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An analytic continuation method for obtaining

rigorous bounds on the effective complex permittivity

of polycrystalline composite materials is developed.

It is assumed that the composite consists of many

identical anisotropic crystals, each with a unique

orientation. The key step in obtaining the bounds

involves deriving an integral representation for

the effective complex permittivity, which separates

parameter information from geometrical information.

First and second order forward bounds are then

found using knowledge of the single crystal complex

permittivity tensor and the mean crystal orientation.

Inverse bounds are also developed, which recover

information about the mean single crystal orientation

from the effective complex permittivity of the

material. We then apply the polycrystalline bounds

to sea ice, a critical component of the climate

system. Different ice types, which result from different

growth conditions, have different single crystal

orientation and size statistics. These characteristics

can dramatically change the fluid transport properties

of sea ice, which control many geophysical and

biogeochemical processes important to the climate

and polar ecosystems. We obtain the bounds for

sea ice through two-scale homogenization, where the

single crystal tensor is obtained numerically and then

incorporated into the analytic continuation procedure.

The forward bounds are compared with columnar sea

ice data and are found to be in excellent agreement.

Further, the inverse bounds are applied to sea ice as

well, helping to lay the groundwork for determining

ice type using remote sensing techniques.

c© The Author(s) Published by the Royal Society. All rights reserved.
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1. Introduction

A polycrystalline composite material consists of many single crystals that can vary in shape,

size, and orientation. A broad range of manufactured and naturally occurring materials are

polycrystalline, including metals, ceramics, rocks, glacial ice, and sea ice. Here we consider

the electromagnetic behavior of polycrystalline media when the wavelength is much larger

than the scale of the underlying microstructure of the composite. When in this regime, the

quasistatic approximation is valid, and the electric and displacement fields can be viewed at time-

independent fields. Then the polycrystalline composite can be characterized electromagnetically

via the effective complex permittivity tensor ε
∗.

The macroscopic permittivity or dielectric tensor ε
∗ of a polycrystalline composite depends

directly on its microstructural properties, such as the complex permittivity tensor of the

individual crystals and their microstructural geometry, i.e., how the crystals are oriented. Due

to the complicated nature of the microstructure, explicitly calculating ε
∗ is highly non-trivial, and

can generally only be accomplished if the exact microstructure is known and with the assistance

of very powerful numerical computations. Therefore, using partial microstructural information

that may be available to estimate or bound ε
∗ is a very practical and useful approach.

There has been extensive work in the past on estimating and bounding ε
∗ for composite

materials. The books by Cherkaev [8] and Milton [38] thoroughly discuss much of this work. In

particular, ε∗ has been intensively studied for two phase composites. Rigorous bounds were first

obtained in the early 1980’s using the analytic continuation method, where the effective parameter

is treated as an analytic function of the ratio of the component parameters [5,17,35]. These

bounds assume that the complex permittivity of each component is known and that there is some

partial information available about the microstructure. The most general bounds assume only

knowledge of the relative volume fractions of each material, resulting in the complex versions

of the classical arithmetic and harmonic mean bounds for a two-component material. Tighter

bounds can be found when more geometrical information is available, such as knowing the that

microstructure is isotropic [25], or that the composite has a matrix–particle structure [44], etc.

Additionally, the electromagnetic response of a composite material can be used to help

determine microstructural properties when approached as an inverse problem. That is, given

information on ε
∗, different microstructural details be resolved, such as the relative volume

fractions of each component of the material. This has also been extensively investigated for a

two-component composite [9,10,21,33,34,40,53], and inverse bounds have been developed.

For some composite structures, it is more appropriate to assume that the material consists

of many identical anisotropic pieces that are oriented in different directions. This is the case

for a polycrystalline composite. Polycrystalline materials have been studied for decades, and in

particular, there has been a significant amount of work done on bounding the effective (real)

conductivity [2,8,11,12,26,27,36–39,45,46]. The books by Cherkaev [8] and Milton [38] discuss the

majority of this work.

Here we develop an analytic continuation method for obtaining complex bounds on ε
∗

for a three-dimensional (transversely isotropic, or uniaxial) polycrystalline composite material.

The key step in obtaining the bounds involves deriving an integral representation for the

effective complex permittivity tensor, which separates parameter information from geometrical

information. By making an assumption about the complex permittivity tensor of each individual

crystal and assuming some knowledge about the mean single crystal orientation, we obtain

first order polycrystalline bounds on ε
∗ for the entire polycrystal. If we further assume the

polycrystalline material has the “polycrystalline Hashin-Shtrikman condition" [38], which is

essentially geometric isotropy, second order forward bounds are found. Further, we then use a

method similar to that in [9], and derive inverse bounds for a polycrystal. Thus, knowing ε
∗ and

the complex permittivity tensor of an individual crystal, we will bound the mean single crystal

orientation.
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As a demonstration of the complex polycrystalline bounds, we compare them to sea ice data.

Investigating the electromagnetic behavior of sea ice is not only interesting from a composite

material point of view, but also because of the valuable information that can be recovered using

remote sensing techniques, such as sea ice thickness and fluid transport properties. Sea ice covers

between 7-10% of the earth’s ocean surface and is both an indicator and agent of climate change

[47,52,54]. Since the 1980’s there has been a steady decline in Arctic summer sea ice extent, with a

much more rapid decline over the past decade [41]. During the winter months in the Arctic and

Antarctic, the extensive sea ice packs serve as the boundary layer which mediates the exchange

of heat, moisture, and momentum between the atmosphere and ocean [28,52]. The vast expanses

of sea ice also serve as a habitat for rich microbial communities living in the brine microstructure

of porous sea ice [15,29,52]. In turn, these microbial communities are primary providers for the

complex food webs in the polar oceans.

Due to the global nature of monitoring the earth’s sea ice packs, large scale information is

usually obtained via remote sensing from platforms on satellites, aircraft and ships [7,21,30,48,58].

One of the grand challenges of sea ice remote sensing is to accurately recover the thickness

distribution of the pack. Assessing the impact of climate change on the polar regions involves

monitoring not only the ice extent, but the ice volume, which requires knowledge of ice thickness.

Recently there has been increasing interest in using low frequency electromagnetic induction

devices to estimate sea ice thickness [42]. In addition to assessing ice thickness, remotely

monitoring the fluid transport properties of sea ice is of increasing interest because of the broad

range of geophysical and biological processes it mediates in the polar marine environment. For

example, the evolution of melt ponds and summer ice albedo is constrained by drainage through

porous sea ice [14], where ice-albedo feedback is believed to play a key role in the decline of

summer Arctic sea ice [41]. Fluid flow also facilitates snow-ice formation [32], the evolution of the

salt budget [52], convection-enhanced thermal transport [31], CO2 exchange [43], and biomass

build-up sustained by nutrient fluxes [15,52]. In a recent study [23], we found evidence that

different ice microstructures, such as columnar versus granular, can dramatically change the fluid

transport properties of sea ice. Thus, determining ice type using remote sensing techniques may

be a particularly useful application.

There has been considerable work in the past on estimating and bounding ε
∗ for sea ice,

particularly in the microwave region [1,9,16,16,19,19,20,22,22,24,44,49,50,55,58].The rigorous two-

component bounds mentioned above have successfully been used to bound ε
∗ for sea ice

[9,16,19,22,24,44]. These bounds assume that sea ice is a two-component material, consisting of

a pure ice and brine phase. The forward bounds recover information on ε
∗ using information

about the microstructure, such as brine volume fractions or porosity φ (and sometimes further

assuming statistical isotropy), while the inverse bounds attempt to recover φ from ε
∗ .

Here we apply the first order forward polycrystalline bounds to sea ice. We see a dramatic

improvement over the classic two-component bounds, because these new bounds include

additional information about single crystal orientations. Here we use the data set presented in [1]

to compare the polycrystalline bounds to sea ice. This data set is the same one used in [9,16,44],

thus helping provide some continuity between different types of bounds. In addition to providing

ε
∗ and φ measurements, the data set provides detailed crystallographic data, which will be

critical when in applying the bounds. Notationally, we will reserve R1 and R2 to indicate the

previously reported two-component forward bounds and use R3 and R4 to describe the new

polycrystalline forward bounds. The single crystal complex permittivity tensor is obtained by

numerical simulation using X-ray CT data on sea ice, along with with known brine volume

fractions and ice and brine permittivities. Further, the inverse method that we develop is applied

to sea ice and we obtain bounds on the mean single crystal orientation. Columnar and granular

microstructures have different mean single crystal orientations [56], thus this inverse approach

helps lay the groundwork for determining ice type when using remote sensing techniques.
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2. Forward Bounds on the Effective Complex Permittivity of a

Polycrystalline Material

Consider the constitutive relation D(x, ω) = ε(x, ω)E(x, ω), where D(x, ω) and E(x, ω) are

stationary random displacement and electric fields and ε(x, ω) is the permittivity tensor of some

medium. Here x ∈R
d and ω ∈Ω, where Ω is the set of all realizations of the random medium.

Let us consider a polycrystalline material, where each crystal has the same complex permittivity

tensor but with different orientation. Thus, we let ε(x, ω) = B
−1(x, ω)εdB(x, ω), where B(x, ω) is a

rotation matrix describing the orientation of a crystal at location x and realization ω, and εd is the

same permittivity tensor for each crystal and can be written

εd =

2

6

4

ε1 0 0

0 ε2 0

0 0 ε2

3

7

5
.

Here, we are assuming that each crystal has the same permittivity value ε2 in both horizontal

directions (transversely isotropic or uniaxial) with anisotropy occurring in the vertical direction

with permittivity value ε1. It is assumed that ε1 and ε2 can take complex values. Then making

the assumptions that we are in the quasistatic regime and there is no free charge, we can write

∇ × E(x, ω) = 0 and ∇ · D(x, ω) = 0. Now, letting 〈·〉 represent an ensemble average over Ω or a

spatial average over all of R
d, we then write 〈E(x, ω)〉= ek , where ek is a unit vector in the kth

direction for some k = 1, .., d. For notational simplicity, we write E(x, ω) = E and D(x, ω) = D. The

effective complex permittivity tensor is then defined via

〈D〉= ε
∗〈E〉. (2.1)

From this we can write [ε∗]kk = eT
k ε

∗ek = 〈eT
k εE〉 and then define ε∗ = [ε∗]kk. This allows us

to strictly examine the kkth component of the effective permittivity tensor and simplifies the

notation. Thus, we can rewrite the equation as ε∗ = 〈eT
k B

−1
εdBE〉. Due to the homogeneity of

the effective parameters ε∗(λε1, λε2) = λε∗(ε1, ε2), ε∗ only depends on the ratio h = ε1/ε2 and we

define m(h) = ε∗/ε2. Therefore, we have the equation

m(h) =
ε∗

ε2
= 〈eT

k B
−1

2

6

4

h 0 0

0 1 0

0 0 1

3

7

5
BE〉.

Notice that this is equivalent to

m(h) = 〈eT
k (I − (1 − h)B

−1
CB)E〉

where C = e1(e1)T , I is a 3x3 identity matrix, and e1 is a unit vector in the first direction [3,38]. To

simplify the notation, we define R = B−1CB, and can then write m(h) = 〈eT
k (I − (1− h)R)E〉.

The two main properties of m(h) are that it is analytic off (−∞, 0] in the h-plane, and that it

maps the upper half plane to the upper half plane [4,17], so that it is an example of a Herglotz

or Stieltjes function. The key step for obtaining forward bounds is to use an analytic continuation

method which involves obtaining an integral representation for ε∗. If we let s = 1/(1 − h), then

we can define

F (s) = 1 − m(h) = 1− ε∗/ε2 = 〈(s−1
e
T
k R)E〉.

From here, we must now obtain a resolvent representation for E, which will allow us to find an

integral representation for F (s).

To find the resolvent representation of E, first examine ∇ · D = 0, which implies that ∇ · εE =

0. Then, let G be a vector representing the mean fluctuations in the electric field and call E =

ek + G. Expand ε and E using the previous definitions and formulate the equation
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∇ · (I − s−1
R)(ek + G) = 0, (2.2)

where I is again a 3x3 identity matrix. After multiple algebraic manipulations, one can obtain the

equation

sG + ∇(−∆)−1
∇ · (RE) = 0. (2.3)

Now, define the operator ∇(−∆)−1
∇· = Γ , which is the same gamma in [16,17,19,24], and find

the resolvent representation for E to be

E = s[sI + Γ R]−1
ek . (2.4)

Using this resolvent representation to express F (s), one finds the equation

F (s) = 〈eT
k R(sI + Γ R]−1

ek〉. (2.5)

Using the spectral representation theorem F (s) takes the particularly nice form

F (s) =

∫1

0

dµ(z)

s − z
, (2.6)

where the positive measure µ on [0, 1] is the spectral measure of the self-adjoint operator Γ R. F (s)

is also analytic off [0, 1] in the s-plane, which is the only restriction for this integral representation.

All of the geometrical information is now contained inside of µ and all of the parameter

information is contained in s, including the electromagnetic wave frequency. Expanding F(s), we

find

F (s) = 〈eT
k Rek〉/s + 〈eT

k RΓ Rek〉/s2 + ..., (2.7)

F (s) = µ0/s + µ1/s2 + ... . (2.8)

Thus, statistical assumptions about the geometry that are incorporated into µ via its moments

µn =
∫1

0
zndµ(z), can be calculated from the correlation functions of the random medium, with

µn = (−1)n〈eT
k R[(Γ R)nek]〉. For the complex elementary bounds it is assumed that we know

only µ0 = 〈eT
k Rek〉. This quantity can be easily and quickly calculated provided we know the

dimension of the composite and crystal orientation statistics. A calculation of this will be done

when the bounds are compared to actual sea ice data in section 4. The statistical average 〈eT
k Rek〉

can be thought of as the “mean orientation,” or as the percentage of the single crystals in the kth

direction.

Bounds on ε∗, or F (s), are obtained by fixing s in (2.6), varying over admissible measures

µ (or admissible geometries), such as those that satisfy only µ0 = 〈eT
k Rek〉, and finding the

corresponding range of values of F (s) in the complex plane [17]. The bound R3 assumes only

that the mean crystal orientation 〈eT
k Rek〉 of the single crystals is known, with µ0 = 〈eT

k Rek〉

satisfied. In this case, the admissible set of measures form a compact, convex set M0. Since (2.6)

is a linear functional of µ, the extreme values of F are attained by extreme points of M0, which

are the Dirac point measures 〈eT
k Rek〉δz . The values of ε∗ lie inside the region R3 bounded by

circular arcs, one of which is parameterized in the F –plane by

C3(z) =
〈eT

k Rek〉

s − z
, −∞≤ z ≤∞. (2.9)

To display the other arc, we use the auxiliary function [6] E(s) = 1− ε1/ε∗, which is a Herglotz

function like F (s), analytic off [0, 1]. Then in the E–plane, we can parameterize the other circular
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boundary of R3 by

Ĉ3(z) =
1 − 〈eT

k Rek〉

s − z
, −∞≤ z ≤∞. (2.10)

In the common ε∗–plane, R3 takes the following form for the “lower” and “upper” bounds, which

are still circular arcs, ε∗l and ε∗u, respectively.

ε∗u(z) = ε2 − ε2

 

〈eT
k Rek〉

s − z

!

, −∞≤ z ≤∞. (2.11)

ε∗l (z) = ε1

 

1 −
1 − 〈eT

k Rek〉

s − z

!−1

, −∞≤ z ≤∞. (2.12)

When ε1 and ε2 are real and positive, the bounds collapse to the interval

1/(〈eT
k Rek〉/ε1 + (1 − 〈eT

k Rek〉)/ε2 ≤ ε∗ ≤ 〈eT
k Rek〉ε1 + (1− 〈eT

k Rek〉)ε2.

These are the analogous arithmetic (upper) and harmonic (lower) mean bounds for a

polycrystalline material in the single direction k.

To obtain second order complex bounds further assumptions need to be made. For instance,

if the polycrystalline composite is assumed to have the “polycrystalline Hashin-Shtrikman

condition” [38] or essentially geometric isotropy, then µ1 = −〈eT
k RΓ Rek〉= (d − 1)/d3, where d

is the dimension of the polycrystalline composite. In two dimensions, we define a polycrystalline

material to be geometrically isotropic if for every crystal in the polycrystalline composite with

orientation off the vertical direction described by the normalized vector < x, y >, there exist three

other crystals that have orientations < x,−y >, < y, x >, and < y,−x >. A similar definition can

be made for three dimensions, where groups of 24 crystals are needed instead of groups of four.

(Note: Several special examples in two dimensions where only groups of two are required include

polycrystalline materials where all the single crystals are vertically and horizontally aligned or all

the single crystals have an orientation angle of +π/4 radians or +45 degrees off the vertical

axis. In a similar fashion, if all the single crystals are vertically or horizontally aligned in three

dimensions, only groups of three crystals are required.)

Here we show the derivation for the value of µ1 = −〈eT
k RΓ Rek〉 for two dimensions. (An

analogous argument can be demonstrated for three dimensions.) Recall that Γ = ∇(−∆)−1
∇·

and define (−∆)−1 in terms of a Green’s function so that ((−∆)−1f)(x) =
∫

Rd g(x, y)f(y)dy,

where ∆g(x) =−δy(x). Therefore, we can write

µ1 = 〈eT
k R∇

∫
Rd

g(x, y)∇ · Rekdy〉, (2.13)

where in two dimensions R takes the form

R =

"

cos2(θ) −cos(θ)sin(θ)

−cos(θ)sin(θ) sin2(θ)

#

=

"

a −b

−b c

#

,

where for notation simplicity define a = cos2(θ), −b =−cos(θ)sin(θ), and c = sin2(θ), where θ

is the angle of orientation off the vertical axis. Define R̃ = R − I(〈eT
1 Re1〉, 〈e

T
2 Re2〉)

T , which is

translationally invariant, and then under the divergence theorem we can write

µ1 = 〈−e
T
k R∇

∫
Rd

(∇g(x, y)) · Rekdy

−e
T
k R∇

∫
Rd

(∇g(x, y)) · I(〈eT
1 Re1〉, 〈e

T
2 Re2〉)

T
ekdy

+e
T
k R∇

∫
∂R

(g(x, y)R̃ek) · ndA〉.

(2.14)

************************ What does
∫

∂R
mean?
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**********************

Again for simplicity, let us consider the terms separately. The intent here is to find crystal

orientation combinations so that the Laplacian operator is recovered, and together with g(x, y)

we obtain a delta function inside the integral, or for the term to become zero. Examining the first

term, analyzing the first direction (k = 1), and using the notation Dx = d/dx, we see that

− e
T
1 R∇

∫
Rd

(∇g(x, y)) · Re1dy =

∫
Rd

(a2Dxx − 2abDxy + b2Dyy)g(x, y)dy. (2.15)

A similar result is found when examining the second direction,

− e
T
2 R∇

∫
Rd

(∇g(x, y)) · Re2dy =

∫
Rd

(b2Dxx − 2bcDxy + c2Dyy)g(x, y)dy. (2.16)

Together, these describe the vertical and horizontal components of a single crystal inside a

statistical average. If we now impose the condition that the vertical and horizontal components

have the same statistical average for a single crystal, we observe that

〈−e
T
k R∇

∫
Rd

(∇g(x, y)) · Rekdy〉 = 1/d〈

∫
Rd

[(a2 + b2)Dxx − 2(ab + bc)Dxy + (b2 + c2)Dyy]g(x, y)dy〉.

(2.17)

Thus, for the term [(a2 + b2)Dxx − 2(ab + bc)Dxy + (b2 + c2)Dyy] to become the Laplacian

operator, a2 = c2 and b = 0. This is equivalent to every crystal in the polycrystalline material

having either perfect vertical or horizontal rotations with an equal amount of crystals in the

vertical direction and horizontal direction. Therefore, 〈−eT
k R∇

∫
Rd (∇g(x, y)) · Rekdy〉 = 1/d2.

This same line of reasoning can be expanded into a geometrically isotropic polycrystalline

material. That is, let us now consider “groups” of four single crystals under the statistical average.

If four crystals are examined at once, the condition for recovering the Laplacian operator becomes

(a2
1 + a2

2 + a2
3 + a2

4 + b21 + b22 + b23 + b24)Dxx

−2(a1b1 + a2b2 + a43b3 + a4b4 + b1c1 + b2c2 + b3c3 + b4c4)Dxy

+(b21 + b22 + b23 + b24 + c21 + c22 + c23 + c24)Dyy = q(Dxx + Dyy),

(2.18)

where q is some constant. Thus, a2
1 + a2

2 + a2
3 + a2

4 = c21 + c22 + c23 + c24 and a1b1 + a2b2 + a43b3 +

a4b4 + b1c1 + b2c2 + b3c3 + b4c4 = 0. These conditions are satisfied provided that the orientation

off the vertical directions for the four crystals, in terms of normalized vectors are < x, y >, <

x,−y >, < y,−x >, and < y, x >. Conveniently, for these four specific crystals, q takes the value

of q = 1/d. Therefore, the same result holds for the statistical average as before and we see that

〈−e
T
k R∇

∫
Rd

(∇g(x, y)) · Rekdy〉 = 1/d2. (2.19)

Now consider the second term from equation 2.14, which is

−e
T
k R∇

∫
Rd (∇g(x, y)) · I(〈eT

1 Re1〉, 〈e
T
2 Re2〉)

T
ekdy. Similar to the technique applied above, if we

consider a group of four crystals and examine the vertical and horizontal components (i.e., k =

1, 2), then over the statistical average

〈−e
T
k R∇

∫
Rd

(∇g(x, y)) · I(〈eT
1 Re1〉, 〈e

T
2 Re2〉)

T
ekdy〉

= 1/d(〈eT
1 Re1〉〈

∫
Rd

[(a1 + a2 + a3 + a4)Dxx − (b1 + b2 + b3 + b4)Dxy]g(x, y)dy〉

+〈eT
2 Re2〉〈

∫
Rd

[(c1 + c2 + c3 + c4)Dyy − (b1 + b2 + b3 + b4)Dxy]g(x, y)dy〉.

(2.20)
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If geometric isotropy as defined above is assumed, then 〈eT
1 Re1〉= 〈eT

2 Re2〉, a1 + a2 + a3 +

a4 = c1 + c2 + c3 + c4, and b1 + b2 + b3 + b4 = 0. Therefore, the second term also introduces a

Laplacian operator and we see that

〈−e
T
k R∇

∫
Rd

(∇g(x, y)) · I(〈eT
1 Re1〉, 〈e

T
2 Re2〉)

T
ekdy〉 = (1/d)(1/d)(1/d). (2.21)

Finally, consider the third term from equation 2.14, which is e
T
k R∇

∫
∂R

(g(x, y)R̃ek) · ndA.

Here, we see that if we consider the same group of four crystals as above that are geometrically

isotropic, and under the statistical average,

〈eT
k R∇

∫
∂R

(g(x, y)R̃ek) · ndA〉

= (1/d)(〈

∫
∂R

[(a2
1 + a2

2 + a2
3 + a2

4 + b21 + b22 + b23 + b24)Dx

+(−a1b1 − a2b2 − a3b3 − a4b4 − b1c1 − b2c2 − b3c3 − b4c4)Dy,

(−a1b1 − a2b2 − a3b3 − a4b4 − b1c1 − b2c2 − b3c3 − b4c4)Dx

+(c21 + c22 + c23 + c24 + b21 + b22 + b23 + b24)Dy]T · ndA

−

∫
∂R

(1/d)[(a1 + a2 + a3 + a4)Dx + (−b1 − b2 − b3 − b4)Dy,

(−b1 − b2 − b3 − b4)Dx + (c1 + c2 + c3 + c4)Dy]T · ndA〉 = 0.

(2.22)

Putting all of this together, we see that µ1 in equation 2.14, under the assumption of

geometrical isotropy, satisfies

µ1 = (1/d)[(1/d) − (1/d)(1/d)] =
d − 1

d3
. (2.23)

This value for µ1 is analogous to the µ1 = (1/d)[p1 − p2
1] value found for a two-component

material in [17].

Thus, if the polycrystalline material is further assumed to have the Hashin-Shtrikman

condition, then F (s) is known to second order, with µ0 = 1/d and µ1 = (d − 1)/d3, so that

F (s) = 1/(sd) + (d − 1)/(s2d3). (2.24)

A convenient transform F1(s) = 1/(〈eT
k Rek〉) − 1/sF (s) allows for this information to be

included. It is known [18] that F1(s) is an upper half plane function analytic off [0, 1] and has

the representation

F1(s) =

∫ 1

0

dµ1(z)

s − z
, (2.25)

Under the additional assumption of geometric isotropy F1(s) is known only to first order,

where F1(s) = (d − 1)/(ds) + ..., and µ0
1 = (d − 1)/(ds). Thus the values of F1(s) lie in the

circular arc (d − 1)/[(d)(s − z)], −∞≤ z ≤∞. Mapping this arc back into the F –plane, we can

parameterize one boundary of R4 by

C4(z) =
(1/d)(s − z)

s(s − z − d−1

d2 )
, −∞≤ z ≤∞. (2.26)

Similarly, to display the other arc, we use the auxiliary function E(s) = 1 − ε1/ε∗ = (1 −

sF (s))/(s(1− F (s))), and find that E(s) = (d − 1)/(ds) + (d2 − 2d − 1)/(d3s2). Again, using a

similar method as with F (s), an arc can be found in the E–plane, and we can parameterize the
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other circular boundary of R4 by

Ĉ4(z)=
((d − 1)/d)(s − z)

s(s − z − d−1

d2 )
, −∞≤ z ≤∞. (2.27)

When ε1 and ε2 are real and positive, the bounds collapse to the interval

ε2(1 − 1/(ds − [d − 1]/d)≤ ε∗ ≤ ε1/(1 − [(d − 1)/(ds − [d − 1]/d)]), (2.28)

where s = ε2/(ε2 − ε1) and ε2 ≤ ε1. These are exactly the Hashin-Shtrikman bounds for an

isotropic polycrystalline composite [26]. Further, if we evaluate the two-dimensional second order

complex forward bounds for a two-component material [5,17,35], where each material has a

volume fraction of 50%, we see that they are in agreement with the two dimensional second order

complex forward polycrystalline bounds. The three-dimensional bounds are also in agreement.

For the purpose of comparing these bounds to previously established ones on the (real)

effective permittivity [2,8,27,38,39,45,46], let us further consider that the polycrystal is isotropic

in the sense that 〈eT
1 Re1〉= 〈eT

2 Re2〉= 〈eT
3 Re3〉. Then 〈eT

k Rek〉 = 1/2 in two dimensions and
〈eT

k Rek〉= 1/3 in three dimensions. Here, our upper bound is in agreement with the upper bound

presented in [2] for a uniaxial isotropic polycrystal. However, our lower bound is in disagreement

with the lower bound presented in [2] for a uniaxial isotropic polycrystal. A quick argument

can justify the difference. The lower bound in Avellaneda et al. [2] is achieved with the sphere

assemblage model conjectured by Schulgasser [45,46]. The reason being that the conductivity in

each direction is simultaneously minimized in the equation ε
∗ = (1/3)tr(ε∗)≥ εs [2], where εs

is the permittivity of the sphere assemblage model and ε
∗ is the full permittivity tensor. Therefore,

a minimum is found and achieved with the sphere assemblage model because all directions have

the same minimum permittivity. The lower bound we find here is only for 〈eT
k Rek〉 the same in

each direction, not necessarily the permittivity to be the same. Thus, in a single direction, the

minimum value that can be obtained is still the harmonic bound (i.e., resistors in series). Using

a nearly identical argument, there is also no reason for these lower bounds to be the same in the

anisotropic case. The bounds we find here are needed to examine sea ice because we are interested

in the effective complex permittivity for a single direction.

3. Inverse Bounds for Structural Parameters

The objective of inverse bounds is to use data from the electromagnetic response of a

polycrystalline material to recover information about its structural parameters. In previous work

[9], this is typically done to recover information about the volume fractions of the two constituents

of a composite material. Here, we will show how to recover information about the mean crystal

orientation 〈eT
k Rek〉 of the polycrystalline material. The inverse method [9,21,33,34] we use here

yields intervals of uncertainty for the mean crystal orientation 〈eT
k Rek〉. Given an observed

value of the complex permittivity in a single direction ε∗, 〈eT
k Rek〉 is increased until the value

of ε∗ touches one boundary of the region R3 described in the previous section, and is then

decreased until the value touches the other boundary. This procedure gives a range of values

〈eT
k Rek〉l ≤ 〈eT

k Rek〉 ≤ 〈eT
k Rek〉u, with

〈eT
k Rek〉l = |f |2

Im(s)

Im(f)
, 〈eT

k Rek〉u = 1 −
|g|2Im(t)

Im(g)
, (3.1)

where f is the known value of F (s) and g is the known value of G(t) = 1 − ε∗/ε1 with t = 1− s.

The objective of the second order inverse bounds would be to obtain a better estimate for the

mean orientation of crystals in the kth direction. However, as demonstrated in the second order

forward bounds, the mean orientation must be the same in all directions. Thus we already know

that, 〈eT
k Rek〉 = 1/d and therefore, the second order inverse bounds provide no new information

or are essentially meaningless for polycrystalline composites.
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4. Comparison of the Bounds to Sea Ice Data

Here the polycrystalline bounds are compared with the data set in [1], which is obtained

from primarily columnar sea ice. This data set is the same as was used to compare sea ice

with the elementary bounds of a two-component material [9,16], a statistically isotropic two-

component material [9,16], and a two-component matrix-particle material [40,44]. Applying the

polycrystalline bounds to this same set of data allows for comparison between different types

of bounds and hopefully allows for a deeper understanding of the physical relationship the

polycrystalline bounds have to sea ice data. In addition, this is the only known data set (to our

knowledge) that is accompanied by a detailed analysis of the crystalline structure of the ice, which

is necessary for the polycrystalline bounds to be applied. To obtain forward bounds and compare

them with sea ice data, two things must be known: the complex permittivity tensor of the identical

single crystals (i.e., ε1 and ε2), and the crystal orientation statistics (i.e., 〈eT
k Rek〉).

The single crystal complex permittivity tensor for sea ice is obtained by evaluating X-ray CT

data with known ice and brine permittivities and φ using Comsol 3.5a. Here we examine 222

single crystals at a frequency of 4.75 GHz and at a tempurature of −6◦C, where brine has a

permittivity value of 51.0741 + i45.1602 [51]. As was demonstrated in [9], it is important not

to neglect the effect of the air phase of sea ice when calculating the complex permittivity. Thus, to

account for this air phase, a Maxwell-Garnett mixing formula is used apriori to combine the air

and ice phase as was done identically in [9]. Therefore, the permittivity used for the air-ice phase

is 3.07 + i0.0019. Different single crystal microstructures were calculated at different φ values and

a data set of single crystal complex permittivity tensors was generated (Table 1).

Different sea ice single crystal geometric configurations can have significantly different

permittivity tensors for the same brine volume fraction φ value as is shown in Table 1. In

particular, the permittivity in the vertical direction can dramatically change depending on the

brine connectedness in the vertical direction. Additionally, the two horizontal components tend to

have slightly different permittivity values. The polycrystalline bounds make the assumption that

the material is composed of many identical crystals with the same permittivity in two directions

(transversely isotropic or uniaxial) and a different permittivity in the other (vertical) direction.

As is quickly observed in Table 1 actual sea ice directly violates these assumptions, namely that

each crystal is identical and the horizontal permittivities are the same. To make matters worse,

φ values can dramatically change across an entire sea ice column, thus substantially changing

the single crystal permittivities at different depths. For example, the very bottom layer of a sea

ice column can have a φ value almost twice as large as the average, which is typical in classic

columnar sea ice [13,57]. Further, as displayed in Table 1, the permittivity change in the vertical

component is not linear with respect to φ, and a “small range" general average in the vertical

direction for a specific φ value will not accurately represent the physics of the ice. To account

for these differences between the requirements for the polycrystalline bounds and actual sea ice

data, we will “idealize" the sea ice data, so that the polycrystalline bounds may still be applied.

Inherently, this “idealization" changes the objective from finding an exact forward bound for

a very specific configuration with identical single crystals to finding a more general forward

bound that can be applied to a large class of sea ice, such as all columnar sea ice within a

certain φ value range. Thus, to obtain the single crystal permittivity tensor for φ corresponding

to the entire ice column, we averaged the permittivities in the vertical direction and both of

the horizontal directions over a range of φ, accounting for a typical variation in φ across an

entire ice column. For example, for an average value of φ = 3.5% we used the following range

of (averaged) φ values: 0.025, 0.025. 0.025, 0.03, and 0.07. For an average value of φ = 4%, we used

the following range of (averaged) φ values: 0.03, 0.03, 0.03, 0.03, 0.04, and 0.08. Therefore, the

single crystal permittivity tensor for an entire column of sea ice with overall values of φ = 3.5%

and φ = 4% are: ε1 = 3.74 + 0.62i (vertical), ε2 = 3.46 + 0.08i (horizontal), and ε1 = 4.11 + 0.67i

(vertical), ε2 = 3.52 + 0.10i (horizontal), respectively.

The polycrystalline forward bounds also assume that we know the single crystal orientation

statistics 〈eT
k Rek〉. Here we use the orientation statistics found in [56]. These data describe the
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c-axis distribution statistics of sea ice as a function of depth for ice grown in a region without

a preferred current direction (thus, transversely isotropic). The big picture is that granular ice

(typically found in the top layer of a column of sea ice [56]) has an essentially random uniform

distribution across all angles, whereas columnar ice has a strongly preferred vertical orientation.

The effective complex permittivity data set from [1] is largely columnar and cross-sectional slices

show that the sea ice is transversely isotropic. Examining the orientation statistics [56], it is very

reasonable to conclude that the average crystal orientation 〈eT
k Rek〉 for the largely columnar ice

structure used in [1] has average orientation measurements somewhere between 0 degrees and

30 degrees off the vertical axis.

Due to the necessary “idealizations" as describe above, the objective of the forward bounds

is to capture all possible effective complex permittivity variations that can occur in columnar

ice. The electromagnetic wave propagating through the sea ice column in [1] is orthogonal to the

horizontal plane, thus the electric field is in the horizontal plane. The horizontal plane is isotropic,

therefore, we can just examine one of the horizontal directions (depending on which direction you

assume the electric field is in) and use a two-dimensional rotation matrix, which would give the

same result as a three-dimensional rotation matrix where the electric field is in exactly one of

the horizontal directions. Therefore, if we say the electric field is in the k=2 horizontal direction,

and for an average orientation between 0 and 30 degrees off the vertical axis (i.e., columnar ice)

〈eT
2 Re2〉 takes a value between sin2(0) = 0 and sin2(30) = 0.25. For primarily granular ice, the

average crystal orientation statistics are very uniform over the possible range of angles and the

average angle should be close to 45 degrees. An acceptable range might be between 35 and 55

degrees. We are unaware of any experiments that have taken permittivity data for primarily

granular ice and therefore we unfortunately have no data with which to compare these bounds.

The first order polycrystalline forward bounds can then be applied to the data and the largest

area of overlap between the bounds is assumed to be the region where the data must lie. It is

possible that the forward bounds overestimate the region because of this technique (namely, we

assume the mean orientation is between 0 and 30 degrees off the vertical axis). However, each

region in these bounds could still be found by slightly adjusting the single crystal permittivity

tensor (which can have some variability) for a specific orientation. Further, it is also certainly

reasonable to use this approach because of the large (and possibly unknown) variability in the

general columnar crystal orientation statistics from sample to sample. Essentially, these bounds

are general enough that they can be applied accurately to all sea ice that is primarily columnar

without having to know specific orientation statistics or a specific single crystal permittivity

tensor. The second order forward bounds cannot be compared to this sea ice data because they

assume that the material is geometrically isotropic. This is not the case for columnar sea ice. We

mention them here because on occasion the second order forward bounds might be applicable to

granular ice, but as mentioned above we have no granular data to examine.

As displayed in Figure 1 (a) the polycrystalline bounds provide a much tighter bound

than those of the traditional two-component material and statistically isotropic two-component

material for sea ice. This makes sense because we are essentially applying a two-scale

homogenization and including the additional information about rotation statistics. If we zoom in

on just the new polycrystalline bounds, we a see that the bounds accurately capture the data for

the corresponding φ value for the ice column (Figure 2 (a)), minus one point. We suspect that this

missing point can easily be justified by the variability in single crystal permittivities. However,

we suggest that the three tighter bounds in Figure 1 (a) and the bounds in Figure 2 (a) be viewed

as a “window” for whole column, columnar sea ice permittivities where brine volume fractions

vary between 3.3% ≤ φ ≤ 4.1%.

Although the bounds accurately capture the data, due the large variability and potential noise

in both the data in [1] and the single crystal permittivity tensor from our numerical simulations,

we further average the data in [1] and compare it to bounds corresponding to the single crystal

permittivity tensor of the averaged value of φ = 3.75%. This is displayed in Figure 1 (b) and Figure

2 (b), and we see that the bounds accurately capture the data point.
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We further examine the data under the inverse polycrystalline bounds. For the data falling

within a certain φ value range (thus we know the single crystal permittivity tensor), we can

estimate the mean crystal orientation, revealing the type of ice. The results are displayed in Figure

3. Namely, we estimate that the mean crystal orientation of the ice crystals in the ice column from

the Arcone et al. experiments is between 8 and 30 degrees off the vertical axis. Therefore, the ice is

certainly columnar. If we then examine two images from [1] that are representative of the typical

sea ice structure from which the complex permittivity data was taken, and then estimate the mean

crystal orientation, we estimate that the average crystal orientation should be somewhere between

11.5 and 19 degrees off the vertical axis. These are within the inverse bounds mean single crystal

orientation range displayed in Figure 3.

5. Figures & Tables

 *)Re(ε  *)Re(ε

 *)Im(ε *)Im(ε
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0.4

4.5

0

43.53

1.6

1.2

5
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4.5

0

43.53

(a) (b)

Figure 1. Comparison of previous and new forward bounds with complex permittivity data. (a) Forward elementary

bounds and isotropic bounds for a two component material are red [9,16]. The forward polycrystalline bounds for columnar

sea ice where the single crystal permittivity tensor has a brine volume fraction of 4% are green, 3.75% are brown, and

3.5% are black. These data points correspond to complex permittivity data taken at 4.75 GHz and where the brine volume

fraction approximately spans between 3.1% and 4.1%. (b) Forward elementary bounds and isotropic bounds for a two

component material are again red [9,16]. The forward polycrystalline bounds for columnar sea ice where the single crystal

permittivity tensor has a brine volume fraction of 3.75% is blue compared with the averaged effective complex permittivity

data taken at 4.75 GHz where the averaged brine volume fraction is 3.65%.

6. Conclusion

We have developed both first and second order forward bounds on the effective complex

permittivity ε
∗ for a polycrystalline material using the analytic continuation method.

Additionally, we have obtained first order inverse bounds on the mean single crystal orientation

for a polycrystalline material. The first order forward bounds assume a priori knowledge about

the complex permittivity tensor for a single crystal and the mean single crystal orientation, and

bound ε
∗. The second order polycrystalline forward bounds further require that the material is

geometrically isotropic in the polycrystalline Hashin-Shtrikman sense. The inverse bounds for

the polycrystalline material assume knowledge about ε
∗ and the complex permittivity tensor

for a single crystal and bound the mean crystal orientation. We further compare these bounds
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Figure 2. Comparison of new forward bounds with complex permittivity data. (a) “Zoomed-in” version of Figure 1 (a)

displaying the forward polycrystalline bounds for columnar sea ice where the single crystal permittivity tensor has a

brine volume fraction of 4% (green), 3.75% (brown), and 3.5% (black), compared with effective complex permittivity data

taken at 4.75 GHz where the averaged brine volume fraction is 4% (green), 3.65% (brown), and 3.33% (black). The

brown data point that is capture by both the black and brown bounds is used in both (black and brown) data averages.

Note how multiple data points fall within multiple bounds. (b) “Zoomed-in” version of Figure 1 (b) displaying the forward

polycrystalline bounds for columnar sea ice where the single crystal permittivity tensor has a brine volume fraction of

3.75% (blue), compared with the averaged effective complex permittivity data taken at 4.75 GHz where the averaged

brine volume fraction is 3.65% (blue).

35
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15
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5

0

 θ

Figure 3. Inverse bounds on the mean crystal orientation off the vertical axis (y−axis) for 15 different effective complex

permittivity data values (x−axis). The dashed line represents data points that were examined for the secondary forward

bound they fell within. Here we see the upper inverse bounds (red) and lower inverse bounds (blue) for the 15 different

data values.
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Table 1. A sample of the range of complex permittivity values that a single crystal of sea ice can display. Note that at a

constant brine volume fraction φ of 3.8% and 5.5%, the values of the vertical component can dramatically change. Also

note that the vertical component does not change on a linear scale with an increase in φ. This data was generated from

numerical simulations of X-ray CT sea ice microstructures using Comsol 3.5a.

BVF Vertical Component Horizontal component 1 Horizontal component 2

0.025 3.4796+0.0795027i 3.34554+0.0386595i 3.2315+0.0150707i

0.03 3.90874+0.376569i 3.32704+0.030911i 3.44001+0.0919011i

0.038 3.62198+0.112947i 3.49521+0.0687332i 3.52569+0.0947335i

0.038 3.79782+0.211531i 3.36183+0.0325894i 3.55585+0.0885505i

0.038 3.88906+0.345808i 3.36387+0.0336083i 3.73552+0.192388i

0.055 4.93418+1.45498i 3.43891+0.0454075i 3.71922+0.103182i

0.055 4.14111+0.267123i 3.63189+0.107398i 3.60756+0.0749424i

0.055 4.33091+0.425696i 3.49575+0.0485316i 3.76794+0.149307i

0.081 6.53291+3.16979i 3.46572+0.0267835i 4.3584+0.256975i

0.124 7.8748+4.23181i 3.82923+0.0618386i 4.77605+0.30978i

with actual sea ice data and find excellent agreement. These results provide a foundation for

determining ice type with remote sensing techniques.
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