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We introduce a novel class of two-phase composites that are structured by deterministic Moiré7

patterns, and display exotic behavior in their bulk electrical, magnetic, diffusive, thermal, and optical8

properties as system parameters are varied. The dependence of classical transport coefficients on9

mixture geometry is distilled into the spectral properties of an operator analogous to the Hamiltonian10

in quantum physics. As the system is tuned with a small change in the twist angle, there is a marked11

transition in the microstructure from periodic to quasiperiodic, and the transport properties switch12

from those of ordered to randomly disordered materials. Corresponding spectral properties such as13

eigenvalue spacing and field localization characteristics, viewed through the lens of random matrix14

theory, exhibit behavior analogous to an Anderson transition in wave phenomena, with band gaps15

and mobility edges — even though there are no wave scattering or interference effects at play here.16

Our findings establish a parallel between quantum transport in solids and classical transport in17

composite materials with periodic or quasiperiodic microstructure.18

I. INTRODUCTION19

In the late 1980s it was shown that in a composite patterned after a crystal, such as a dielectric material with20

a periodic lattice of voids, electromagnetic waves of certain frequencies and directions could be prohibited from21

propagating within the structure [1, 2]. This observation established a powerful analogy relating photonic band gaps22

to electronic band gaps in metals and other condensed matter. Thus solid state physics and Anderson localization23

was brought to optics [1–4], leading to the development of photonic crystals and theories of controlling the flow of24

light through structured media. The discovery of quasicrystals [5–7] demonstrated that geometries with predictable25

long range order but no periodicity could play an important role in physics and materials science. This led to the26

development of photonic quasicrystals [8–17], with the conceptual framework again provided by the analogy with27

quantum transport in solid state physics.28

Motivated by these findings and the highly active field of twisted graphene bilayers [18], with Moiré patterns tuned by29

the twist angle to take periodic and aperiodic geometries, here we construct a class of deterministic, two-phase Moiré-30

structured composite materials in two dimensions. This construction enables us to study in several physical settings31

how classical transport behaves in the transition from periodicity to aperiodicity. Indeed, rather than a governing32

wave equation like Schrödinger’s equation for quantum transport or the classical wave equation for electromagnetic33

transport [17, 19–21], problems involving electrical conductivity σ, thermal conductivity κ, complex permittivity ϵ in34

the quasistatic limit, or diffusivity D can all be formulated in terms of the same divergence form second order elliptic35

equation (2) below, and do not involve any wave interference or scattering effects. Bulk behavior is analyzed in terms36

of the Bergman-Milton (or Stieltjes integral) representation, which holds for the effective parameters σ∗, κ∗, ϵ∗, D∗,37

etc. [22–25]. It involves a spectral measure µ of a self-adjoint operator G, which plays the role of the quantum physics38

Hamiltonian and depends only on the mixture geometry. In discrete settings, G is a real-symmetric matrix. The39

measure µ, local electric field E, displacement D = ϵE and current J = σE are all determined by the eigenvalues and40

eigenvectors of G. One of our main results is that through this spectral distillation and recent results on computing41

µ [26] and analyzing its behavior with random matrix theory [27], we establish a powerful analogy between various42

classical transport processes in periodic and quasiperiodic composites, and quantum transport with localization and43

band gaps in solid state physics, as was done for optics in photonic crystals and quasicrystals in the scattering regime.44

We emphasize, however, that our results apply broadly to transport phenomena in settings described by (2), with no45

restriction on the length scales in the systems involved, except for the condition imposed on the microstructural scale46

by the quasistatic assumption that must be satisfied in the context of complex permittivity.47

We find that as the geometry is tuned from periodic to quasiperiodic, the eigenvalues, eigenmodes, profile of48

ϵ∗, and localization properties of E undergo an order-to-disorder transition analogous to the Anderson transition.49

Our results are described in the (quasistatic) electromagnetic case, but we keep in mind their broad applicability.50

Spectral measures for periodic systems have sharp resonances that induce dramatic variability in band and absorption51

characteristics, and in profiles of ϵ∗. Regions of extended eigenstates are separated by “mobility edges” of localized52

states, and E is localized for certain frequencies and extended for others. As the geometry is tuned to aperiodicity, the53

behavior of µ and ϵ∗ resembles that of the 2D random percolation model at its threshold, with a regularly distributed54
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mixture of localized and extended eigenstates giving rise to tenuously connected current paths, pronounced spectral55

endpoint behavior, and Wigner-Dyson eigenvalue statistics with strong level repulsion [27].56

Our investigation here of quasiperiodic media was motivated not only by the findings for random media in [27], but57

by much earlier studies which revealed sensitive, discontinuous dependence of bulk transport on the variations in local58

properties [28, 29]. For example, it was found in one dimension with local conductivity σ(x) = 3+cosx+cos kx, which59

is periodic for k rational and quasiperiodic for k irrational, that the effective conductivity σ∗(k) is discontinuous in k60

[28], with 2D examples in [29]. These studies, in turn, were motivated by the discovery of quasicrystals and findings61

on the spectrum of Hamiltonians with quasiperiodic potentials [30–32].62

The spectral characteristics considered here govern the optical properties of nanostructured bimetallic films [33, 34]63

and depositions of nanosized metal particles on thin dielectric substrates [35–38], which change as a function of64

heterogeneous surface structure composition and geometry. This enables tunability of their optical responses for65

nano-plasmonic device applications [33–38]. The long wavelength quasistatic assumption holds in the visible range66

[39], and these systems are described macroscopically by the Stieltjes integral representations for ϵ∗ or σ∗. Resonances67

in µ explain giant surface-enhanced Raman scattering observed in semicontinuous films [34, 40, 41], and induce strong68

fluctuations in E and the dielectric profile of ϵ∗, associated with the excitation of collective electronic surface plasmon69

modes [39]. We numerically explore these phenomena in 2D impedance networks with quasiperiodic microgeometry70

and discuss our results using Anderson transition interpretations of random matrix theory.71

II. METHODS72

We begin by introducing a class of 2D two-component composites whose microgeometries are based on Moiré73

patterns, and are tunable to be periodic or aperiodic as follows. Consider the square bond lattice joining nearest74

neighbor points in Z2, with standard basis vectors e1 and e2, and the scaled rotation transformation T defined for75

(x, y) ∈ R2 by76

T : (x, y) 7→ (a, b) , T = r

(
cos θ − sin θ
sin θ cos θ

)
. (1)

The mixture geometry of the two phases is determined by the characteristic function χ1, taking the value χ1 = 1 in77

material phase 1 and zero otherwise, with χ2 = 1− χ1. The system microgeometry is constructed from the periodic78

function ψ(a, b) = cos(2πa) cos(2πb) and the condition χ1(x, y) = 1 for all (x, y) ∈ R2 such that ψ(T (x, y)) ≥ ψ0,79

and is zero otherwise. We focus on the value ψ0 = 0, which generates in the underlying bond lattice a discretized80
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FIG. 1. Fractal arrangement of periodic systems. Sequential insets zooming into smaller regions of parameter space.
Dots identify (r, θ) values corresponding to systems with periodic microgeometry, where short and large periods are identified
by large and small dots, respectively, revealing self similar, fractal arrangements of periodic systems.
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composite microstructure with a fraction p ≈ 1/2 of type one bonds. We do so to compare features of deterministically81

tuned quasiperiodic systems to those of the random percolation model near the percolation transition p = pc = 1/282

[42, 43].83

Primitive translation vectors for ψ are t1 = (1/2, 1/2) and t2 = (1/2,−1/2). When r and θ are chosen such that84

T : (me1 + ne2) 7→ (m′t1 + n′t2) for integer values of m,n,m′ and n′, then χ1 has a finite period of, at most,85

K =
√
m2 + n2 , and has infinite period otherwise. The arrangement of r and θ such that K <∞ is fractal in nature,86

as shown in Figure 1. The arrangement of (r, θ) values associated with finite periods is similar to fractal distributions87

defined in terms of rational numbers on the real line, such as Thomae’s function [29].88

The effective behavior of macroscopic transport in two-phase composite materials is described by homogenized89

coefficients including electrical and thermal conductivity, diffusivity, complex permittivity, and magnetic permeability.90

These can all be defined in terms of the same elliptic partial differential equation [25, 43]. For complex permittivity in91

the quasistatic regime, such as the metal-dielectric mixtures in visible light discussed above, the system is described92

locally by93

∇·(ϵ∇ϕ) = 0 , (2)

with potential ϕ, electric field E = −∇ϕ, displacement D = ϵE, and local complex permittivity ϵ(x, y) taking94

frequency dependent values ϵ1(ω) or ϵ2(ω), where ⟨E⟩ = E0 and ⟨·⟩ denotes spatial average. The fields E and D95

satisfy ∇ × E = 0 and ∇·D = 0, with ϵ = ϵ1χ1 + ϵ2χ2. See [24–26] for a “weak” formulation of this problem that96

rigorously accounts for the discontinuous, and thus non-differentiable nature of the parameter ϵ(x, y) in equation (2).97

The effective permittivity matrix ϵ∗ can be defined by ⟨D⟩ = ϵ∗⟨E⟩ with ⟨E⟩ = E0, where E0 = E0 ek for some98

standard basis vector ek, k = 1, ..., d, where d is dimension. Equivalently, it can be defined in terms of system energy99

using ⟨D·E⟩ = ϵ∗kkE
2
0 , where ϵ∗kk is the kth diagonal coefficient of the matrix ϵ∗, which we denote by ϵ∗ = ϵ∗kk.100

Thus, the effective parameter characterizes a homogeneous medium immersed in a uniform field E0 that behaves101

macroscopically and energetically as does the inhomogeneous composite medium.102

The key step in the analytic continuation method [22–26] is the Stieltjes integral representation for ϵ∗,103

F (s) = 1− ϵ∗

ϵ2
=

∫ 1

0

dµ(λ)

s− λ
, s =

1

1− ϵ1/ϵ2
. (3)

Here, F (s) = ⟨χ1E·E0⟩/(sE2
0) and −F (s) plays the role of an effective electric susceptibility. Equation (3) follows104

from applying the operator −∇(−∆)−1 to equation (2) and writing it as ΓD = 0 , where Γ = −∇(−∆)−1∇· is an105

orthogonal projection onto curl-free fields and is based on convolution with the Green’s function for the Laplacian106

∆ = ∇2 [24, 26]. Then using ϵ = ϵ1χ1 + ϵ2χ2 = ϵ2(1− χ1/s) and Γ∇ϕ = ∇ϕ yields the resolvent representation107

χ1E = s(sI −G)−1χ1E0 , G = χ1Γχ1 , (4)

involving the self-adjoint operator G = χ1Γχ1 [24, 26]. Applying the spectral theorem to F (s) = ⟨χ1E·E0⟩/(sE2
0)108

then yields [24, 26] equation (3), where µ is a spectral measure of the operator G.109

A key feature of equations (3) and (4) is that the material parameters in s and the applied field strength E0 are110

separated from the geometric complexity of the system, which is encoded in the properties of the spectral measure µ111

and its moments µn =
∫ 1

0
λn dµ(λ). For example, µ0 = ⟨χ1⟩ = p, the volume fraction (or area fraction) of medium 1.112

All of the effective coefficients of the composite material mentioned above are represented by Stieltjes integrals with113

the same µ [44].114

While the measure µ can include discrete and/or continuous components [25], it reduces to a weighted sum of115

Dirac δ-functions δ(λ − λj) for media such as laminates, hierarchical coated cylinder and sphere assemblages, and116

finite RLC impedance networks [22–26]. Here, we investigate effective transport properties of square two-component117

impedance networks in 2D of size M with periodic and quasiperiodic microgeometry. In this setting, G = χ1Γχ1 is a118

real-symmetric matrix of size N = 2M2, χ1 is a diagonal matrix with 1’s and 0’s along the diagonal corresponding to119

impedance type, and Γ = ∇(∇T∇)−1∇T is a projection matrix, where ∇ is a finite difference matrix representation120

of the differential operator ∇ [26]. The measure µ is determined by the eigenvalues λj and eigenvectors vj of N1×N1121

submatrices of Γ with rows and columns corresponding to the diagonal components [χ1]jj = 1, with122

dµ(λ) =
∑
j

mj δ(λ− λj) dλ , mj = (vj·χ1êk)
2, (5)

j = 1, . . . , N1, N1 ≈ pN (total number of ϵ1 bonds), and êk is a standard basis vector in RN1 [26, 27]. In this case,123

equations (3) and (4) become finite sums with124

F (s) = 1− ϵ∗

ϵ2
=

∑
j

mj

s− λj
, χ1E = sE0

∑
j

(vj·χ1êk)

s− λj
vj , (6)
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FIG. 2. Quasiperiodic composite microgeometry and Anderson localization of fields. Moiré interference patterns
generated by the transformation (1) give rise to a large class of composite materials with periodic and quasiperiodic microge-
ometry. (a) Subsections of various examples (various r and θ) of such microgeometries are shown in (a) with square system
sizes 53 for the far left and 73 for all others, small enough to resolve the small-scale detail yet illustrate the large geometric
variety. Cool and warm colors correspond to near-zero and large values of |χ1E| or |χ1D|, respectively, with the color bar at
the top showing the saturated linear scale, normalized to the unit interval. (b) Anderson localization of fields in quasiperiodic
media. Composite microgeometry parameterized by r =

√
10/3 and θ = arctan(1/3) + ϕ for 0◦ ≤ ϕ ≤ 2◦ with system size

199. (In Figure 3 below, smaller subsets of these systems are displayed to show more small-scale detail.) For small values of ϕ,
the fields exhibit a frequency dependent transition from localized (loc) to extended (ext). Identical values of ϕ correspond to
identical microgeometries, and the differences in the values of |χ1E| are solely due to frequency dependent material properties
for different values of ω. As ϕ → 2, the local fields become similar for all frequencies away from ω = 0, qualitatively resembling
the rightmost panel in (b) (as well as that of the percolation model near the percolation threshold p = pc [27]). In discussions
of Figures 3 and 5 below, we provide a quantitative description of this localization phenomenon.

given explicitly in terms of the λj and eigenvectors vj of G [26].125

In the next section, we compute the spectral measure µ, hence the local fields and the effective complex permittivity126

ϵ∗ for the Moiré-structured class of composite materials described by equation (1) above. We interpret the frequency127

dependent behavior of physical quantities such as the phase and amplitude of ϵ∗, and localization and intensity of E128

and D, in terms of spectral properties of µ and Anderson transition interpretations of random matrix theory.129

III. RESULTS130

The Moiré system introduced above is parameterized by r > 0 and 0 ≤ θ < 2π, which generates a diverse131

assortment of periodic (“finite period”) and quasiperiodic (“infinte period”) microgeometries. To numerically calculate132

mathematical and physical quantities, we consider finite subsets of these systems as RLC impedance networks.133

Different types of microgeometries in this class are displayed in Figure 2a with small enough system sizes to resolve134

the small-scale geometry while still illustrating the large variety in structure, hinting at the geometric richness of our135

Moiré composites. The bond color indicates the modulus value of E in phase 1, i.e., |χ1E|, calculated via (6). Since136

χ1D = ϵ1χ1E these colors also specify displacement values with a change in scale by |ϵ1|. We therefore normalize the137

computed fields to take values in the unit interval.138

It was shown in [26] that expressions known in closed form for the 2D percolation model in the infinite volume139

limit are well approximated by ensemble averages of systems of size ≈ 70 and by single systems of size ≈ 200. The140

Moiré-structured composites studied here can have coherent structures on large length scales. However, we found for141

a system size of 199 that fluctuations present for smaller systems have essentially stabilized, with numerical results142

visually identical for larger system sizes, e.g., ≈ 250. A systematic study of system size dependence of quantities and143

finite size effects is interesting and useful but beyond the scope of the current manuscript.144

In this section, we investigate a small swath of the large parameter space, for r =
√
10/3 and θ = arctan(1/3) + ϕ145
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FIG. 3. Frequency profile of the spectral measure and eigenvector localization. Composite microgeometry and fields,
spectral measure µ, and eigenvector IPR plotted for various values of the Moiré twist angle θ, for 0◦ ≤ ϕ ≤ 2◦, r =

√
10/3,

and square system of size 73 in (a) to show detail and of size 199 in (b) and (c). The color bars in the upper left of the panels
are for reference and indicate Re s(ω) for the optical frequency range for impedances corresponding to the Drude model for a
gold/vacuum composite. (a) Composite microgeometry and field intensity. Cool and warm colors correspond to near-zero and
large values of |χ1E| or |χ1D|, respectively, with color bar at the top showing the saturated linear scale. (b) Masses mj of µ
plotted vs. eigenvalues 0 ≤ λj ≤ 1 of the matrix G. Red dots indicate the largest masses, used as indicators in (c) below. (c)
IPR values for the eigenvectors vj of G, IPR(v), plotted vs. λj . Green and black horizontal lines indicate IPR values for
GOE and completely extended vectors, 3/N1 and 1/N1, respectively. These quantities for the random percolation model at the
percolation transition, p = pc = 1/2, are shown in the rightmost panels for comparison.

for 0◦ ≤ ϕ ≤ 2◦, starting from a short period system. Figures 2b and 3a display examples of this region of parameter146

space and show that such a small change in the Moiré twist angle θ gives rise to a dramatic transition in composite147

microgeometry — from a short period system with orderly field (or current) paths to quasiperiodic systems with148

disorderly, meandering paths similar to those exhibited by the random percolation model near p = pc.149

When the fields are plotted vs. s(ω), 0 ≤ Re s(ω) ≤ 1 with Ims(ω) ≪ 1 a frequency dependent localiza-150

tion/delocalization transition of fields is revealed for small values of ϕ ∈ [0, 2], as shown in Figure 2b for ϕ = 1/8 and151

1/2. In contrast, the fields for angles closer to ϕ = 2 are more disordered and resemble those in the random percolation152

model, and are qualitatively similar to the rightmost panel in Figure 2b for all 0 < Re s ≤ 1. We investigate these153

and other phenomena through mathematical and physical quantities such as the spectral measure µ, correlations of154

its eigenvalues, localization of its eigenvectors, phase and magnitude of ϵ∗, localization and intensity of E, etc.155

A large variety of physical phenomena exhibited by inhomogeneous materials can be described by two component156

RLC impedance networks [40]. Each of the two components is created by combining a resistor R, inductor L, and157

capacitor C in a way that achieves an impedance characteristic of the material being modeled. For example, a Drude-158

metal/dielectric composite is modeled by R and L in series, in parallel with C for one component, and C for the other159

[39], yielding a plasma frequency ω2
p = 1/LC and relaxation time τ = L/R. As Kirchhoff’s network laws are discrete160

versions of the curl-free and divergence-free conditions on the fields in equation (1), these RLC impedance networks161

really do resemble the continuum composites they are intended to model [39].162

Indeed, the AC response and polarization effects observed in a variety of conductor-dielectric mixtures at low163
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frequencies are modeled by an R-C network, while metal-dielectric composites exhibiting collective electronic modes164

at higher, optical frequencies such as (surface) plasmon resonances are modeled by an RL-C network [40, 41]. The165

dependence of s(ω) on frequency ω is model specific. For the R-C and RL-C models, 0 ≤ Re s < 1 for 0 ≤ ω < ∞166

and δ ≤ Ims < 0, where |δ| can be chosen as small as desired, with Re s → 1 and Ims → 0 as ω increases [40, 41].167

In order to give a model independent description of the phenomena investigated here, we plot s-dependent quantities168

using 0 ≤ Re s ≤ 1 and Ims = 0.001 fixed. For the sake of discussion, we describe our results in terms of the optical169

regime for the Drude model for gold/vacuum composites, which roughly corresponds to the interval Re s ⪅ 0.2. The170

optical regime for other material combinations corresponds to values of Re s throughout the unit interval [45].171

As the frequency changes and s(ω) sweeps across the complex plane, with s(0) = 0, the spectral measure µ,172

distribution of its eigenvalues, and localization properties of its eigenvectors, shown in Figure 3, govern the frequency173

dependence of the phase and magnitude of ϵ∗ and the intensity and localization of E and D, shown in Figure 5,174

according to the formulas in equation (6). Keeping these formulas with Ims(ω) ≪ 1 in mind, we call resonant175

frequencies the values of ω where Re s(ω) ≈ λj and the masses mj of µ are largest (shown in red in Figure 3) and/or176

there’s a large density of eigenvalues λj with moderate to large values of mj .177

For the short period system with ϕ = 0 shown in Figure 3a, the spectral measure µ in Figure 3b is comprised of178

sharply peaked resonances. As ϕ increases and the composite microgeometry becomes quasiperiodic, the resonant179

frequencies away from ω = 0 (λ = 0) spread out, change frequency locations, and diminish in strength. As ϕ → 2,180

the resonances in µ continue to spread out until all but the Drude resonance at ω = 0 diminish, and µ and ϵ∗ begin181

to resemble those of the random percolation model for p = pc , shown in the rightmost panels of Figure 3.182

Resonances in µ have a physical interpretation in terms of relaxation times in the transient response in the R-C183

model, or in terms of dielectric resonances in the RL-C model [40, 41]. The dielectric resonances observed for the RL-C184

model with percolative geometry have been argued to provide a natural explanation for the anomalous fluctuations185

of the local electric field E, which are responsible for giant surface-enhanced Raman scattering observed, for example,186

in semicontinuous metal films [41]. Below, we show that the resonances in µ shown in Figure 3 give rise to dramatic187

fluctuations in the amplitude and phase of ϵ∗ and the intensity of the fields E and D.188

The inverse participation ratio (IPR) characterizes vector localization phenomenon. For an N1-dimensional unit189

vector u it is given by IPR(u) =
∑

i u
4
i , where ui is the ith component of the vector u, i = 1, . . . , N1, and satisfies190

IPR(u) = 1 for a completely localized vector with only one non-zero component and IPR(u) = 1/N1 for a completely191

extended vector with all components equal in value [27]. For matrices in the Gaussian orthogonal ensemble (GOE),192

the eigenvectors are quite extended with a mean asymptotic IPR value of IPRGOE = 3/N1 [27].193

Figure 3c displays IPR(vj) for the eigenvectors vj , j = 1, . . . , N1, of G for various values of ϕ, as a function of194

the eigenvalues λj . The red dots in Figures 3b and 3c for ϕ = 0 and 1/8 show that resonant frequencies correspond195

either to very extended eigenvectors or “mobility edges” where the values IPR(vj) have large variability for small196

changes in λj . As ϕ increases and the microgeometry becomes quasiperiodic, the mobility edges diminish as the values197

IPR(vj) become more regularly distributed and qualitatively similar for all 0 < Re s(ω) ≤ 1 away from the Drude198

peak at ω = 0, as shown in the two rightmost panels of Figure 3b. As ϕ → 2, the IPR(vj) resemble those of the199

random percolation model at its threshold p = pc = 1/2, as shown in the rightmost panel of Figure 3c.200

The frequencies corresponding to resonances of µ and field delocalization are tunable through the quasiperiodic201

microgeometry via the scale parameter r and Moiré twist angle θ in (1), which is critical to potential engineering202

applications — given a desired frequency dependence for the profile of ϵ∗ and field localization, values of r and θ can be203

selected accordingly. This is illustrated in Figure 4 which displays the θ-dependence of the eigenvalue density ρ(λ, θ)204

in (a), the spectral function µ(λ, θ) in (b), the magnitude and phase of the relative effective permittivity ϵ∗/ϵ2 in (c)205

and (d) and the IPR in (e), with r =
√
5/2 fixed. Short period systems are indicated by dark horizontal streaks due206

to associated isolated resonances in µ, with localized regions of yellow. Figure 4a shows that some of these resonances207

in µ(λ, θ) are due to resonances in ρ(λ, θ). However, in Figure 4b, the significance of the measure mass becomes208

apparent, which can diminish eigenvalue resonances or even create resonances in µ(λ, θ) in regions of low eigenvalue209

density — also illustrated in the leftmost panel of Figure 3b by the individual eigenvalue λj ≈ 0.32 with relatively210

large spectral mass mj ≳ 0.1. The influence of µ on ϵ∗/ϵ2 is striking with resonances and features in |ϵ∗/ϵ2| following211

those in µ, and with an antisymmetry in phase(ϵ∗/ϵ2) about Re s ≈ 0.5. The IPR values displayed in Figure 4e again212

illustrate that resonances in µ are associated either with extremely extended eigenvectors or mobility edges, with213

large variability in IPR values for a small change in λ. The symmetry ρ(λ) = ρ(1−λ) well known for the percolation214

model [26, 41] is evident in Figure 4a for quasiperiodic geometry, and also has symmetry for θ between π/8 and 3π/16215

reminiscent of, but distinctly different from, the Hofstadter-like spectral butterflies observed in the spectra for twisted216

bilayers and Bloch electrons in magnetic fields [21]. The distinct anomaly in the other figure panels associated with217

this ”butterfly” is due to a region of parameter space associated with very short system period. A careful comparison218

of the visual features between the eigenvalue density and eigenvector IPR strongly suggests significant correlations219

between the eigenvalues and eigenvectors.220

The eigenvector expansion of χ1E in equation (6) provides a clear connection between resonant frequencies and221



7

b)a) c)

θ

Eigenvalue Density Spectral Function

0

λ
10 0.25 0.750.5

λ
10 0.25 0.750.5 10 0.25 0.750.5

π
4

3π
16

π
8

π
16

0 1 2 0-1 -2-2.5GOE

10 0.25 0.750.5

π0

phase(ϵ /ϵ )*
2d) IPR(v)

1

34

26

58

34

2

58

10

26

50

λ
10 0.25 0.750.5

e)

630

|ϵ /ϵ |*
2

π/2

Re(s)Re(s)

FIG. 4. Twist angle dependence of the eigenvalue density, spectral function, effective permittivity, and IPR.
(a) Eigenvalue density ρ(λ, θ) (a histogram representation of the density of states

∑
j δ(λ− λj)/N1), (b) the spectral function

µ(λ, θ) (a kernel estimate representation of the spectral measure), (c) magnitude and (d) phase of relative effective complex
permittivity ϵ∗/ϵ2, and (e) a histogram-like representation of the IPR (median IPR of eigenstates associated with each bin —
to distinguish mobility edges), all plotted vs. the Moiré twist angle θ for r =

√
5/2. We plot these quantities for one full period

0 ≤ θ ≤ π/4. (a), (b), and (e) are plotted vs. 0 ≤ λ ≤ 1, while (c) and (d) are plotted versus 0 ≤ Re s ≤ 1 for Ims = 0.001.
Low and high density for ρ and µ and are indicated by dark blue and yellow, respectively, as shown by the color bars (with
linear scale in (a), (c), and (e) and log10 scale in (b) and (e), slightly saturated at the ends to reveal more detail). Short
period systems appear as horizontal streaks; for ρ and µ sharp isolated resonances are identified by localized yellow resonant
peaks surrounded by dark blue troughs with values orders of magnitude smaller. The influence of µ on ϵ∗/ϵ2 is clear, with
striking similarities. For the IPR in (e) extended and localized vectors are identified by dark blue (with GOE value labeled)
and yellow, with mobility edges indicated by sudden changes from one extreme to the other. Some of the θ values associated
with these short period systems are identified by black tick marks on the right, labeled by the bound K =

√
m2 + n2 on the

system period, discussed in Section II.

large field intensity when Ims(ω) ≪ 1. However, our analysis of Figure 3 also indicates these resonant frequencies222

correspond to fields that are either extended throughout the medium, as in the leftmost panel of Figure 3a, or to a223

mixture of localized and extended states giving rise to more spatially varied field characteristics in both the intensity224

and localization, as in the leftmost panel of Figure 2b, with sensitive dependence on frequency.225

We now make this correspondence more precise in an analysis of the magnitude and phase of ϵ∗ and the localization226

of E and D. They are displayed in Figure 5 for various values of the Moiré twist angle θ, for 0◦ ≤ ϕ ≤ 2◦, as227

a function of Re s(ω). The Drude peak at ω = 0 (s(0) = 0) present for all values of ϕ indicates the composite is228

conducting for ω = 0 [39]. For ϕ = 0, at the resonant frequencies both µ and |ϵ∗| are sharply peaked and ϵ∗ diverges229

as Ims→ 0. These frequencies correspond to the so-called surface plasmon resonance, which characteristically shows230

up as a strong absorption line in experiments [39]. At these resonant frequencies ϵ∗ also undergoes a dramatic switch231

in phase which gives rise to an “optical transition,” where the material response changes from inductive (metallic)232

to capacitive (dielectric) — a phenomenon observed in optical cermets [40]. These phase switches also occur at the233

troughs of |ϵ∗|, where |ϵ∗| and the mass of µ are small. At these band gap frequencies the material behaves effectively234

like an electrical insulator. As ϕ increases, the transition frequencies still correspond to the peaks and troughs in |ϵ∗|,235

though the frequency dependence of these features becomes more irregular.236

The IPR for |χ1E| (normalized to unit length) provides a measurement of localization for the electric field it-237

self – equivalently for the normalized displacement field χ1D = ϵ1χ1E. Figures 3c and 5b show there is a close238

relationship between the eigenvector IPR, IPR(v), plotted vs. λj and the electric field IPR, IPR(E), plotted vs.239

Re s(ω), as anticipated above. Specifically, there are frequency regions where the eigenmodes and the electric field240

are simultaneously localized or extended. Moreover, for ϕ = 0, 1/8, and 1/2 there are several clear mobility edges241

in IPR(E), following those in IPR(v), showing high variability in field localization for small changes in s(ω), which242

also correspond to resonant frequencies and high variability in field intensity.243

In Figure 2b the localized (loc) and extended (ext) fields for ϕ = 1/8, 1/2, and 2 were computed for values of244

Re s(ω) with optical frequencies ω — indicated by red dots in Figure 5. Comparing these two figures for the panels245

with values ϕ = 1/8 and 1/2 further demonstrates the frequency dependent localization/delocalization transition in246
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FIG. 5. Frequency dependence of dielectric profile and field localization. Relative effective complex permittivity
ϵ∗/ϵ2 and IPR of the modulus of the electric field, |χ1E|, normalized to unity, IPR(E), plotted versus 0 ≤ Re s ≤ 1 for
Ims = 0.001 and various values of the Moiré twist angle θ and r =

√
10/3, for 0◦ ≤ ϕ ≤ 2◦. The color bars in the upper

left of the panels are for reference and indicate Re s(ω) for the optical frequency range for impedances corresponding to the
Drude model for a gold/vacuum composite. (a) Amplitude and phase of ϵ∗/ϵ2. (b) IPR(E) or equivalently IPR(D). These
quantities for the random percolation model at the percolation transition, p = pc = 1/2, are shown in the rightmost panels
for comparison. The red dots in (a) and (b) identify values of Re s used in Figure 2b: for ϕ = 1/8, Re s = 0.063, 0.115, for
ϕ = 1/2, Re s = 0.055, 0.111, and for ϕ = 2, Re s = 0.111.

random-like periodic
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FIG. 6. Eigenvalue spacings and eigenvector localization. (a) The eigenvalue spacing distribution (ESD) P (z) for
various values of (Moiré) twist angle θ, for 0◦ ≤ ϕ ≤ 2◦. The short period system for ϕ = 0 and those with small twist
angles 0 ≤ ϕ ≤ 1/32 are characterized by spectral measures µ with very sharp resonances leading to P (0) ≳ 0.4. However,
for ϕ ≥ 1/16 the system begins to transition towards obeying WD statistics with level repulsion, so that P (0) = 0. Level
repulsion increases with increasing ϕ as the ESD approaches the WD ESD, characterized by strong correlations and strong
eigenvalue repulsion. (b) The ratio of average eigenvector IPR with IPRGOE = 3/N1 is plotted vs. (r, tan θ). Yellow hues
correspond to short period systems similar to the leftmost panel in Figure 2, characterized by highly extended eigenmodes
(hence extended electric and displacement fields) and “mobility edges” with large localization variability. Dark green to blue
hues correspond to quasiperiodic systems similar to the one shown in Figure 2 for ϕ = 2 with material properties that resemble
that of random systems with regularly distributed IPR values and tenuously connected electric and displacement field paths.
This panel indicates periodic systems have a repeating pattern that turns out to be fractal in nature, as indicated in Figure
1. Moreover, quite small changes in the Moiré parameters (r, tan θ) result in transitions from ordered periodic systems to
disordered quasiperiodic, random-like systems.
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the displacement field for the same microstructure. Moreover, the panels for localized (loc) fields in Figure 2b also247

correspond to resonant peaks in µ in Figure 3b, which accounts for the high variability in the field intensity in Figure248

2b and the amplitude of ϵ∗ in Figure 5a. Furthermore, Figure 5 for ϕ = 1/8 and 1/2, shows that toward the infrared249

end of the spectrum the displacement field is extended and the response of ϵ∗ is inductive (metallic), while toward the250

ultraviolet end of the spectrum the displacement field is more localized and the response of ϵ∗ is capacitive (dielectric).251

There are also band gap frequencies in the optical range.252

As ϕ surpasses 1/8, band gap frequencies are absent. The larger checkerboard scale for |χ1E| shown in Figure253

2b decreases in size and all the material characteristics described above begin to qualitatively resemble those of the254

random percolation model for p = pc as ϕ → 2. The more regularly distributed eigenvector localization gives rise to255

spatially varied, meandering, tenuously connected field paths as shown in the corresponding panels of Figure 3a.256

These observations indicate a high degree of tunability in the frequency dependence of the phase and magnitude257

of ϵ∗ and the localization and intensity of E and D. The resonant and band gap frequencies present for small ϕ258

are tunable through the microstructure itself via the scale r and Moiré twist angle θ in (1). We predict that these259

material characteristics can be reproduced experimentally and tuned by fabrication methods used for etched metallic260

substrates. (In [46], a small change in Moiré twist angle for bilayer graphene induces a change in conductivity similar261

to what we observe here for ϵ∗.) Since the transformation in equation (1) is deterministic, one can also obtain material262

characteristics similar to those of random systems in a predictable, reproducible manner. This tunability makes our263

Moiré-type composite class an ideal test bed for potential engineering applications.264

Statistical quantities for the eigenvalues λj of µ provide insights into why the high density resonances of µ, present265

for the short period system with ϕ = 0, spread out as ϕ increases and the system becomes quasiperiodic. The nearest266

neighbor eigenvalue spacing distribution (ESD) P (z) was initially introduced in random matrix theory to describe267

fluctuations of characteristic quantities for random systems, but has since accurately described quantities for non-268

random systems with sufficient complexity [47]. The ESD probes short range correlations of eigenvalues [47]. For269

highly correlated Wigner-Dyson (WD) spectra exhibited by, for example, the Gaussian orthogonal ensemble (GOE)270

of real-symmetric random matrices, the ESD is accurately approximated by P (z) ≈ (πz/2) exp(−πz2/2), Wigner’s271

surmise, which illustrates eigenvalue repulsion, vanishing linearly as spacings z → 0 [47, 48]. In contrast, the ESD for272

uncorrelated Poisson spectra, P (z) = exp(−z), allows for significant level degeneracy [47].273

Figure 6a displays the ESD for the eigenvalues λj of G for several values of 0◦ ≤ ϕ ≤ 2◦. The blue dash-dot curve274

is the ESD for Poisson spectra, while the green dashed curve is the ESD for the GOE. For ϕ = 0, 1/64, and 1/32,275

the sharply peaked resonances in µ with high eigenvalue density give rise to a significant probability of zero spacings,276

with P (0) ≳ 0.4. However, as ϕ increases and the composite microgeometry becomes quasiperiodic, the behavior of277

the ESDs starts to be characterized by weakly correlated Poisson-like statistics [48], also observed for eigenvalues of278

G for the low volume fraction percolation model [27]. They increase linearly from zero but the initial slope of P (z)279

is steeper than in the WD case, implying less level repulsion. As ϕ → 2, the slope of P (z) decreases, indicating an280

increase in level repulsion, causing the eigenvalues of µ to spread out as the ESD transitions toward obeying that of281

the GOE, characterized by highly correlated eigenvalues with strong level repulsion.282

We conclude this section with a discussion of Figure 6b, which displays the average eigenvector IPR with yellow283

hues corresponding to short period systems with highly extended eigenmodes — hence displacement fields — and284

mobility edges, and dark green to blue hues corresponding to quasiperiodic, random-like systems with more regularly285

distributed eigenmodes and meandering, tenuously connected field paths. Our results here are only a snapshot, which286

nevertheless reveals the great diversity of this class of composite materials with myriad microgeometric variations,287

each with a potentially distinct frequency dependence in both the phase and magnitude of ϵ∗ and the localization and288

intensity of E and D. Figure 1 shows that the arrangement of finite period systems is fractal in nature. It is clear289

from Figures 1 and 6b that we have merely scratched the surface in describing this fascinating class of composite290

materials with tuneable capabilities in both frequency and geometry, potentially enabling materials to be fabricated291

that achieve desired field characteristics and dielectric responses suitable for a broad range of engineering applications.292

IV. CONCLUSION293

A novel class of Moiré-structured 2D composite materials is introduced. Bulk transport is explored using a Stieltjes294

integral representation for the effective transport coefficients, and the complex permittivity ϵ∗ in particular. The295

representation involves a spectral measure µ of a real-symmetric matrix G, and a summation formula for the displace-296

ment field D, involving the eigenvalues λi and eigenvectors vi of G. The localization properties of D and the dielectric297

profile for ϵ∗ are analyzed as the Moiré twist angle θ varies 2 degrees. This small change in θ gives rise to a sharp298

transition in the microgeometry of the composite material, from periodic to quasiperiodic as the period increases ad299

infinitum. Short period systems are characterized by sharp resonances in µ which give rise to optical frequencies ω300

where ϵ∗ is sharply peaked (so-called surface plasmon resonance frequencies) and ϵ∗ undergoes an “optical transition”301
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from inductive (metallic) to capacitive (dielectric). Band gap optical frequencies are also observed. Moreover, D is302

highly extended for certain ranges of frequency, separated by small “mobility edge” frequency regions of large local-303

ization variability, that follow the resonant peaks of µ with high intensity regions of D. These characteristics make304

the dielectric profile and field response highly tunable, a desired feature in engineering applications. As the system305

is tuned to quasiperiodicity, an increase in eigenvalue repulsion, as measured by the eigenvalue spacing distribution306

(ESD), causes the sharp resonances of µ to spread out, while the localization characteristics of D and the dielectric307

profile of ϵ∗ begin to qualitatively resemble those of the percolation model near its transition point. It is suggested308

that these material characteristics could be reproduced experimentally and tuned by fabrication methods used for309

etched metallic substrates.310
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