Introduction to Sea Ice

Kenneth M. Golden Department of Mathematics University of Utah

AMS Mathematics Research Community Snowbird, Utah June 22, 2015

Pattern Formation in Melting Arctic Sea Ice

Kenneth M. Golden Department of Mathematics University of Utah

Community Lecture CNA 2019 Workshop on Mathematical Models for Pattern Formation Carnegie Mellon University, March 9, 2019

Frey

ANTARCTICA

southern cryosphere

Weddell Sea

East Antarctic Ice Sheet

West Antarctic Ice Sheet

Ross Sea

sea ice

northern cryosphere

SEA ICE covers ~12% of Earth's ocean surface

- boundary between ocean and atmosphere
- mediates exchange of heat, gases, momentum
- global ocean circulation
- hosts rich ecosystem
- indicator of climate change

polar ice caps critical to climate in reflecting sunlight during summer *brine expulsion from sea ice formation* results in water beneath the ice becoming cooler and saltier

this denser water sinks rapidly to great depths

deep-water formation drives circulation in the world's oceans

Thermohaline Circulation

GLOBAL THERMOHALINE CONVEYOR BELT

polar ice caps critical to global climate in reflecting incoming solar radiation

white snow and ice reflect

dark water and land absorb

albedo
$$\alpha = \frac{\text{reflected sunlight}}{\text{incident sunlight}}$$

Arctic melt ponds

melt pond pattern formation and albedo evolution -- major drivers in polar climate key challenge for global climate models

the summer Arctic sea ice pack is melting

National Snow and Ice Data Center

Change in Arctic Sea Ice Extent

September 1980 -- 7.8 million km² September 2012 -- 3.4 million km²

recent losses in comparison to the United States

sea ice displays *multiscale* structure over 10 orders of magnitude

0.1 millimeter brine inclusions polycrystals dm cm m vertical horizontal brine channels 1 meter

pancake ice

1 meter

100 kilometers

Sea Ice is a Multiscale Composite Material

MICROSCALE

brine inclusions

Weeks & Assur 1969

H. Eicken

Golden et al. GRL 2007

millimeters

polycrystals

Gully et al. Proc. Roy. Soc. A 2015

centimeters

MACROSCALE

brine channels

D. Cole

K. Golden

MESOSCALE

Arctic melt ponds

sea ice floes

sea ice pack

J. Weller

meters

HOMOGENIZATION for Composite Materials

Maxwell 1873 : effective conductivity of a dilute suspension of spheres Einstein 1906 : effective viscosity of a dilute suspension of rigid spheres in a fluid

Wiener 1912 : arithmetic and harmonic mean **bounds** on effective conductivity Hashin and Shtrikman 1962 : variational **bounds** on effective conductivity

widespread use of composites in late 20th century due in large part to advances in mathematically predicting their effective properties

Sea ice structure, properties, and processes

sea ice formation

effect of Langmuir circulation on grease and pancake ice

Martin and Kauffman, 1981

sea ice formation in a wave field

- turbulence in the wave field maintains the new ice as a dense suspension of frazil, rather than forming nilas
- suspension undergoes cyclic compression
- during the compression phase crystals can freeze together to form small coherent cakes of slush
 - they grow larger by accretion from the frazil and more solid through continued freezing between the crystals

where the wave field is calm, the pancakes begin to freeze together, eventually coalescing to first form large floes, then a continuous sheet of first-year ice known as consolidated pancake ice, with frazil as glue

CAN PRODUCE RAPID GROWTH - DYNAMIC THICKENING AGGREGATION PROCESS - CONNECTEDNESS TRANSITION

ocean swells propagating through a vast field of pancake ice

HOMOGENIZATION: long wave sees an effective medium, not individual floes, like long EM wave interacting with brine inclusion microstructure

pancake ice

sea ice may appear to be a barren, impermeable cap ...

brine inclusions in sea ice (mm)

micro - brine channel (SEM)

brine channels (cm)

sea ice is a porous composite

pure ice with brine, air, and salt inclusions

horizontal section

vertical section

cross-sections of sea ice structure

$$T_{freeze} = -1.8^{\circ} \mathrm{C}$$

crystallographic texture

vertical thin section

brine volume fraction and *connectivity* increase with temperature

$T = -15 \,^{\circ}\text{C}, \ \phi = 0.033$ $T = -6 \,^{\circ}\text{C}, \ \phi = 0.075$ $T = -3 \,^{\circ}\text{C}, \ \phi = 0.143$

 $T = -8^{\circ} C, \phi = 0.057$

X-ray tomography for brine in sea ice

 $T = -4^{\circ} C, \phi = 0.113$

Golden et al., Geophysical Research Letters, 2007

fluid flow through the porous microstructure of sea ice governs key processes in polar climate and ecosystems

evolution of Arctic melt ponds and sea ice albedo

nutrient flux for algal communities

Antarctic surface flooding and snow-ice formation

evolution of salinity profiles
ocean-ice-air exchanges of heat, CO₂

Critical behavior of fluid transport in sea ice

critical brine volume fraction $\phi_c \approx 5\%$ \checkmark $T_c \approx -5^{\circ}C, S \approx 5$ ppt

RULE OF FIVES

Golden, Ackley, Lytle Science 1998 Golden, Eicken, Heaton, Miner, Pringle, Zhu Geophys. Res. Lett. 2007 Pringle, Miner, Eicken, Golden J. Geophys. Res. 2009

rule of fives constrains:

Antarctic surface flooding and snow-ice formation

Antarctic snow-to-ice conversion from passive microwave imagery

T. Maksym and T. Markus, 2008

evolution of salinity profiles

currently assumed constant in climate models

convection - enhanced thermal conductivity

Lytle and Ackley, 1996 Trodahl, et. al., 2000, 2001 Wang, Zhu, Golden, 2012

sea ice algal communities

D. Thomas 2004

nutrient replenishment controlled by ice permeability

biological activity turns on or off according to *rule of fives*

Golden, Ackley, Lytle

Science 1998

Fritsen, Lytle, Ackley, Sullivan Science 1994

critical behavior of microbial activity

brine volume fraction and *connectivity* increase with temperature

X-ray tomography for brine phase in sea ice

Golden, Eicken, et al., Geophysical Research Letters 2007

PERCOLATION THRESHOLD $\phi_c \approx 5 \%$

Golden, Ackley, Lytle, *Science* 1998

The Melt Pond Conundrum:

How can ponds form on top of sea ice that is highly permeable?

C. Polashenski, K. M. Golden, D. K. Perovich, E. Skyllingstad, A. Arnsten, C. Stwertka, N. Wright

Percolation Blockage: A Process that Enables Melt Pond Formation on First Year Arctic Sea Ice

J. Geophys. Res. Oceans 2017

2014 Study of Under Ice Blooms in the Chuckchi Ecosystem (SUBICE) aboard USCGC Healy

tracers flowing through inverted sea ice blocks

Sea ice algae secrete extracellular polymeric substances (EPS) EPS changes brine microstructure

ellipsoidal inclusions

fractal inclusions

numerical model bounds on fluid permeability Steffen, Epshteyn, Zhu, Bowler, Deming, Golden Multiscale Modeling and Simulation, 2018

How does the biology affect the physics?

Krembs, Eicken, Deming PNAS 2011

Sea ice algae secrete extracellular polymeric substances (EPS) affecting evolution of brine microstructure.

How does EPS affect fluid transport? How does the biology affect the physics?

Krembs, Eicken, Deming, PNAS 2011

RANDOM PIPE MODEL

- 2D random pipe model with bimodal distribution of pore sizes
- Rigorous bound on permeability *k*; results predict observed drop in *k*

Steffen, Epshteyn, Zhu, Bowler, Deming, Golden Multiscale Modeling and Simulation, 2018

3D extension, effect of EPS clogging, blockage

Anna Hyde, Jingyi Zhu, Ken Golden

Zhu, Jabini, Golden, Eicken, Morris *Ann. Glac*. 2006

higher threshold for fluid flow in granular sea ice

granular

microscale details impact "mesoscale" processes

5%

columnar

nutrient fluxes for microbes melt pond drainage snow-ice formation

10%

Golden, Sampson, Gully, Lubbers, Tison 2020

electromagnetically distinguishing ice types Kitsel Lusted, Elena Cherkaev, Ken Golden

Bounds on the complex permittivity of polycrystalline materials by analytic continuation

> Adam Gully, Joyce Lin, Elena Cherkaev, Ken Golden

 Stieltjes integral representation for effective complex permittivity

Milton (1981, 2002), Barabash and Stroud (1999), ...

- Forward and inverse bounds
- Applied to sea ice using two-scale homogenization
- Inverse bounds give method for distinguishing ice types using remote sensing techniques

Proc. Roy. Soc. A 8 Feb 2015

ISSN 1364-5021 | Volume 471 | Issue 2174 | 8 February 2015

PROCEEDINGS A

An invited review commemorating 350 years of scientific publishing at the Royal Society

A method to distinguish between different types of sea ice using remote sensing techniques A computer model to determine how a human should walk so as to expend the least energy

Are sea ice algae and bacteria proxies for possible life forms on extraterrestrial, icy bodies? (Thomas, Dieckmann, *Science*, 2002)

EUROPA - believed covered by deep briny ocean, with thick icy crust

sea ice ecosystem

sea ice algae support life in the polar oceans

Antarctic marine food web

D. Thomas 2004

all organisms in food web produce dissolved organic matter which fuels bacterial growth in the ice

life within and at the edges of Antarctic sea ice floes

krill

(a) diatoms
(b) flagellates
(c) foraminiferans
(d) ciliates
(e) turbellarians
(f) crustaceans
(g,h) copepods
(i) crustacean
larvae
(k) krill
(l) young fish
(bottom) amphipod *Gammarus wilkitzkii*

The Arctic sea ice cover

Of scientific, economic, societal, strategic importance

"Dynamic" duo

Dynamics

Thermodynamics

Dynamics

Momentum equation: Ice acceleration = <u>wind stress</u> + ocean stress - Coriolis force - sea surface tilt + internal ice stress

Arctic Ice Dynamics

large scale ice dynamics and ocean circulation

measuring ice depth in ridges off Barrow, AK

dynamic sea ice

sea ice dynamics plate tectonics on a fast time scale

dynamically modifying the ice thickness distribution

thinning

thickening

David Thomas 2004

leads

heat flows directly from ocean to atmosphere

Thermodynamics: 4 ways to melt

Top, bottom, lateral, internal

Heat budgets

Net shortwave + incoming longwave + outgoing longwave + sensible + evaporative + conduction = melt / freeze

Seasonal changes in sea ice

Melt ponds

Polynyas

Size: 100 m - 1000 km

Two mechanisms can contribute to keeping polynyas open:

1. Latent heat (or coastal) polynyas: Mertz Glacier Polynya

Sea ice grows in open-water and is continually removed by winds and currents (e.g. katabatic winds)

- latent heat released to the ocean during ice formation perpetuates the process
- 2. Sensible heat (or open-ocean) polynyas: Weddell Polynya Upwelling warm waters, vertical heat diffusion, or convection may provide enough oceanic heat flux to maintain ice-free region

Antarctic coastal polynyas = ice factories

around 10% of Southern Ocean sea ice is produced in the major Antarctic coastal polynyas ice production in Ross Ice Shelf Polynya decreased by about 30% from the 1990's to the 2000's (caused by atmospheric warming or decreased polynya size from calving icebergs)

candidate for causing recent freshening of AABW

Tamura, Ohshima, Nihashi, GRL 2008

polynyas ice factories

Mertz Glacier Polynya, located in East Antarctica, covers only 0.001% of the overall Antarctic sea ice zone at its maximum winter extent, but is responsible for 1% of the total sea ice production in the Southern Ocean.

Buchanan Bay

Mertz Glacier Polynya -- third largest Antarctic sea ice producer

pancake ice forming in a wave field in the Southern Ocean

pancake ice

iceberg collision!

breaking the Mertz Glacier Tongue, February 2010

Buchanan Bay, July 1999

Weddell Sea Polynya

Antarctic Zone Flux Experiment ANZFLUX 1994

sea ice thickness in dynamic equilibrium

surface flooding ->
snow-ice formation

controlled by ice permeability

Grow a little ice, descending brine plumes (+ storms) can help trigger deep convection, keep polynya going? Snow-ice formation shuts it down? Doug Martinson

deeper, warmer waters deflected upwards by rise in sea floor (Maud Rise)

the sea ice pack is a *fractal*

displaying self-similar structure on many scales

floe size distribution important in dynamics (fracture), thermodynamics (melting)

bigger floes easier to break, smaller floes easier to melt

<u> AAAAAA</u>

fractals

self-similar structure non-integer dimension

fractal microstructures

electrorheological fluid with metal spheres

brine channel in sea ice

diffusion limited aggregation

brine channels

The sea ice pack has fractal structure.

Self-similarity of sea ice floes

Weddell Sea, Antarctica

fractal dimensions of Okhotsk Sea ice pack smaller scales D~1.2, larger scales D~1.9

> Toyota, *et al. Geophys. Res. Lett.* 2006 Rothrock and Thorndike, *J. Geophys. Res.* 1984

Results from Okhotsk Sea ice

There are two regimes in the ice floe distribution.

Size

 $1 \sim 20 \text{m}$: $\alpha = 1.15 \pm 0.02$

100 ~ 1500 m : α = <mark>1.87 ±</mark> 0.02

(Toyota, Takatsuji et al., 2006)

melt pond formation and albedo evolution:

- major drivers in polar climate
- key challenge for global climate models

numerical models of melt pond evolution, including topography, drainage (permeability), etc.

Lüthje, Feltham, Taylor, Worster 2006 Flocco, Feltham 2007 Skyllingstad, Paulson, Perovich 2009 Flocco, Feltham, Hunke 2012

Are there universal features of the evolution similar to phase transitions in statistical physics?

fractal curves in the plane

they wiggle so much that their dimension is >1

clouds exhibit fractal behavior from 1 to 1000 km

use *perimeter-area* data to find that cloud and rain boundaries are fractals

 $D \approx 1.35$

S. Lovejoy, Science, 1982

 $P \sim \sqrt{A}$

simple shapes

 $A = L^2$ $P = 4L = 4\sqrt{A}$

 $P \sim \sqrt{A}^{D}$

L

for fractals with dimension D

Transition in the fractal geometry of Arctic melt ponds

Christel Hohenegger, Bacim Alali, Kyle Steffen, Don Perovich, Ken Golden

The Cryosphere, 2012

Arrigo et al., Science 2012

melt ponds act as *WINDOWS*

allowing light through sea ice

bloom

no bloom

Have we crossed into a new ecological regime?

The frequency and extent of sub-ice phytoplankton blooms in the Arctic Ocean

Horvat, Rees Jones, Iams, Schroeder, Flocco, Feltham, *Science Advances*, 2017

(2015 AMS MRC, Snowbird)