fractal geometries.

3.2. CLUSTER RADIUS AND FRACTAL DIMENSION

While we have seen that ‘surfaces’ are difficult to define, the ‘radius’ of a com-
plicated object is much easier to study. Polymer scientists have always had to
deal with objects more complicated than a straight line, a square or a sphere.
They usually define a ‘radius of gyration’ R for a complicated polymer
through

2
RZ=gi., ni=rl @52)
where
ro=Xi. 2 (45b)

is the position of the centre of mass of the polymer, and ; is the position of
the ith atom in the polymer. We now use the same definition for our perco-
lation problem, replacing ‘polymer’ by ‘cluster’ and ‘atom’ by ‘occupied site’.
If we average over all clusters having a given size s, the average of the squared
radii is denoted as R2. If we turn a two-dimensional cluster around an axis
through its centre of mass and perpendicular to. the cluster, then the kinetic
energy and angular momentum of this rotation is the same as if all sites were
on a ring of radius R centred about the axis. Therefore, such radii are called
‘gyration’ radii. We may also relate R, to the average distance between two
cluster sites:

.2
2R3 =g, Lol (450)

as one can derive easily after putting the origin of the coordinates into the
cluster centre-of-mass: ro = 0.

The correlation function g(r) is the probability that a site at distance r
from an occupied site is also occupied and belongs to the same cluster (see end
of Section 2.2). The average number of sites to which an occupied site at the
origin is connected is therefore L g(r), the sum running over all lattice sites
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r. On the other hand, this average number equals E;szns/p, since nss/p is the
probability that an occupied site belongs to an s-cluster, that is to a cluster
containing mutually connected sites. Thus,

pS=Lss’ns=pL,g(r) (p<pc) (46)

The second moment of the cluster size distribution equals the sum over the
correlation function (apart from an uninteresting factor p). Above p. this
relation is also valid if the contribution from the infinite cluster is subtracted.
This amounts to replacing g(r) everywhere by g(r) — P2. Such a relation
between mean cluster size (or second moment) and correlation function has
already been mentioned in Eq. (9). The word ‘connectivity’ function is also
used for our g(r).

We define the correlation or connectivity length £ as some average
distance of two sites belonging to the same cluster:

_ z:r"zg(")
L g

Since for a given cluster, 2R? is the average squared distance between two
cluster sites, since a site belongs with probability nss to an s-cluster, and since
it is then connected to s sites, the corresponding average over 2R ? gives the
squared correlation length:

£’ (47a)

_ 2T Ris?n,
T s2n

Thus, apart from numerical factors, the correlation length is the radius of
those clusters which give the main contribution to the second moment of the
cluster size distribution near the percolation threshold. We expect & to diverge
as p approaches p., as

£2 (47b)

foc|p—pe|” (470)

For two-dimensional percolation, plausible but not rigorous arguments
give v =4/3, in excellent agreement with numerical results. In three dimen-
sions, » is somewhat smaller than 0:9, whereas for Bethe lattices one has
v =1/2, analogous to numerous mean-field theories for thermal phase tran-
sitions. See also the di¥cussion on cluster structure at high dimensions,
towards the end of Section 5.3.

We have seen in Chapter 2 that many quantities diverge at the percolation
threshold. Most of these quantities involve sums over all cluster sizes s; their
main contribution comes from s of the order of | p — pc|~"/° (Eq. (33)). Now
we see that the correlation length, which is also one of these quantities
(Eq. (47b)), is simply the radius of those clusters which contribute mainly to
the divergences. This effect is the foundation of scaling theory. There is one
and only one length ¢ dominating the critical behaviour. In contrast to
politics, this dictatorial principle works quite successfully for all sorts of
critical phenomena in two and three dimensions, not only for percolation.
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However, the dictatorship principle does not always work even in critical
phenomena. If a sum over all cluster sizes s is not diverging at the critical
point, then the main contribution to this sum does not come from clusters
with radii of the order of the correlation length. Instead the main contribution
comes from small s near, say, 10. For example, the sum In;s equals p as long
as p is not larger than p.. Thus it does not diverge at the critical point. At
P = pc the dictatorship principle asserts that the main contribution comes
from s = oo ; but for the sum over s'~7 the main contribution comes from
rather small s. Then one has to be very careful in the evaluation of critical
exponents. Let us take as an example three different definitions of an average
squared radius:

Ts R*nss? L R2ngs R2n;
s
s n,sz Xs ngs s ns

Here the first expression is our definition of the squared correlation length and
diverges with the exponent 2». In the second expression the denominator
remains finite at the threshold whereas the numerator diverges with the expo-
nent (2» — ) (Eq. (31b), see also Eq. (105) later). In the third expression, in
d dimensions, for d > 2 both the numerator and the denominator remain
finite, and the exponent is 0. Thus, depending on the type of averaging
the particular situation requires, the critical exponent varies appreciably. In
short, do not rely on dictators. (Polymer scientists call the first expression a
z-average, the second a weight average, and the third a number average over
the squared cluster radius.)

We now want to find out how the radius R; varies with s at the perco-
lation threshold. Our discussion in Section 1.3 showed that the largest cluster
at pc has a fractal behaviour, with M o LP. It is thus natural to assume that
also s RP, with the same D. We can now relate D to ». We start by
substituting

Ry o sV P (p=De, s> 1) (48)

into Eq. (47b).

The denominator of Eq. (47b) is the A&th moment of the cluster size distri-
bution with k=2 (Eq. (31a)), and diverges with the exponent y= (3 — 7)[o
(Eq. (31b)). If near p. the radius R, varies as s'/ 2, the numerator of Eq. (47b)
is a moment with k=2+2/D and thus diverges with the exponent
(3 — 7+ 2/D)/o according to the same Eq. (31). Thus their ratio diverges with
the exponent 2/ (Do). This exponent should equal 2» according to Eq. (47¢).
Thus, 1

D

As mentioned in Section 1.3, this fractal dimension D is 91/48 = 1-896 in two
and about 2-5 in three dimensions. Thus the finite clusters at the percolation
threshold are fractals in the sense that their fractal dimension D is smaller
than their lattice dimension d.

=gy (49)
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For Bethe lattices, Zimm and Stockmayer (1949) showed that D = 4 is the
same for all p, not only at p.. Can we expect also for three-dimensional per-
colation that D is the same above, at and below the threshold? We cannot.
Imagine we have p very close to unity. Then Eq. (10) tells us that only those
clusters with the smallest perimeter are important in averages over all cluster
configurations. The smallest perimeter, for a cluster of s= L? sites on a
simple cubic lattice, is obtained for configurations having no holes at all in
their interior; their perimeter is 6.2 and their average radius is of the order
of L. Thus R, is proportional to s'/? for p close to unity, and not to s = s°**
as for p = p.. We have seen in Section 2.8 that one should expect the same
type of asympototic behaviour for all p above p. (Eq. (43)). Thus we also
expect this s o« R3 law to be valid for the radius for all p larger than p.: D = 3.
In -d dimensions we thus have

D=d  (p>pc) (50

which shows that D is not the same as at the threshold. Clusters above p. are
not fractals but ‘normal’ objects with D = d, provided s > s;.

Percolation theory supports equal rights for clusters above and below p;
if above p. they have the freedom to deviate from Eq. (49), those below p.
have the same freedom. Again, one expects the same D for all p below p..
In the limit p — 0, all different perimeters in Eq. (10) get the same weight,
which means that the cluster radius is now the average radius of all animal
configurations of the given size s. (All animals are equal, none of them are
more equal than others.) Unfortunately, no general exact solution is known
for animal radii, but in three dimensions we have D = 2 exactly (Parisi and
Sourlas, as cited after Chépter 2). In two dimensions, 1/D is about 0-641
from numerical estimates, and as mentioned above, D = 4 in the Bethe lattice.
Thus the animals as well as the percolation clusters below p. are again frac-
tals, but with a fractal dimension D smaller than that at the percolation
threshold. The table of exponents in Chapter 2 summarized the situation for
D.

As we have mentioned several times, many of the results quoted as power
laws are only asymptotic, i.e. they are valid only for very small (p — p.) or
for very large s. This also applies to Eq. (48), which should hold only for
s> 1. At finite s, there appear corrections to the asymptotic behaviour, and
these may involve new exponents:

s=ARP( + aR;? + smaller corrections) 1)

Usually it is sufficient to consider a single correction term. Normally, we
suggest checking relations like Eq. (48), for Monte Carlo data, on a log-log
plot. From Eq. (51), we find

log s=1log A + D log R, + log(l + aRs %)
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The local slope of this function, near a cluster size s, is

dlogs _,  QaR;® _ _ -0

d log RS_D 1+ aR;“-D QaR;
This local slope may be considered as an effective fractal dimension, D.g. If
we measure only over a finite, narrow range of sizes, the measured local slope
may mislead us into identifying a wrong value D.g for the asymptotic D. A
better technique would involve finding the local slope (e.g. by fitting a straight
line to a set of data of width As around s), and then plotting it versus some
negative power of R;, attempting a few exponents . The correct choice of Q
will yield asymptotically a straight line of Degr versus Rs %, and will have an
intercept D. Indeed, this procedure has been applied successfully to such plots
both for percolation and for lattice animals, with rather straight lines when
2 was chosen as 1. These simulations then confirm the above expression for
Dess. Similar tricks are useful for other asymptotic power laws.
' Equation (51) should hold af p.. We abbreviate the inverse fractal dimen-
sion 1/D at, below and above pc by p, p’ and p”. When we move away from
Pe, we might expect a gradual crossover from Eq. (48) with 1/D=p for
1 < 5 < sz to either p’ (p < pc) or p” =1/d(p > pc) for s> s;. The assump-
tion of a single-variable scaling would then imply a scaling function of the
form

R;=sh[(p— pc)s°] (52)

with #(x) approaching a constant for | x| <1, x(* ~?/° for x < —1 and
x®" =0l for x> 1. Plots of log R; versus log s at p # p. will thus also
produce effective slopes. At finite | p — p. | we have a finite s¢ o< | p — pc |7,
and the slope will gradually change from p to p’ or to p” as s increases
beyond s;.

Although we are not aware at present of detailed numerical tests of the
scaling law (52), there is no reason not to believe it. Equation (52) as well as
Eq. (33) are manifestations of single variable scaling: a function f(x, y) of
two variables turns out to have the form

f(x, »)=x""g(y/x®)

implying that all the information falls on a single curve if we plot x2f versus
y/x®. In later chapters we relate this scaling behaviour to the role of £ as
the only relevant length, and we explain it using the modern theory of the
renormalization group.

As we saw, Eq. (52) contains three different asymptotic fractal dimen-
sions, valid above, at and below p.. What does that mean for the structure
of the clusters? If we define an average density as the ratio s/R{ of cluster
mass to cluster volume, then above p. with s o R¢ one has an average density
independent of the cluster size for large clusters as mentioned in Section 1.3.
This density equals the strength P of the infinite cluster since the interior of
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a very large cluster should not be different from that of the infinite network.
Below and at p., the strength P of the infinite cluster is zero, and therefore
the average density approaches zero if the cluster mass s goes to infinity.
Franke has given the density profiles of large but finite clusters, that is the
probability that a site at distance r from the cluster centre-of-mass belongs to
that cluster. For p above p., the interior region of high densities near P is
separated from the outside of the cluster (zero-density profile) by a relatively
narrow surface layer (Franke, 1981, 1982); below and at p. this surface layer
has spread over the whole interior of the cluster. Thus above p. one has
a rather narrow surface whereas below and at p. the surface extends over
the whole volume. Now it is no longer surprising that the exponent ¢ for the
asymptotic decay of cluster numbers (Eq. (43)), has the surface value
(1 —1/d) above p. but is unity (surface proportional to volume) below p..
Thus we see that the sites of finite clusters in percolation theory have some
human traits. Above the threshold, the sites stay together like workers in a
trade union and thus they achieve higher densities. Below the threshold they
seem to prefer some distance from each other, they scatter over a large
volume, the links between them can be broken more easily, just as with non-
unionized people, and thus they achieve only low densities. In this sense you
reach a percolation threshold if you enter a union.

3.3. ANOTHER VIEW ON SCALING

As noted above, the critical behaviour is dominated by the single diverging
length, £. From Eq. (47b),.¢ represents the radius of the clusters which give
the main contribution to the mean cluster size and similar properties. From
Egs. (48) and (49), the size of these clusters is

sex £l o (p— po) P o (p— pe)™'°

This is exactly the cluster size that dominated the moments of the mass distri-
bution, see Eq. (31). In fact, s; « 1/c appeared as a cutoff on this mass distri-
bution: Egs (25, 33) have the power law behaviour n; « s~ for s < s; and are
exponentially small for_ s > s;. The behaviour for s < s;, or for Ry < §, is
indistinguishable from that at p.. We can thus identify £ as the crossover
length, separating the ‘critical’ behaviour n; o« s™" and R; o< s'P from the
different behaviours described in Sections 2.8 and 3.2.

Crossover phenomena are very common in statistical physics. They are
always associated with a length scale, like &. For length scales which are much
smaller than ¢ one may ignore the existence of a finite £, and the behaviour
is the same as that found when ¢ is infinite (i.e. p = p. in our example). In
the absence of any basic length scale to use as a ‘measuring stick’, all the
relevant functions become power laws. The power law is the only function
that does not require another length. For example, for p # p. we saw that the
correlation function g(r) essentially decays exponentially, like exp(—r/§) (see
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Eq. (7)). Such an exponential dependence (which also identifies ¢ as the cutoff
length, beyond which it is not probable to find pairs of points on the same
cluster) was possible only because we could construct the dimensionless ratio
(r/ £); the function e” requires that its argument x be dimensionless (a length,
like r, has dimensions, i.e. it is measured with units such as metres or
kilometres). At p., or when r < £, g(r) must become a power law. Indeed, one
finds that at pc

g(r) Py r—(d—2+1,)

and the (relatively small) exponent 7 is related to other exponents via the
scaling relation d — 2 + 7 =28/».

3.4. THE INFINITE CLUSTER AT THE THRESHOLD

Is there or is there not an infinite cluster present at p = p.? We know that
there is one for p above the threshold, and there is none for p below the
threshold. What does Nature do at the border line?

First, we have to clarify what we mean by an infinite network, since real
systems are always finite. We may call a cluster infinite if it connects the top
line (top plane) with the bottom line (or plane). In this case, in a computer
simulation of large lattices at p = p., a finite fraction, for example one-half,
of all lattices have an infinite cluster in this sense, and the rest do not. Thus
the answer to whether an infinite cluster is present is simply a ‘perhaps’.

Instead we may look at the largest cluster in the finite system (without
periodic boundary conditions). Of course, even for p far below p. the system
has a largest cluster. But only for p above p. is the size of this largest cluster
of the order of the system size. Generally we ask: How does the size of
the largest cluster increase with L in a system with L? sites? It is deter-
mined by n,L%=1; far below p., from Eq. (13) we thus conclude that
soIn L{In(p X const), whereas at p., s follows a power law. Thus at p. it
would seem reasonable that the largest cluster will have a radius of the order
of the system length L:R; « L. Since at p = p. we have R; o s/ D the con-
dition for the largest size is simply L o s'/?2, very similar to Eq. (48).
Thus the infinite cluster at p. (which sometimes is called the incipient infinite
cluster) also is a fractal in our sense and has the same fractal dimension D as
large finite clusters at the threshold. Above p., the mass s of the infinite
cluster increases as L¢ which means that is is no longer a fractal but D= d
as for the finite clusters. Below p., the fractal dimension of the largest cluster
is zero (corresponding to a very weak, that is logarithmic, increase with L),
in contrast to the fractal dimension of the finite clusters which are animal-like
with D =2 in three dimensions. '

Figure 15 shows results in two dimensions for lattices containing up to
10'% sites. Apart from fluctuations we see a simple straight line in this plot of
log s versus log L when L is not too small. The slope of this line is close to
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Fig. 15. Monte Carlo data for the size of the largest cluster at the site percolation
threshold p = p. = 1/2 of the triangular lattice, as a function of the linear dimension
L of the lattice. The slope of this log-log plot for large sizes gives the fractal dimension
D=91/48=1-9. '

the theoretical value D = 91/48. Thus now we have a more quantitative answer
to how large is ‘infinite’ for the incipient infinite cluster.

In this picture we took p. = 1/2 as is known exactly for the triangular lat-
tice. But even if p. is not known exactly and if one takes a p. slightly too high,
one still observes for the largest cluster a mass s proportional to L2, as long
as L is much smaller than the correlation length £. (At the exact threshold,
£ is infinite, and this condition is always fulfilled.) On the other hand, as
explained in Section 1.3, if L is much larger than £, the mass of the largest
cluster will be PLY, with P again being the strength of the infinite cluster,
proportional to (p — p.)®. If L is of the order of £ these two expressions
PLY and L” are of the same order (assuming again that only one length
£ is dominating critical behaviour):

PLY=const L? at L=t (p—-p)~"
Thus
B—dv=-vD
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or
D=d-glv
Together with »D =1/oc = + v and the other scaling laws we get

7—1

dvr=y+28=2-a= (53)
Often this scaling law where the dimensionality d enters is called ‘hyper-
scaling’, and is also used for thermal phase transitions.

As we have noted, the Bethe lattice corresponds to a very large dimension
d. Using the Bethe lattice values 0 = 1/2, 7=5/2 and » = 1/2, it is obvious that
Eq. (53) breaks down for large d. The only dimension at which it holds, with
these exponents, is d = 6. Equation (53) is also believed to work for all d < 6.
d, = 6 is thus identified as the upper critical dimension. We shall show later
(Section 5.3 and Appendix B) that for all d > 6 one has ¢ =1/2, 7=5/2 and
v = 1/2, but hyperscaling breaks down and the fractal dimension maintains its
value at d=6, i.e. D= 4. Unless specifically stated, we restrict ourselves to
d<eé.

Equation (48), as well as the discussion leading to Eq. (52), were based on
a study of the dependence of the fotal mass of a finite cluster, s, on its linear
size, R;. In fact, the fractal behaviour also contains information on the
internal structure of clusters. This was demonstrated in Section 1.3 by looking
at the largest clusters shown in Fig. 2. When p > p., we noted qualitatively
that the cluster looks rather homogeneous, with typical holes of sizes 1-3
lattice sites. As one moves down towards pc, these holes grow larger, and one
encounters a distribution of their,sizes. Since large holes in the larger cluster
contain finite clusters, it is not surprising that the linear sizes of these large
holes are connected to those of the finite clusters, with a cutoff of order &.
Thus, the cluster is homogeneous on length scales much larger than £, and
rather ramified, with holes on all scales smaller than &. In fact, the cluster
looks fractal on scales smaller than £, A quantitative way to study this was
described in Section 1.3: choose a point on the cluster and then draw squares
of variable sizes L around it. The mass of the cluster within each such box
is denoted by M(L), and the corresponding density is p(L) = M(L)/ L4 (with
d=2 for the analysis in two dimensions). The results of measurements of
p(L) (which we described qualitatively in Section 1.3), are shown in Fig. 16.

At p — p. = 0-035, the double-logarithmic plot shows a constant slope of
—0-1 for L < 10, implying that in this range p(L) o L~*'and M(L) o< L"°.
For L > 10, the curve has zero slope, indicating a constant density, i.e. a
homogeneous mass distribution. The crossover length £ (equal to about 10 for
p— pe=0-035) moves up as p approaches p., and the constant density for
L > £ moves down. In the homogeneous regime it is natural to identify o with
the fraction of sites which belong to the infinite network, i.e. its ‘strength’.
Indeed, Kapitulnik e al. (1984) showed that the crossover length ¢ and the
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Fig. 16. Density of sites which are connected to a point on the largest percolating
cluster on a square lattice, at p — p. =0-035 (solid circles) and p — p. = 0-022 (open
circles), within a box of size L around an occupied site. The slope for L < £ is
D - d= —-0-1, and the plateau for L > ¢ is P(p). From Kapitulnik et al. (1984).

~

plateau P behave as £ (p— p.)™" and P (p — pc)®, with »=1-33 and
B=0-14.

Figure 16 demonstrates that although P(p) is the average probability of
an occupied site to be on the infinite cluster, the density of this cluster (relative
to one of its points) is not uniform for lengths L < £. If we want to calculate
physical properties of the cluster, we have to consider the detailed geometrical
structure of the cluster on these length scales.

Since the cluster has a constant density for L > £, it is natural to divide
the system into boxes of linear size ¢. In d dimensions, the total volume L¢
will be divided into (L/£)? boxes. Since the cluster inside each of these boxes,
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of size £9, has a mass of order £2, the total mass of the cluster is given by

L? L<t
EP(LIe)?  L>¢
For L> ¢ Mo P99 PL? hence P o (p — pc)® o £2-9 and

D=d-glv (54b)

as obtained before Eq. (53). This hyperscaling law works only for d < 6.
Stated differently, we may say that for L < £, M depends only on L, and
therefore must be a power of L, Mo L?. For L of order ¢ or larger,
additional dependence on L must appear only through the scaled ratio (L/§)
(i.e. £ is our only ‘measuring stick’). Thus, we may write a scaling form

M(L,£)= LPm(L|#) (55)

For L » £, we expect that the L dependence of M becomes L9, hence for
x> 1 we expect that m(x) o x?~2, yielding again the above result.

Note that Eq. (55) is very similar to Eq. (52), except that here we discuss
the mass within a section of the largest cluster, which we denote by M,
whereas in Eq. (52) we consider the mass of the whole cluster, s. The same
logic, of dividing R; into parts of size £, may be used to justify Eq. (52).

M(L, £) = { (54a)
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CHAPTER 4

Finite-Size Scaling and the
Renormalization Group

In 1971, K.G. Wilson published the first renormalization group treatment of
critical phenomena and was honoured a decade later by the Nobel prize for
physics (though in the cumulative author index of the journal at that time the
articles were forgotten). It is an attempt to justify the scaling assumptions
made earlier, and to calculate the critical exponents entering these scaling
assumptions. Historically, it was first applied to thermal phase transitions and
only afterwards to percolation; also initially it dealt with fluctuations in
Fourier space (as function of wave vector) and only later moved to real space
(where everything depends on distances). Ignoring this history, we will con-
centrate on real-space renormalization of percolation (sometimes also called
position space renormalization). This seems the simplest way to introduce
renormalization ideas into percolation theory (Reynolds et al., 1980) since the
method becomes for large‘lattices equivalent to finite-size scaling. Thus we
will first explain finite-size scaling and then go to renormalization techniques.

We start this chapter with a description of finite size scaling, first for the
dependence of properties calculated at p. (Eq. (56)) and then for the shift in
the threshold p. (Eq. (59)) as function of the system’s size. We then describe
several examples of small cell renormalization group algorithms. The renor-
malization group idea yields some basis for the scaling hypotheses presented
before. We then discuss computer large cell applications of the renormaliza-
tion group, and end with a geometric interpretation of the correlation length
exponent ». Fourier space renormalization group for percolation (Harris
et al., 1975) is only very briefly mentioned in Appendix B.3. More details are
given by Reynolds et al. (1980).

4.1. FINITE-SIZE SCALING

How do the various quantities of interest behave near the percolation
threshold in a large but finite lattice? We have already touched on this general
question several times in this book. In Section 1.3, Fig. 16 and Eq. (54) we
saw that the mass of points connected to a point on the largest cluster within
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a box of size L scales as L? for L < ¢ and as (p — p.)’L? for L > £ (and
P > pc). These results were summarized in the scaling form of Eq. (55). These
facts imply that the density P(L,¢) behaves as (p — p.)® for L > £, but as
L5 for L < ¢. Indeed, Fig. 15 showed that for sufficiently large samples at
pe we have the accurate power law M o« LL. We expect similar rules for other
quantities. If a quantity X is predicted to scale as | p — p. | ™ for sizes L > &,
then we expect it to obey the general scaling law

x/v L
X(L, &)= 8 x1 (L]§) o [i/ Lot (56a)
or
X(L,p)=(p— pe) *x2((p— p)L"”) (56b)

Studies of X as function of the system size L at p. thus yield the exponent
x/v. Often this method gives more accurate results for x/» than separate
Monte Carlo studies for x and ».

As a simple demonstration of this rule, recall percolation in one dimen-
sion (Section 2.2). For a finite sample, the mean cluster size S is an analytic
polynomial in p. When L — oo, we saw that S= (1 + p)/ (1 — p) « £ (Eq. (8)).
On the other hand, if we set p =1 at finite L, then there is clearly only one
cluster, of size L. Thus S = L, confirming the one-dimensional result x/v = 1.
If both L and £ are very large but finite, one must repeat the derivation of
Eq. (5) with a finite sum in the geometrical series Z;p°®, and one can see that
indeed S = £f(L/#), such that f(x > 1) — constant and f(x < 1) o x (in this
calculation, which we recommend as an exercise, you should be careful in
calculating the probability of the clusters which neighbour the edges. For
example, ny = pX and n._; =2p*~'(1 - p) and not as given in Eq. (1).)

We have also exhibited finite size results in Fig. 14. Since the data there
were taken from rather small lattices, it was found that the data fit better the
expected laws of P o (p — pc)? and S o (p. — p)~" with a shifted value of p.
We devote the rest of this section to explaining that effect.

How does one identify p. from simulations on a finite sample? Since the
sample is finite, there is a finite probability of finding a spanning cluster at any
finite concentration. In the one-dimensional example, the probability of
finding such a cluster is IT= pX =e %%, Thus, for a given L there is a
probability larger than 1fe of finding a spanning cluster if £> L, i.e.
(-p)<l1/L.

For an infinite sample we expect that IT = 1 above p. and IT = 0 below p..
Indeed, our one-dimensional result approaches this limit (with II=1 at
p=pc=1andII1=0 for p < 1) when L — co. Since IT is expected to approach
the step function when L — o0, we might define an effective threshold p. at
the concentration where IT= 1/e (the choice IT=1/2, or II=1/3, is just as
good). This effective threshold p.s should approach the true p. when L — .
Indeed, in the one-dimensional example we saw exactly that £(pes) = L, hence
DPc = Deg &< l/L
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Let us now apply these ideas to higher dimensions, when p. is smaller
than unity. Let II(p, L) be the probability IT that a lattice of linear dimension
L percolates at concentration p. (We define a lattice as percolating if at least
one cluster connects the top line or plane with the bottom line or plane.) In
an infinite system, we have I1=1 above and IT=0 below p.. The quantity
dIT/dp gives the probability (divided by the small interval dp), that the lattice
starts to percolate if the concentration is increased from p to p + dp. Since
in infinite systems IT = 1 for all p above p., the critical exponent of IT is zero,
and the analogue of Eq. (56) in a finite system is

O=2[(p-p)L""] (57a)

for large L close to p.. The scaling function ® increases from 0 to 1 if its argu-
ment increases from — oo (far below threshold) to + o (far above threshold).
The derivative gives

dr

=L'""®'[(p- po)L'"] (57b)
dp

(For L — o, this derivative approaches a delta function, as physics students
call it, or a delta distribution as mathematicians insist on calling it. Ordinary
people simply call it a very narrow and high peak.) Figure 17 shows sche-
matically how IT and dIT/dp behave for medium and large lattices, in agree-
ment with numerical studies.

The average concentration p,, at which, for the first time, a percolating

1 10

dn
dp

0

Fig. 17. Variation of the probability IT (solid lines) that a cluster is spanning the
whole system, for medium and large system sizes. The dashed lines give dIT/dp,
proportional to the probability that at concentration p a spanning cluster starts to
appear. The width of the transition region or peak varies as L', (Schematic only.)
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cluster connects top and bottom of the cluster is defined as
dI1
por= | "(E) dp (58)

the integral here and later runs from p=0 to p=1. (Note [(dII/dp)dp =
I1(1) - I1(0) = 1.) Since dIl/dp is basically the probability that at concen-
tration p such a spanning cluster appears for the first time, we can determine
Pav by making numerous Monte Carlo experiments for the same L and check
when the system percolates for the first time when we slowly fill up the sites.
For large lattices it is practical to achieve this by the following approximation.
First take p = 1/2 and check whether the lattice percolates. If it does, decrease
p by 1/4, otherwise increase p by 1/4. Then check again whether the lattice
percolates; decrease p by 1/8 if it does and increase p by 1/8 if it does not.
Repeat this division until one has determined with sufficient accuracy the con-
centration at which the first spanning cluster appears. After every change of
p the random number generator has to be reset at its original value in order
that in the following simulation most of the sites previously occupied (empty)
will be occupied (empty) again. After about ten such iterations the onset of
percolation is known with an accuracy sufficient for many purposes, but this
value is only the value for this particular sequence of random numbers. Now
we have to repeat the Monte Carlo simulation again and again and get, in
general, each time a different concentration at which for the first time a cluster
connects top and bottom. Averaging the observed onset concentration over all
these different sequences of simulations we get an estimate for pav. (Instead
of checking for a spanning cluster one may also determine a different perco-
lation threshold as the position of the maximum in the second moment of the
cluster size distribution. For large systems these thresholds converge to the
same limit p. as those described here.)

How does this effective percolation threshold pay for one system size L
approach the asymptotic value p. for infinite systems? From Egs. (57) and
(58) we find that, unless ®’(z) is symmetric in z,

Dav — Dc & L~ (59)

with the proportionality constant being {z®'(z) dz. (In special cases in two
dimension the proportionality constant may be zero since then dII/dp is com-
pletely symmetric about z = 0. In those cases pav approaches p. faster. See Ziff
1992). This variation of pay with system size L is one way to determine the
critical exponent »: one plots pay versus L~'” for various trial values of »
and selects the value for » which gives the best straight line for large L. (If
one has lots of data and a suitable fitting program one can also determine », 8
and p. as those parameters which best fulfill the finite-size scaling assumption
of Eq. (56).) In our one-dimensional example, dII/dp = Lp*~!. Hence
pav=L[(L+1)and 1~ pay=1/(L + 1), in agreement with the above.
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Not only pay approaches p. as L~'*. If we also define an effective
percolation threshold for finite lattices as that point where the curve P(p) has
an inflexion point (maximum of dP[dp), this L-dependent threshold
approaches the true p. as L~'", as Eq. (56) tells us immediately. By analogy,
the maximum of the mean cluster size S(p) gives us an effective threshold
value which approaches the true threshold as L~!"*. In other words, Eq. (59)
is valid for every reasonable definition of a percolation threshold for finite
large systems, not just for pa,. Only the proportionality constant is different
for different definitions of the onset of percolation. This explains Fig. 14.

We mentioned above that the exponent x/» can be determined from
X oc L*”* by simulating a system exactly at p = p. for different L. We now see
that we may also simulate it at some suitably defined size-dependent
threshold, like pay. For then the argument z=(p — p.)L"" in Eq. (56) is a
constant, instead of being zero, and the proportionality for X(L) is not
affected.

All these remarks are also valid for thermal critical phenomena in two
and three dimensions (Fisher, 1971) and were used there successfully before
they were applied to percolation. One has only to replace P by the magnetiza-
tion, and p — p. by T. — T, if one deals with the ferromagnetic Curie point.

The width A of the transition region between small and large probabil-
ities IT of a spanning cluster can be defined very simply as the difference
between the concentration where IT is 0-1 and the concentration where IT is
0-9. One may also take 0-2 and 0-8, or 0-1 and 0-8, as suitable numbers to
be used in the definition of this width. Equation (57a) then tells us that this
width A, independent of the details of its definition, varies for large L as
L™V". A less arbitrary way to define the width is

A= S(p - pav)’ (%%) dp (60a)

Thus A is the root mean square deviation of the thresholds actually observed,
from their average value. For averages (x) of fluctuating quantities x, one
can easily show quite generally that the average of (x— (x))* equals
(x?y — (x)2. Thus one can easily determine A from a series of Monte Carlo
evaluations of the actual onset p of percolation by summing the values of p
as well as p? for each sequence of random numbers. At the end one can then
calculate

A= (pH —(p?
and determine the correlation length exponent » from
Ao L™V (60b)

(You can check that this holds for our one-dimensional example.) If the data
are not accurate enough to allow for a precise determination of », and if »
is not known from other sources, we can still determine p. by combining
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Eq. (60b) with Eq. (59), when the latter holds:
Dav— Dc < A (60c)

This means we plot the observed thresholds pay versus the observed widths A,
and extrapolate to the intercept p. by letting A — 0. No knowledge of » is
required here.

This method works particularly well for percolation, where it was intro-
duced by Levinshtein ef al. (1975). We will mention numerical results in a
later section, where we will show the close connection with renormalization
group techniques. Here we simply warn the reader that one needs at least
hundreds of simulations to get the exponent » accurately from Eq. (60),
whereas far fewer are needed to estimate p. reliably from Eq. (59). Thus,
determinations of the threshold should be done with relatively few simu-
lations of large lattices whereas one needs many more simulations for the
determination of the correlation length exponent. Therefore, because of
demands on computer time, these have to be done for smaller systems.

4.2. SMALL CELL RENORMALIZATION

The basic idea of renormalization is self-similarity at the critical point. What
does this mean? We saw in Eq. (56) that the crucial question of finite-size
scaling is the question whether the system length L is larger or smaller than
the correlation length £o | p— p.| ~*. We saw in Egs. (33) and (52) that
clusters can be separated into two main groups: those with mass s larger than
| »— pc|~"°, and those with smaller s. For small clusters or small systems,
one kind of power law is valid, for example P o« L~?/%, and for large clusters
or systems another power law holds, for example P o (p — p.)®. In other
words, all clusters or systems smaller (in linear dimension) than the correla-
tion length £ are similar to each other in an averaged sense, as long as they
contain many sites. This similarity breaks down for large sizes of the order
of £ as well as for small sizes of the order of the distance a between nearest
neighbours on the lattice. Right at the percolation threshold the correlation
length is infinite; thus all large clusters or lattices are similar to each other.
If we take out a medium size part of a bigger lattice, then both this part and
the bigger lattice are still much smaller than ¢ at p = p., and thus similar to
each other in an average sense.

Although we suggested before that Fig. 2 demonstrates that similarity
holds for distances between @ and &, a critical reader would not really find
such a similarity. Only if one averages over many pictures can a computer find
such similarity. Figure 15 may be regarded as a much better ‘proof’. If
different lattice sizes were not similar to each other at the threshold one should
not be able to observe a simple power law as seen by the straight line in
Fig. 15. The similarity idea as a foundation of thermal critical phenomena and
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scaling goes back to the 1960s (see the review of Kadanoff et al., 1967) and
leads to Wilson’s first renormalization theory.

In real-space renormalization, we replace a cell of sites by a single super-
site, provided that the linear dimension b of the cell is much smaller than &.
Of course we lose information if, say, 16 sites of a 4 x 4 cell in the square
lattice are replaced by a single super-site. But if scaling relies on the fact that
all cells of size b are similar to each other, then perhaps we should get a good
critical exponent out from this approximation where we renormalize a whole
cell of, say, b sites into a single super-site. Quantitatively, such a renormal-
ization of cells to sites requires a certain rule governing how this is to be done;
moreover the concentration p’ of occupied super-sites will in general be
different from that of the original sites. Only right at the critical point, where
self-similarity is valid, do we have p’' = p = p.. In general we know that the
correlation length £ limits the validity of similarity; thus the limit £ is the same
in both the original lattice and the renormalized lattice of super-sites. If in the
original lattice we have £ = const | p — p.|~" then in the renormalized lattice,
with lattice constant b, we have £’ = const | p’ — p.|~", with the same propor-
tionality constant and the same critical exponent p provided that both
| p— pc|and | p’ — pc| remain very small. However, the new lattice has a new
lattice constant b, and &' is measured in these units; &' = £/b. Thus

blp'=p|™"=|p=-p|™” (61a)

is the basic equation of real-space renormalization. Taking the logarithm of
both sides we arrive at

1_logl(p' - pc) (p— pc)] _ log N
v log b T log b (61b)

where A= (p’' — pc)|(p — pc) =dp’[dp at p= p.. Often 1/ is abbreviated as
y or yr or y, in renormalization publications. In summary, we renormalize
a cell of size b into a single super-site; to keep the real quantity ¢ unchanged
in this renormalization, we also have to renormalize p into p'.

To demonstrate the idea, let us return again to the one-dimensional case.
Suppose we group the sites on the line into cells, with b sites in each cell. A
cell will carry the connectivity from one of its ends to the other only if all of
its sites are occupied. We can thus replace the cell by a new super-site, and
identify the occupation probability of this super-site as

'=p° (62)

If we start with p =1, this yields also p’ = 1. The point p* =1 is thus iden-
tified as a fixed point of this renormalization group transformation. A fixed
point remains fixed under renormalization. If we start with p <1, then
Eq. (62) will yield p' < p. If we repeat this procedure many times, the
renormalized concentration will approach zero. Indeed, p =0 is also a fixed
point, which we may associate with lattice animals.

At the fixed point p=1, p’ is the same as p. However, if we calculate
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£ in units of the distance between our new super-sites, we have £’ = £/b. Since
p' = p, we should also have ¢’ = £. These two equations are consistent only
if £ = oo (or zero). We thus identify the fixed point p* = 1 with the percolation
threshold p..

We can now return to Eq. (62). From it,

)\=g£—=bp”“=b at p=1
dp

Therefore, Eq. (62) yields
1 log X\ loghb

v logb logb

in agreement with Eq. (7). The renormalization group turns out to be exact
in one dimension.

The situation is less obvious in higher dimensions. As in the example
above, we need to identify p’ with the probability of the cell to connect
opposite lines or planes. There exist many ways to choose the cells and to
identify p’, and none yields simple exact results. In this section we present two
rather accurate and simple examples, one for site percolation on the triangular
lattice and the other for bond percolation on the square lattice.

On the triangular lattice, each triangle contains three sites at its corners,
and we place the super-site into the centre of the triangle. Figure 18 shows that
we only renormalize suitable triangles in such a way that each original site
belongs to exactly one triangle. We now ask for the probability p’ of such a

(o] o o
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. . . S . .
. S - . S . . .
. . o . ‘ (e] o
. . . . . . . . .
. S . S . . - .

- - . . .

Fig. 18. Real-space renormalization of a triangular lattice. The circles denote the
super-sites, each representing three different original sites. The super-sites again form
a triangular lattice.
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super-site belonging to a renormalized triangle being occupied if every original
site is occupied with probability p. The super-site is occupied if a spanning
cluster exists. In our triangle this is the case if either all three sites are occupied
(probability p?), or if two neighbouring sites are occupied and thus connect
two opposite ends of the triangle. The latter case can be realized in three ways
(depending on which of the three possible pairs is occupied), each of which
has the probability p*(1 — p), see Fig. 18. Thus our renormalized probability
is (Reynolds er al., 1980)

p'=p’+3p*(-p) (63)
A plot of this function p’(p) has some similarity with the function II(p)
depicted in Fig. 17.
~ Right at the critical point we should have complete similarity:
p'=p=p*. In our case, the equation p’ = p, with p’ from Eq. (63), has
three solutions:

p*=0,1/2 and 1

The first (zero) and the last (unity) solution are quite trivial and exist also for
different lattices and dimensionalities; we are interested only in the non-trivial
fixed point p* = 1/2. This fixed point agrees exactly with the known critical
point p. of the triangular lattice, a first indication that the renormalization
idea might be correct, after all. Now we expand Eq. (63) about this fixed
point:

p' =p"+Np-pH+0(p-p)?
with .
A=dp'l/dp=6p-6p*=3[2 at p=p =12

In our particular lattice we have b* = 3 since in the plane three old sites form
one super-site (see Fig. 18). Thus Eq. (61b) yields

- log(3 l/2)
~ log(3/2)

This result is an excellent approximation to the presumably exact » = 4/3 in
two dimensions, confirming that renormalization group works.

This concludes our example for site percolation. We now present another
approximate renormalization group scheme, which has turned out to be very
accurate for bond percolation on the square lattice (Reynolds et al., 1977;
Bernasconi, 1978). In this scheme, one replaces the 2 x 2 cell, with eight
bonds, as shown by Fig. 19(a), into a supercell, which has only two bonds
(Fig. 19(b)). The two new bonds represent connectivities in the horizontal and
vertical directions. If we consider only the horizontal direction, then we can
ignore the two ‘dangling’ bonds DG and EH, and the connectivity from left
to right is determined by the five bonds AB, BC, BE, DE and EF. Figure 19(c)
shows generic configurations of these bonds, with their corresponding prob-

=1-355
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Fig. 19. Renormalization group for bond percolation on the square lattice. (a)
Original 2 x 2 cell of eight bonds. (b) Renormalized cell, with two bonds. (c) Generic
parts of original cell which contribute to the renormalized bond AC, with their
corresponding probabilities.

abilities. The two edges AD and CF will thus be connected with probability

P =p>+5p*(1-p)+8p3(1 - p)* +2p*(1 — p)* =2p° - 5p* + 2p> + 2p*
(64)

where the different terms correspond to connecting configurations with 5, 4, 3
and 2 bonds. It is easy to check that

*

p = b=2 and )\=(—i£- =1—3

1

2 dp |p=p* 8
Thus 1/»=1InNIn b=0-700, and »=1-428. Again, the value of p* = p. is
exact and the value of » is quite close to the exact value of 4/3.

The fact that Egs. (63) and (64) give the exact values of p., and good esti-
mates for », need not mislead you. In fact, both equations are approximate.
If you are interested mainly in working tools, you may now accept the fact
that these two approximate small cell schemes work, and jump to the next sec-
tion. In the remainder of the present section we give some technical feeling
for the nature of the approximation, on the triangular case, and on the
general ways to improve it. Figure 20(a) shows two disconnected clusters,
which are combined into one cluster in the renormalized picture. To preserve
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(a) (b)

Fig. 20. Examples of renormalized group configurations, using the rules of Fig. 18.
Old occupied sites are connected by full lines. New occupied sites are connected by
broken lines. (a) Two disconnected clusters which become connected. (b) A connected
cluster which splits into two disconnected clusters.

the identity of clusters, we should, for example, introduce a new bond concen-
tration variable, x, which will indicate the probability that two neighbouring
renormalized sites are connected. Similarly, Fig. 20(b) shows a portion of
a single connected cluster, which splits into two disconnected ones in the
renormalized picture. This maps the original site problem into the site—bond
problem, which we mentioned towards the end of Section 2.1. If we restrict
ourselves to the two parameters p (site occupation) and x (bond occupation),
then the renormalized pair p’ and x' ‘flow’ in the p—x plane as shown sche-
matically in Fig. 21 (Nakanishi and Reynolds, 1979). All the points on the
thick line, which separate the region with an infinite cluster (near p= x=1)
from that with finite clusters, have an infinite correlation length. These points
flow to the non-trivial fixed point (p*, x*). Thus, every initial point which is
close to this critical line will first flow towards (p*, x*), and then flow away
from it. The critical exponent », related with the rescaling of ¢ (Eq. (61a)), is
thus determined from the linearized recursion relations near (p*, x*).

The site—bond model is not the end of the renormalization story. In
general, further iterations will generate more parameters, e.g. next nearest
neighbours site and bond concentrations, probabilities for three bond nodes,
and so on. One thus ‘flows’ into a multi-dimensional parameter space. The
only effective way we know to cope with this is to truncate the list of these
parameters, and work within some approximate space.

Even in that generalized space, one normally finds only one non-trivial
fixed point, and the vicinity of that fixed point determines the critical expo-
nent » for all possible initial parameters near percolation. This is the reason
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Fig. 21. Schematic renormalization group flow of the site—bond percolation prob-
lem. The stars denote the fixed points. The thick line consists of points which flow to
the critical fixed point (p*, x*), all have an infinite correlation length. x. and p. are
the pure bond and site percolation thresholds.

for the universality of the critical exponents: the renormalization gets rid of

minor local differences, and maps all critical problems to the same vicinity of
the fixed point.

4.3. SCALING REVISITED

What does the fixed point really mean? As we noted, £(p*) = «. On the other
hand, we identified p* by requiring that the problem remain invariant under
the grouping of sites in cells into ‘super-sites’, and changing the length scale
by a factor 4. To get an intuitive feeling for this invariance, look at Fig. 22(a).
It shows a simulation of site percolation on the triangular lattice at p. = 1/2.
The sites on the largest cluster, which connect between the boundaries of the
finite sample, are emphasized by showing the bonds which connect them.
Figure 22(b) then shows the super-sites, obtained using the procedure
described above. Qualitatively, Fig. 22(b) cannot be distinguished from a
piece of Fig. 22(a). It is impossible to tell from the picture at what level of
iteration, or magnification, or ‘coarse graining’, the true pictures were taken.
This is a qualitative manifestation of self-similarity in a random sense.

The mass of the spanning cluster in Fig. 22(b) is roughly smaller by a
factor b” than that of the same cluster in Fig. 22(a). This can be expressed
mathematically by the relation

M(L)=bPM(L|b)
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(a) b)

Fig. 22. Site percolation on a triangular lattice, at p. = 1/2. The sites on the largest
connected cluster are emphasized by the connecting bonds. (a) Original simulation.
(b) Renormalized version, with triangular sites being occupied by the rule explained in
Fig. 18 and Eq. (63).

After [ iterations, this becomes
M(L)=b""M(L|b")

(Of course, this will become accurate if we average M(L) and M(L/b) over
many samples. Fluctuations of individual samples around this rule are said to
represent ‘lacunarity’.) The only solution of this functional equation is the
power law function M(L) o L?, obtained by setting b' = L. This is the quan-
titative manifestation of self-similarity, and it results from the absence of any
other length scale, like £ In a way, this ‘proves’ the fractal behaviour at p..

If we are not at p., then we have a finite correlation length &, which
becomes shorter by a factor b after renormalization. At the same time, the
effective p’' moves further away from p.. Iterating the recursion relations
many times now yields

M(L,§)=b""M(L|b', ¢b") (65)

If L < £, then we may continue iterating until b’ = L. The whole lattice then
becomes a single point, and we have

M(L,t)=L°M(1,0)x L? (66)

If L > £, then we should stop iteration at b' = £, when g = £/b becomes
unity. If p > pc, this means that p.g is very close to unity, and the system
looks uniform. In this case,

M(L, §)=§PM(L[% 1) < EP(LIE)Y  p> pe (67)

the last step arising since for uniform systems M(x, 1) = x9. Equations (66)
and (67) justify in a way our Eq. (54).
If p< pe then perr is very small, and M(x, 1) x xP= as for animals
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(D2 =1/p’ is the fractal dimension for large animal-like clusters at p < p.; see
also Eq. (52)). Thus,

M(L,§) =" M(L|E 1) < £EP(L[5)P:  p< p. (68)

For arbitrary L[£, Eq. (65) leads to finite size scaling, Eq. (55). Note that all
these scaling equations do not require the detailed knowledge of the recursion
relation which gives p’ in terms of p. All that is required is the behaviour of
lengths and masses under length rescaling. Similar ideas were introduced into
the theory of critical phenomena in the mid-1960s by Kadanoff, and led
Wilson to the introduction of the detailed renormalization group. The details
of p’(p) are, however, necessary for obtaining amplitudes, e.g. in Eq. (66).

4.4. LARGE CELL AND MONTE CARLO RENORMALIZATION

As we saw, the small cell renormalization schemes are only approximate. The
excellent agreement found from Eqs. (63) and (64) for both p. and » is rather
exceptional. For other lattices or in other dimensions there are usually
stronger deviations. Only if we let b go to infinity can we expect that the
renormalization result will approach the exact value. In a square lattice with
b=S5, renormalization of the 25 sites in a 5x 5 cell has to deal with 2%
different configurations, not an easy task (Reynolds et al., 1980). To go to
larger systems we use a Monte Carlo simulation to deal with a representative
sample of all possible configurations. This method will be described below.

Another way to look at large cells is to evaluate the behaviour of two-
dimensional strips of width » and infinite length. When b is of the order of
ten, one can still do that exactly; for larger b one again needs Monte Carlo
simulation. The main disadvantage is that this method is mainly restricted to
two dimensions if one wants to avoid Monte Carlo simulation. For in three
dimensions, an infinite bar of cross-section b x b already contains b? sites in
each plane, which is easily more than the ten to twenty sites which can still
be handled exactly. On the other hand, for two dimensions it gives very
accurate estimates. It was crucial to have these estimates in order to believe
the supposedly exact critical exponent of two-dimensional percolation in
Table 2, Section 2.7. A review of this method was given by Vannimenus and
Nadal (1984). Since much of this work on strips was done in Paris, the method
can be called striptease, though names like ‘phenomenological renormaliza-
tion’, ‘Nightingale renormalization’, ‘transfer matrix approach’, or just finite-
size scaling, look more scientific.

We now return to Monte Carlo renormalization. We simulate randomly
occupied cells on the computer by our well known Monte Carlo method, and
then renormalize them.

How do we make the renormalization? We check whether the now rather
large cell percolates, that is whether it is spanned by a cluster connecting top
and bottom. This, however, was just what we described in the finite-size
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scaling Section 4.1 to find pa, and the width A. Thus the computer simulation
is the same as in ordinary Monte Carlo work, only the analysis may differ.
Similarly, for thermal critical phenomena the Monte Carlo renormalization
technique first requires an ordinary simulation of the system; only the analysis
of the resulting configurations may be different from finite-size scaling.

For the large cell renormalization group of percolation we thus see that
the renormalized cell occupation probability p' is nothing but the spanning
propability TI(p). The b-dependent fixed point p*, defined through
p* =TI(p*), is thus the intersection of the full curve in Fig. 17 with the diag-
onal from lower left to upper right. Since this curve becomes steeper as b
increases, this intersection p* approches p., and Eq.(57) implies that
p* = pc=const-b~"". The slope \ = dIT/dp at p* diverges as b'/” (see Sec.
4.2), and thus the difference II(p*) — II(pc) = (p* — pc)\ + ... may have a
finite limit even when b becomes infinite (Ziff 1992).

From Eq. (57) it follows that I1(p.) is b-independent, and therefore it is
supposed to be universal, whereas Il(p*) = p* approaches the nonuniversal
Pc. Such universal quantities have the same value for all lattices with the same
dimensionality and the same spanning rule and shape. Also (p* — p.)/A and
(pav — Pc)/ A should be universal ratios independent of b, for large b.

How can we understand this universality? Consider IT as a function of
£ and L. Close to p. the renormalization will yield

I(¢, L) =T1(¢/b, L b) (69)

without any b-dependent prefactor. As explained before Egs. (56) or (65),
such a prefactor arises only for quantities which diverge or vanish at p.. As
p— pc and L — o, the function Il(¢, L) approaches IT(co, o). In that limit,
rescaling by b does not change IT any more, since oo/b is still infinite. Since
II(e0, ) does not depend on b, it should be determined by the fixed point,
and therefore have the same universal value for all lattices with the same
shape, spanning rule and dimension. A simple generalization of this argument
shows that the whole function ®(x) of Eq. (57) is a universal function of its
argument x= (p— p.)L'"*, apart from a single scale factor for x. This
explains the universality of ratios like (pav — pc)/A, in which the scale factor
cancels (see also p. 43).

Having stated that large cell renormalization group is for percolation
nothing but a version of finite-size scaling, what have we learnt new from the
former? Apart from giving us a conceptual framework to think about scaling,
advanced renomalization group theory gave exact (as opposed to numerical)
statements about universality of exponents, scaling functions and amplitude
ratios, and also led to the analytic tool of the e-expansion mentioned in
Appendix B.
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Returning now to Eq. (61) for y=1/v and Ao b~ " = 1)\, we get

_ In (1/4) Const
7®) Inb Inb

where In denotes the natural logarithm and Const contains the proportionality
factor. This result gives us, for every cell size b, an exponent y = y(b). For
b — o this effective exponent y(b) should approach the true exponent 1/,
since renormalization works exactly only for very large cells. Indeed, since A
varies as b~'” asymptotically, the above expression is compatible with this
requirement; it shows us moreover that the effective y(b) for finite cells differs
from the asymptotic exponent 1/» = y(e) by, among other terms, a term pro-
portional to 1/log b.

How can we in practice determine the asymptotic exponent 1/» from our
widths A(b) for finite cell sizes b? We plot the ratio log (1/A)/log b versus
1/log b and look for a smooth curve fitting these data and having a finite slope
for 1/log b going to zero. Instead of A one may also use (27)/? A as argu-
ment of the logarithm to follow more closely the above derivation. In some
examples the ratios log (1/A)/log b are larger than the extrapolated value 1/»,
in some cases they are smaller, but usually they can be fitted reasonably well
on smooth curves with a finite slope at the intercept. Figure 23 gives an
example for the triangular lattice.

What does that fitting procedure lead us to? If we look only at large b
where the data are fitted reasonably well by the tangent on the curve with
slope C and intercept 1/», we simply have

In (1[A)=%+£

In b In b
or
A =exp(—C)b™ "

This result, on the other hand, is nothing but our finite-size scaling result of
Eq. (60b) for the widths of the threshold distributions. Thus, instead of going
through the above analysis with log (1/A)/log b one may also simply take
a log-log plot of width A versus cell size b or L and determine y = 1/v from
the asymptotic slope of that plot. (For fitting techniques see Appendices
A.1-A.3)) In this sense, Monte Carlo renormalization of large cells is equiva-
lent to finite-size scaling, if we look at these percolation problems. We have
mentioned already that for thermal critical phenomena such simple relations
do not hold in general. Thus again percolation works also as a particularly
simple way to enter into modern phase transition research.
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Fig. 23. Results of large cell renormalization for the triangular lattice, using b up to
10 000 (see Eschbach et al., 1981). The b-dependent effective exponents y, determined
from the width of the distribution function for the threshold, are plotted versus 1/Inb
(solid circles). A tangent on the values for large b has the ‘true’ y = 1/v for infinite
systems as intercept. These data are compatible with the intercept being 0-75, corre-
sponding to the supposedly exact » = 4/3.

4.5. CONNECTION TO GEOMETRY

Consider Fig. 19(c). It shows seven spanning clusters which contribute to the
connectivity between the two edges of the 2 X 2 cell. In some sense, the first
two of these (with probabilities p* and p*(1 — p)) are more ‘strongly’ con-
nected than the others: they will still connect even if we remove any one of
the bonds in them. This is not true for the other configurations, all of which
have singly connected bonds such that when one is removed the connectivity
is destroyed. Such singly connected bonds also arise in larger cells. Since they
are crucial for the connectivity, one might expect that they determine the
exponent v. This was indeed shown by Coniglio (1981) to be the case.

To quantify the removal of singly connected bonds from configurations
like Fig. 19(c), Coniglio associated with each occupied bond an additional
parameter w, which is the probability of not removing this bond from the
system. We now consider the percolation problem as function of the two par-
ameters, p and 7. At p*, we expect the spanning cluster to break into finite
clusters for all # < 1. Thus, w =1 is the fixed-point value of = when p= p*.
Consider now the recursion relation for (1 — 7), and expand the renormalized
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(1 — 7') in powers of (1 — =):
-7 =A(l—7)+A2(1 — 1) + - (70)

Since (1 — #') is the probability of disconnecting the two edges of the cell, the
linear term will arise only due to configurations which have singly connected
bonds, and the coefficient A is exactly equal to their average number, denoted
by M,.(b). Since varying = away from 1 is the same as varying p away from
p*, we also expect that A = (d=’/d7)s* = (dp'[dp),* = b'”*, and thus

M. (b)=b'" (71)
Returning to Fig. 19, we see that indeed
P'Mi(b)=1x4p*(1 =p)+3x2p°(1 — p)* +2 % [6p°(1 = p)* +2p*(1 - p)’]

and at p=p* =1 M, (b)=%, in agreement with Eq. (71). (Compare with
results following Eq. (64).)

Equation (71) is a very important result. It shows that on average, the
spanning cluster at p. has singly connected bonds on all length scales. This
will be an important ingredient in models for this cluster, discussed in the next
chapter.

The procedure used here is applicable for many physical situations in
which some additional problem is superimposed on top of the percolating
lattice at p.. In many cases, the physics is dominated by the singly connected
bonds. Examples are given in Sections 5.6 and 7.7.
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CHAPTER 5
Conductivity and Related
Properties

So far, we have concentrated only on statistical and geometrical properties of
percolation clusters. As we indicated in the introduction, many applications
of the theory concern other properties, which arise by superimposing some
additional processes which occur on top of the dilute sample. Examples
included the propagation of forest fires, the flow of fluid in a porous medium
and the diffusion of particles through a dilute system. The remaining chapters
of this book aim to review some of these applications more quantitatively.

In this chapter we discuss various problems associated with the conduc-
tivity of dilute systems, relevant for example to the fluid conductivity (some-
times called permeability) of the porous medium discussed in Section 1.3, or
the electrical conductivity of metal—insulator alloys. The conductivity-related
properties of random resistor networks turn out to open a whole Pandora’s
box of new geometrical properties, which yield a multitude of new fractal
dimensions and lead to multifractality. After describing these in general
terms, we present recursive fractal models, which imitate the percolation
clusters, and explain how the small cell renormalization group in Section 4.2
can be used to calculate some of the transport exponents. We end with brief
reviews of continuum percolation and of elastic properties.

5.1. CONDUCTIVITY OF RANDOM RESISTOR NETWORKS

Let us go back to the squares of Fig. 1, which are randomly occupied or
empty. We regard every occupied square as a piece of copper, whereas every
empty square is regarded as insulating. An electric d.c. current can only flow
between copper squares having one side in common, not between occupied
squares touching at a corner only or separated by even longer distances. How
much current flows through the lattice if a unit voltage is applied between the
top line and the bottom line of the lattice (see Fig. 24)? We call this current
due to a unit voltage the conductance of the sample.

We take the whole lattice to have a rectangular shape of L X N squares,
with N being the length of the top (and bottom) row to which a uniform
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Fig. 24. Definition of the conductance of a random conductor network. All copper
squares in the topmost row of the lattice are connected to a heavy copper bar (no loss
of energy in the bar), and so are all squares in the bottom row. A battery then applies

a unit voltage between these two bars. The resulting electrical current is called the
conductance.

voltage is applied (see Fig. 24). Both N and L are very large. If the system
is uniform and homogeneous like a sheet of copper, then the conductance is
proportional to N and inversely proportional to L. In d dimensions it is still
inversely proportional to L, but it is now proportional to the cross-section,
N1, of the sample. Thus the conductance is proportional, in d dimensions,
to N?7!/L, and the factor of proportionality is called the conductivity £ of
the material, which is now independent of size and shape. For a square or
cubic shape, one has L = N and thus the conductivity £ is L2~¢ multiplied
by the current produced by a unit voltage. (We set the distance between neigh-
bouring points on the lattice equal to unity.)

It is obvious that for large lattices we have zero conductivity if no infinite
network of neighbours is present, that is for p < p.. When p is appreciably
larger than p., nearly all copper squares have clustered together to form one
infinite network, and the conductivity £ as well as the fraction P of sites in
the infinite network increase roughly linearly with concentration p. At p=1
we have, of course, P =1, and X reaches the conductivity of bulk copper. If
we set this copper conductivity equal to unity, then E(p=1)= P(p=1)=1.
In other words, our copper squares carry a unit current if a unit voltage is
applied to two opposing sides.

Because of this close relationship between conductivity X (p) and mass
P(p) of the infinite network it would be nice if they were proportional (and
because of our normalizations that would mean identical) over the whole
range of p. The first experiment, by Last and Thouless (1971), showed
that this is not the case. They measured the current through sheets of graphite
paper with randomly punched holes. Their results, shown schematically in
Fig. 25 indicate clearly that the two quantities £ and P are not proportional.
The conductivity versus concentration curve seems to end at the threshold
with zero slope although a plot of P versus p has infinite slope there.

Why is this so? Figure 26 shows a section of a bond cluster on the square
lattice at p.. If each bond on this cluster represents a resistor, and if we put
a voltage between the upper and lower ends of the cluster, then one identifies
many bonds which will carry no current, because they lead nowhere. These
bonds (denoted by thin lines in Fig. 26) are called ‘dangling’, or ‘dead ends’.
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Fig. 25. Conductivity T of conducting paper with holes randomly punched in it (solid
line; from Last and Thouless, 1971). The dashed line gives the percolation probability
P. Obviously, the two quantities vanish with different exponents x and 8, though at

the same threshold p..
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Fig. 26. Section of cluster at p. (after Stanley, 1977). Thin lines represent ‘dangling’

bonds; thick lines represent singly connected bonds; dotted lines show bonds on
‘blobs’.

When we erase all the dangling bonds, we are left with the ‘backbone’.
Every internal bond on the backbone has at least two independent routes that
lead from it to the edges of the cluster. Except for rare symmetric situations,
all the backbone bonds will carry some current when we put a voltage between
the upper and lower edges of the cluster. As we shall show in the next two
sections, most of the mass of the infinite network at the threshold belongs to
dead ends, not to the backbone. Thus most of the mass contained in P makes
no contribution to the conductivity £, and therefore the critical exponent for
L differs from the 8 for P.

We denote the conductivity exponent by u:

Lo (p-p) (72)
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for p— p.. Often this exponent is also called ¢ but here we need ¢ as the
symbol for time (and earlier we used it for the perimeter.) Perhaps we should
leave it as an exercise to the reader to derive a simple and exact scaling relation
between this new exponent x and the old ones like 3, », etc., for the people
working in this field have not, at present, agreed on such a relationship.
Various conjectures for such relationships have been suggested over the last
few years, but none of them seems to be exactly true. We shall mention one
of these, by Alexander and Orbach, in Section 6.2. In the absence of exact
relations, we must at present consider p as a new independent basic exponent.

How does the conductivity ¥ depend on the size of the sample? From
Eq. (56), we expect finite size scaling to apply in the form

E—[L/l/ L >£
L+ L<¢

Thus, the statements made above that T is independent of the size of the
sample and can be described by the law (72) are really true only for sufficiently
large samples, for which L > £. For smaller sizes, or at p., we expect the size-
dependent behaviour

L(L,g)=E£""S(L[§) o { (73a)

Lo LH (73b)

Figure 27 shows some conductivities X as functions of system size L right
at the percolation threshold. Indeed, these Monte Carlo simulations confirm
the power-law dependence of ¥ on L, and yield u/» near 0975 in d =2 and
of order 2-3 in d=3.

How does one conduct such Monte Carlo studies? The easy part is to
produce a lattice with conducting and insulating sites or bonds. Such a lattice
is called a ‘random resistor network’. The difficulty lies in calculating the con-
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Fig. 27. Variation of the conductivity T with system size L in three and two dimen-
sions right at the percolation threshold. The two data sets for two dimensions refer to
different geometries.
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ductance of that lattice. Kirchhoff’s rules tell us that for every loop of conduc-
tors the sum of the voltages is zero, and that for every site the sum of the
currents flowing into it is also zero. The resulting system of coupled linear
equations for the voltages at every site can be written as

Ii= Z (V= Vi)oij (74)
J

where V; is the voltage at site i, I; is the external current going into the site
i (it is non-zero only at the external terminals, and zero on all other sites) and
g;; is the conductance of the bond connecting the nearest neighbour sites i and
J. For the simple dilute resistor network, oi;j=1 for an occupied bond and
zero otherwise. This system can be solved by relaxation methods (Kirkpatrick
1973). The closer we are to the percolation threshold, the more iterations we
need in this relaxation before we get the solution with the desired accuracy.
While this ‘critical slowing down’ is of interest in itself, it also increases the
computer time. That difficulty can be avoided if in two dimensions special
transformations are used (see, e.g., Gingold and Lobb, 1990) which allow the
conductivity to be calculated by going just once through the lattice. In a
similar spirit, but with an algorithm which is also useful for more than two
dimensions, Derrida et al. (1984) calculated the conductivity of narrow strips
(and bars) in their combination of Monte Carlo simulation with the
‘striptease’ renormalization of Section 4.4. We refer to these papers for more
computational details.

A special-purpose computer has been built by Normand ef al. (1988)
which can calculate only conductivities of such strips, but with Cray-computer
speed. In two dimensions, its result u/v =0-9745 + 0-0015 was found by
extrapolating conductivities £ o< L™*/” in strips of width L and confirmed
with better accuracy older Monte Carlo estimates. (There are still some dis-
crepancies with extrapolations from exact series expansions; see Adler et al.,
1990.)

Instead of working with resistors and insulators, one can also study a
mixture of resistors and superconductors. In that problem each site has either
zero resistivity (infinite conductivity) with probability p, or has a probability
1 - p of being a normal resistor. All quantum-mechanical aspects of real
superconducting materials are neglected, of course; we still deal only with
geometry. The situation is formally similar to that of random resistor net-
works except that zero conductivity is replaced by zero resistivity. The con-
ductivity of this network of superconductors and normal resistors is infinite
whenever an infinite network of superconducting sites is formed, that is for
p > pc. It is finite below pe; thus it is possible that this conductivity diverges
as p. is approached from below. In two dimensions it diverges with the same
exponent u with which the conductivity of resistor—insulator networks
vanishes. In general, this nice duality rule is not valid. For example in three
dimensions, where roughly x =2, the superconducting exponent, often
denoted as s, is about 0-73.
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One can also mix superconductors with normal resistors. More generally,
scientists have mixed resistors of different strength and derived scaling laws
for that situation. Also, resistors can be replaced by diodes or by capacitors
to model dielectric materials. In an electric field, real materials are electrically
polarized, i.e. one end of the sample is positively charged, the other nega-
tively. This effect leads to a polarization of the metallic clusters in the dielec-
tric, and to a divergence of the dielectric constant as these clusters approach
percolation. If in addition to an electric field we apply a magnetic field, the
conduction electrons are forced into a direction perpendicular to the current.
This ‘Hall’ effect has also been studied in disordered networks. We refer the
reader to current literature for more details.

5.2. INTERNAL STRUCTURE OF THE INFINITE CLUSTER

As discussed above, the infinite cluster may be divided into boxes of size £.
Inside each box, the geometry of the cluster resembles that of the infinite
cluster at p.. That cluster is very ‘weak’: removal of a few bonds can break
it into finite clusters, and disconnect the edges of the system from each other
(see Section 4.5). This weakness of the cluster led Skal and Shklovskii (1975)
and de Gennes (1976) to postulate that within each box of size £ there is practi-
cally only one chain of bonds that connects its opposite edges. This led to a
model which has a network of nodes, at distance ¢ from each other, connected
by effectively one-dimensional links. Although this picture turns out to be
correct for dimensions d > 6, when the probability of finding large loops is
very small (see Appendix B), it is too simplified for d < 6. Figure 26 shows
a section of a cluster at p.. This section should be representative of the ‘links’
on scales smaller than £. Clearly, this cluster does not seem to be a one-
dimensional channel of occupied sites, but resembles more a network of
roads, with many parking places and dead ends.

As noted, only the backbone matters when we consider the conductivity
of the cluster. Within the backbone, we identify two types of bonds. As we
showed in Section 4.5, some bonds are ‘singly connected’. These bonds are
drawn with thick lines in Fig. 26. Whenever we ‘drive’ from top to bottom,
we must go through these ‘bottle necks’. In terms of the resistor network,
these bonds carry the full current which goes through the circuit.

If all the bonds on the backbone were singly connected, then we would
recover the simple ‘links and nodes’ model. However, it is clear from Fig. 26
that the singly connected segments are often separated by structures which
contain several routes in parallel, or loops (these may be visualized as the
streets of villages or towns on our route from top to bottom). Such multi-
connected pieces between singly-connected parts are called ‘blobs’, and are
represented by dotted lines in Fig. 26.

As we showed in Section 4.5 (Eq. (71)), the number of singly connected
bonds on the backbone, between two edges of a box of size L < &, is not zero,
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Fig. 28. Schematic picture for the links (one-dimensional chains), nodes (crossing
points of the links) and blobs (dense regions with more than one connection between
two points; shown as circular here) of the infinite cluster slightly above the threshold.
The distance between the nodes as well as the maximum blob diameter are assumed
to be of the order of the correlation length. The thin lines are the dead ends, for clarity
only very few of them are shown. Most of the material is in the dead ends, the rest
is called the backbone. Most of the backbone mass belongs to blobs.

but rather proportional to L!/*. For a box of size £, this number grows as
£" ~ (p— pc)~!. This exact result was consistent with numerical simulations,
e.g. by Pike and Stanley (1981). The fact that there exist singly connected
bonds between edges at distance ¢ confirms the picture which allows only one
main route, or generalized link, between neighbouring nodes. However, the
link between nodes is now more complicated, having both singly connected
bonds and blobs. Although the length of each singly connected segment is
finite (of order 2—3 in two dimensions), the blobs have all possible sizes up
to &.

All the above arguments led to the ‘links—nodes—blobs’ picture (Stanley,
1977). This picture is summarized schematically in Fig. 28: nodes at distance
¢ are connected by generalized links, which contain both singly connected
bonds and blobs. All of these ‘main roads’ also have exits to dead ends. As
we shall see below, this geometrical picture turns out to be very useful in
discussing physical properties of the percolating system.

5.3. MULTITUDE OF FRACTAL DIMENSIONS ON THE INCIPIENT
INFINITE CLUSTER

We now restrict ourselves to scales L < £, or to p = p.. We have already iden-
tified several subsets of bonds (or sites) on the incipient infinite cluster. Since
at p. there is no basic length scale, we expect the ‘masses’ of each of these
subsets also to scale as a power of L. Indeed, measurements (e.g. with frames
of size L X L on pictures like Fig. 2) of the backbone mass yield results of the
form

Mp(L) x LP» (75)
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For all d > 1 one finds that Dg < D < d. For example, Dg=1-7, in d=3.
For d > 6 one has Dg =2, resulting from the fact that at high dimensions
there are very few large loops, and the links behave like random walks which
practically do not intersect themselves, or ‘self-avoiding walks’. The fact that
Dp < D means that the ratio Mg/ M approaches zero for large L, implying
that practically all the mass of the cluster belongs to the dangling ends. This
fact might be crucial for secondary oil recovery, if one happens to be close
to the percolation threshold mentioned in Section 1.3. In secondary oil
recovery, a common technique is to drill a second well some distance L away
from the production well, and push water into this new well. The water is
expected to push the oil out of the production well. Clearly, this may work
only if both wells are on the same cluster. If the oil in the dangling bonds is
incompressible, then this procedure will never push it out. At best, only the
oil in the backbone will be pushed. Thus, the estimate with LZ used in
Section 1.3 is much too optimistic: at most only a fraction Mp/L¢ ~ LP=~¢
will come out, and d — Dg=0-4 or 1-2 for d=2 or 3!

In reality, the situation is even worse: the front separating the water and
the oil is unstable, and the water reaches the end of a blob without clearing
all the oil in it. This problem, of ‘viscous fingering’ on percolation clusters,
has recently been studied by both simulations and model experiments (Oxaal
et al., 1987). .

We now return to the quantitative characterization of subsets on the
cluster. We imagine again this cluster to be a random resistor network. If we
want to know which bonds on the cluster carry the full current, we need to
count only the singly connected bonds. This is relevant if each resistor is an
electrical fuse, which may burn if a large current goes through it. Clearly, the
singly connected bonds will be the first to burn. This is why Stanley (1977)
called them ‘red bonds’. From Eq. (71), the number of singly connected
bonds behaves as

Msc(L) o LPse (76)

with Dsc = 1/v. Clearly, Dsc < Dp for 1 < d < 6, indicating that practically
all the mass of the backbone resides in the blobs.

Another property of the cluster concerns the resistance between the two
edges, or between the two terminals on top and bottom of Fig. 24 (or Fig. 26).
Since L < £, the resistance 1/G is also a power of L,

1
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As we demonstrate below, the exponent { is directly related to the exponent
u/v via the relation

%=d—2+§R (78)

Since this relation contains d, it is also ‘hyperscaling’, and it is valid only for
d<6.
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Before we end this list, we mention another family of substructures on
the cluster. This concerns l/inear polymers, or self-avoiding walks. A linear
polymer is constructed as a flexible chain of monomers, which never intersects
itself. The way to simulate such chains on a lattice is similar to that described
in Section 1.4 for random walks, or diffusing particles: whenever the walker
reaches a lattice point, it may proceed with equal probability to the neigh-
bouring sites. However, unlike the diffusion case, the polymer walker is very
clever, and it never walks back. In addition, it never steps on a site which it
has already visited, since that site is already occupied by a monomer of the
growing polymer. Imagine now such a polymer, going through our cluster.
Clearly, it cannot go into any of the dangling bonds, since it is not allowed
to step on itself on the way out. It is thus constrained to move on the back-
bone. Also, it must go through all the singly connected bonds. However,
inside each blob there are several routes through which the polymer may go.
We thus end up with a distribution of lengths of the possible self-avoiding
walks between the two end points. The shortest of these represents the
minimal path Ilni, (often also called the chemical distance; Havlin, 1984)
needed for going on the cluster from one end to the other. Herrmann and
Stanley (1988) used 10* computer hours to measure /min at p. in two and three
dimensions. As expected, this minimal path also has a fractal behaviour,

Imin(L) o L Drmin (79)

with Dpin=1-13, 1:34 in d=2,3.

We shall describe below several physical apphcatxons of the minimal
path. One obvious application concerns the forest fires mentioned in Chapter
1: if it takes a unit time to transfer the fire from one tree to its neighbour,
then the minimal time for the fire to spread to the other end scales as /min(L).

In addition, one can study the maximal self-avoiding walk, which scales
as Imax(L)oc LP»  and the average self-avoiding walk, defined as
Isawoc LPs%, The latter exponent is sometimes denoted as Dsaw = 1/vsaw.

One can easily convince oneself of the following hierarchy of all these
fractal dimensionalities, or exponents:

d- B/v =D 2 Dg 2 Dmax 2 Dsaw 2 Dnin 2 g-R Dsc = l/V (80)

For example, /max may have fewer bonds than the backbone, since the walk
is not allowed to cross itself. Similarly, Dmin > & since /min represent only one
path through each blob, and the resistance 1/G contains additional bonds in
parallel, which may lower the net resistance. The resistance of the singly con-
nected bonds, equal to Msc, is clearly less than 1/G since 1/G contains the
additional resistance of the blobs, hence {z > Dsc. Table 2 contains a
summary of known values for all these exponents.

All the discussion so far has been restricted to L < ¢, If L > £, then for
P > pc we saw that we can divide the system into (L/E)"’ boxes, which may
be treated homogeneously. Thus, Eq. (55) shows that the total mass obeys a
scaling form in terms of the variable L/¢. A similar form is expected to hold
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for all other properties, e.g.
Mp(L) = LP*Mp(L[¥) (81)

which varies as L% for L < £ and as §P2"9L% for L > &.
The L-dependence for L > ¢ is not always like L?. For example, we
expect /min(L) to depend linearly on L for a homogeneous system, hence

Imin(L) = LD’"i")\min(ng) (82)

and /min varies as LPm» for L < £ and as £P~»~1L for L > £. The situation
for Msc(L) is different: by Eq. (76), Msc o L' for L < ¢. For L » ¢ and
P > pc we expect no singly connected bonds, and Msc approaches zero.

The situation is somewhat more complicated for the resistance. As men-
tioned, in a homogeneous material of size L7, the resistance between two par-
allel planar electrodes on two parallel edges grows linearly with the distance
L between them and decreases as the inverse of the cross section, L¢~!. Thus,
the conductance (= 1/resistance) of the system made of (L/E)" boxes will
behave as

Goc g fr(L)g) 2 o L2 (@=240) (83)
The conductivity, defined as
L=L*"

therefore behaves as T oc £~ (@~ 2+8r) o £74/" thus proving Eq. (78). From
the values of ufv quoted above, we find fr=0-975 and 1-3 in d=2 and 3.

For L » £ and p < p., we expect crossover to the behaviour of lattice
animals. 1t turns out that large loops are very rare in animals. Therefore, the
backbone is well described by a tenuous singly connected link, and one has
Dp = Dmax = Dsaw = Dmin= {r=Dsc=1-17 and 1-36 in d =2 and 3 (Havlin
et al., 1984). _

All the above was valid for d < 6. What happens for d > 6?7 At high
dimension, we argued in Section 2.1 that the tree-like structures dominate,
and loops are relatively unimportant. For such structures, the backbone is
practically the same as a random walk (each step goes along a new axis), with
a fractal dimension equal to Dg =2 (see Section 1.4). Since loops are not
important, we have

Dg = Dpax = Dsaw = Dmin= {r = Dsc =2

Using Dsc = 1/v (Eq. (76)), this géometrical argument yields » = 1/2 for these
dimensions. We can then use Eq. (49) to find that for such high dimensions
D =1/(ov) = 4. In Appendix B we show that these fractal dimensions remain
self-consistent for all d > 6, since the density of points at which loops are
formed decreases as the size of the loops grows.

We thus conclude that the hyperscaling Eqgs. (53) and (54) are not valid
for d > 6. Instead, we have Mo L* for L < fand M« (p— p.)L? o £ 2L9
for L > £. In the latter case, the mass within a box of size £ is proportional to
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£9-2 =964 and the extra factor £97% has to do with the number of
different infinite networks in that box (see Appendix B.1).

Similarly, for d > 6 Eq. (78) is replaced by the Bethe lattice result
u/v =6, and u = 3. The resistance 1/G is proportional to LS*= L2 for L <&,
and to L?>77S=(L[£)*~9¢%77¢2 for L » £ (Aharony et al., 1984).

5.4. MULTIFRACTALS

Whenever one deals with random systems, one only has statistical information
about their properties. This information is usually expressed via distribution
functions. For example, ns(p) denotes the average number (per site) of
clusters containing s sites each (see Section 2.4). This distribution function
allows us to calculate average cluster properties. In particular, it allows us to
derive the average moments of the cluster size distribution, My. As Eq. (31)
indicates, these moments have simple scaling behaviour. Using Eq. (53),
Eq. (31) may be rewritten as

Mk o |p - De |(d—kD)v o EkD_d (848.)

The exponent on the righthand side is linear in k, implying a constant gap
between exponents of consecutive ks. This constant gap indicates that all the
moments are determined by a single basic mass, s; o £2, which scales with the
single fractal dimension, D. This single gap scaling is also a direct result of
the fact that ns(p) can be written in a scaling form like Eq. (33), with a single
scaling variable.

In fact, most of the power-law expressions discussed in this book so far
concern average properties. For example, the expression M(L) o< L? for the
mass of the infinite incipient cluster at p. within a box of linear size L
(Eq. (54), Section 1.3 and Fig. 16) is obtained after averaging over many such
boxes. The values for individual boxes will fluctuate around the average, and
the complete information is contained in their distribution function. Fortu-
nately, this distribution function also turns out to be simple, with a constant
gap between the exponents for its average moments. Furthermore, one can
also quantify the above fluctuations, by looking at cumulants of the distri-
bution. The second cumulant is simply the mean square deviation from the
average, AM? = ((M — {(M))*). This is a measure of the mass fluctuations,
reflected by some boxes having more mass and some others having less mass
(more ‘lakes’). AM? scales as L22, and all the cumulants are also determined
by the single exponent D. The ratio AM?|M?, which is sometimes called
‘lacunarity’, is size independent (for large L), and serves as a measure for the
deviation of the fractal from being homogeneous.

Another example involves the resistance between two terminals at a dis-
tance L apart. In Eq. (77) we made a statement about the average of this
resistance, implying that one should prepare many samples of clusters at pc,
or many sections of the same cluster (by moving the two terminals around),
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and average over the measured resistance of all of them. The results of these
measurements can be collected into a histogram, giving the number of samples
which gave a resistance in each range, and this yields the resistance distri-
bution P(1/G, L). It turns out that, like ns(p), this distribution also obeys a
single variable scaling, i.e. all the moments of the two terminal resistance have
a constant gap,

((1]G)*y o L¥Sx (84b)

Similar laws apply for many of the other quantities described in the last
section.

The situation changes when instead of averaging over all possible
configurations we concentrate on a single configuration. In this case the
distributions of properties on the cluster may become more complicated. An
illuminating example concerns the distribution of currents on the bonds of the
random resistor network. Imagine again that we connected the two ends of
Fig. 26 to a unit voltage. Denote now the current through the bond b by I,
and the total current by I. These currents will clearly have a complicated dis-
tribution, with 7 varying from the full I (on singly connected bonds) to very
small values (on some remote blob bonds). The currents on the dangling
bonds are zero. Consider now the moments

My(L) = 2; (Ip] )*? (85)

(The experts should note that only the normalized ratios M,/ Mo are moments;
since the denominator only represents a trivial shift in the exponents, we keep
the loosely defined name ‘moment’ for M,). It turns out that (at least for
q > 0) My(L) scales as a power of L,

Mg(L) < L¥D (86)

However, the family of exponents y(g) does not have a constant gap, and we
are not aware of any linear relation among the different y(g). One thus needs
an infinite number of independent exponents to characterize the current distri-
bution. The distribution of currents is therefore called multifractal. In the rest
of this section we discuss this distribution in some detail. Since this discussion
is somewhat complicated, and is not required for the rest of the book, the less
interested reader may now move to the next section.

It is easy to see that different moments scale differently with L. When
g — =, all the terms with I, < I (arising from blobs) will drop out (a number
less than one becomes very small when raised to a very large power). Thus,
in this limit the sum will contain only the contributions from the singly
connected bonds, for which (15/ 1)*9 = 1, since each such bond carries the full
current. Thus,

Mwo(L) = Msc(L) o LPsc

and y(e0) = Dsc. When g — 0, every term in the sum which arises from I, # 0
will contribute 1; hence (neglecting the few non-current-carrying bonds on the
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backbone)
Mo(L)= Mp(L) o LP=

and y(0) = Dg. Since (I,/ I)*? is a monotonically decreasing function of g, it
follows for g > 0 that

Msc(L) < Mq(L) < Mp(L)

or that
In Msc < In Mq < In MB
InL InL InL

For L » 1, the two bounds reach the constant values Dsc and Dg. Therefore,
In My/In L must also reach some constant value, which we denote by y(q)
(the notations J(q) and - x, also appear in the literature). This requires that
M, is also a power of L, and specifically yields Eq. (86). The exponent y(q)
is monotonically decreasing from Dp (at ¢ =0) to Dsc (at g = o). It is thus
not linear in g,and therefore the current distribution is not as simple as that
of the cluster sizes. In fact, the moments M, (L) are not all determined by a
single basic mass, as was the case in Eq. (84a). Instead, different moments are
dominated by different subsets of the bonds. For g — «, we saw that M, is
dominated by the singly connected bonds, which are a subset of the backbone
bonds that dominated M,. We know no simple relation between Dsc and Dpg,
and thus need more than one scaling variable to describe the current distri-
bution. This is the origin of multifractality: every moment M, is dominated
by a different fractal subset of the backbone, with a different fractal dimen-
sion related to y(q), and there is no linear relation among the various y’s.
Without blobs we would have Msc = Mp and thus y(g) = Dp = Dsc for all g:
multifractality would then be impossible (see Eq. (86)).

Two additional values of g are of special interest. If each bond has a
resistance 1/ap, then the total energy dissipation in the network (responsible,
for example, for the Joule heating of resistors) is given by

where 1/G is the total resistance between the ends. If all the occupied bond
resistances are the same, this implies that

and hence y(1) = {r.

If we allow the resistances 1/o5 to fluctuate (e.g., due to thermal noise),
then 1/G will also fluctuate. A theorem by Cohn, which we do not prove here,
shows that the deviation of 1/G from its average, 6(1/G) = 1/G - (1/G), is
given by

1A%
5(1/G)=Zb: <—I_) 6(1/op)
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If the mean square fluctuation of each resistor is ((6(1/ab))2) = A, and these
fluctuations are uncorrelated to each other, then the mean square fluctuations
(or the ‘second cumulant’) of the total resistance becomes

4

([8Q1/GN %y = 2] (LI") A=AM,x LY®
b

Similarly, higher cumulants are given by M, with higher g’s. The fluctuations

in 1/G are related to the fluctuations in 7 for a fixed voltage. Thus, M, is

proportional to the noise in the network (Rammal et al., 1985).

Note that the mean square deviation < [5(1/G)] %) represents the variation
of 1/G for a single realization of the sample and of the two terminals, as
a result of fluctuations in the individual op’s. This is not to be confused with
the variations between different samples, leading to the ‘unifractal’ result
Eq. (84b).

To study multifractality quantitatively, denote i = I/ I, and let n(i, L) be
the number of bonds which have a current fraction i. Thus, Eq. (85) becomes

Mq(L) =2} n(, L)i*®
i
with 0 < i < 1. For finite g, n(i, L)i*7 is very small for both i—= 0 and i~ 1,
and has a peak at some intermediate value /;. Assuming that this peak is large,
we approximate Mg by

My = n(iq, L)i2? 87

and iq is given by the solution of

" dinnG,L)

=— 88
dini i=ig 2q @)

At p. (or for L < §£), we are used to assume that every function of L must
be a power law. If this is true, then we can try the power laws

i L™ n(iy, L) o< LY@ (89)

The new exponent f(g) may be interpreted as the fractal dimension of the
subset of bonds that dominates the moment M,. Substituting in Eq. (87) we
recover Eq. (86), with

¥(@) = f(q) — qu(q) (90)
Equation (88) now reads
&g )
These two equations may be converted into
@=y@+qa@  a@=-2 ©2)

dg
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and represented as a single function f(«). If a distribution function is really
multifractal (for large L), then the L-dependent function n(i, L) can be
replaced by the L-independent (and presumably universal) function
S(a) = f(g()). For large L, f and « are respectively close to f=log n/log L
and a = —log i*/log L. Thus, plots of f versus « for different L should fall
on a single data-collapsed curve. Indeed, such data collapse has been observed
for ¢ >0 in many computer simulations. f(«) increases from Dsc at
o = amin = 0 (corresponding to g =) to Dg for a = g (corresponding to
g=0).

The situation for ¢ < 0 is much more complicated. When looking at
q < 0, we must omit all the terms with I, =0 in Eq. (85). The remaining sum
is dominated, for large negative g, by the smallest currents. It turns out that
these small currents decay exponentially with the cluster size, and thus the
power law (86) no longer holds (see Blumenfeld et al. (1987) for more details).

Another example of a multifractal distribution on a single realization of
the backbone is that of the lengths of the self-avoiding walks (Furuberg ef al.,
1987).

5.5. FRACTAL MODELS

As we have seen so far, it is not easy to obtain many exact analytical results
for cluster properties. Most of our knowledge comes from complex numerical
calculations. In many cases in natural science it is very useful to invent simple
mathematical models, on which one can do analytical calculations. Such
models try to capture some of the important features of the problem at hand,
and hope that these features are sufficient so that the resulting model also
predicts other features reasonably well.

In what we have seen so far, the geometry of the infinite cluster at pc is
fractal. We also saw that it is characterized by many fractal dimensions, which
describe subsets of the cluster sites (or bonds) necessary for calculating
different cluster properties. In what follows, we describe several families of
recursive geometrical fractal models which were proposed to imitate some
aspects of the fractal geometry of the infinite cluster. These models are
fractal, but they are not random. The lack of randomness enables us to
perform exact analytical calculations, even though the structures are fractal
and not translationally invariant.

To demonstrate the construction of a recursive fractal, consider the
Sierpinski carpet shown in Fig. 29(a). It is constructed as follows. Let us start
with an occupied square: its mass M is 1, and so is its length L. Now the occu-
pied square is replaced by 3 x 3 squares, of which the centre square is empty
and the neighbouring eight squares are occupied, as shown in Fig. 29(a). The
mass is now 8, not counting the empty square, and L = 3. This process is
repeated again and again, with occupied squares replaced by 8 occupied and
one empty centre square, and empty squares replaced by 9 empty squares.
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Figure 29(a) shows the next step with M = 64 occupied squares and a length
L =9. At each iteration, L increases by a multiplicative factor 3 and M
increases by a factor 8. After n iterations we have L =3" and M = 8", and
thus
M=1L"
with
_log 8
log 3

This fractal dimension D = 1-893 is nearly exactly equal to the D = 1-896 for
the incipient infinite cluster of percolation in two dimensions. A generaliz-
ation of this to three dimensions (a cube is replaced by 20 full cubes and
7 empty ones) yields D = log 20/log 3 = 2-73, which is 8 per cent above the
fractal dimension 2-53 of the incipient infinite cluster there.

If we consider the full squares as imitations of occupied sites on the
infinite cluster, then (in contrast to the existence of ‘red’ bonds on that cluster)

0 A

AN

(a) (b)

Fig. 29. (a) Initial stages of the build-up of the Sierpinski carpet. Empty squares are
shadowed. At each step of the iteration, the linear dimension L is enlarged by a factor
3 and the mass by a factor 8, since each occupied square is replaced by a 3 x 3 array
of nine squares of which the centre square is empty. (b) Same for the Sierpinski gasket.
Here the linear dimension is enlarged by b =2, and the mass by a factor 3 at each
iteration.
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the Sierpinski carpet has an infinite order of ramification, i.e. one cannot cut
an arbitrary piece of it by cutting a finite number of sites. It also does not have
dangling ends. We shall cure these disadvantages below.

Another ordered recursive fractal, the Sierpinski gasket, is shown in
Fig. 29(b). Here the basic building block is a triangle, and each iteration
replaces it by a doubly sized triangle, with three full and one empty small
triangles. After n iterations, L =2", M =3", and hence M= L” and

log 3
log 2

=1-585

This seems to be a good approximation for the backbone of the infinite
percolation cluster in two dimensions. A d-dimensional generalization uses
hypertetrahedra, and yields

_log (d+1)
b= log 2

In three dimensions this yields D = 2, about 15 per cent higher than the back-
bone dimension for percolation.

Although the gasket has a finite order of ramification, equal to (d + 1)
(this is the smallest number of bonds you need to cut in order to separate an
arbitrarily large piece of the structure), it has no singly connected bonds. It
also has other details which differ from those of the percolation backbone.
Nevertheless, many groups have used it since 1980 to study the behaviour of
a large variety of physical problems on fractals.

Many of the above difficulties were resolved by a different model,
proposed by Mandelbrot and Given (1984). They proposed the recursive
construction shown in Fig. 30(a): one begins with a straight segment of unit
length, and at each iteration one replaces it by eight segments. The length
scale changes by a factor b =3, and thus

p=188_ g3
log 3

This is the same for the Sierpinski carpet, and Fig. 30(b) indeed shows how
the curve will fill the carpet asymptotically after an infinite number of
iterations.

This curve has many more details which imitate the percolation incipient
infinite cluster at p. in two dimensions. Out of the 8 new bonds, 6 form the
backbone. Out of these, 3 form the minimal path, 5 form the maximal path
and 2 are singly connected. Further, the resistance between the ends is multi-
plied, after each iteration, by a factor
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Thus,
DB=:—Z’§—§= 1-631 Dmi.,=:2: §=
Dinax = :g§ ; =1465 Dsc= :gi §= 0-631 ©3)
fr =————l°g102 1 _ 0921

All these numbers are quite close to those of the percolation cluster in two
dimensions.

The Mandelbrot—Given curve is easily generalizable: if we replace the
two singly connected bonds by L, such bonds, the two dangling bonds by L4
bonds, the (1 + 3) bonds in the ‘blob’ by (L, + L3) (with L, < L3), and use
a generalized rescale factor b, then we have

D=log(Li+ L+ L3+ Ls)[log b
Dp=log(Li+ L+ Ls3)[log b
Drin =log(L, + Lz)/log b

Dax = log(Ly + L3)/log b 94)
- LyL;
§‘R—log<L|+ P L3)/l°g b

Dsc=log L[log b
The choice Ly =3, Ly=1, L3y=3, Lsy=8 and b= 13 yields
D=2-465 Dp=1-771 Duin=1:262  Dpax=1:631
tr=1-203 Dsc=1

all of which are surprisingly close to their counterparts for the percolation
infinite cluster in three dimensions. As one increases d one has more and more
singly connected bonds (L) and dangling bonds (L4), and fewer and fewer
bonds in the blobs (L2, L3). We leave it as a challenge to the reader to invent
good generalized Mandelbrot—Given curves for d=4 and 5.

Having invented a simple recursive fractal model, we can solve new prob-
lems on top of it, and hope that the results will not be far from their counter-
parts on the real random percolation cluster which they are supposed to
imitate. For example, Blumenfeld ef al. (1986) found that the multifractal
exponents for the current distribution on the generalized Mandelbrot—Given
curve are given by

_log[Ly + (L2 L3 + L3 L3/ (La + L3)™]
log b

y(q) (95)
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Fig. 30. (a) Initial stages of the Mandelbrot—Given curve. At each stage, the unit
segment is replaced by 8 segments, with the new length scale b = 3. (b) Relation to the
Sierpinski carpet.
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The ambitious student is encouraged to check this result, which yields an
excellent analytic approximant for these exponents. Equation (95) can now be
used to estimate the ‘noise’ exponent, y(2), for percolation in two and three
dimensions, and the results agree very well with existing numerical estimates:
»(2) is slightly above 1/v.

5.6. RENORMALIZATION GROUP FOR INTERNAL CLUSTER
STRUCTURE

Another convenient analytical way to obtain results without heavy computa-
tion is to use approximate small cell normalization group schemes, like the
ones described in Section 4.2. For resistor networks and similar problems,
which involve connectivity, it is very convenient to use the scheme presented
in Fig. 19 (see also Section 4.5). We now put a unit voltage between the
lefthand side (sites A and D in Fig. 19(a) and the righthand side (sites C
and F). The average resistance of the renormalized resistor is now easily
calculated:

=1Xp’+1xp*(1-p)+5x4p*(l - p)+3x2p3(1 - p)*
+2x6p°(1 - p)?+2x2p*(1 - p)?

Gl

=4p*+6p*-%p*+%p° (96)

Thus, at p* =1/2, 1/G = 1-917, hence {& = log(1/G")/log 2 = 0-939, close to
the numerical result for two-dimensional percolation of 0-975.
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Hong and Stanley (1983) also used the same scheme to obtain
Dpin=1-086 Dpax=1-285 97)

We leave it as an exercise to use this scheme for deriving the multifractal
exponents y(q).

5.7. CONTINUUM PERCOLATION, SWISS-CHEESE MODELS, AND
BROAD DISTRIBUTIONS

So far, our resistor network has contained only two types of resistors: those
(unoccupied bonds) with infinite resistance (zero conductance), which have
concentration (1 — p), and those with unit conductance (op = 1/rp=1). It is
often the case that the finite conductances are not all equal to each other, but
rather have a distribution f(o) (f(o) do is the fraction of ‘good’ bonds with
conductance between ¢ and (o + do)). As we saw in Section 5.4, a narrow
distribution f(o) results with an unchanged resistance exponent {z, but with
a multifractal behaviour of the resistance cumulants, or noise.

The situation is particularly interesting if the distribution f(o) is very
broad. In such cases, the conductance of the whole network may be domi-
nated by one ‘bottleneck’ bond which has a very low conductance.

As an example, consider the power-law distribution

Slo)oxo™ (98)

with 0 < 0 < omax. As we discuss below, such distributions arise naturally in
various continuum models of conduction or fluid—flow permeability in porous
media (Feng et al., 1987). In fact, if a bond is characterized by a ‘width’ 6,
then its conductance can be shown to behave as

oo §t! (992)

and the exponent y depends on the nature of conductivity of interest (elec-
trical or viscous fluid) and on the detailed shape of the ‘bond’ (see below). If
the distribution of widths P(§) approaches a constant as 6 — 0, then the
relation P(8) dé = f(o) do yields the relation
Y
w= P (99b)
For w < 0, one can bound the total resistance (1/G) both from above and
from below by expressions in which each bond resistance 1/o5 or conductance
oy is replaced by its average (1/o) or (g). At pc, both these bounds behave
as L%, and the conductivity scales as in the previous case. The situation
becomes more interesting when w > 0. In this case, the links—nodes—blobs
model turned out to be very useful in deriving a lower bound for the resist-
ance. As we argued in Section 5.3, the resistance 1/G of a sample of size L
at p. is bounded from below by that of the singly connected bonds between
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the terminals,

1 Msc(L) 1
=> 2 (—) (100)
G b o,

For large L, Msc o< LPsc is also large. For w < 0, the distribution f(o) has a
finite average of (1/0), and the integral

(1fo) = S:m“ dof(o)fo

converges. In this case, the righthand side of Eq. (100) may be replaced by
Msc(L) (1/o), and we recover the inequality of Eq. (80), {r > Dsc=1/».
For w > 0, the above integral diverges. In this case, the sum on the righthand
side of Eq. (100) will be dominated (and bounded from below by) the largest
term in it, 1/omin. Since P(§) approaches a constant at small §, one expects
that the Msc values of 8 are distributed evenly between 0 and 8max, and there-
fore that &min < 5max/ Msc. Thus,

1 1

1 _
G2 % 1 x Msc?t o LPeO D = [ Pee/070 - (1012)
Omin min

Writing 1/G o« L‘-", this implies that

Dsc
1—-w

Sw> =Dsc(1+y) (101b)

It was argued by Straley (1982), and confirmed by recent renormalization
group arguments, that Eq. (101) becomes an equality when Dsc/ (1 — w) > {r,
i.e. when w > we =1 — Ds¢f ¢r. In this range of w, there are many bonds with
very small widths. However, when such a bond occurs inside a blob, there
almost always exist other bonds in parallel to it, with much larger conduc-
tances. Therefore, the total resistance is dominated by the narrowest singly
connected bonds.

As mentioned above, distributions like Eq. (98) occur in various con-
tinuum models of porous media. An illuminating example of such a model is
the ‘Swiss-cheese’ model (Feng et al., 1987). In three dimensions, this model
is constructed by placing uniformly-sized spherical holes at random in a
uniform transport medium. The holes are allowed to overlap with one
another. The system supports transport only for hole volume fractions g
below a threshold g., and (for d < 6) the conductivity for g < g. behaves as
L x (gc — g)*, with

p=(d—=2+Ew)

(See Eq. (78).)

The continuum Swiss-cheese model can be mapped onto a random
network, in which the bonds represent ‘necks’ bounded by interpenetrating
holes. A two-dimensional version of the model is shown in Fig. 31. As Feng
etal. showed, the distribution of the widths of the necks P(§) indeed
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Fig. 31. Swiss-cheese model in two dimensions. Straight lines show the bonds of the
superimposed discrete network; dotted lines are the missing bonds. After Feng et al.
(1987).

approaches a constant for 6 — 0. They also showed that the electrical conduc-
tance of such necks obeys Eq. (99a), with y= —1/2 and 1/2 for d =2 and 3.
In contrast, they found that the permeability of a viscous fluid through such
necks has y =3/2 and 5/2 in d=2 and 3.

Another interesting problem arises when no bonds are actually absent,
but the range of bond resistances is very broad. Such distributions f(o) arise
when the transport involves quantum mechanical tunnelling and/or thermal
activation over barriers, with a wide range of barrier heights. A good way to
estimate the conductance of the system, first proposed by Ambegaokar,
Halperin and Langer (1971) is to identify the bond with the largest conduc-
tance, the bond with the next largest conductance, and so on. If we identify
and mark these bonds consecutively, with decreasing conductance, we shall
eventually reach a conductance value o such that all the marked bonds (with
conductances o», above o.) have exactly the percolation threshold concen-
tration pc= f;™ do f(0). Beyond this point one has a spanning infinite
cluster of such bonds. For sufficiently broad distributions, the conductance of
this cluster turns out to yield an excellent estimate for that of the whole
sample.

For concreteness, imagine that the bond conductance is given by

o=goe” (102)

and p is uniformly distributed between 0 and 1. (For thermal hopping over
barriers of energy AE, one has o e *£7%T), In this case, the distribution
function of o is

f(0)=$ doe " <0< a0

Note the similarity to Eq. (98), with w = 1. The broadness of the distribution
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is measured by A. Now

% 1 0o . —Ap,

De= do f(6)==In — i.e. .= aee” P
oc A Oc .

Such distributions are thus called ‘logarithmically broad’. For p > p., we add

bonds with o1 < 0 < o, and

Oc

p-pe=| dos@)=qm%
. A o

o

Using the links—nodes—blobs picture, the conductance of the total sample is
given, according to Eq. (83), by

G(L)=(L/£)*72G(¢)= L *E

The resistance of a link of length £, 1/G(£), is bounded from below by that
of the singly connected bonds, 1/G(§) > Msc(£)(1/o). Using

(1fo) = S: dOf(U)/0=% <oll—olo> ZXIEI
and
Msc(®) o £ e (p - pe) ™' = —2—
In (oc/01)
we find

GE) <Gi(®) = o1 In ("—)
o1

This upper bound will be optimized when In (oc/g;) = 1. Choosing this value
of o; (i.e. of p), and accepting the argument given above, that for sufficiently
broad distributions G is given by this bound (blobs have much larger conduc-
tances), we find that

T x ocA(d—Z)voc er—Ap‘A(d—z)y

Although confirmed numerically for d =2, at the moment it is not yet clear
whether this heuristic result is correct for d > 2.

5.8. ELASTIC NETWORKS

In the good old times (about 1980) it was believed that the elastic behaviour
of a disordered network like rubber is directly related to the electrical behav-
iour of the corresponding random resistor network. Just as we need a con-
tinuous chain of conductors to have an electrical current flowing, we need an
elastically active network chain in the rubber to create some resistance against
elongating it. The elastic modulus is proportional to the ratio of applied force



and produced deformation, and therefore it was thought to be the analogue
of the electrical conductivity and to vanish at p. with the same exponent u.

Unfortunately, reality is more difficult. For bond percolation on the
square lattice, we replace each bond by an elastic string which tries to keep
a unit distance between neighbouring lattice sites. Now even at p = 1 a square
lattice is unstable against shear forces, and for p < 1 a triangular lattice can
be unstable even if an infinite network of connected bonds exists. The
threshold for finite elastic moduli is thus larger than that for connectivity.
Such shifts of percolation thresholds are avoided if we supplement these
central forces by bond-bending forces. Thus the deformation energy consists
of two terms. A spring energy (as in Hooke’s law), proportional to the
squared length change, and a bending energy, proportional to the squared
angular change. (Lengths and angles are measured between neighbouring sites
and bonds, respectively.)

In this model the elastic behaviour becomes critical at the geometrical
percolation threshold. However, elasticity and conductivity have different
critical exponents. The change of an angle between two bonds is proportional
not only to the applied force but also to the distance at which it is applied,
i.e. it is given by the torque. This distance has no analogue in the conductance
calculation and enters quadratically into the deformation energy. In the
nodes-and-links picture, this distance is . If one considers only the elastic
response of the singly connected bonds, then the force constant (equal to the
ratio of the force and the elongation of the ‘spring’, as in Hooke’s law) of
a typical link of linear size £ is

kyoc £ 2 Msc(§)™ o< (p — pe)™*!

and therefore (using arguments like those which led to Eq. (78)) the elastic
stiffness coefficient of the backbone behaves as (p — p.)’, with

7=(d-2v+2v+1=dv+1 . (103a)

This value was identified by Kantor and Webman (1984) as a lower bound for
7. The above expression for 7 is somewhat lower than the Monte Carlo result
7=3-96 = 0-04 of Zabolitzky et a/. (1986) in two dimensions. Since elasticity
introduces two extra factors of & Sahimi (1986) and Roux (1986) conjectured
that

elasticity o £-2
conductivity

and therefore
r=p+2v=(d+ {r)V (103b)

in excellent agreement with the Monte Carlo result.

For d > 6, the above hyperscaling relations, which contain d, fail. In this
case, the Kantor—Webman argument becomes exact, and 7=pu+2v=4. In
practice, 7 seems to be close to 4 in all dimensions d = 2.



For continuum percolation one can repeat all the arguments of the
previous section, and recover

7=(d+ ) (103¢)

One should be warned that even the bond-bending model may not be
realistic for rubber, where entropy effects may dominate.
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CHAPTER 6

Walks, Dynamics and
Quantum Effects

If you have studied equilibrium thermodynamics and/or statistical physics,
and had some time left, you might have encountered the problem of non-
equilibrium effects. For example, in equilibrium thermodynamics the tem-
peratures of two objects in thermal contact, like Scotch and ice cubes, are the
same. In non-equilibrium thermodynamics, we learn how quickly heat can
diffuse from the warmer to the colder object, that is how long it takes to
establish equilibrium. Similarly, in the scaling theory of phase transitions,
shortly after static scaling laws were invented during the 1960s they were
generalized to cover time-dependent or non-equilibrium effects like the
thermal conductivity near the superfluid transition or the spin wave spectrum
near the ferromagnetic Curie point (Hohenberg and Halperin, 1977). We now
look for something similar in the percolation field.

To describe such non-equilibrium phenomena, often also called transport
properties, it is often not sufficient just to know everything about the static
behaviour. An additional time-dependent property is needed, too; then one
can try to express other transport properties through this time-dependent
property and the static quantities. For percolation, we take diffusion on
random dilute networks as our basic transport property, and on this basis we
will try to understand a variety of other properties. Specifically, we start with
simulations and scaling theories for diffusion of a particle on a random
network, called the ‘ant in the labyrinth’ and also discuss the distribution
function of such walkers. We then proceed to discuss fractons, which describe
localized dynamical excitations on dilute systems. The rest of the chapter
discusses the accessible perimeter of clusters, relevant also for self-affine
diffusion fronts, and invasion percolation, which is an example of a
self-organized critical percolating system.

6.1. ANTS IN THE LABYRINTH

In Chapter 1 we mentioned the diffusion of a particle in a disordered network,
a problem dubbed the ‘ant in the labyrinth’. Now we want to look at this
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problem from a more theoretical point of view to see whether we can apply
what we have learned in the meantime. First let us repeat the definition of this
kinetic process. At every time step, the diffusing particle, called the ant,
selects randomly one of its nearest neighbour sites. If that site is occupied
(‘permitted’, probability p), it moves there; if the neighbour is empty (‘prohi-
bited’, probability 1 — p), it stays where it is. That process is repeated again
and again, and averaged over many different ants running through many
different lattices. To avoid any X-rating of this book, ant—ant interactions are
ignored. We are interested in the average distance R which the ants travel as
function of the time #; ¢ is the number of time steps (jump attempts) made
by the ant.

We have already said in Chapter 1 that for p far above p. one observes
normal diffusion, R? o f, for large times, whereas for p far below pc, R
approaches a constant for long times. From what we have learned in the pre-
ceding chapters we can assume that for all concentrations above the threshold
one type of behaviour (diffusion) will dominate asymptotically, whereas for
all p < p. the other behaviour (finite asymptotic distance) will be valid. A
third type, i.e. anomalous diffusion, with R o« t*, will govern the asymptotic
distance right at the critical point. We will now study in greater detail the
behaviour very close to p. where these three different laws have to merge.

If P;(¢) is the conditional probability that the ant is at site / and time ¢,
and if we start with the ant at the origin site i =0 at time ¢t =0 (Po(0) = 1 and
P;(0)=0 for i#0), then we are interested to find how the probability
‘spreads’ with time. In the above example, if all the z sites neighbouring the
origin are occupied, then after one step the probability to be in any of them
will be 1/z, while all other P;(1) will be zero. If two of the neighbouring sites
are empty, the ant will stay at the origin with probability Po(1) =2/z. More
generally, P;(t) obeys a ‘master equation’,

Pi(t+1) = Pi(t) = 2} [0jiPi(t) = 0y Pi(1)] (1042)
J

where gj; is the probability for the ant to hop from site j to its nearest neigh-
bour site / in one time step. The first term in Eq. (104a) arises from hops into
site /, and the second term corresponds to hops out of this site.

For the example described above, ¢;; = 1/z if site i is occupied, and g;; = 0
if site / is empty. Such an ant is called ‘blind’, or ‘drunken’, since it is not
clever enough to identify the occupied neighbours. A more intelligent species,
called ‘myopic’ ants, choose only among the occupied neighbours. These ants
have oji = 1/z;, where z; is the number of occupied neighbours of site j.
Numerical simulations and rigorous arguments now agree that both species
converge to practically the same asymptotic behaviour (Harris et al., 1987).

At long times, we can replace the lefthand side of Eq. (104a) by

% = 3 [0;iPi(t) = 0y Pi(1)] (104b)
J
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For a finite cluster, one eventually reaches a stationary state, in which P;i(¢t)
no longer varies with time. The ant keeps hopping back and forth, but
its average probability to be found at any site / remains time-independent,
P;(stationary). Setting d P;/dt = 0, we see that P;(stationary) must solve a set
of linear equations. For the ‘blind’ ant, with oj = 0;j=1/z, the solution
requires that all the P; are equal to each other, i.e.

P;(stationary) = %

This implies that all the sites are equally probable, or that every site is visited
equally frequently by the ant. For the ‘myopic’ ant, P;(stationary) « zis.

The fact that all the sites of a cluster have ‘equal rights’ means that
asymptotically the distance R for one finite cluster is the average distance
between two cluster sites. This average in turn was our cluster radius R;
defined in Eq. (45). Now we have to average over different cluster masses s.
Initially an ant parachutes to each occupied site with the same probability.
The probability of a site belonging to a cluster containing s sites is n;s, and
then the asymptotic distance is R;. Usually one averages over the squared
distances and then gets from the sum over all cluster sizes:

Rz(t= ©, p< pc)= Z nsSR.%
< (pc— p)’~% (105)

The critical exponent in this result is derived in the same way that we
derived the exponent for Eq. (31). We see that not all lengths are proportional
to the correlation length £: the exponent is not simply 2». (Had we averaged
over R; instead of RZ, we would have got a critical exponent 8 — »; see Mitescu
and Roussenq (in Percolation Structures and Processes, cited in Chapter 1)
for data.) In three dimensions, the exponent 3 — 2» is about — 1-34. Monte
Carlo determinations first gave much higher values (Mitescu and Roussenq),
then agreed better with theory (Pandey et al., 1984). Let us thus hope that we
understand the behaviour below the threshold; what about above and at p.?

For p =1 we showed in Chapter 1 that R? = ¢ exactly for all ¢, not only
asymptotically. Generally one calls any law R% o ¢ a diffusion law, and we
denote the proportionality constant as the diffusivity 2:

R*=at

for long times ¢. Thus for p =1 we have diffusion with @ = 1, even for short
times. (The usual definition of @ differs from ours by a trivial d-dependent
factor, which we ignore to have @(p = 1) = 1.) For p slightly below unity but
still far above p. we have some holes in the lattice which slow down the ant
but still let it diffuse everywhere. Thus, the diffusion law should still be valid,
only with a reduced diffusivity @ = @(p). For p below p. diffusion is imposs-
ible since now R2(f) is bounded by Eq. (105). Thus for very large times R
cannot increase as ¢!/2, and the diffusivity is zero. Thus @(p) goes to zero if
p approaches p. from above.



Fortunately, no new critical exponent is needed to describe how @
vanishes near the percolation threshold. De Gennes (1976) (see Chapter 1)
pointed out that the diffusivity & is proportional to the conductivity £ of
random resistor networks:

Px L or R xIt () (106a)

This equation is simply a manifestation of Einstein’s result from the beginning
of this century, that in statistical physics the diffusivity is proportional to the
mobility. The mobility, on the other hand, is the ratio of the velocity to the
applied force. For the electrons in the copper parts of a random resistor
network, the applied force is proportional to the electric field, that is to the
voltage. The average velocity of the electrons is proportional to the electric
current they produce. Therefore their mobility is proportional to the ratio of
current to voltage, that is to the conductivity of the network. Thus Eq. (106a)
is basically due to Einstein and therefore needs no further proof. Close to the
percolation threshold we recover our conductivity exponent:

Do (p—p)* (106b)

How can we combine the two so seemingly different results (Egs. (105)
and (106)) into one consistent theory? Having studied Egs. (33), (52) and (55)
the reader will have no difficulty in recognizing that scaling can again be
applied to the distance R depending on two variables 1/t and p — p. both
going to zero. The general statements discussed after Eq. (52) also apply here.
(A warning: The analogy with our earlier results is closest if we regard the
time ¢ as function of the distance R and replace the system length L by the
ant distance R in Eq. (55). But that last step would be incorrect, since R
according to Eq. (105) does not scale as £.) With two suitable exponents x and
k and a scaling function r(z) we assume

R=t*ri(p - po)t (107

For p above p. and sufficiently long times and distances we must recover the
diffusion law of Eq. (106); thus for large positive arguments z the scaling
function r(z) is proportional to z*/? in order to be consistent with Eq. (106).
Then

R o tk(p _ pc)u/ltu.\’/Z I tk+ux/2gl/2

We will also need R o ¢'/2 in this regime, which requires k = (1 — ux)/2. (Our
R is the root mean square distance, that is the square root of the averaged R>.)

On the other hand, for p below p. we must recover the result given by
Eq. (105) that R varies as (p — pc)~"*?/? independently of ¢ for sufficiently
long times. The scaling function r(z) for z = — oo thus must vary as (—z) ™~
in order that ¢ cancels out: R «< (p. — p)~*’*. Equation (105) now requires this
exponent k[ x to equal » — 3/2, or k = (v — 3/2)x. Equating these two expres-



sions for kK we get 1 — ux= (v —8)x, or
1

from which
k = _v—B2 (108b)
2v+pu—g0
follows.

We have thus derived the two exponents x and k entering the scaling
assumption (107). If we simulate the ant right at the critical point, we get an
‘anomalous diffusion’ exponent k smaller than the usual 1/2 from Eq. (107):

R o tk oc #8720/ @r+p=8) (109)

for long times ¢ and p = p.. This anomalous exponent k is about 0-33 in two
dimensions and close to 0-2 in three dimensions. Numerous numerical tests
have confirmed these predictions with reasonable accuracy. Figure 32 shows
three-dimensional data whereas Fig. 5 (Chapter 1) has already given two-
dimensional results.

We see from the argument z of the scaling function r(z) in Eq. (107) that
there is a characteristic time in our relation between R and ¢. For times much
smaller than | p— p.|~™"* but much larger than unity one has anomalous
diffusion, Eq. (109), whereas for much longer times one either observes
normal diffusion, Eq. (106), or a constant distance, Eq. (105). The character-
istic time o |p—pc| ™V =|p=pc|P > * x| p—pc|Pt} D separates the
regime of anomalous diffusion from the more usual behaviour.

You may wonder why this characteristic time is not simply proportional
to 52/ @, the time needed for an ant to diffuse over a distance of the order of
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Fig. 32. Root mean square distance R travelled by a diffusing particle (‘ant’) in ¢ step
attempts on a simple cubic lattice at its percolation threshold.
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the correlation length £. Where does the additional factor | p — p|? come
from? The reason is the same as that for Eq. (105). It comes from averaging
over all cluster sizes. Percolation properties are usually derived as being the
sum of the contributions from single clusters. Thus a more microscopic
scaling theory (Gefen et al., 1983; Ben Avraham and Havlin, 1982) starts with
a generalization of Eq. (107) to the distance R travelled by an ant during the
time ¢ in a cluster containing s sites: R = R(s,t, p) instead of the above
R(t, p). Summation over all s, as in Eq. (105), then has to give Eq. (107) and
the other results above.

If we now look for p slightly above p. at very large clusters only, with
s much larger than | p — p.|~"/?, and with cluster radii much larger than both
the correlation length and the distance travelled by the ant, then the ant will
not feel the cluster boundaries. Thus it will behave as if it were on the infinite
cluster. In the homogeneous regime, when R » £, the ant diffuses as usual:
R? = @'t. This new diffusivity @', however, is not the same as our diffusivity
@ defined above for the case where the ant starts running on an arbitrary
occupied site, not necessarily on the infinite cluster. If it starts anywhere on
an occupied site, then with a probability P/p it starts on the infinite cluster,
and with the probability 1 — P/p it starts on a finite cluster. For the strength
P of the infinite cluster is the probability that an arbitrary lattice site, occu-
pied or empty, belongs to the infinite cluster. Only an ant on the infinite
cluster can contribute to a distance increasing with time (R = @'t); the other
ants add only a finite amount to the distance. Thus, if we average over all
occupied sites as starting points of the random walk we get for sufficiently
long times

@t=R>=(P|p)D't

The diffusivity @ in the whole lattice and the diffusivity @’ in the infinite
network or very large cluster are thus related by
@ P
7= D (110)
an equality not restricted to the region very close to the percolation threshold.
Now we see that our characteristic time | p — p. | ~'/* discussed above is
nothing but the time EZ/ @' the ant needs to travel the distance £ if it diffuses,
with diffusivity @', on an infinite or very large cluster. For close to the
threshold we have @' o« @ (p - pc)?, and thus we have explained the unex-
pected factor | p— pc|”? in our characteristic time. This factor is not a viola-
tion of scaling but merely indicates that different types of averages may have
different critical exponents.
For a theory of diffusion on finite clusters with radius Rj it is not suffi-
cient to assume

R =R [(p— pc)t']

in analogy with Eq. (107). Instead the scaling function r depends also on the



scaling variable (p — p.)s°. We do not go into these details (Gefen et al.,
1983), since we want to restrict this book to scaling functions of a single
variable only.

Monte Carlo studies have been made both with ants running everywhere
where permitted (e.g. Pandey ef al., 1984), or being restricted to the infinite
cluster (e.g. Ben Avraham and Havlin, 1982). In both cases, they confirm the
above values for k and k'.

Another way to understand these scaling relations is to consider diffusion
on the infinite cluster only (Gefen et al., 1983). If R > £, then the ant ‘sees’
a homogeneous cluster, and we expect that R?=@’'t, with
D' < (p—p)Poct? and =(pn- B)/v. If R <&, the ant moves on a
fractal structure, and we expect anomalous diffusion, with R o t*". Since
both behaviours should match each other at R = £, we find that

. v 1
T2v+p—f 2+6
This anomalous diffusion exponent is about 0-35 in two and 0-27 in three
dimensions. As explained in Section 1.4, 1/k’ may be identified with the
fractal dimensions of the random walk on the incipient infinite cluster at pc.
It is often denoted by dw=1/k'=2+0.

Note that the fractal dimension d. is different for different classes of
walkers: it is equal to 1/k’ or to 1/k for walks restricted to the infinite cluster
or averaged over all clusters. Using Egs. (54b) and (78), Eq. (111) may be
written as

(111)

do=L-2+t=B_p, g (112a)
k' v

The resulting value of d, thus depends on the fractal dimension D of the

structure on which the ant moves: if the ant is restricted to move only on the

backbone, and to avoid dangling bonds, then the fractal dimension of its

anomalous walk becomes

dws =Dg+ ER (112b)

Yet another way to look at the random walk between two points on the
infinite cluster is to note that, since the ant steps only on occupied sites, the
walk really depends only on the topology of the cluster and not on the par-
ticular way in which the cluster is embedded on the lattice. Therefore, it is
more natural to measure the distance travelled by the ant in terms of the
minimal path, or chemical distance (see review by Havlin and Ben Avraham,
1987). Replacing R by Imin~ RPm~, the relation ¢~ R% is replaced by
t & Imin(R)%, and

dw
Duin

(In some respect, dwm is more ‘basic’ than d,. For example, random walks on

dwm = (113)
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top of polymer chains always have d,., = 2, as in one dimension, even though
dw and D = Dnin vary depending on the dimension of space in which these
polymers are embedded).

Scaling assumptions like Eq. (107) have counterparts in thermal critical
phenomena (Hohenberg and Halperin, 1977). There, one encounters charac-
teristic times which diverge near the thermal critical point as £%, where £ is the
thermal correlation length. Clearly, z is the analogue of our d..

Finally, we note that if we replace the ‘good’ bonds by superconducting
ones (infinite conductance, or zero hopping time) and the ‘bad’ bonds by
‘normal’ ones (o;;=1/z in Eq. (104)), then we can describe this normal-
to-superconducting transition by a new kind of random walkers, called
‘termites’. More details on this can be found in the reference list.

~ Diffusion of ants is also a natural way to introduce directed percolation
(see Duarte (1990) for a recent study). If we orient the square lattice in the
directions of north, east, south and west, then we may assume that an ant may
walk only in the directions north and east, and never in the southern or
western directions. Now it is more difficult to find an infinite network of
allowed directions, if the lattice is still occupied randomly. Thus the perco-
lation threshold shifts upwards, and also the critical exponents are changed.
We now have two correlation lengths: &' o | p — pc | ~*" for correlation along
the preferred direction (north—east), and £ o | p — p. | ¥ perpendicular to this
direction. The scaling law for the strength of the infinite cluster (exponent 3)
and the mean cluster size (exponent +v) (Eq.(53)) now reads
v+ 28=(d- 1)r+ »'in d dimensions. For d = 2, the numerically determined
exponents are very close to 3= 199/720, y=41/18, v=79/72, v’ =26/15.
More difficult is the general case when the ant travels north merely with a
higher probability than in the other directions, but can still walk backwards.

6.2. PROBABILITY DISTRIBUTIONS

The distance R(f) has been defined as the root mean square distance travelled
by the ant at time ¢. Instead of restricting ourselves to this average, we may
be interested in the complete distribution function of these distances, P(r,t).
In the discrete lattice case, P(r,t) is the probability for the ant to reach a
distance r after ¢ steps. For large ¢ or small lattice constant we may use a
continuum version, when P(r, t)d°r is the probability of finding the ant in a
volume d“r around r. On homogeneous ordered systems, one can show (e.g.
by solving Eq. (104)) that P(r,t) is exactly a Gaussian, i.e.

1 — r3 (21
PO = Gagnar e (114)

The prefactor, 2w %t)"?’? comes simply from the normalization, which
requires that the integral of P(r,t) over all r (in d dimensions) equals unity.
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It is interesting to note that the probability to return to the origin is given by
P0,t)=QRrDt) ¥? < R(t)~1?

This probability is thus inversely proportional to the volume of the region

visited by the ant. A heuristic argument for this result is that within this

volume the ant visits every site many times. Therefore, the probability to visit

each of them, and particularly the origin, is equal to one over their number.

Using Eq. (114), we can now calculate all the moments of the distance r
at time ¢, and show that they obey simple (rather than multifractal) scaling,

(r¥y o« R(t)*? o 7

Equation (114) is very similar to Eq. (23), for ns(p): it has a power-law
prefactor, and an exponential cutoff. Following the arguments that led us
from Eq. (23) to Eq. (33), it is tempting to generalize Eq. (114) for diffusion
on the infinite cluster at p., and to write

P(r,t) =t %2 f(r™|t) (115)

The argument rd"/ t is chosen so that the root mean square average R(t) will
scale as t¥ = ¢4 and the moments (r?9) will scale as R%9. The prefactor,
which is related to the probability to return to the origin, P(0, ), can again
be determined from normalization. Since the walk is restricted to move on the
infinite cluster, whose mass within a region of linear size R (¢) scales as R(¢)7,
we expect that P(0,¢) « R(t) 2 o P74, and hence

-2D
dw

This new exponent d; is called the fracton or the spectral dimension. The term
was introduced by Alexander and Orbach (1982) and by Rammal and
Toulouse (1983) in connection with the number of frequency dependent exci-
tations on fractals. We shall say more on this in the next section. Using the
limited information available in 1982 on the values of D and d, (via their
relations to the exponents v, and ), Alexander and Orbach noted that
d; is very close to 4/3 in all dimensions d > 2. In fact ds equals 4/3 exactly
for d>6. As a result, many authors attempted to check the daring
‘Alexander—Orbach conjecture’, that ds is always equal to 4/3. If this were
true, it would imply an exact expression of the dynamic exponent  in terms
of the static ones, 8 and ». Unfortunately, the existing accurate values at d =2
yield ds =1-32, and seem to exclude the value 4/3. Similar small deviations
arise in d = 6 — € dimensions. However, the Alexander—Orbach conjecture is
certainly an excellent approximant for most practical purposes concerning
walks on the infinite cluster.

As in our discussion for ns(p), and in view of the exponential decay in
Eq. (114), we next assume that the scaling function f(x) in Eq. (115) decays
exponentially for large x, i.e.

P(r,t) o< t%" exp[—A(r™[1)*] (117)

ds (116)
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There exist several ways to identify the exponent a (Aharony and Harris,
1990). Instead of giving you these exact but complicated arguments, we
present here a simple heuristic one: consider the maximal value of r after ¢
discrete steps. This value is reached when ¢ equals the minimal path on the
cluster, i.e. # o< rP~n, Since each step of the ant has some finite probability K
(equal to 1/z for the ‘blind’ ant), the probability for reaching this point is of
order K'=e~!!"Kl_ On the other hand, Eq. (117) yields a probability of
order exp[—A (r®/rP=)*]. Thus Dmin = a(dw — Dmin), or (using Eq. (113)),

Dmin = 1
dw - Dmin dwm -1

This value of « applies when we start with a given specific realization of
the cluster, and we consider all the random walks which start at a fixed origin
on that cluster. Such walks, and their corresponding distribution P(r,t), are
called ‘typical’. If we move the origin over all the sites of the cluster, and
repeat the walks on all possible clusters, then we end up with a distribution
of the distributions P(r,t). Bunde eral. (1990) recently showed that this
distribution is multifractal. A signal of this multifractality is reflected by the
fact that since the average over all distributions { P(r, t)) also contains a con-
figuration in which the minimal path is a straight line, with r = ¢, it is expected
that although (P(r,t)) is still given by Eq. (117), the exponent « is now
replaced by

o=

(118a)

_ 1
dw - l
Equation (117) can be used, in analogy to Eq. (Bl) in Appendix B, to
derive a Flory approximant for self-avoiding walks on the infinite cluster
at p.. In this case, the self-avoiding walk is limited to move only on the
backbone. Therefore, one must minimize the energy
R&ws\8 s?
Es= A( S ) +B R—SDB
where d,g is given by Eq. (112b) and as = Dmin/ (dws — Dmin). The result is
s RPsw with

(118b)

Qav

Dgp + apdws

Dsaw =
AW 2+ agp

The resulting approximate values turn out to be very close to available
numerical measurements.
6.3. FRACTONS AND SUPERLOCALIZATION

The righthand side of the master equation Eq. (104), is very similar to
Kirchhoff’s equations, Eq. (74). This should not be surprising, in view of the
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equivalence between ¥ and D, Eq. (106). The analogy may be made more
complete if we connect each site on the resistor network via a capacitor C to
the ground, and allow for a time-dependent external current, ;. Equation (74)
now becomes

e ¥ oyv- v - 1 19)

dr J

Noting the symmetry o;; = gji, this equation is clearly very close to Eq. (104).
Equation (119) should be used when the external current is alternating

(a.c.), with frequency w. In that case we expect the conductivity of the cluster

at pc to depend on w. Since w is an inverse time, it is related to a length

L) xw™ ¥ (120)

such that the electrons in the network move back and forth within a range
L(w). If L(w) < L and L(w) < &, then the response of the network should
not depend on its size L or on £, and we expect L(w) to replace L in deter-
mining the conductivity in Eq. (73b), ie. T o L(w)™*”" o w®*” If
L(w) > L, then we return to T oc L™*/*, In general, this implies that at p. we
have the crossover form

C

T=L""g(L|L(w)) (121)

Equations (104) and (119) are similar to those which arise in a network
of elastic springs, as in Hooke’s law. Newton’s second law then assumes the
form

dzu;
m — = 3, Kji(uj — wi) + Fi (122)
dt 7
where u; and F; are the displacement of and the external force on site i/, whose
mass is m. Kj; is the force constant of the spring connecting sites / and j.
It was this similarity, which ignored bond-bending forces, that led to the
mistaken belief that elasticity and electricity are equivalent (Section 5.8).
However, Eq. (122) may still describe some of the vibrational excitations of
the network. On regular networks, these excitations are called phonons. They
have the form of waves, with frequency w and wavelength A which are related
to each other via the dispersion relation
2wc
w== (123)
where c is the sound velocity.

On dilute fractal networks, the solutions to Eq. (122) are more compli-
cated. Instead of waves, which are spread over the whole sample, a pertur-
bation at the origin turns out to decay with distance, i.e. to remain localized.
Such excitations are called fractons. If the perturbation is periodic, with
frequency w, then we expect the decay length L(w) to depend on w, via a
power law. Since Eq. (122) has two time derivatives, and Eq. (104) has only
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one time derivative, it follows that now we must replace w by w?, and
L(w)xw X (124)

The number of sites affected by such a perturbation is of order
L(w)Pocw P =y %, A comparison with the phonon analogue A\ o w™?
led to the name ‘fracton dimensionality’ for d;. The number of such excita-
tions with w between w and w + dw, is called the density of states N(w) dw,
and one finds that N(w) oc w® 1.

Similarly to our discussion of the scaling forms of ns;(p) and of P(r,t),
we can now expect the fracton perturbation to decay as

u(r,w) < expl[—A(r/ L(w))’] (125)

Sjnce the exponent a often turns out to obey a > 1, this is sometimes called
superlocalization. Arguments similar to those which led to Eq. (118) show
that for a typical fracton,

a = Dpin (1 26)

The average over all configurations {u(r, t)) decays exponentially, with a=1.

The reader should have enough experience now to realize that when
p > p. we should anticipate a crossover from fractons (at short distances or
high frequencies) to phonons (large distances, low frequencies). Equation
(124) may thus be extended (for L > L(w), £) into

w= L(w) 2% f(L()[#)

The requirement that w « 1/L(w) for L(w) > &, coming from Eq. (123), now
yields f(x) o x '*12%¥" for x < 1, hence

Ccox El—]/Zk’ o (p_ pc)(u—B)/Z o« (@1)1/2 (127)

and the sound velocity decreases as p. is approached.

There are many other cases in which one ends up with linear equations
like Egs. (104), (119) and (122). In Heisenberg ferromagnets, each occupied
site has a magnetic moment which is free to rotate in space, and one finds
spin-wave excitations. The equation of motion of these waves is equivalent to
Egs. (104) (for the ‘myopic’ case) and (119), with a single time derivative. In
this case, Eq. (123) is replaced by the quadratic form

w=KQn/\)*
i

and the (super-)localized excitations decay over a length L(w)ocw™,
Eq. (120). For L(w)> &, the stiffness constant K scales exactly as the
diffusion coefficient @' o (p — pc)* 8.

Another case of great interest is that of quantum percolation. The
Schrédinger equation for a quantum particle on a lattice, with hopping
coefficients oji, has the form

Eyi= 2, iV (128)

J
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On regular lattices this yields Bloch waves. However, on the percolation
cluster at p. it yields superlocalized wave functions. Localization of electrons
in random media has been a very active field of research in recent years. Even
a weak randomness, with all ¢;; being non-zero, may lead to a localization of
the wave function, resulting from a destructive interference of the random
phases of the complex wave functions ;. As a result, the quantum wave func-
tions remain localized even for concentrations above p., up to a new quantum
threshold p, (see, e.g., Meir et al. (1989) and references therein).

6.4. HULLS AND EXTERNAL ACCESSIBLE PERIMETERS

So far we have discussed only diffusion of particles on the percolating
clusters. In many applications, one is interested in particles which diffuse on
the medium which surrounds the cluster, and occasionally hit the cluster from
the outside. To study this case, we need to solve the master equation
Eq. (104), with new boundary conditions: P;(¢) =1 on a far-away source of
particles (e.g., a very large sphere), and P;(¢) = 0 on the cluster (assuming that
particles are not allowed to step on it). One may then ask about the prob-
ability that a specific random walker, released from the far-away source, will
hit the cluster at a particular point on it. In two dimensions, there are many
internal screened sites, which will never be hit. The remaining sites, which
have non-zero probabilities of being hit, form the accessible external per-
imeter. The hitting probabilities of sites on this perimeter turn out to have a
very broad range: some sites are hidden inside deep screened fjords, and some
sit on sharp external tips. In fact, the distribution of these hitting probabilities
turns out to be multifractal. This and similar distributions are currently
investigated by many groups who are interested in aggregation.

In this section we limit ourselves to the number of sites on the accessible
external perimeter in two dimensions. As we shall see, there exist several ways
to identify such a perimeter. We start with the hAull, which contains sites on
the cluster that neighbour vacant sites which are connected to the outside. The
meaning of this connection will become clear below.

We now describe a simple numerical algorithm, which probes the hull as
well as other interesting ingredients of the cluster (Grossman and Aharony,
1986, 1987). Given a finite cluster on the square lattice, at p., identify two
endpoints on it, e.g. the points with the largest (smallest) y coordinate
and—among these—with the largest (smallest) x coordinate. The Euclidean
distance between these endpoints may serve as a measure for the linear size
of the cluster, and it indeed turns out to scale as s/ 2 (Eq. (48)). The external
perimeter is now probed using a biased walk. (Such walks are very effective
if you want to find your way out of a labyrinth.) Beginning at the lower end-
point, the walker attempts to move to its nearest neighbour on the left. If that

site is vacant, the walker tries to move upwards. If that neighbour is vacant,
the walker moves to the right. The procedure is now repeated iteratively, and
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(i)

(ii)

(iii)

AXX XXXX

(a)

(b)

Fig. 33. (a) Example of left-turning (numbers) and right-turning (letters) biased
walks, covering the hull sites. (b) The accessible perimeter E|, E; and E; on the square
lattice: shaded squares represent occupied sites; crosses = accessible perimeter sites;
solid circles = screened inaccessible perimeter sites. (i) The arrow points at the unpene-
trable gate from the external perimeter E, (cross) into a screened part. (ii) The arrow
points at the unpenetrable entrances for particles larger than unity. The E> sites are
denoted by crosses and the solid circles denote screened E| sites. (iii) Same for particles

larger than aﬁ, defining E3. E; can be reached by particles slightly larger than a. After
Grossman and Aharony (1986, 1987).

the walker is forced to move backwards only if all other alternatives are
vacant. As the procedure is continued, the walker reaches the other endpoint.
Figure 33(a) shows an example of a cluster, with the numbers indicating the
steps of the left-turning walker. Note that after step 17 the walker finds itself
again at site number 10. It is thus clear that all the sites between 10 and 17,
and all the sites connected to them, are external dangling sites. The next step
back to 9 verifies that 10 is also a dangling site. The same is true for sites 24
to 26.

The procedure is now repeated with a right-turning walker. The steps of
this walker are denoted by letters on Fig. 33(a). The sites visited by both
walkers, i.e. 1,6,7,8,9, 18,19, 20,21,29,30 and 31 in Fig. 33(a), are singly
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connected. The algorithm may thus be used to study quantitative details of the
singly connected bonds, the blobs, etc.

The hull of the cluster is identified as the total number of sites visited by
either walker. Heuristic arguments (see next section), Monte Carlo simu-
lations (Ziff et al., 1986) and exact calculations (Saleur and Duplantier, 1987)
all show that the hull is a fractal, with a fractal dimensionality equal to
Dy =7/4. Among other physical applications, the hull is the path followed by
an electron on the cluster under a very strong magnetic field perpendicular to
it; the electron then attempts to maximize the area surrounded by its closed
path (Mehr and Aharony, 1988).

Is the hull related to the external perimeter searched in the beginning of
this section? Returning to Fig. 33(a), look at sites number 16 and 26. If the
diffusing particle is larger than the next nearest neighbour distance on the
lattice (i.e. aﬁ, where a is the lattice constant, assuming the cluster sites are
point-like), then it will not be able to diffuse through the space between these
two sites. As a result, sites numbers 17,9, 21 and 22 will not be accessible from
the outside. The definition of the external perimeter thus depends on the size
of the probing particles! The hull (more precisely, its vacant external neigh-
bours) will represent the accessible external perimeter provided that size is
smaller than aﬁ. Another way to phrase this is to say that the external sites,
which neighbour the hull, are connected to infinity via either nearest or next
nearest neighbour unoccupied sites. The diffusing particles should thus be
allowed to hop to either nearest or next nearest neighbour vacant sites.

If the size of the diffusing particle is larger than 24, then it will also not
be able to enter into the gate between 4 and j in Fig. 33(a). This will then also
exclude sites 20 and / from the external perimeter. It is thus clear that smaller
and smaller subsets of the hull may serve as adsorbing or reacting sites,
depending on the size of the probing particles.

Instead of looking at cluster sites, we can also look at vacant external
sites. If each occupied site represents a full square, then the ‘gate’ between
sites 16 and 26 will always be blocked. Figure 33(b) now defines three types
of accessible external perimeters, and Fig. 34 shows these perimeters on a
large cluster. Looking at Fig. 34, we might think that H, E, E; and E; have
decreasing fractal dimensions. However, the situation turns out not to be so
complicated: E;, E> and Ej; all have the same asymptotic fractal dimension,
which is very close to D, = 4/3. This happens to be equal to the fractal dimen-
sion of two-dimensional self-avoiding walks (see Appendix B), and there exist
heuristic arguments which relate the two to each other.

On the triangular lattice, E) turns out to scale with Dy, while E> and E3
scale with D..

In three dimensions, as noted in Section 3.1, practically every site on the
cluster is connected via vacant sites to infinity. Therefore, the external peri-
meter is proportional to the mass s of the cluster, as is the total perimeter
including the internal holes already in two dimensions.
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(c) (d)

Fig. 34. The hull and the accessible perimeters of a large cluster on the square lattice
at pe: (a) the hull (10 734) sites; (b) the perimeter E; (10 932 sites); (c) the perimeter
E> (3560 sites); (d) the perimeter £3 (3284 sites). From Grossman and Aharony (1987).

6.5. DIFFUSION FRONTS

The percolation clusters discussed so far represented the randomness of the
medium, e.g. the pore structure of a given rock. In the last two sections of
this chapter and in the next chapter we describe dynamic algorithms, under
which the clusters grow and change with time. The first of these, concerning
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the diffusion of particles from a line (or plane) source, was studied in great
detail by Sapoval et al. The example of diffusion on the square lattice is
shown in Fig. 35. Particles come from a source at the lefthand edge of the
illustration, where the particle concentration is kept equal to unity. Any one
of the particles is then allowed to hop to one of its four neighbouring sites,
provided that it is empty. Since the displacements in the x and y directions
(perpendicular and parallel to the source) are statistically independent, the
mean square distance of the particles from the source after time ¢ is given by
Eq. (106a),

(x%)y =Dt
Solving Eq. (104b) with the boundary condition P=1 at x=0 now yields

P(x,t)=1- 2 Sx dx' e~ V@20
27Dt Jo

due

= l —_——

2

P(x,t) is the probability that a site at distance x from the source is occupied
by a particle after time ¢. By symmetry, P is independent of y. In contrast
with ‘normal’ percolation, where the occupation probability is constant, we
now have an occupation probability P(x,¢) which varies with both x and .

x| {@t s
2 g -u2 (129)
0

Fig. 35. Diffusion of particles (solid circles) from a source at the lefthand edge of the
paper lattice of sites (open squares). The particles (solid squares) that are both con-
nected to the source and neighbours to the righthand edge constitute the Aull, or the
diffusion front. The righthand figure is a blow-up of the region marked by a square
on the lefthand figure. Here the hull is shown by solid circles, sites connected to the
source as large circles, and the remaining particles as small circles. After Feder (1988),
cited in Chapter 1.
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At fixed 1, P(x,t) decreases monotonically from 1 (at x=0) to zero (for
x> JJ't) Near the source, where P(x, 1) is close to 1, the occupied sites form
a rather compact and homogeneous cluster. For large x, P(x, ) is smaller
than the square lattice percolation threshold p., and there arise only small
isolated clusters (formed of individualistic particles which chose to diffuse
forward and escape from their dense community). We expect the cluster of
sites which are connected to the source to end, and the largest finite clusters
to appear (on the average), at a distance x. where

P(xc,t) = pc

From Eq. (129), it is clear that x. is proportional to J@_t, i.e. to J(xz>.

For a variety of reasons (similar to those discussed in the last section) we
are interested in the diffusion front, i.e. the hull of the cluster which is con-
nected to the source. As stated above, we expect this front to move forward
with time, so that the average x-coordinate of its sites is equal to x.. Near the
percolation threshold pc, the characteristic linear size of a finite cluster (which
may become part of the hull by a movement of a few particles) is given by
the percolation correlation length, £. We thus identify & as a width of the hull.
Since P depends on x, £ is never infinite. To calculate it, we must solve the
self-consistent equation

x| POxc+ &0 - pe|™

Expanding P(x,t)— p.=dP/dx|(x — xc), and noting from Eq. (129) that
at x= xc o« [2¢ one has dP[dx| . o« 1/ [t « 1]xc, we find that

-y
.

fo zi—f o (gxe)™"

Xe

£oc x2/04) (130)

Indeed, Sapoval eral. confirmed this relation numerically, with
v[(1 + v)=4/7=0-57. They also noted that the above procedure, of finding
the average location of the hull, is a very accurate method to determine p. in
two dimensions.

Equation (130) shows that as time progresses the width of the front ¢
becomes smaller and smaller relative to the cluster size x.. If we perform a
renormalization group transformation, grouping sites into cells of size b X b,
the width will rescale by a factor "/ *"), whereas the size in the y direction
will rescale by a factor b. Such curves, which rescale differently in the longi-
tudinal and transverse directions, are called self-affine, instead of self-similar.

One way to measure the fractal dimension of a self-avoiding walk, like
the front, is to measure its length using rulers of different sizes 8. For a self-
similar curve, the number of such rulers increases with decreasing 6 as 6P,
and therefore the total measured length grows as 8' ~2. (This is the ‘standard’
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way to measure e.g. the length of the coastline of Norway, and to realize that
the result depends on the size of the legs of the walker who tries to measure
it by counting steps. See the books by Mandelbrot and by Feder for more
details.) On our self-affine curve, the projections of § on the y and x axes scale
as Ay and Ay”¢**) respectively, and thus

5=JA(Ay)2+B(Ay)2v/(I+v)

If the system’s size in the y direction is L, then the number of such rulers is
of order L[Ay, and therefore the total measured length is L/Ay. For very
large Ay, the above expression for § yields Ay « 8, hence the curve is linear,
with length proportional to L. For small Ay, é is dominated by the second
term, 8 Ay”’U*") and the length of the curve becomes &L[8**.
Comparing with the fractal result §' ~2, we identify a local fractal dimension

D;,=l+V

14

Setting » = 4/3 reproduces the result Dy = 7/4, quoted in Section 6.4. A related
heuristic argument led Sapoval et al. to conjecture that this result is exact, as
indeed later proved by Saleur and Duplantier (1987). Generally, we expect a
crossover from a length proportional to L2, for L < &, to one proportional
to L, for L > &.

As for percolation hulls, one can also measure the various accessible per-
imeters of the diffusion front, for large probing particles. In two dimensions,
Sapoval et al. indeed find that on scales L < £ they have fractal dimensions
D, =4/3, as for ‘normal’ percolation.

Diffusion fronts were also studied in three dimensions (Rosso ef al.,
1986). For site percolation on the cubic lattice, p. = 0-3116. An empty site is
considered connected to another empty site if it is on one of the 26 neigh-
bouring sites in a cube of side 3a, centred on it. The percolation threshold for
this connectivity is about 0-097. Thus, for 0-3116 < p < 0-903 there is con-
nectivity of both occupied and empty sites, with the ‘infinite’ clusters of both
kinds interpenetrating each other. As a result, a finite fraction of the occupied
sites belong to the diffusion front, and its fractal dimension is equal to the
Euclidean dimension d = 3.

6.6. INVASION PERCOLATION

Invasion percolation is a dynamic percolation process which imitates the dis-
placement of one fluid by another in a porous medium. When water is injected
very slowly into a porous medium filled with oil, the capillary forces dominate
the viscous forces, and the dynamics is determined by the local pore radius r.
Capillary forces are strongest at the narrowest pore necks. It is consistent with
experimental observations to represent the displacement as a series of discrete



134 Introauction (o rercolacon 1 neury

jumps in which at each time step the water displaces oil from the smallest
available pore.

Wilkinson and Willemsen (1983) simulated the model on a regular lattice.
Sites and bonds represented pores and throats and were assigned random
‘radii’. For convenience, one assumes that the easily invaded throats are
invaded instantaneously, and one assigns random numbers r in the range
[0, 1] representing the pore sizes, to the sites. Growth sites are identified as
the sites that belong to the ‘defending’ fluid and are neighbours to the
invading fluid. At every time step the invading fluid is advanced to the growth
site that has the lowest random number r.

The invading fluid may trap regions of the defending fluid. As the invader
advances it is possible for it to completely surround regions of the defending
fluid, i.e. completely disconnect finite clusters of the defending fluid from the
exit sites of the sample. This is one origin of the phenomenon of ‘residual oil’,
a great economic problem to the oil industry. Since oil is incompressible,
Wilkinson and Willemsen introduced the rule that the water cannot invade
trapped regions of oil. This rule is implemented by removal of growth sites
in the regions completely surrounded by the invading fluid from the list of
growth sites. Figure 36 shows the results of a simulation of the invasion pro-
cess. A colour version of this figure appears on the cover of this book. There,
each colour indicates sites added with a time interval A7 =2121. At the time
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Fig. 36. (See cover picture for colour.) Invasion percolation with trapping in a
300 x 600 lattice. The invader (coloured) enters from sites on the lefthand edge and
the defender (white) escapes through the righthand edge. At breakthrough the invader
first reaches the righthand edge and has invaded 31 802 sites. Different colours (left to
right on colour scale) indicate sites added within successive intervals At =2121. From
Furuberg er al. (1988).
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of breakthrough, the number of sites that belong to the central L x L part of
an L x 2L lattice, with injection from one side, scales as L2, with D=1-82.

It is interesting to note that once the invader reaches the other end of the
sample, there is no reason to invade more pores: the invader now has an open
path from one end to the other. Thus, the algorithm works so as to fill just
the minimum necessary sites for connecting the two ends, and the spanning
cluster is a fractal, i.e. it is at its ‘critical point’. Processes which build up so
as to stay at their critical points have recently been called ‘self-organized
critical’ (Bak and Chen, 1989). Understanding such processes may help us
understand why so many natural phenomena are fractals.

The results described above should be contrasted with the ordinary perco-
lation process, for which the cluster is found by occupation of all available
sites with random numbers r < p that are connected to the seed (or to the
source), and p is a pre-chosen occupation probability. There are two main
differences between ordinary and invasion percolation. First, invasion perco-
lation will always span the region between the injection and the extraction
sites. There is no analogue to the occupation probability p, and there are no
‘invader’ finite clusters. Second, invasion percolation is a dynamic process,
with a well defined sequence of invaded sites, as can be seen in Fig. 36: after
a new pore is invaded, one opens many easy nearby pores and about /” new
sites are invaded in a local region of size / before growth moves to another
place (Furuberg et al. 1988).

Wilkinson and Willemsen also studied invasion percolation without
trapping, which is possibly appropriate if the ‘defending’ fluid is com-
pressible. At breakthrough in two dimensions they found that the fractal
dimension of the invading fluid is 1-89, similar to that of the spanning perco-
lation cluster at p.. There is now considerable evidence that invasion perco-
lation without trapping is indeed equivalent to ordinary percolation (Dias and
Wilkinson, 1986).

For two-dimensional invasion percolation both with and without trap-
ping, the measured hull and accessible external perimeters were found to have
the ‘normal’ percolation fractal dimensions Dy = 7/4 and D. = 4/3. This is a
simple consequence from the fact that sites on the hull do not feel the trap-
ping, which happens only behind the front.

In three dimensions, trapping practically never happens, since almost
every cluster site also belongs to the hull. Thus, both kinds of invasion perco-
lation have at breakthrough a fractal dimension D=2-5, equal to that of
‘normal’ percolation.
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CHAPTER 7

Application to Thermal Phase
Transitions

Criminals are said always to return to the site of their crime, and thus we now
return to one of the original motivations for percolation research, the droplet
description for thermal critical phenomena. We summarize what percolation
theory for cluster numbers tells us about its ‘ancestor’. Dilute Ising models
combine the thermal with the geometrical approach, and thus both start and
finish this chapter.

7.1. STATISTICAL PHYSICS AND THE ISING MODEL

In thermal physics we deal with the effect of a finite temperature, so far
ignored. If one atom can be in two states, with energies E; and E;, then at
an absolute temperature T it can be found in these states with probabilities
proportional to exp(—Ei/kT) and exp(—E»/kT), respectively, where
k=1:4x10"2* joules/kelvin is Boltzmann’s constant. Generally, a
configuration with energy E can be found with a probability proportional to
exp(— E[kT). The factor of proportionality is such that the sum over all
probabilities is unity; thus the thermal probability is

exp(— Ei/kT)
Z exp(—Ej/kT)
j

pbi=

where the sum goes over all possible states i (i=1 and /=2 in the above
example) and thus involves all energies. The thermal average ( A) of some
quantity A, having the value A; in state /, is then

2. Ai exp(—Ei[kT)
(AY=3 pidi=-

‘ > exp(—Ei[kT)

1 i

Averages of interest are the energy (E), the specific heat C, = d(E)[/dT, and
many others.

137
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For example, the two energy levels above may correspond to a magnetic
dipole in a magnetic field H (often this field is also denoted by B): E; = —H,
E> = + H in suitable units for the field. There we assume that the magnetic
dipole can only point up or down, parallel or antiparallel to the field H, and
we call this dipole associated with an atom its ‘spin’. In a ferromagnetic
material like iron, neighbouring spins tend to be parallel to each other. A pair
of spins then has the ‘exchange’ energy — J, if it is parallel, and + J if it is
antiparallel. The total energy E in a field H is then, with spins S;= *1:

E=-J Z SiSk—HZS,'
ik i

Here the first sum runs only over nearest neighbour pairs of the lattice and
contains each such pair only once, e.g. by i < k.

This model is the well-known Ising magnet. It can also be rewritten as a
lattice gas model for fluids, where spin up corresponds to an occupied site and
spin down to an empty site. Regions with most spins up then represent liquid,
regions with most spins down are identified with vapour.

The Curie point of a ferromagnet is that temperature 7. below which for
zero field a spontaneous magnetization mo appears. Generally, the magnetiza-
tion m (in suitable units) is the difference between the number of up and down
spins. Similarly, below the critical temperature T, of a fluid, separation of
liquid and gas is possible; the density difference between a liquid and its
vapour is then the analogue of 2mo. The susceptibility x is the zero-field
derivative dm|[dH, and its fluid analogue is proportional to the compress-
ibility, since H corresponds to something like the pressure. Near the Curie or
critical point we find the ¢ritical exponents for H = 0:

CumlT— Tc‘-a

""’OO‘(TC"T)ﬁ
x| T—T|™"
(o |T-Tc|™

Here the correlation length ¢ indicates the range over which one spin
influences appreciably the orientations of other spins.

These critical exponents of the Ising model are known exactly in two
dimensions (x=0, B=1/8, y=7/4, v=1) and numerically in three:
(x=0-11, B=0-32, y=1-24, v=0-63). They fulfil the scaling law
2—-a=+vy+28=dv in d=2 and 3 dimensions, just as in percolation. The
three-dimensional Ising exponents agree well with those of real fluids.

In the analogy with percolation, we thus identify the spontaneous
magnetization with the strength of the infinite cluster, the susceptibility with
the mean cluster size, and temperatures T above 7. with concentrations p
below p.. Correlation lengths for magnets correspond to correlation lengths
for percolation. Rather generally, the analogue of spontaneous magnetization
or strength of the infinite cluster is called the order parameter of a phase tran-
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sition and is zero on one side of that transition; it vanishes with the exponent
B if this transition is approached from the other side. Of course, no analogy
is perfect: the order parameter in a ferromagnet (the spontaneous magnetiza-
tion) can show in at least two different directions, whereas the strength P of
the infinite cluster has a unique value.

7.2. DILUTE MAGNETS AT LOW TEMPERATURES

Is this analogy with percolation accidental? (Would we write about it if it
were? Hardly!) Imagine that only a fraction p of all lattice sites is occupied
by spins and the remaining fraction 1 — p is left non-magnetic. These spins are
distributed randomly, as in percolation. This model is called the site-diluted
quenched Ising model. (‘Annealed’, instead of ‘quenched’, systems are
systems where the spins and the non-magnetic atoms can interchange places
according to some thermal equilibrium; we ignore ‘annealed’ dilution here.)

At low temperatures (kT < J but H o T) spins within one percolation
cluster will be parallel to each other in equilibrium; the probability to flip
spins in them involves powers of exp(—2J/kT) since 2J is the energy to
‘break’ one bond. On the other hand, different clusters have different orien-
tations and do not influence each other. Thus each finite percolation cluster
of s sites acts as if it were one super-spin with an s times larger magnetic
moment and thus an energy *sH in a field H. Thus its probability to point
in the direction of H is

SH/kT

€

SH/KT | _—sH/KT
esH kT+e SH/kT

whereas the probability to point in the opposite direction is
e-sH/kT

SH/KT | _—sH/kT
esH T+e SH/kT

With the hyperbolic tangent tanh(x)= (e* —e™*)/(e* + e™*) the difference
between these two probabilities, multiplied with the size s, is thus the
magnetization per cluster:

Mcluster = § tanh(SH/kT)

The infinite cluster if present contributes + P to the magnetization m, depend-
ing on the orientation. Thus the total magnetization per lattice site is

m=+P+ D, Mouser= P+ ), sns tanh(sH[kT)
cluster 5

For H—0, only the infinite cluster remains: mo= * P. Expanding
tanh(x) = x — O(x?) for small fields H, we find the susceptibility x (equal to
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the derivative dm/dH at zero field H) to be essentially the mean cluster size S:

s%ns
X=2 G =S

Thus, if at low temperatures the concentration p of spins is varied to
approach the percolation threshold, then mgo (p— pc)?, x o |p—pc|™”
with the percolation exponents 3,+ and not the undiluted Ising exponents.
Thus, in this case we find an exact correspondence of the infinite cluster to the
spontaneous magnetization, of the mean cluster size to the susceptibility, and
of the percolation threshold to the transition for ferromagnetism.

While clusters are well defined to describe geometrically the magnetic
behaviour for these low-temperature dilute Ising models, their proper defini-
tion for pure Ising models at 7— T is the success story to be told in the next
sections. Then we will return to the dilute Ising case.

7.3. HISTORY OF DROPLET DESCRIPTIONS FOR FLUIDS

Now we review the recent progress in the decade-long attempts to describe
thermal phase transitions such as the Curie point of ferromagnets or the for-
mation of a liquid out of vapour through a cluster or droplet model. These
droplets are a modification of the percolation clusters discussed so far and
were alluded to in Section 2.5. Note that we return here to the non-dilute case.
The aim of these efforts as now described in Sections 7.3—7.6 is to have a
geometric interpretation of the physical phase transitions: can we describe the
boiling of water and other liquid—gas transitions through a percolation
picture, with clusters propagating the correlations, as was possible for the
dilute magnet at low temperatures?

When it rains, tiny water droplets are formed out of a supersaturated
vapour. The relative humidity tells us whether a vapour is supersaturated and
is the ratio of the actual water vapour pressure to the saturated vapour
pressure; at saturation, i.e. at 100 per cent relative humidity, bulk liquid and
vapour are in equilibrium. To form the first droplet out of the vapour, an
energy barrier due to the surface tension between liquid and vapour must be
overcome through thermal activation; once small droplets (larger than some
minimum size) are formed, they can grow more easily and fall down to earth.
(Similarly, the main problem with your bank account is to get the first million
pounds; from then the account grows much more easily, as you surely
remember.) This process is called nucleation.

Nucleation theory since 1925 usually assumes that the surface area of a
small droplet varies in three dimensions as the square of the radius, i.e. as s¥3
if the droplet contains s water molecules. The rate at which droplets are
nucleated is assumed to be proportional to exp(— E[kT) at temperature T,
where E o« 52”3 is the energy barrier due to the formation of a surface between
liquid and vapour; the proportionality factor is basically the surface tension.



This classical nucleation theory is, in general, in good agreement with both
laboratory and computer experiments. For small supersaturations, this
nucleation rate can be so small that one would have to wait for years to see
the first droplet (metastable equilibrium). In this case, the presence of small
solid particles, serving as nucleation centres, helps the droplet to overcome the
nucleation barrier E (as a loan from your bank allows you to become rich
more easily, as long as you do not have to pay it back).

Also in a vapour which is undersaturated, i.e. which is in complete and
not in metastable equilibrium, tiny droplets can form and decay again. If no
such droplets occur at all, then we have the classical ideal gas law: P=nkT
for N = nV separate molecules in a volume V under the pressure P. If instead
we have a few pairs (s = 2), triplets (s = 3), and other small clusters containing
s molecules each, then their total pressure is

P=), nkT

with n; such clusters per unit volume; if only s =1 is important in this sum
we go back to the ideal gas. In this approximation we neglect the forces
between different clusters and then can simply add the partial pressures pro-
duced by the different clusters, just as the air pressure is basically the sum of
the nitrogen and oxygen pressures.

Such cluster pictures and more formal cluster expansions have been dis-
cussed since about 1940. The Fisher droplet model (see Section 2.5) replaces
in the droplet formation (free) energy E; the contribution proportional to s%/3
by one proportional to s° and adds 7 In(s) to Es; thus in equilibrium,

ns oc exp(—EsfkT) < s~7 exp(—TI's?)

with a temperature-dependent microscopic surface tension I'. We see that the
scaling law (33) for percolation cluster numbers is merely a slight modification
of this Fisher droplet model; in fact, Eq. (33) was suggested for thermal phase
transitions by Binder before it was suggested for percolation clusters, around
1975.

The quantitative test of these ideas was hampered, however, by the fact
that no precise definition of a cluster or droplet was available at that time
for thermal phenomena. Even today, researchers debate the definition of a
hydrogen bond keeping water clusters (ice) together. Thus the Ising model of
the preceding section seemed at first a nice description: clusters are groups of
neighbouring occupied lattice sites, just as for percolation. Unfortunately that
did not work properly in three dimensions. A modified definition worked for
saturated vapour but led to difficulties for temperatures above the critical tem-
perature. Only with the inclusion of a ghost spin could that difficulty be
removed, and this Swendsen—Wang formulation of 1987 gave a proper
description of both equilibrium cluster numbers and nucleation phenomena.

The Swendsen-Wang description not only gave a geometric under-
standing of thermal transitions through clusters or droplets, but their algor-
ithm also saved computer time. It no longer deals with single molecules but
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with whole clusters, and thus reaches equilibrium much faster, as we will
show. Similarly, theories of solid state physics do not always deal with each
atom independently; usually they work with phonons (sound waves) which are
nearly independent of each other and thus add up to give, for example, the
specific heat of the Debye law, C, o T, Just as these phonons are the elemen-
tary excitations of solids, our clusters or droplets are now thought to be the
elementary excitations for fluids (or anisotropic magnets). Addition of the
nearly independent contributions from each such elementary excitation gives
the property of the whole system. Fortunately, experimental techniques have
also developed to such an extent that since 1988 clusters can be made visible
in suitably chosen fluids. We now give in greater detail the definition of these
clusters and their properties as found by computer simulations.

7.4. DROPLET DEFINITION FOR ISING MODEL IN ZERO FIELD

For clarity we now describe as ‘clusters’ the groups of neighbouring occupied
sites familiar from percolation theory, and as ‘droplets’ the properly defined
elementary excitations which describe the behaviour of the fluid. Such
droplets should satisfy the conditions which the percolation clusters do, in
particular near the critical point where the ideal gas law fails completely. The
dilute Ising model for 7 — 0 obeyed them trivially:

1. An infinite droplet is formed for the first time at and only at the critical
point,

2. The order parameter of the transition, i.e the density difference between
liquid and gas for fluids, and the spontaneous magnetization mo for
magnets, is related to the size of the infinite droplet.

3. The ‘susceptibility’ of the order parameter, i.e the compressibility of the
fluid, is proportional to the mean cluster size, i.e. to the second moment
T.82ns.

4. The correlation length, i.e. the spatial extent of the thermal fluctuations,
is proportional to the radius of a typical cluster.

The simple definition of a cluster as a group of neighbouring parallel
spins turns out to be wrong: in the simple cubic lattice the up spins already
percolate at a temperature several per cent below the critical temperature, at
a point when less than 1/4 of all spins point up. This result is somewhat plaus-
ible from the fact mentioned earlier (see, e.g., the Bethe lattice result) that the
percolation threshold goes to zero if the number of neighbours goes to
infinity. Thus, provided that the number of neighbours is sufficiently large,
the percolation temperature is allowed to be far below the Curie temperature,
since at the latter half the spins always point up in zero field.

This error was corrected by the Coniglio—Klein definition, based on a
theorem of Kasteleyn and Fortuin: two up spins are regarded as part of the
same droplet only if they are connected by an additional bond. These
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additional bonds are distributed randomly in the lattice between parallel
neighbours, with a bond probability = =1 — exp(—2J/kT). These additional
bonds do not enter the interaction energy, they just serve to define droplets
appropriately. (The analogous definition was later applied also to down
spins.) We thus have here a random bond percolation superimposed on the
Ising-correlated site lattice of occupied and empty places. With this definition
the Curie temperature, i.e. the critical point, agrees with the percolation
threshold, and also the three other criteria above are fulfilled in zero field H;
the spontaneous magnetization at zero field is given by the size of the infinite
droplet. Simulations also showed the typical droplet radius to agree with the
correlation length; at the Curie point these droplets are fractal with a radius
increasing as a power of s and a fractal dimension 2-5 on the cubic lattice.
Theoretically we expect again D = d — 3/ v with, however, the Ising analogues
of 8, v, which differ slightly from percolation: D = 2-53 instead of 2-48. Thus
in zero field everything seems fine, and the reader not interested in recent
research can skip the next two sections.

7.5. THE TROUBLE WITH KERTESZ

As pointed out by Kertész, a problem arises in a magnetic field above the
critical temperature. Experimentally and theoretically we know that the
equation of state (density as a function of pressure and temperature, or
magnetization m as a function of field and temperature) does not have any
divergences in any of its derivatives (with respect to H or T') as soon as the
field H is non-zero. The Coniglio—Klein droplets, on the other hand, have a
whole percolation transition line extending from the Curie point (H = 0) to
infinite fields; if we cool down the system at constant density then at this line
an infinite droplet is formed for the first time even though no spontaneous
magnetization appears there. Thus physics and geometry are not in one-to-one
correspondence, in contradiction to the first criterion. Also the mean cluster
size and the typical cluster radius diverge along this so-called Kertész line,
although no divergences appear in the susceptibility or correlation length. The
undesired divergences have thus come up again, just like the title character in
Hitchcock’s movie The Trouble with Harry.

The reason for the existence of this Kertész line is quite plausible: at an
infinitely strong up field H, for a finite temperature, all spins point up, and
between them the additional bonds are distributed randomly with probability
7w =1 —exp(—2J/kT). Thus we now have a normal bond percolation prob-
lem, and the condition

1— e-%J/kT= plond — 0.2488 (131)

(on the simple cubic lattice) determines a percolation temperature, which is 55
per cent above the Curie temperature of the cubic lattice. From this point at
infinite field (unit density), the Kertész line extends smoothly down to the
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Curie temperature at zero field (density 1/2) (Fig. 37). How to get rid of
Kertész?

For Ising models in a magnetic field, Swendsen and Wang, following
Kasteleyn and Fortuin, introduced a ghost spin oriented parallel to the mag-
netic field. The spins of the lattice parallel to the field and the ghost spin are
connected to this ghost spin by additional bonds, distributed randomly with
a probability proportional to the field for small H. (In general the probability
is1—e™” h= 2H|kT.) For a two-dimensional lattice, we can imagine the
ghost spin to sit above the lattice in the third dimension. Even for a very small
field, like & = 0-01, every lattice spin has a small chance (1 per cent) to be con-
nected to the ghost spin. Thus a large lattice of, say, one million sites will have
about 10 000 sites, separated from each other by typically 10 lattice constants
but. connected indirectly via the ghost spin. They constitute an infinite though
very loose cluster (in an infinite lattice), like members of a family spread over
all continents but still phoning each other via satellite. Thus, exactly as it
should be, there is no infinite cluster at zero field; there are no geometrical
divergences any more at non-zero field, and the above criteria are always
fulfilled. The probability 1 —exp(—2J/kT) ensures that loose structures at
high temperatures are not counted as one single droplet; on the other hand,
the probability 1 — exp(— A) creates some connectivity when an external field
forces the spins to reorient. We leave formal proofs to the experts and merely
conclude: the trouble with Kertész is over.
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Fig. 37. Schematic phase diagram of a fluid or Ising model. The curve similar to a
parabola is the coexistence curve where liquid and vapour coexist. Along the dashed
semicircle we can go from the vapour to the liquid phase without any divergences in
the density or its derivatives; however, the surface tension for up droplets vanishes
along the dashed Kertész line.
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7.6. APPLICATIONS

Having found a proper definition, what can we do with it? Among other
things we can check the assumptions entering traditional nucleation theories.
So we look how the cluster numbers ns for T < T, decay as a function of the
cluster size s. Computer simulations showed in three dimensions that in zero
field the cluster numbers decay as an exponential function of the surface area:
log n; o« —s/, In a field A, it decays as ns(H )/ ns(H = 0) o< exp( — hs) for large
hs. These results confirm classical nucleation ideas. Right at the Curie point
in zero field the cluster numbers decay as s~ 23 in three and as s 2 in two
dimensions, similarly to percolation theory. In this sense these droplets justify
the old ideas used to describe the liquid—gas phase transition or its magnetic
analogue by the geometric picture of droplets of all sizes. At and above the
critical point, the Coniglio—Klein droplets lose their droplet geometry: they no
longer have a well-defined surface and instead are fractals similar to /lattice
animals.

There is also a new and surprising prediction arising from this droplet
picture. It comes. from the Kertész line which we had hoped to have buried
for good, but which is resurfacing again. Along this line the droplet numbers
ns no longer become critical, due to the ghost spin connections which give a
factor exp(— As) to ns since each of the s sites of a finite cluster must not be
connected to the ghost spin. However, the droplet surface tension I' is
vanishing on the Kertész line, which means that -—log(ns) varies as
hs +T's?? + ... on the low-temperature side and as /s + const * s+ --- on the
high-temperature side of this transition line. Possibly this means that Taylor
expansions of the free energy as a function of H or T have a different conver-
gence behaviour on the two sides of this line. If correct, it would mean that
we have to make more precise the century-old wisdom that ‘nothing happens’
if we move continuously from the vapour to the liquid phase of a fluid by
heating it above the critical temperature. Instead, we say that no singularity
in the.thermodynamic quantities occurs on this route, but the droplet surface
tension vanishes at a sharp transition point, namely when crossing the Kertész
line (Fig. 37).

Of much greater practical importance is the computer time saved by the
Swendsen—Wang algorithm. This method first determines the droplet struc-
ture of the spin configuration, and then flips each droplet with probability 1/2.
(To get a stable sign of the spontaneous magnetization, or to get proper
nucleation events, one may keep the orientation of the largest droplet or ghost
spin droplet fixed.) In this way, the system relaxes much faster into equi-
librium than with the traditional Metropolis technique of flipping one Ising
spin at a time. Right at the Curie point, the relaxation time for a system of
linear dimension L varies roughly as LZ. For the traditional single-spin-flip
technique z is about 2, whereas for the cluster-flip technique z is much smaller;
in two dimensions it could be even zero, corresponding to a log(L) variation
of the relaxation time. If we look at the relaxation of the cluster numbers #(¥)



146 Introduction to Percolation Theory

in the square-lattice Ising model, we find s-dependent relaxation times again
varying with log(s) or some small power of s, if Swendsen—Wang cluster flip-
ping is applied. Thus Ising ferromagnets can now be simulated much better
at the Curie point, provided we are not interested in the kinetics of the single-
spin-flip method. For example, conflicting theories for two-dimensional
randomly diluted Ising models were successfully checked with this method. If
similar tricks could be applied to the lattice gauge simulations of elementary
particle physicists, its implications on computer-time budgets and special-
purpose computers would be enormous and could constitute the most
important economical application of percolation theory.

7.7. DILUTE MAGNETS AT FINITE TEMPERATURES

We now return to the case where a random fraction p of all lattice sites is
occupied by spins whereas the rest is not magnetic. Clusters are now again the
usual groups of neighbouring occupied sites.

At finite temperatures, some spins within the same cluster will no longer
be parallel to each other. An isolated pair, for example, will be antiparallel
with a probability proportional to 1 — = =e~2//¥T, In order still to have a
spontaneous magnetization, we now need a higher concentration p, i.e. the
ferromagnetic threshold shifts upward by an amount proportional to 1 — .
Finally, for p =1 we recover the pure Ising model; there the Curie tempera-
ture T, is the upper boundary of the region with a spontaneous magnetization:
JIkT: =1n(1 + Ji)/Z =0-44061 and J/kT.=0-22165 on square and simple
cubic lattices for p = 1. Figlire 38 shows schematically this ‘phase diagram’.
Only the ferromagnetic region has a spontaneous magnetization.

While for T— 0 we find, as a function of p — p., percolation exponents
for mo and x, at p=1 we find, as a function of T.— T, Ising exponents.
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Fig. 38. Schematic phase diagram of the dilute Ising model on a simple cubic lattice.
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In the whole intermediate region, for p.(T=0)< p< 1, a third type of
behaviour has been found in two and (less reliably) in three dimensions.
At zero temperature, all the spins on a percolation cluster are parallel to

each other. As temperature is slightly raised, some spins will flip, and we shall
have Coniglio—Klein thermal droplets superimposed on the quenched
geometrical clusters. The Coniglio—Klein bond-preserving probability = is
thus very similar to that discussed in Section 4.5. Indeed, the singly connected

bonds will also be the first to break at finite temperature. At the percolation
threshold p = p., the bond-breaking probability 1 — 7 must obey the same
recursion relation as in Eq. (70), hence

e-ZJ'/kT = bl/ve—?.J/kT + O(e-4J/kT) (132)
Recalling that &' = | b, this allows us to identify a thermal correlation length,
froce” 2 KT (p=pc) (133)

For finite » — p., we end up with the two competing lengths, the geometric
length o | p — p.| ™" and the thermal length £1. Magnetic correlations are des-
troyed by the geometry if ¢ <€ &1, and by thermal fluctuations if £ > &r. .

At finite temperature, or 7 < 1, we expect a phase transition at a finite
temperature 7¢(p). From scaling, we expect the magnetization to behave near
De, and thus at rather low temperatures, as

e—ZJ/kT
m=(p- p)’mi(¢r/§) = (p — pe)’rma ( — ) (134)
P — Pe
For positive p — p., this magnetization m can vanish only if the functiogls
m1, my vanish. Making the usual power-law assumption 7z (x) o< (x — xc)™7,
we find

mo (p— pe)fP1(Te — T)°r (135)
and T.(p) is given by
exp(—2J[kT.) = const X (p — pc) (136)

An alternative way to derive the recursion relation (132) is as follows:
consider the two spins at the two opposite edges of the renormalization cell
of length b. They are connected via a link containing singly connected bonds
and blobs. If we replace this whole link by an effective bond, with an
exchange energy J', then the probability p; to have the two spins antipara!lel
is smaller by a factor y =exp(—2J'[kT) than the probability p> of ha.wmg
them parallel: p; = y/(1+ y), p2=1/(1 + y). The same rule applies,.wnh J
replacing J', for each original bond of the cluster. Each bond on which two
spins are antiparallel costs a factor exp(—2J/kT) in probability. Tl.lus the
most probable way to have the two end spins antiparallel is by selecting one
of the singly connected bonds and then having all spins on one side of this
bond oriented up, and all the remaining spins on the other side of this bond
oriented down. Since there are b'/* such bonds to select, the total probability
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for antiparallel end spins is 5'*e~2’/%T for small exp(—2J/kT), apart from
corrections of order exp(—4J/kT) from the denominator. (If we want to have
the spins on two ends of a blob antiparallel, we must break at least two bonds
which connect these spins in parallel. The corresponding probability again is
of order exp(—4J/kT) and thus also negligible.) This leaves us with Eq. (132).

Magnetic systems are often described by the Heisenberg model, in which
the local magnetic moments are three-component vectors, S;, which are free
to rotate in space. The ‘exchange’ energy of two neighbouring spins is now
the scalar product — JS;-S;. As mentioned in Section 6.3, the basic excita-
tions there are spin waves, and not droplets. If we look at the link described
in the previous paragraph, then we shall not have a sharp domain wall
between up and down spins. Rather, the spins form a ‘Bloch wall’ in which
they rotate gradually. The mapping alluded to in Section 6.3 can be used to
show that in this case, at low temperatures,

J bRy

kT kT
and thus the thermal correlation length behaves as {roc 77V £ This yields a
phase diagram similar to Fig. 38, but with T, oc (p — pc)**".

7.8. SPIN GLASSES

Spin glasses are much nastier cases of disordered magnets. Now the exchange
interaction Jix between two neighbouring spins /i and k& can be either ferro-
magnetic (positive) or antiferromagnetic (negative). If a ring of four bonds
connecting neighbouring spins has, say, three positive and one negative sign,
then these spins are ‘frustrated’, i.e. they must violate at least one bond
whatever their orientation. The scientists working on spin glasses have also
been frustrated, since they did not even know the spin orientations at zero
temperature, i.e. the ground state with the lowest energy. Frustration tends to
create many different states with the same energy.

The situation is not trivial even if we take a dilute ferromagnet, as
described earlier in this chapter, and replace a small fraction of its bonds by
antiferromagnetic ones with negative J. Similarly to the thermal fluctuations,
this destroys the ferromagnetic correlations, and forces an increase in the
ferromagnetic percolation threshold at zero temperature, and a decrease of
the magnetic ordering temperature above that threshold. In a sense frustration
allows blobs (like the frustrated ring of four bonds mentioned above) to break
the transmission of order at zero temperature as easily as do the singly
connected bonds mentioned before and this increases the ferromagnetic
threshold.

The dilution of an antiferromagnet with ferromagnetic bonds seems to be
an essential feature in many of the much-investigated high-temperature
superconductors.
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CHAPTER 8
Summary

Once your nightmares are over about termites digging tunnels through your
brain, or 1-56-dimensional animals burning in forest fires, you may wish to
reflect on whether you have learned anything from this book.

Our first aim was to show that percolation is an active field of research.
Many of the results presented here were not known at the time most of the
prospective readers of this book were born. In general, the knowledge was
formed in the order in which the chapters are printed. Thus the kinetic aspect
contains, as its reading list suggests, the more recent ideas. A theorem by
Dyson tells us that a publication coming out at time ¢ and taking into account
research up to time ¢ — £y will be outdated at time ¢ + #o. If you prepare any
seminar talk about some part of this book, you should therefore try to find
out what has happened in research more recently, for example by consulting
the Science Citation Index after locating a relevant publication from the
reading list in this book. In short, theoretical physics in general and perco-
lation theory in particular is a human enterprise and not the fixed body of
knowledge which it often appears to be when presented in formal courses
within your curriculum.

In addition we hope you have learned what a phase transition is. Admit-
tedly, percolation has a somewhat unusual phase transition since no tempera-
ture is involved. Nevertheless, many functions or their derivatives, as a
function of a continuously varying parameter p, diverge or vanish at one
sharply defined point, the percolation threshold p = pc. In percolation theory
these functions are purely geometric properties; at most other phase tran-
sitions one deals with thermal properties like specific heats as function of
temperature, etc. But both cases are similar in that the important functions,
or their derivatives, are not continuous at the critical point.

The similarity between thermal phase transitions and the percolation
threshold becomes even clearer when we look at the scaling laws governing the
leading asymptotic behaviour very close to the critical point. Many functions
G(x, y) depend on two variables x and y which both vanish right at the crit-
ical point. Then, in Egs. (33), (52), (55), (73), (107) and (115) we have seen
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six different examples of the same principle:

G(x,y)=x"g(y[x®)

is the scaling assumption for small x and small y. For example, y may corre-
spond to the distance from the critical point, and 1/x to the cluster size.
Scaling theory does not predict the value of the critical exponents A4 and B
or the precise form of the scaling function g; but with this scaling assumption
we can calculate the critical exponents of many other quantities and relate
them to 4 and B. In general, for simple problems two independent exponents
like A and B here are sufficient to determine the other exponents. No clear
answer could be given, for percolation as well as for thermal phase tran-
sitions, as to whether or not the additional exponent entering into dynamical
scaling is related to the static exponents. For thermal phase transitions that
depends on the system studied. To calculate the numerical value of any of
these exponents we have to go beyond scaling theory, since then relations
between exponents are not enough. Renormalization group techniques have
been developed into a powerful tool for estimating exponents numerically. In
a few cases, mostly in two dimensions, we (believe we) know even the exact
values.

Right at the critical point, one of the arguments in the function G(x, y)
above may be zero; for example y=0if y= p— pc or y= T — T.. Then most
quantities vary asymptotically with a simple power law, like G o x™4 for
small x. If x happens to be an inverse length one may, under certain con-
ditions of self-similarity, call 4 the fractal dimension for the quantity G,
particularly if G can be identified with the mass of an object. In the largest
cluster right at the percolation threshold of an L x L x L simple cubic lattice,
the number of sites increases asymptotically as L?°, which makes it a
2-5-dimensional fractal. We see that in this sense the concept of fractals is
contained in the concept of scaling near phase transitions; but the fractal
concept can also be applied to power laws where no phase transition occurs,
like the lattice animals and their radii discussed after Eq. (50) and the various
subsets of the percolation cluster, discussed in Section S.2.

There is no need to understand thermal physics before one studies perco-
lation. One does not need to know classical or quantum mechanics, or statis-
tical physics, to understand percolation. Only geometry and probability, and
for conductivities some elementary concepts of electricity, were required in
this book. On the other hand, the knowledge from our simple percolation can
be helpful in understanding better the behaviour of the more complicated
thermal phase transitions.

Finally we hope that you have learned that percolation is a good intro-
duction to the field of computer simulations. The largest systems ever
simulated (10! sites) seem to belong to percolation theory. Small systems can
be simulated on simple computers and produce nice pictures like Fig. 2.
Percolation theory therefore can be and has been used as a way of learning
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computer usage. For the expert the Appendix A will give somewhat more
information, since the basic difficulty of computer experimentation is the
interpretation of data, not their production.

We call these computer simulations ‘experiments’ since in this book we
avoided contact with real experiments in the laboratory or in Nature. Such
real experiments, of course, have some difficulties. Usually the lattice is not
completely periodic but has some defects, some impurities cannot be avoided,
the distribution of sites is not completely random, and so on. Therefore this
book has tried to introduce the reader to percolation theory, not to perco-
lation experiment. (We saw, however, that computer experiments have
difficulties too: the systems are quite small, and for very large systems the
random numbers might not be random enough.) These deviations make it in
general quite difficult to get an exact correspondence between the percolation
model and some real material. However, the principle of universality suggests
that the critical exponents found in percolation theory agree with the critical
exponents which careful laboratory experiments should give. If nearly all
three-dimensional percolation models have the same critical exponents, then
these exponents should not depend on such minor problems as lattice defects.
This universality is one of the reasons why critical exponents were emphasized
so much in this book. Indeed, certain metal—insulator films turned out to
mimic excellently the behaviour found in computer simulations of percolation
models, as reviewed by Deutscher, Kapitulnik, and Rapaport in the book on
Percolation Structures and Processes mentioned at the end of Chapter 1.
In the same book, Zallen gives a beautiful overview of the many different
applications one might find for percolation.



APPENDIX A
Numerical Techniques

In this appendix we discuss how one can estimate asymptotic quantities from
exact ‘series’ data or from Monte Carlo simulations, and we explain how a
computer can count clusters in very large lattices. Estimates of asymptotic
properties are usually quite accurate. Estimates of systematic errors, on the
other hand, are similar to weather prediction: one can never be sure of being
right if one has predicted the behaviour at infinity for a quantity known only
for finite intervals. Beginners in particular tend to underestimate the size of
the systematic errors involved in their extrapolations.

A.1. ANALYSIS OF EXACT DATA

We mentioned in Section 2.7 two methods of series analysis: Ratio and Padé
approximation. To apply these methods, we need to know from exact enumera-
tion the coefficients of a power series in the concentration p or in some other
suitable variable. Such methods are also important for thermal critical
phenomena. In percolation, we often have data on cluster numbers n;, cluster
radii R, numbers of lattice animals g;, or other similar quantities which we
want to analyse directly and which are not coefficients of a series.

In this case we may simply introduce the so-called generating function

G(N\) =Zs g\’ (A.1)

where g; stands for the quantity we are interested in. If asymptotically for
large s the numbers g, vary as

gs o s %(const)* (A.2a)

as is the case with many of these quantities, then we can evaluate G for A
slightly below 1/const by replacing the sum in Eq. (A.1) with an integral.
Straightforward integration, similar to the evaluation of moments of the
cluster size distribution in Chapter 2, then gives

G o gf? (A.2b)

for small €= - In () const) o const ! — . This generating function and its
critical exponent @ — 1 can then be analysed with Padé approximations. (If
6 > 1 it may be practical to look instead at the generating function of skgs
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with & chosen to be so large that the generating function diverges at
\ = l/const. Equivalently one many look at derivatives of G(\).)

A.2. ANALYSIS OF MONTE CARLO DATA

Monte Carlo data, in contrast to the exact ‘series’ data mentioned above, have
finite statistical errors. Thus except for very high-quality data, it is not recom-
mended to fit straight lines through two consecutive data points. In general
the slope and intercept of these lines will fluctuate too strongly to be useful.
In fact, many Monte Carlo data are not precise enough to estimate three par-
ameters simultaneously with reasonable accuracy, as in Eq. (A.2) (constant,
exponent 6, and factor of proportionality). Fortunately, for percolation, the
critical point p. can be determined well by the iteration method of Section 2.7,
independent of the data for any divergent quantity or generating function.
Thus for medium-quality data we can take the percolation threshold from that
method, or from the literature; then only two parameters are needed to
describe the leading asymptotic behaviour of many quantities.

For example, we may look at the mean cluster size S(p) < |p— pc|™”
near the threshold, or at the cluster size distribution ns(pc) < s~7 at the
threshold for large s. Then with medium-quality data one plots S or n;
double-logarithmically versus | p — pc| or s, respectively. Fitting a straight
line through the data point gives an estimate for the exponent v or 7 from the
slope, whereas the intercept gives the factor of proportionality. If p — p. or
s vary by at least an order of magnitude, without taking into account data far
away from p. or small clusters, respectively, then the exponent estimates may
be correct within about 10 per cent.

This fit of a straight line may be done visually on log-log paper or it may
be done electronically. Many hand calculators have built in programs to deter-
mine slope and intercept automatically. If you want to program this fit for
yourself you will find the formulae in suitable manuals or textbooks (least-
squares fit). They are also derived easily by assuming that (taking yi=1In (S)
as function of x;=In|p— p.|) the sum of the squared deviations,
Ti(yi — axi — b)?, from the straight-line fit y = ax + b is as small as possible.
Differentiating this sum with respect to a and b, and setting the results equal
to zero, determines the slope @ (exponent) and the prefactor b (proportion-
ality factor). .

Each single datum point has a statistical error. A rough estimate of this
statistical error can be made by repeating the experiment with another set of
random numbers. The difference then is of the order of the statistical error.
A more reliable estimate is to make not just two but N independent simu-
lations. We denote the average of a quantity y over these N simulations by
{y), at one fixed parameter x. Then the probable statistical error (which is



not the standard deviation) for y is

~ 2y — (py2] 2
Ay‘[ N=1 ]

If we are interested in only one value for y we can write ( ¥) * Ay as our esti-
mate and error bar for the quantity y. (The denominator N — 1 is needed to
account for the fact that your error is smaller the harder you have worked,
that is the larger N is. On the other hand, with only one measurement, i.e.
for N=1, one has (y?) = ()2 even though the error is not zero. Thus it
would not be legitimate to divide by N only. In any case, N should be large
for precision measurements, and then the difference between N and N—1 is
unimportant.)

Unfortunately, to estimate asymptotic properties these statistical errors
are not enough. Usually we do not want to know what the cluster numbers
are for s = 1000, but how they behave for s = «, knowing them only for, say,
10 < s < 100. Even if the statistical errors are exactly zero (as they are in
series data) we cannot extrapolate to infinity with zero error. The additional
deviations due to these necessary extrapolations are called systematic errors.
Textbooks often contain formulae showing how to estimate the statistical
errors for the slope and intercept of a straight-line fit from the statistical
errors Ay of the single datum points. But these formulae are misleading for
our applications since they ignore the systematic error. From only two exact
points, say n; for s=1 and s = 2, these formulae would predict zero error for
exponent and proportionality factor in n; o< s~7. But we know that we cannot
predict the behaviour for very large s with zero error if we know it only for
s=1and s=2.

How can we get better estimates for the quantities of interest and their
error bars? First we need high precision for each point. Then, if we plot, say,
ns, versus s double logarithmically, we will see curvature in our data even for
rather large s. This curvature tells us that a simple power law is not sufficient
to describe the data. Thus instead let us try to work with

(A.3)

ns(pe) o s77(1 + const/s™ +--+) (A.4)

with one correction-to-scaling term proportional to s~ . Analogous assump-
tions can be made for, say, the mean cluster size S(p) as function of p — p.
(see review of Adler et al. in the book Percolation Structures and Processes
cited in Chapter 1). Of course, there will be more than just this one
correction term to the leading s~7 variation, but in general present series or
Monte Carlo data are not accurate enough to determine a second correction
term reliably if nothing else is known about it. Near Eq. (51) we discussed
how to analyse such data.

Whichever method you use, you should also vary the set of data points
on which you fit the straight lines. Usually, your data for small clusters (or
for p far away from p.) are more accurate than those for large s (or p near
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pc). Unfortunately we need mainly data for large clusters.Omitting the largest
and/or the smallest cluster size will slightly change your estimates and give you
a better impression of the systematic errors in your analysis.

If you have data varying over a large range of parameters, like the dis-
tances in Fig. 32 as a function of time up to 107, you may also go back to the
good old log-log plot, determine the slope of the curve as a function of one
of the variables, and extrapolate this slope to the asymptotic regime by
plotting this slope versus some suitable power (exponent Q) of the selected
variable.

Generally, in a careful analysis you should try all methods which seem
suitable. The spread of the results may give you a better impression of the
error bars for your estimate than any one single method.

Unfortunately, even that is not enough. If you have found a suitable fit
for, say, ns(p.) versus s, you may still get something wrong since you had to
employ finite systems. Sometimes (see Section 4.1) the effects of the finite
system size can be used to determine some exponents, or can be taken into
account by finite-size scaling. But if most of your data are made at one system
size, and fewer runs are made at a drastically different system size, then a
much simpler comparison of the two results tells you what order of magnitude
the finite-size effects are. Quite often it also happens that programming errors
give an influence which vanishes for system size going to infinity. In addition,
you may get some systematic errors from random number generators which
are not really random; trying different generators may, or may not, help.

In summary, it is difficult but possible to extract exponents from high-
quality data with an accuracy of the order of 1 per cent. It is much easier to
estimate errors of that order, by using some standard formula ignoring syste-
matic deviations, but then it is likely that later one will regret having published
such an overly optimistic error bar. Our best advice is to try different methods
and use some fantasy; different problems and different data qualities require
different methods of analysis.

A.3. COMPUTERIZED CLUSTER COUNTING

The preceding sections of this appendix have discussed how to analyse cluster
numbers. Redner’s paper (see Mertens (1990) cited in Chapter 2) gives a short
program for counting exactly the number of different cluster configurations
for a given size. But how do we count clusters in a Monte Carlo sample of
a large lattice? And how do we check whether a cluster connects top and
bottom in such a sample? If one tries to do that visually one will presumably
make some errors in a large lattice. We now explain how to teach a computer
to do that work for us. We restrict ourselves to the algorithm of Hoshen and
Kopelman (1976) since that allows the simulation of large lattices without
having to store the whole lattice. Leath’s entirely different algorithm, which
involves letting one cluster grow, has already been mentioned in Chapter 2.
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In general, simulations of a lattice are faster if one numbers all sites
consecutively with one index, and not with d indices in ¢ dimensions. For
example, a site on a 10 X 10 square lattice does not need to be determined by
two indices / and j between 1 and 10 each; we can also number them with one
index K between 1 and 100. Then the first line has indices 1,2, ..., 10, the
second line is numbered 11-20, and so on, until the last line with K from 91
to 100. The four nearest neighbours of a site K have the indices
K—-1,K+1,K—Land K+ L, on an L X L square lattice, thus the left neigh-
bour of the leftmost site 21 of the third line is taken as site 20, the rightmost
site of the second line (‘helical boundary conditions’). For a simple cubic
lattice the fifth and sixth neighbour are K — L2 and X + L?; for a triangular
lattice, the are K— L + 1 and K+ L — 1. However, these general methods are
not even needed to count ciusters on a square or triangular lattice, since then
one line only has to be stored, as will now be explained.

What we would like to have is an algorithm which gives all sites within
the same cluster the same label, and gives different labels to sites belonging
to different clusters. Then the top of a sample is connected to its bottom if
the same label appears in both the top and the bottom line or plane. And by
counting how many sites have the same label we get the cluster size s.

Unfortunately, life is more difficult than our dreams. Let us look at the
example of Fig. 39 and analyse it in the same way as you read this book: from
left to right within each line, and then from the top line to the bottom line.
We will give the first occupied site in the left upper corner the label 1; its
neighbour to the right is empty and needs no label; then follows another occu-
pied site, labelled by a 2, another empty site, and finally an occupied site
labelled by a 3. The next line starts with an occupied site which is a neighbour
to the occupied site labelled by a 1 in the first row. Thus we label this site by
a 1, too. The next site is empty; the third site is labelled by a 2 since it is
directly below the occupied site labelled 2 in the first row. The fourth site is
neighbour to the third one and thus also labelled by a 2. Thus when we are
looking at the fifth site our labels so far are:

1 0 2 0 3
1 0 2 2 7

where we marked the empty sites by zeros. What label do we choose for the
fifth site denoted here by a question mark? Its lefthand neighbour says it is
a 2 whereas its top neighbour claims it as its neighbour with a 3 label. In this

Fig. 39. Illustration of a 3 X 5 square lattice with 11 occupied sites, to be analysed
by the Hoshen—Kopelman algorithm.
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Output of this type was used by Margolina ez al. (1983) (cited in Chapter
2) to analyse lattices with up to 10'? sites, using only one megabyte of a CDC
Cyber 76. Clearly that would have been impossible without the
Hoshen—Kopelman algorithm with its elegant classification routine and the
recycling of labels of labels no longer needed in the array N. With additional
tricks, Rapaport (1985) (as cited in Chapter 2) simulated at 160 000 x 160 000
square lattice; today a workstation can repeat his world record on a weekend.
In spring 1991, Rapaport simulated a 640 000 x 640 000 lattice.

Readers interested in diffusion on disordered lattices will find FORTRAN
programs, including those for CDC Cyber 205 vector computers, in the paper
by Pandey er al. (1984) cited in Chapter 6.

FURTHER READING

Hoshen, J. and Kopelman, R., Phys. Rev. B, 14, 3428 (1976).



APPENDIX B
Dimension-Dependent
Approximations

B.1. UPPER CRITICAL DIMENSION

We start with a discussion of polymer chains, or self-avoiding walks, and
branching polymers, or lattice animals, both in a dilute solution with no inter-
action to other chains or polymers. As we mentioned in Section 5.3, a polymer
chain is a random chain of monomers (except for their connections to their
nearest neighbours). The chain with s monomers behaves as a random walk
(diffusion) of s time steps. Therefore, its radius R; varies as ./s. For polymers
with random branchings, the lattice animal description may be a good model,
and there the Bethe lattice approximation gives R; o< s'/# (Table 2) just as for
percolation clusters at p.. We call the radius in these simple limits Rso, thus
soc R with the fractal dimensions Do =2 and 4 for chains and branched
animals respectively.

In reality, we have interactions, within the same chain or polymer,
neglected in these approximations, which may lead to a lower fractal dimen-
sion D and a larger radius R o s/P. The interactions become important if
different pieces of the polymer (or the animal) have a finite probability of
getting close to each other. The density of the non-interacting polymer, in a
volume of linear size R0, is p o RE° ~9. Therefore, the probability per unit
volume that the polymer goes twice through that unit volume is proportional
to p2, and the total number of such intersections is of order R%p? oc RZ*~4.
These intersections thus become negligibly rare for large Ry and
d > dy, = 2Dy, where d, is the ‘upper critical dimension’. This dimension is
dy = 4 for polymer chains and d, = 8 for lattice animals. At d > d, we can
thus describe the polymer as non-interacting, and D = D,.

For percolation clusters at p., we saw that for the Bethe lattice (and
therefore for high dimensions) Dy = 4, so that the cluster looks somewhat like
a branched polymer, with a few large loops. At high dimensions, the cluster
backbone behaves like a self-avoiding walk, with Dog = 2. To create a blob,
we need the backbone to intersect with some otherwise dangling bond. The
densities of these two structures are po o R 2~ and pop o« RP#~9, and thus
the number of their intersections is proportional to R Z&popos oc R Pe*Doa=2,
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Therefore, the upper critical dimension, above which this picture is self-
consistent, is dy = Do + Dop = 6. See also the discussion after Eq. (53).

Another way to identify d, =6 is to note that the Bethe lattice results
sns o s7%? and D = 4 imply that the number of spanning clusters of size £ is
of order £9(£*)732 = £975, Therefore, the number of spanning clusters is
larger than one for d > 6. Since the mass and the conductance connecting the
edges of the sample arise from a// the spanning clusters, they contain extra
factors of £77¢ for d > 6 (see discussion at end of Section 5.3).

B.2. FLORY APPROXIMATION

For d < d,, the density of self-interactions grows with Ry, and this yields a
new behaviour. This new behaviour is not trivial and (unlike the results for
d > d,) there exist only very few exact results. The Flory approximation is
based on the competition between the elastic energy and the self-repulsion.
The former tries to keep R close to Ry, as a spring tries to keep its length,
and is proportional to [(Rs— Rs0)/Rs] . The latter is proportional to the
number of self-intersections, which is again of order R&?2. However, now
o x s/Rf, and hence the interaction energy is proportional to SZ/de. Thus the
total energy is

(Rs — Ry0)* | As?
— 7t d

RsO Rs
For d > d, = 2Dy, if the proportionality factor A is independent of s, then
E, is minimiced by Rs= Ry o s/ P (for large s) and we recover the non-
interacting behaviour. For d < d,, the minimum is found via (dE;[dR;) =0,
just as for a string under an external force. This yields (for large s)

E; o

(B.1)

d+2 =l dASZ+2/Do

* 2
or s« RP with
- 2+d
2+ 2/ Do
Thus we have
D=Q2+.d)/3 for chains (B.2a)
and
D=22+ d)|5 for animals (B.2b)

Equation (B.2a) for these ‘self-avoiding walks’ turns out to be exact for
d=1,2, and 4 and correct within 2 per cent in three dimensions. The animal
D of Eq. (B.2b) is exact for d = 3,4 and 8, compatible with numerical data
for d=5,6, and 7, and too large by 0-04 in two dimensions.
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Although animals and percolation clusters have the same fractal dimen-
sions Dy = 4 at high dimensions, they have different upper critical dimensions.
Therefore, it is clear that we cannot describe both by the same Eq. (B.1). In
order to overcome this difficulty, de Gennes (1980) introduced an ad hoc
screening factor, which involves a decay of the prefactor A with large s as
A o s7*, The exponent x can then be tuned so as to reproduce d, = 6. Using
the modified Eq. (B.1), the second term becomes negligible with
Rs; ¢ Ryo o sV*if d > d, = 4(2 — x). Hence, for percolation we need x = 1/2.
For d < d, = 6, minimization now yields

__2+d
2—x+2/Do

This approximate formula is accurate within 1 per cent for d = 3,4 and 5, and
is 5 per cent too high for d=2.

=2+ d)2 for percolation at pc (B.2¢)

B.3. &-EXPANSION

In the approximate Flory formulae, d can be treated as a free continuous
parameter between 1 and d,, and it need not be restricted to integer values.
Such generalizations into non-integer dimensions have proved to be very
useful in critical phenomena, starting with Wilson and Fisher who calculated
exactly a few coefficients in expansions of critical exponents in powers of the
parameter €= d, — d. Such calculations, based on renormalization group
treatments of appropriate field theories, have since been done for most of the
exponents discussed in this book. Since details are too complicated for this
introductory text, we list only the leading terms in Table 2. Although valid
only asymptotically close to dy, extrapolation from d, = 6 even down to d =2
for percolation properties near or at p. often gives surprisingly reasonable
results. Note also that the e-expansions for D near d, do not agree with those
for the corresponding Flory formulae, reflecting the approximate nature of
the latter. Also, the e-expansions for u, 8 and » do not agree with the Alex-
ander—Orbach conjecture d;=4/3. Generally, new scaling hypotheses are
more trustworthy if they agree to all known orders with the e-expansion.

FURTHER READING

Flory approximations

de Gennes, P.G., Scaling Concepts in Polymer Physics (Ithaca, NY: Cornell Univer-
sity Press, 1979).

de Gennes, P.G., Comptes Rend. Acad. Sci. Paris, 291, 17 (1980).

Flory, P.J., Statistical Mechanics of Chain Molecules, (New York: Interscience, 1969).

Isaacson, J. and Lubensky, T.C., J. Phys. (Paris), 41, L469 (1980).
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e-Expansions

Aharony, A., Phys. Rev. B, 22, 400 (1980).

Harris, A.B., Phys. Rev. B., 35, 5056 (1987).

Harris, A.B. and Lubensky, T.C., Phys. Rev. B, 35, 6964 (1987).
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Exercises

CHAPTER 1

1.1

1.2

(a) Program a computer to print a square lattice with occupation prob-
ability p. (b) Use this program to produce pictures like Fig. 2, identify
(manually) the largest cluster on each of them, and draw its linear size
(largest end-to-end distance) and the number of its sites as a function of
p. What can you conclude from these graphs? (c) At p = p. =0-59, count
the number M of sites on the largest cluster in boxes of size
3%x3,5%x5,7%17,...,L xL around a site that belongs to the cluster and
plot log M versus log L. What do you conclude from these plots?

(a) Prove that R? = ¢ for diffusion in an ordered lattice, i.e. p =1, at any
dimension. (b) Write a computer program for a random walk in one
dimension, run it many times, and draw a histogram for the number of
times the walker reaches a distance r from the origin after ¢ time steps.
Compare the resulting graph with exp(—r2/2t).

CHAPTER 2

2.1

2.2

2.3

(a) Calculate the product of the number of nearest neighbours, z, and the
bond percolation threshold for each of the lattices listed in Table 1 in two
and three dimensions. What approximate rule do you identify by looking
at these products? (b) Imagine a sphere (or circle), with a diameter equal
to the distance between nearest neighbours, centred around each lattice
site. For site percolation, each occupied site implies filling the volume
(area) of the corresponding sphere. Calculate the volume (area) fraction
of occupied spheres at the percolation threshold for each of the three-
(two-)dimensional cases listed in Table 1. What is the resulting approxi-
mate rule? Based on this, can you conjecture a rule for the percolation
threshold of spheres which are packed randomly in a box?

Use the exact solution in one dimension to show that the kth moment of
the cluster size distribution, Mx = £,5%n,, diverges as I'x(1 — p)' %, and
calculate explicitly the amplitudes I'x.

(a) For one dimension, calculate the site cluster numbers for the case that
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2.4
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sites are occupied with probability p and bonds are occupied with prob-
ability x. (b) Use the results to repeat Exercise 2.2. (c) Calculate the ratios
LTIk +1-m for both cases. What do you conclude about these ratios?
Consider a general Bethe lattice, in which each site has z neighbours. (a)
Prove that for site percolation, the strength of the infinite cluster is given
by P= p(1 — Q%), where Q must obey the equation Q=1- p+ pQ*~".
Expand Q*"'=[1-(1-Q)]*"" in a Taylor expansion up to quadratic
order in (1-Q) in order to obtain the approximate solution
P=B(p- pc), and find p. and B. (b) Repeat the derivation of Eq. (17),
and identify the amplitude I" in S =T"/(p. — p). (c) Find the proportion-
ality factor a in the asymptotic relation ¢ = a(p — pc)* in Eq. (23). (d)
Repeat the arguments which led to Eq. (23), but keep all the amplitudes.

‘Show that the result can be written in the form of Eq. (36), so that go and

2.5

2.6

2.7

2.8

g1 depend on z but the function f(x) is universal (i.e. z-independent).
(a) For z =3, show that Eq. (16) yields

P=B(p—pc)+ C(p—pc)+ -

and identify the coefficients B and C. (b) Use Eq. (16) to plot log P versus
log(p — pc). Why do you not find a straight line? What determines the
range of (p — p.) where the line is straight?

Use Eq. (36), with f(z) =e™?, to calculate P and S explicitly for p > p.,
with all the proportionality factors (‘amplitudes’). Calculate also the
amplitude for S below pc, and prove that the ratio R does not depend on
qo and q.

(a) Give the exact ns(p) for s=1,2, 3,4, for both site and bond perco-
lation, on the triangular lattice. (b) Use the results to obtain low concen-
tration series for S(p). (c) Use the ratio and the Dlog—Padé methods on
these series, to estimate p. and «.

Use Eq. (24) to derive an expansion of Pin powersofg=1- pforg < 1.
For site percolation on the square lattice, show that

P=1—-qg-qg*+q*—4q%—4q" + --

CHAPTER 3

3.1

3.2

(a) Calculate RZ(p) for site percolation on the square lattice and
s=1,2,3,4 exactly. (b) Use-the results and Eq. (47b) to calculate a low-
concentration series for £2.

Given a very large finite cluster, of mass s, at p., one measures the mass
which is connected to its centre of mass within a box of linear size
L,M(L,s). (a) Discuss the dependence of M on L and on s. Writing
M(L,s) = L*m(L[s®), identify the exponents A and B, and find the
behaviour of the scaling function m(x) for x < 1 and x > 1. (b) The mass
M can also be studied as a function of L and R,. Repeat the above
discussion for M(L, R;).
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CHAPTER 4

4.1 Use the one-dimensional result IT = p* to calculate pa, and A as functions
of L. Use the plot of A versus pa., to ‘find’ pc, and then the plot of
log(pe — pav) versus log L to find ». For what range of L does this
method work?

4.2 Calculate S(L, p) for one-dimensional site percolation on a finite segment
of L sites, with periodic boundary conditions. Discuss in detail the scaling
properties of S, and the limits L < £ and L > §£.

4.3 In a bond percolation renormalization group on the square lattice, the
lattice is replaced by a new lattice, with bond of length 2, as shown by
the lines in the figure on the left. In a truncated approximate treatment,

71\ 7/
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N L |
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Exercise 4.3

the new bond concentration p’ is calculated by checking connectivity
within a single square, as drawn on the right. Show that the recursion
relation is

pl=2p2_p4

and use it to find p. and v.
4.4 Do the same as above, for the honeycomb lattice (see figure). Show that

pl — 2p3 _ p6
and find p. and ».

o= D
0=
7

Exercise 4.4
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4.5 Assume that A o< b~'*(1 + C/b? + ...) for the width A in Eq. (69). How
would you determine » from Monte Carlo values of A?

CHAPTER 5

5.1 Find the values of L, L,, L3, Ly and b which generalize the
Mandelbrot—Given curve to yield good imitations of the critical perco-
lation cluster in four and five dimensions, and calculate the corresponding
values of Dg, Dminy Dmax, Dsc and {r. What are the corresponding values
for d > 6?

5.2 Prove Eq. (95) for the multifractal exponents of the current distribution
on the generalized Mandelbrot—-Given curve.

5.3 There are two possible definitions of the backbone: (a) All the internal
bonds which are connected by different paths to the two terminals, or the
union of all the self-avoiding paths between the two terminals; (b) All the
bonds which carry non-zero currents when a voltage is put between the
two terminals. Numerical simulations show that the masses of the two
backbones have the same fractal dimensions. Calculate these two fractal
dimensions using the renormalization group scheme of Fig. 19 and
comment on the results.

5.4 Use the bond renormalization scheme of Fig. 19 to calculate the multi-
fractal exponents y(q) for the current distribution on the critical perco-
lation cluster in two dimensions. Use the results to evaluate Dg, {r, ¥(2)
and Dsc.

5.5 Use the renormalization schemes given in Exercises 4.3 and 4.4 to obtain
estimates for the exponents Dsc, Dmin, Dmax, D and {r.

5.6 (a) Two bonds are connected in parallel, and each has a conductance
whose distribution is given by Eq. (98). Show that the distribution of the
net conductance G is given by

f(G) = SO do f(0)f(G ~ o) & G'~2"

(b) When the two bonds are connected in series, with distribution func-
tions f1(o) and f>(o), give arguments why for very small net conductance
G one has

S (G)=f1(G) + f2(G)

(c) Use the above results to show that if 0 < w < 1, then the net f'(G)
for the Mandelbrot—Given curve and for the renormalization scheme of
Fig. 19 are dominated by singly connected bonds, i.e. f'(G)=
Msc(b)f(G).

(d) If we rewrite Eq. (98) in the form f(o) do = (go/0)" d(o/00), then
show that f'(G) dG = (06/G)" d(G/a3), with a6 =b"""""Dg, Explain
how this yields the results of Section 5.7.
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CHAPTER 6

6.1

(a) An ant performs a random walk on a finite large cluster, of s sites,
at p.. Write down a scaling form for the root mean square distance R as
function of ¢ and s, and discuss in detail the limiting behaviour for short
and long times. (b) For long times, one observes that R = R; + Ae™"".
Use the scaling results of part (a) to deduce how the relaxation time.r
depends on s.

6.2 (a) An ant begins a random walk at the central site on a one-dimensional

6.3

6.4

6.5

cluster of three sites. Prepare a table of P;(¢) for 10 time steps, for both
a ‘blind’ and a ‘myopic’ ant. What do you conclude on the stationary
limits  Pj(stationary) for these cases? (b) Assuming that
P;i(t) = Pi(stationary) + A(— 1)’'e™"", use Eq. (104) to find the relaxation
times 7 for these two cases.

(a) Prove that for branched polymers, where loops are not important,

2D _ 2D
D + Dmin .Dm + l

where Dy = D|Dmin. Give Dy a geometrical interpretation, and explain
why it may be considered more ‘intrinsic’ than D. (b) For walks on the
backbone of branched polymers, prove that the fracton dimensionality is
dsg=1.

Describe biased walks which count the accessible perimeter sites contained
in El,Ez and E3.

For diffusion fronts, the mass on the front is a function of both L and
£ Use scaling arguments to show that for L » &, this mass behaves as
LEP~1 How is this generalized to d-dimensional fronts?

ds=

CHAPTER 7

7.1

(a) At p., the low-temperature magnetization of a dilute magnet is given
by

1-7 ﬂ
mockls tanh(kT>

Use arguments like those leading to Eq. (32) to show that the singular
dependence of m on H is of the form m o« HY?, and prove that

1___,__ B _d-b
5= 55, D

(b) For p < pc, show that
m(p, H) = (pc — p)°f(Hs)

and discuss the behaviour of f(x) for small and large x.
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7.2

7.3

7.4
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(c) ‘Metastable’ states and hysteresis are obtained in a magnet if for
P > p. the magnetization m is oriented antiparallel to the field A. Deter-
mine the metastable magnetization from the cluster numbers in the dilute
low-temperature Ising model. (Hint: Infinite cluster antiparallel to H.)
Does this formula lead to a ‘spinodal line’, as many approximate theories
of metastability do? (At spinodal lines, dm/dH diverges even far away
from the Curie point.) Does your formula lead to a finite nucleation rate
(Section 7.3), or have the metastable states an infinite lifetime?
Determine, from the known literature values of the Ising critical point
for the square and simple cubic lattices, the bond probability in the
Coniglio—KIein definition.

Determine from the known bond percolation thresholds the temperature
at which the Coniglio—Klein droplets (without ghost spin correction) per-
colate at infinitely strong magnetic fields, for the square and simple cubic
lattices.

Program the Ising model on the square lattice with the Swendsen—Wang
technique, for zero magnetic field. (Hint: First learn the
Hoshen—Kopelman technique explained in the Appendix A, Section A.3,
to characterize percolation clusters.)
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