Modeling Sea Ice as a Multiscale Composite Material

Kenneth M. Golden
Department of Mathematics
University of Utah

ONR Program Review 15 July 2020

Beaufort Sea Golden

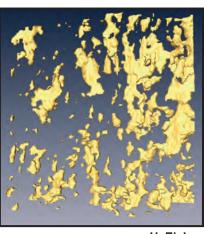
SEA ICE covers ~12% of Earth's ocean surface boundary between ocean and atmosphere mediates exchange of heat, gases, momentum global ocean circulation hosts rich ecosystem indicator of climate change polar ice caps critical to climate in reflecting sunlight during summer

Sea Ice is a Multiscale Composite Material

MICROSCALE

brine inclusions

Weeks & Assur 1969



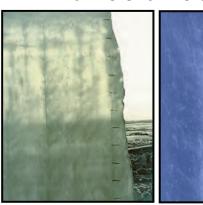
H. Eicken Golden et al. GRL 2007

polycrystals



Gully et al. Proc. Roy. Soc. A 2015

brine channels



D. Cole

K. Golden

centimeters

millimeters

MESOSCALE

Arctic melt ponds

K. Frey

pressure ridges

K. Golden

MACROSCALE

sea ice floes

sea ice pack

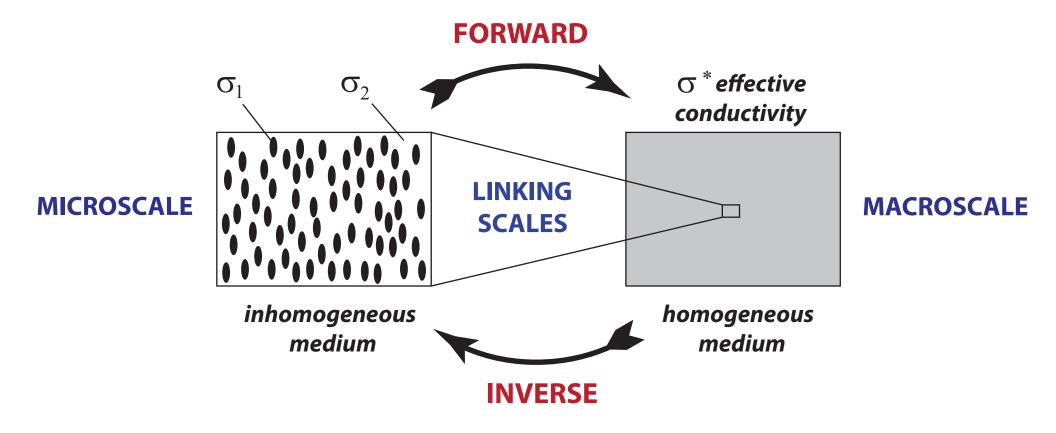
J. Weller

NASA

meters

kilometers

HOMOGENIZATION for Composite Materials



Maxwell 1873: effective conductivity of a dilute suspension of spheres Einstein 1906: effective viscosity of a dilute suspension of rigid spheres in a fluid

Wiener 1912: arithmetic and harmonic mean bounds on effective conductivity Hashin and Shtrikman 1962: variational bounds on effective conductivity

widespread use of composites in late 20th century due in large part to advances in mathematically predicting their effective properties

What is this talk about? homogenization for multiscale composites

the role of "microstructure" in determining sea ice effective properties

Using methods of homogenization and statistical physics to LINK SCALES in the sea ice system ... compute effective behavior on scales relevant to coarse-grained sea ice and climate models, process studies, ...

MICROSCALE: brine + polycrystalline structure; EM and fluid transport

MESOSCALE: advection diffusion, thermal transport, waves, melt ponds

MACROSCALE: ice transport, MIZ width and location, low order models

A tour of Stieltjes integrals in the study of sea ice and its role in climate.

Solving problems in physics of sea ice drives advances in theory of composite materials.

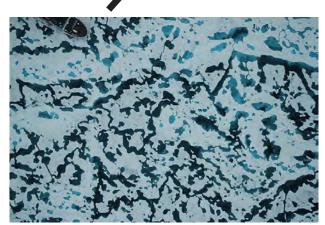
cross - pollination

bone, stealthy coatings magnets, rat brains, RMT

How do scales interact in the sea ice system?

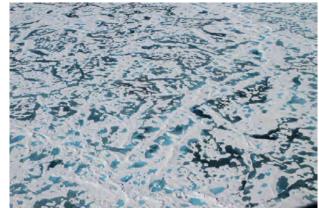
basin scale grid scale albedo

km scale melt ponds



Linking

Linking Scales



Perovich

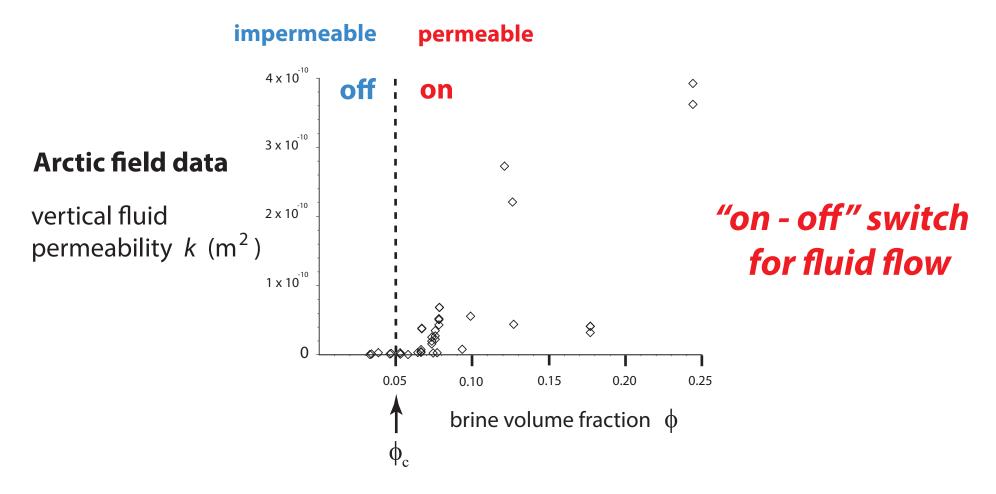
Scales

meter scale snow topography

mm scale brine inclusions km scale melt ponds

microscale

Critical behavior of fluid transport in sea ice

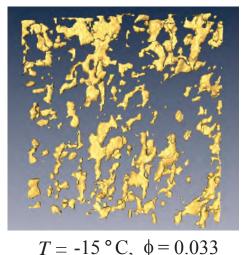


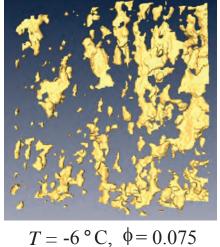
critical brine volume fraction
$$\phi_c \approx 5\%$$
 \longrightarrow $T_c \approx -5^{\circ} \text{C}$, $S \approx 5 \text{ ppt}$

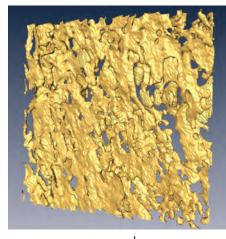
RULE OF FIVES

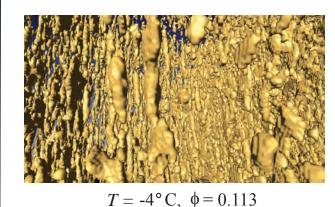
Golden, Ackley, Lytle Science 1998 Golden, Eicken, Heaton, Miner, Pringle, Zhu GRL 2007 Pringle, Miner, Eicken, Golden J. Geophys. Res. 2009

brine volume fraction and *connectivity* increase with temperature









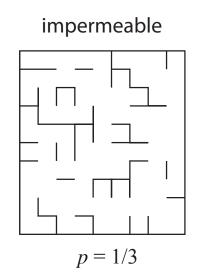
 $T = -3 \, ^{\circ}\text{C}, \quad \phi = 0.143$

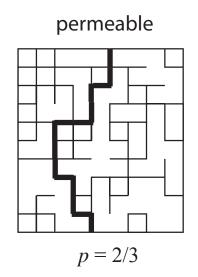
X-ray tomography for brine phase in sea ice

Golden, Eicken, et al., Geophysical Research Letters 2007

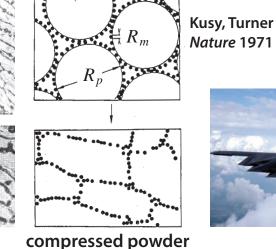
PERCOLATION THRESHOLD $\phi_c \approx 5 \%$

Golden, Ackley, Lytle, Science 1998







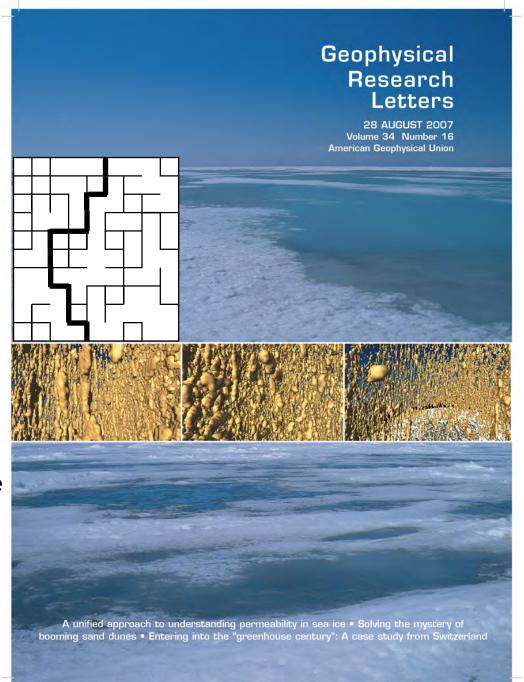


lattice percolation

continuum percolation

Thermal evolution of permeability and microstructure in sea ice

Golden, Eicken, Heaton, Miner, Pringle, Zhu, Geophysical Research Letters 2007



percolation theory

$$k(\phi) = k_0 (\phi - 0.05)^2$$
 critical exponent
$$k_0 = 3 \times 10^{-8} \text{ m}^2$$

hierarchical model network model rigorous bounds

agree closely with field data

X-ray tomography for brine inclusions

unprecedented look at thermal evolution of brine phase and its connectivity

confirms rule of fives

Pringle, Miner, Eicken, Golden J. Geophys. Res. 2009

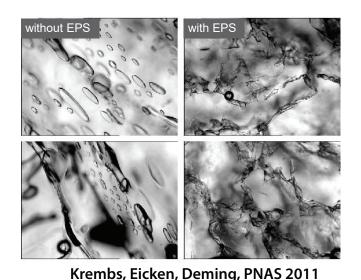
micro-scale controls

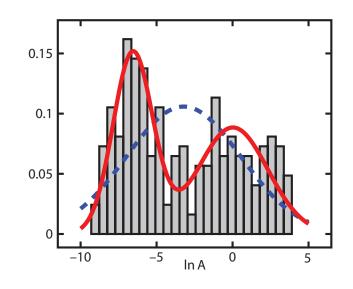
macro-scale

processes

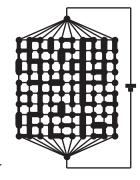
Sea ice algae secrete extracellular polymeric substances (EPS) affecting evolution of brine microstructure.

How does EPS affect fluid transport? How does the biology affect the physics?





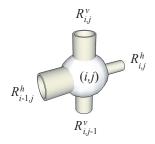
RANDOM PIPE MODEL



• 2D random pipe model with bimodal distribution of pore sizes

Rigorous bound on permeability k; results predict observed drop in k

Steffen, Epshteyn, Zhu, Bowler, Deming, Golden *Multiscale Modeling and Simulation*, 2018



Zhu, Jabini, Golden, Eicken, Morris *Ann. Glac.* 2006

3D extension, effect of EPS clogging, blockage

Anna Hyde, Jingyi Zhu, Ken Golden

The Melt Pond Conundrum:

How can ponds form on top of sea ice that is highly permeable?

C. Polashenski, K. M. Golden, D. K. Perovich, E. Skyllingstad, A. Arnsten, C. Stwertka, N. Wright

Percolation Blockage: A Process that Enables Melt Pond Formation on First Year Arctic Sea Ice

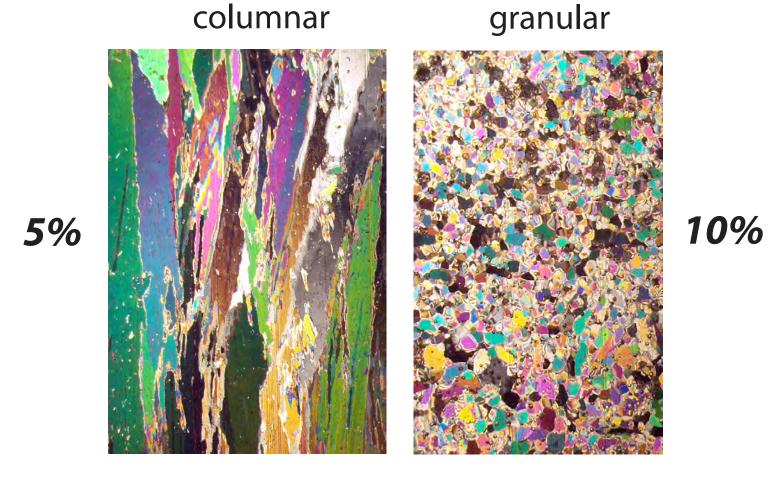
J. Geophys. Res. Oceans 2017

2014 Study of Under Ice Blooms in the Chuckchi Ecosystem (SUBICE) aboard USCGC Healy

higher threshold for fluid flow in granular sea ice

microscale details impact "mesoscale" processes

nutrient fluxes for microbes melt pond drainage snow-ice formation



Golden, Sampson, Gully, Lubbers, Tison 2020

electromagnetically distinguishing ice types Kitsel Lusted, Elena Cherkaev, Ken Golden

Remote sensing of sea ice

sea ice thickness ice concentration

INVERSE PROBLEM

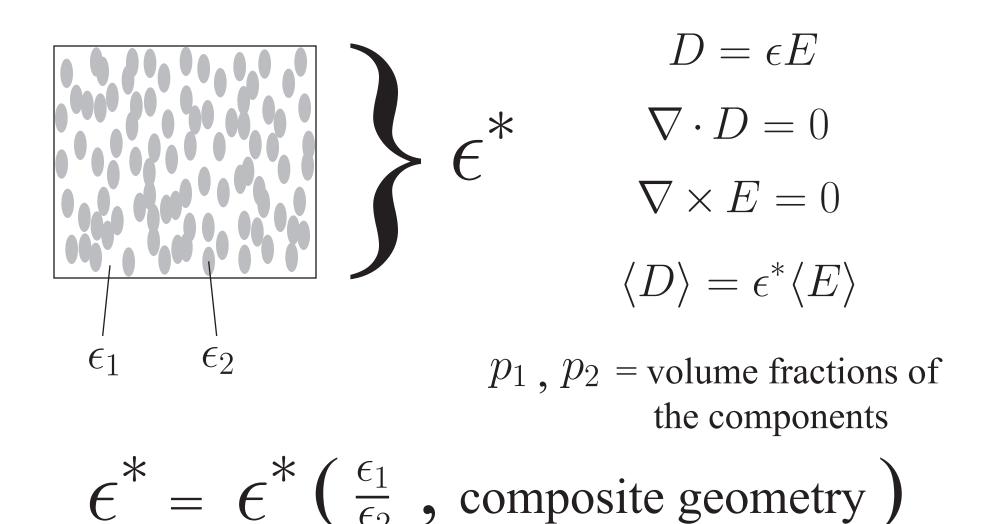
Recover sea ice properties from electromagnetic (EM) data

8*3

effective complex permittivity (dielectric constant, conductivity)

brine volume fraction brine inclusion connectivity

Effective complex permittivity of a two phase composite in the quasistatic (long wavelength) limit



What are the effective propagation characteristics of an EM wave (radar, microwaves) in the medium?

Analytic Continuation Method for Homogenization

Bergman (1978), Milton (1979), Golden and Papanicolaou (1983), Theory of Composites, Milton (2002)

Stieltjes integral representation for homogenized parameter

separates geometry from parameters

$$F(s)=1-\frac{\epsilon^*}{\epsilon_2}=\int_0^1\frac{d\mu(z)}{s-z} \qquad \qquad s=\frac{1}{1-\epsilon_1/\epsilon_2}$$
 material parameters

• spectral measure of self adjoint operator
$$\Gamma \chi$$
• mass = p_1
• higher moments depend

$$\Gamma = \nabla (-\Delta)^{-1} \nabla \cdot$$

$$\chi = \text{characteristic function}$$
 of the brine phase

resolvent

$$E = s (s + \Gamma \chi)^{-1} e_k$$

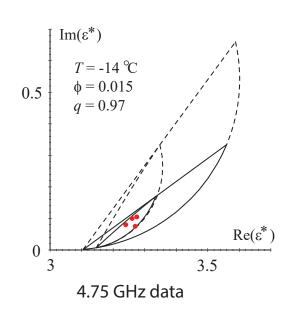
$$\Gamma \chi$$
: microscale \rightarrow macroscale

$\Gamma \chi$ links scales

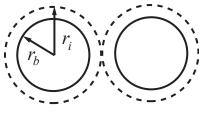
Golden and Papanicolaou, Comm. Math. Phys. 1983

forward and inverse bounds on the complex permittivity of sea ice

forward bounds



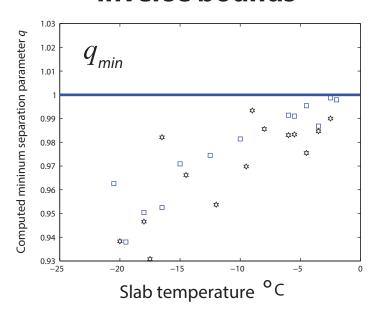
matrix particle



$$q = r_b / r_i$$

Golden 1995, 1997

inverse bounds



Inverse Homogenization

Cherkaev and Golden (1998), Day and Thorpe (1999), Cherkaev (2001), McPhedran, McKenzie, Milton (1982), Theory of Composites, Milton (2002)

composite geometry (spectral measure μ)

inverse bounds and recovery of brine porosity

Gully, Backstrom, Eicken, Golden Physica B, 2007 inversion for brine inclusion separations in sea ice from measurements of effective complex permittivity ϵ^*

rigorous inverse bound on spectral gap

construct algebraic curves which bound admissible region in (p,q)-space

Orum, Cherkaev, Golden Proc. Roy. Soc. A, 2012

direct calculation of spectral measures

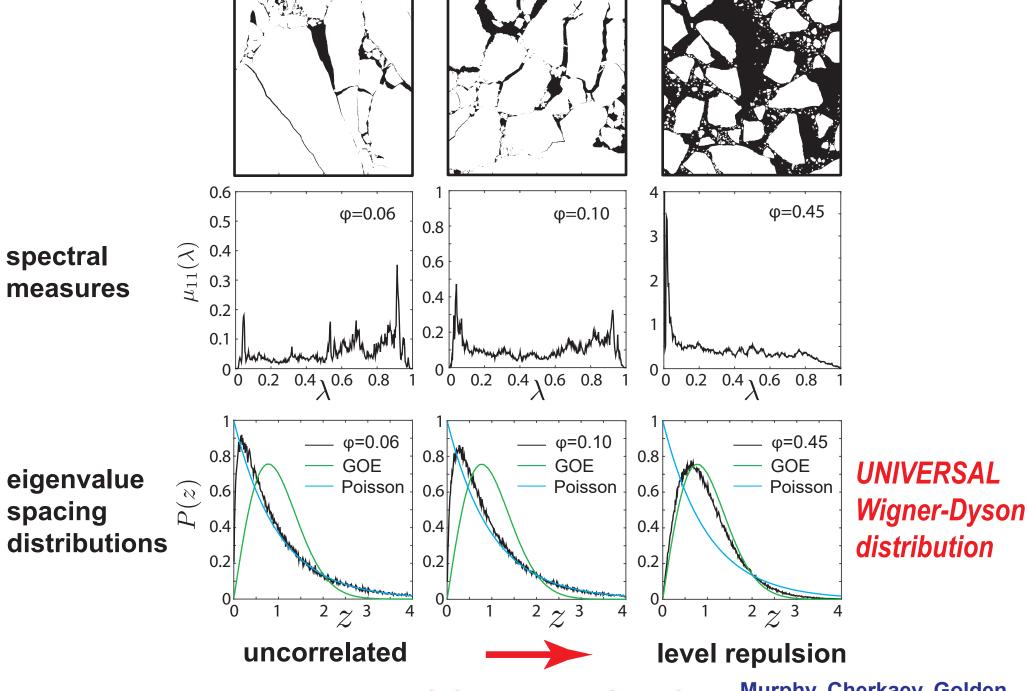
Murphy, Hohenegger, Cherkaev, Golden, Comm. Math. Sci. 2015

- depends only on the composite geometry
- discretization of microstructural image gives binary network
- fundamental operator becomes a random matrix
- spectral measure computed from eigenvalues and eigenvectors

once we have the spectral measure μ it can be used in Stieltjes integrals for other transport coefficients:

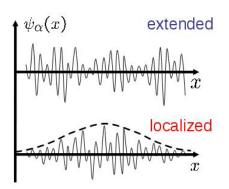
electrical and thermal conductivity, complex permittivity, magnetic permeability, diffusion, fluid flow properties

Spectral computations for sea ice floe configurations



ANDERSON TRANSITION

Murphy, Cherkaev, Golden *Phys. Rev. Lett. 2017*



metal / insulator transition localization

Anderson 1958 Mott 1949 Shklovshii et al 1993 Evangelou 1992

Anderson transition in wave physics: quantum, optics, acoustics, water waves, ...

from analysis of spectral measures for brine, melt ponds, ice floes we find percolation-driven

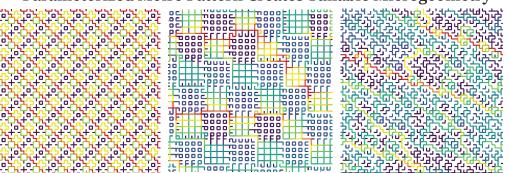
Anderson transition for classical transport in composites mobility edges, localization transition, universal spectral statistics Murphy, Cherkaev, Golden Phys. Rev. Lett. 2017

Order to disorder in quasiperiodic materials

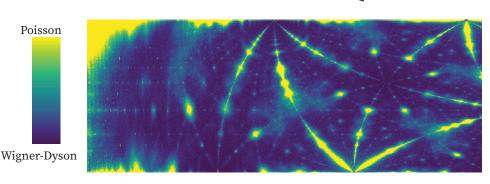
Poisson

Morison, Murphy, Cherkaev, Golden 2020

Parameterized Moiré Pattern Creates Tunable Microgeometry



Anderson transition as OP is tuned



Bounds on the complex permittivity of polycrystalline materials by analytic continuation

Adam Gully, Joyce Lin, Elena Cherkaev, Ken Golden

Stieltjes integral representation for effective complex permittivity

Milton (1981, 2002), Barabash and Stroud (1999), ...

- Forward and inverse bounds orientation statistics
- Applied to sea ice using two-scale homogenization
- Inverse bounds give method for distinguishing ice types using remote sensing techniques

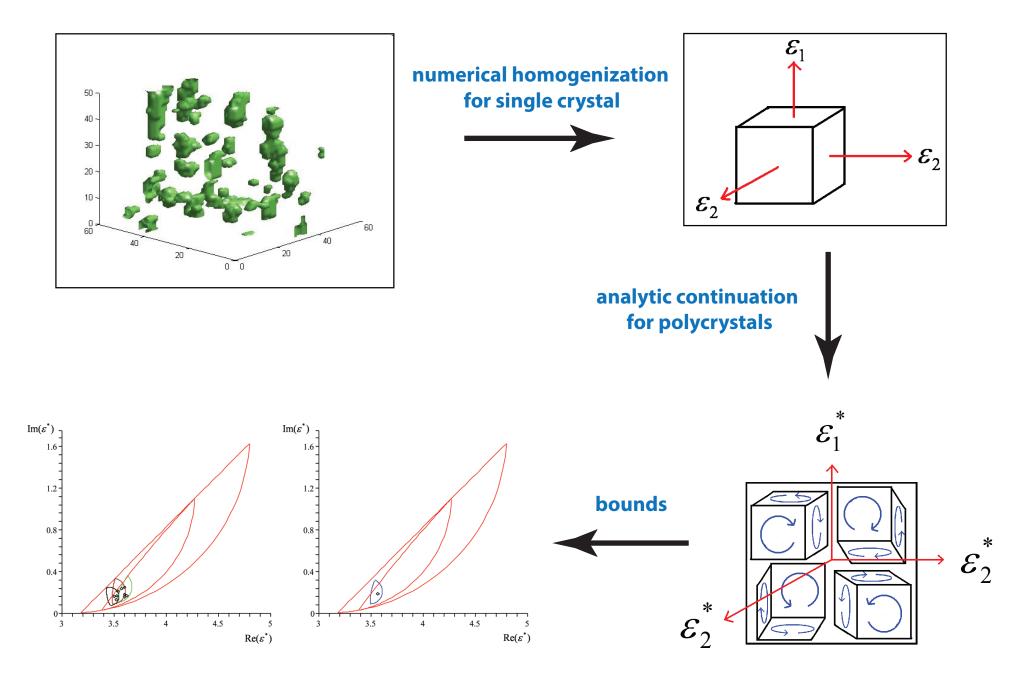
Proc. Roy. Soc. A 8 Feb 2015

ISSN 1364-5021 | Volume 471 | Issue 2174 | 8 February 2015

PROCEEDINGS A

An invited review commemorating 350 years of scientific publishing at the Royal Society A method to distinguish between different types of sea ice using remote sensing techniques A computer model to determine how a human should walk so as to expend the least energy

two scale homogenization for polycrystalline sea ice



Gully, Lin, Cherkaev, Golden, Proc. Roy. Soc. A (and cover) 2015

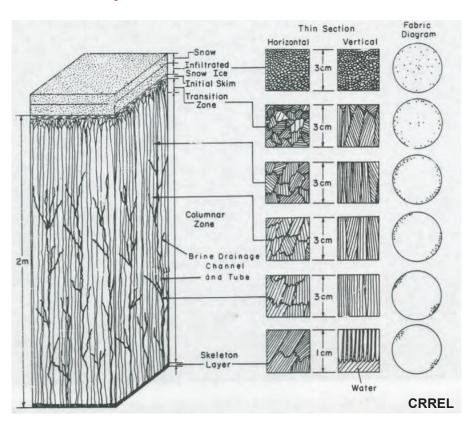
Rigorous bounds on the complex permittivity tensor of sea ice with polycrystalline anisotropy within the horizontal plane

Kenzie McLean, Elena Cherkaev, Ken Golden 2020

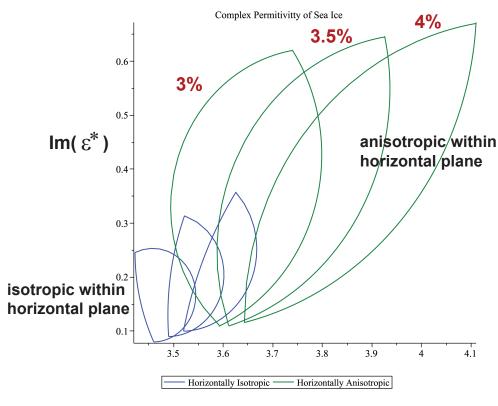
motivated by

Weeks and Gow, *JGR* 1979: c-axis alignment in Arctic fast ice off Barrow Golden and Ackley, *JGR* 1981: radar propagation model in aligned sea ice

input: orientation statistics



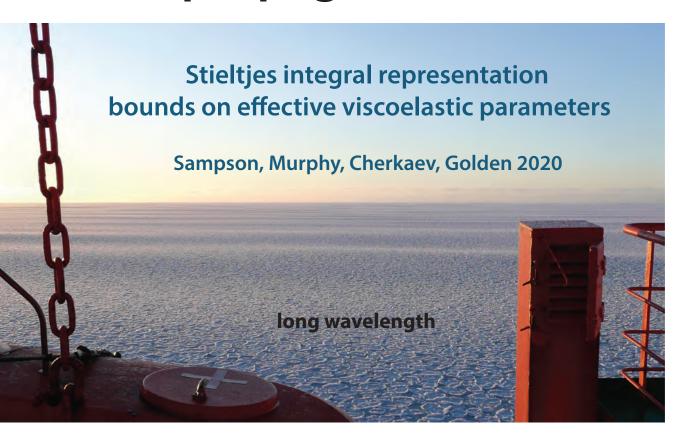
output: bounds



Re(ε*)

mesoscale

wave propagation in the marginal ice zone



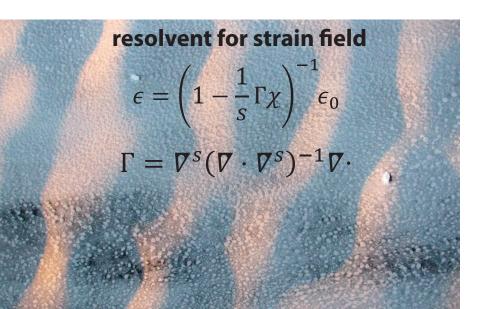
$$\langle \sigma_{ij} \rangle = C_{ijkl}^* \langle \epsilon_{kl} \rangle$$

 ϵ_0 avg strain

$$C_{ijkl}^* = \nu^* \left(\delta_{ik} \delta_{jl} + \delta_{il} \delta_{jk} - \frac{2}{3} \delta_{ij} \delta_{kl} \right) = \nu^* \lambda_s$$

$$F(s) = 1 - \frac{v^*}{v_2}$$
 $s = \frac{1}{1 - \frac{v_1}{v_2}}$

$$F(s) = ||\epsilon_0||^{-2} \int_{\Sigma} \frac{d\mu(\lambda)}{s - \lambda}$$



local

$$\sigma_{ij} = C_{ijkl} \epsilon_{kl}$$

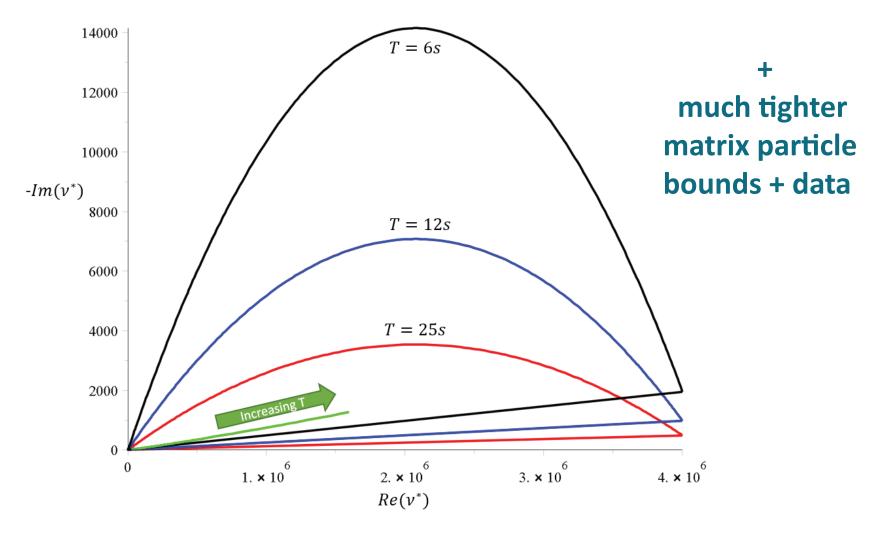
quasistatic

$$\nabla \cdot \sigma = 0$$

bounds on the effective complex viscoelasticity

complex elementary bounds (fixed area fraction of floes)

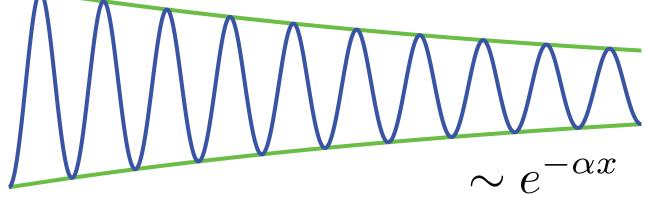
$$V_1 = 10^7 + i \, 4875$$
 pancake ice $V_2 = 5 + i \, 0.0975$ slush / frazil

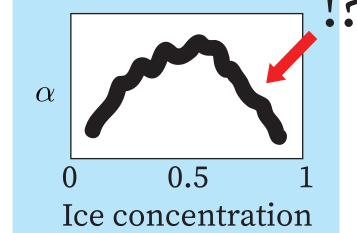


Sampson, Murphy, Cherkaev, Golden 2020

1D Model of Ocean Surface Wave Attenuation in Sea Ice

David Morison, Samir Suthar, Elena Cherkaev, Ken Golden





Observed in Ross Sea by

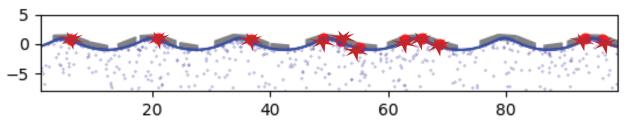
F. Montiel, T. Milne,

A. Kohout and L. Roach Presented at KOZWaves 2020

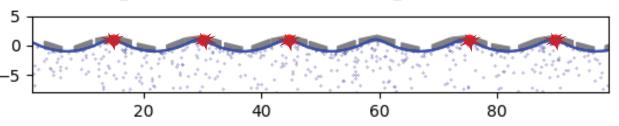
If ice concentration is high, randomly placed floes collide * in groups of three or more.

Simulate

- Airy waves
- Form drag
- Ice floe collisions

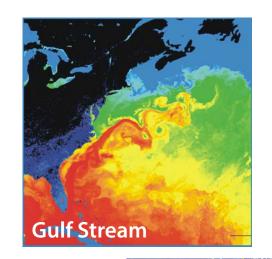


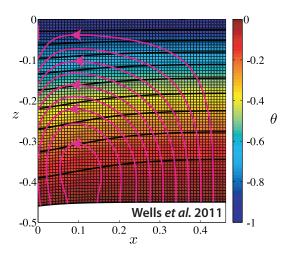
Floe spacing becomes more uniform and pairwise collisions predominate.



advection enhanced diffusion effective diffusivity

nutrient and salt transport in sea ice heat transport in sea ice with convection sea ice floes in winds and ocean currents tracers, buoys diffusing in ocean eddies diffusion of pollutants in atmosphere





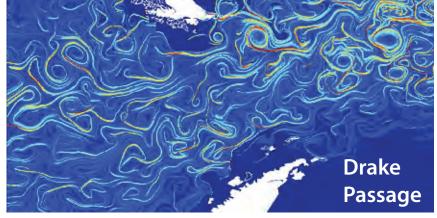
advection diffusion equation with a velocity field $ec{u}$

 κ^* effective diffusivity

Stieltjes integral for κ^* with spectral measure

Avellaneda and Majda, PRL 89, CMP 91

Murphy, Cherkaev, Xin, Zhu, Golden, *Ann. Math. Sci. Appl.* 2017 Murphy, Cherkaev, Zhu, Xin, Golden, *J. Math. Phys.* 2020



Stieltjes Integral Representation for Advection Diffusion

Murphy, Cherkaev, Zhu, Xin, Golden, J. Math. Phys. 2020

$$\kappa^* = \kappa \left(1 + \int_{-\infty}^{\infty} \frac{d\mu(\tau)}{\kappa^2 + \tau^2} \right), \quad F(\kappa) = \int_{-\infty}^{\infty} \frac{d\mu(\tau)}{\kappa^2 + \tau^2}$$

- μ is a positive definite measure corresponding to the spectral resolution of the self-adjoint operator $i\Gamma H\Gamma$
- ullet H= stream matrix , $\kappa=$ local diffusivity
- ullet $\Gamma:=abla(-\Delta)^{-1}
 abla\cdot$, Δ is the Laplace operator
- $i\Gamma H\Gamma$ is bounded for time independent flows
- $F(\kappa)$ is analytic off the spectral interval in the κ -plane

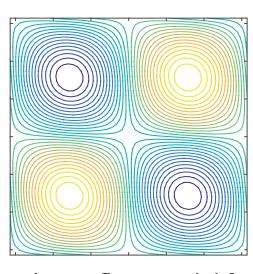
rigorous framework for numerical computations of spectral measures and effective diffusivity for model flows

new integral representations, theory of moment calculations

separation of material properties and flow field

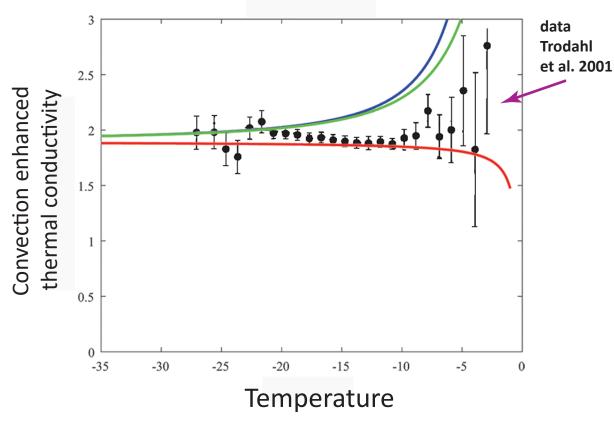
Rigorous bounds on convection enhanced thermal conductivity of sea ice

Kraitzman, Hardenbrook, Murphy, Zhu, Cherkaev, Strong, Golden 2020



cat's eye flow model for brine convection cells

similar bounds for shear flows



rigorous Padé bounds from Stieltjes integral + analytical calculations of moments of measure

rigorous bounds assuming information on flow field INSIDE inclusions

Kraitzman, Cherkaev, Golden SIAM J. Appl. Math. (in revision), 2020

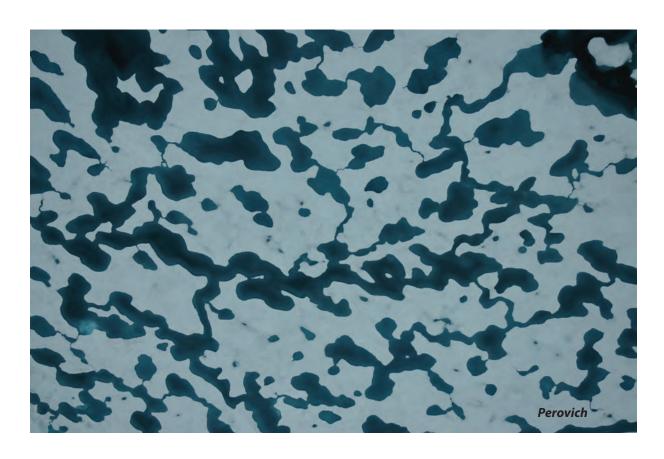
melt pond formation and albedo evolution:

- major drivers in polar climate
- key challenge for global climate models

numerical models of melt pond evolution, including topography, drainage (permeability), etc.

Lüthje, Feltham, Taylor, Worster 2006 Flocco, Feltham 2007

Skyllingstad, Paulson, Perovich 2009 Flocco, Feltham, Hunke 2012

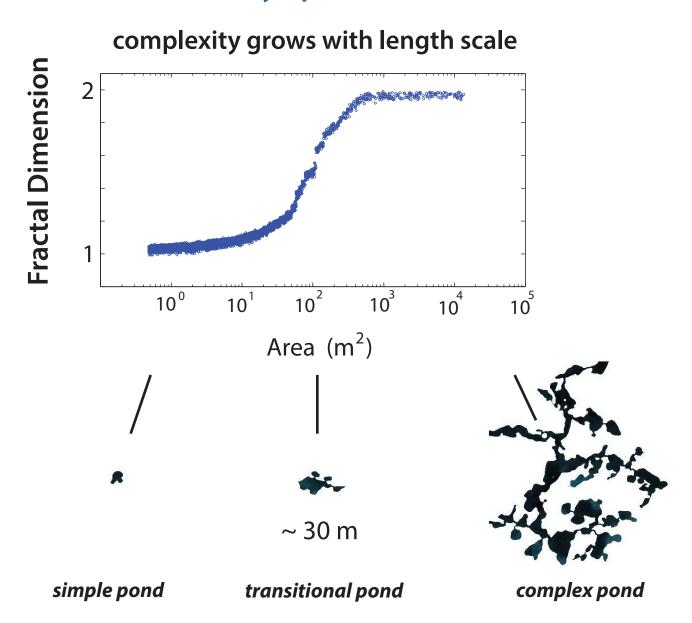


Are there universal features of the evolution similar to phase transitions in statistical physics?

Transition in the fractal geometry of Arctic melt ponds

Christel Hohenegger, Bacim Alali, Kyle Steffen, Don Perovich, Ken Golden

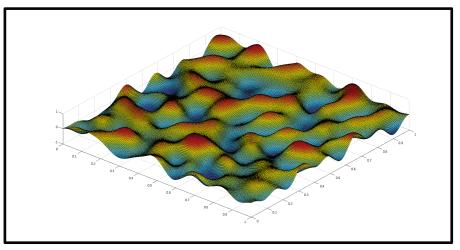
The Cryosphere, 2012

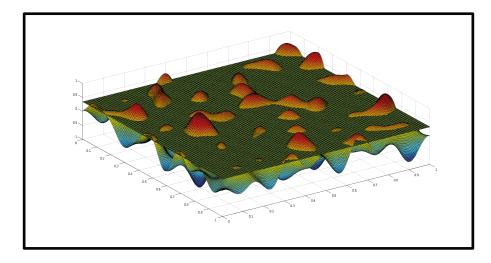


Continuum percolation model for melt pond evolution

level sets of random surfaces

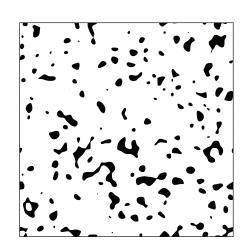
Brady Bowen, Court Strong, Ken Golden, J. Fractal Geometry 2018

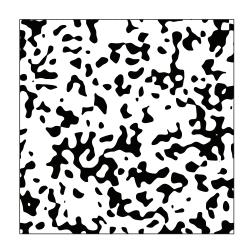


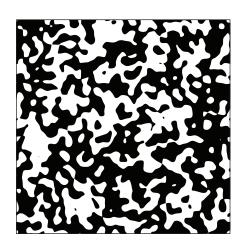


random Fourier series representation of surface topography

intersections of a plane with the surface define melt ponds





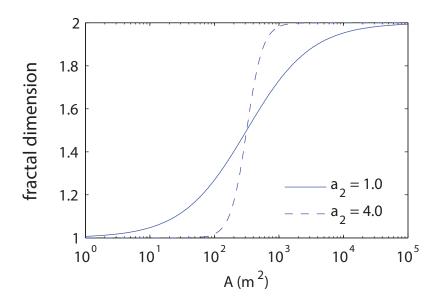


electronic transport in disordered media

diffusion in turbulent plasmas

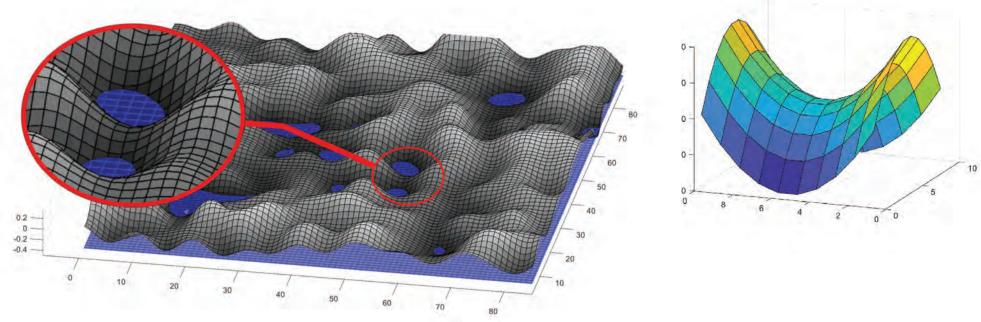
fractal dimension curves depend on statistical parameters defining random surface



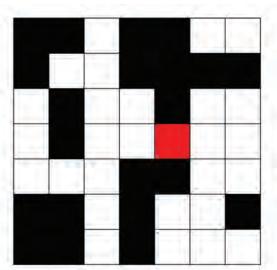


Saddle Points, Morse Theory and the Fractal Geometry of Melt Ponds

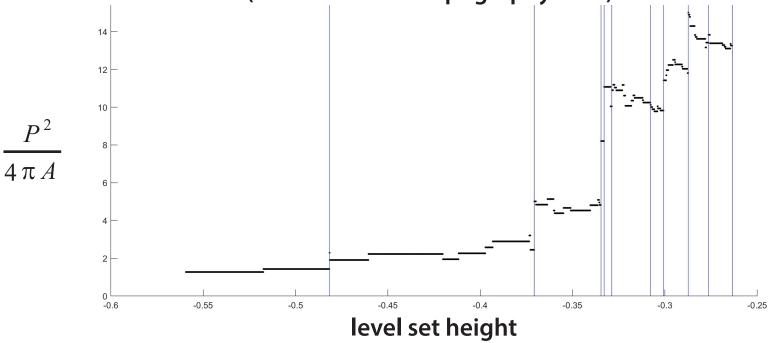
Ryleigh Moore, Jacob Jones, Dane Gollero, Court Strong, Ken Golden 2020



- Ponds connect through saddle points (Morse Theory).
- Red bond in lattice percolation theory ~ saddle point.



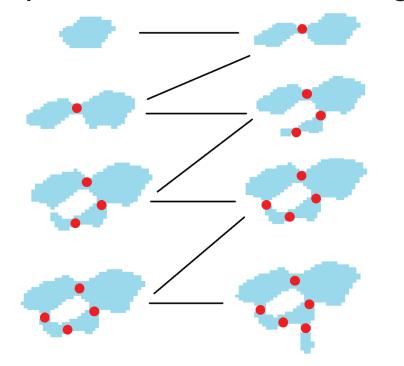
Evolution of Isoperimetric Quotient with Melt Pond Growth (from real snow topography data)



pond coalescence and thickening

In the graph, we follow a single pond's growth. The vertical lines denote when the pond goes through a saddle point.

We see that large jumps in fractal dimension occur through saddle points.



Ryleigh Moore Department of Mathematics University of Utah

Multidisciplinary drifting Observatory for the Study of Arctic Climate (MOSAiC)

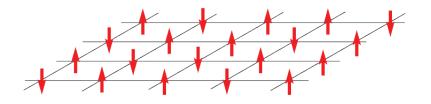
MOSAiC School aboard the icebreaker *RV Akademik Federov*

September 20 - October 28, 2019

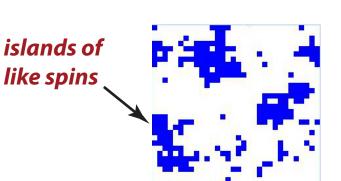
20 grad students from around the world (3 from U.S., 1 mathematician)

Ryleigh led successful installation of three seasonal ice mass balance (SIMB3) buoys in the Central Arctic.

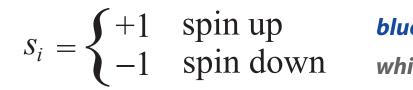
Ising Model for a Ferromagnet



applied magnetic H



energy is lowered when nearby spins align with each other, forming magnetic domains



$$\mathcal{H} = -H\sum_{i} s_i - J\sum_{\langle i,j \rangle} s_i s_j$$

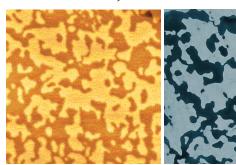
nearest neighbor Ising Hamiltonian

ferromagnetic interaction $J \ge 0$

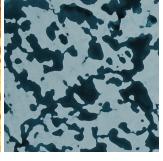
magnetization

homogenized parameter like effective conductivity

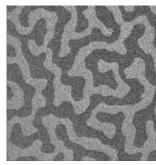
$$M(T, H) = \lim_{N \to \infty} \frac{1}{N} \left\langle \sum_{j} s_{j} \right\rangle$$



magnetic domains in cobalt

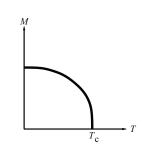


melt ponds (Perovich)



magnetic domains in cobalt-iron-boron

melt ponds (Perovich)



Curie point critical temperature

Ising model for ferromagnets --- Ising model for melt ponds

Ma, Sudakov, Strong, Golden, New J. Phys., 2019

$$\mathcal{H} = -\sum_{i}^{N} H_{i} s_{i} - J \sum_{\langle i,j \rangle}^{N} s_{i} s_{j} \qquad s_{i} = \begin{cases} \uparrow & +1 & \text{water (spin up)} \\ \downarrow & -1 & \text{ice (spin down)} \end{cases}$$

random magnetic field represents snow topography

magnetization M

model

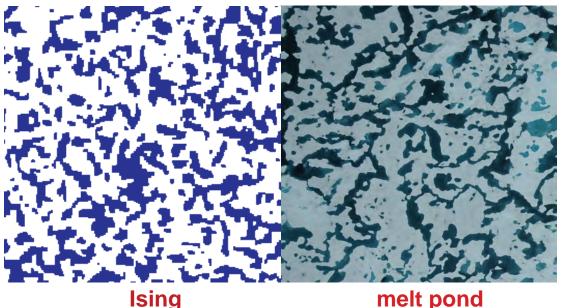
pond area fraction $F = \frac{(M+1)}{2}$

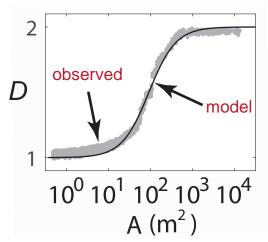
$$F = \frac{(M+1)}{2}$$

only nearest neighbor patches interact

Starting with random initial configurations, as Hamiltonian energy is minimized by Glauber spin flip dynamics, system "flows" toward metastable equilibria.

Order from Disorder





pond size distribution exponent

observed -1.5

(Perovich, et al. 2002)

model -1.58

EOS, PhysicsWorld, ...

Scientific American photo (Perovich)

ONLY MEASURED INPUT = LENGTH SCALE (GRID SIZE) from snow topography data

The effect of melt pond geometry on the distribution of solar energy under first-year sea ice

Horvat, Flocco, Rees Jones, Roach, Golden, Geophys. Res. Lett. 2020

- Model for 3D light field under ponded sea ice.
- Distribution of solar energy at depth influenced by **shape** and connectivity of melt ponds, as well as area fraction.
- Aggregate properties of the sub-ice light field, such as a significant enhancement of available solar energy under the ice, are controlled by parameter closely related to pond fractal geometry.
- Model and analysis explain how melt pond geometry homogenizes under-ice light field, affecting habitability.

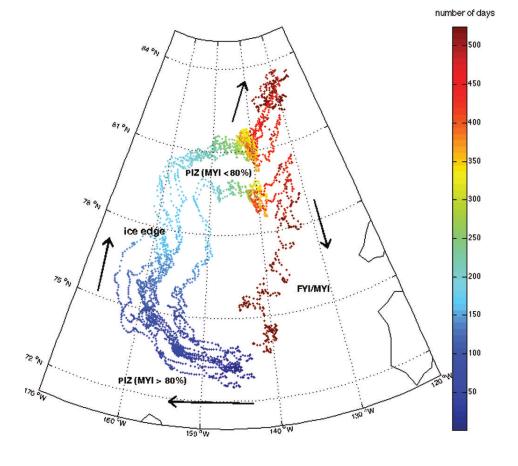
Pond geometry affects ecology and partitioning of solar energy in the upper Arctic Ocean.

macroscale

Anomalous diffusion in sea ice dynamics

Ice floe diffusion in winds and currents

Jennifer Lukovich, Jennifer Hutchings, David Barber, *Ann. Glac.* 2015



- On short time scales floes observed (buoy data) to exhibit Brownian-like behavior, but they are also being advected by winds and currents.
- Effective behavior is purely diffusive, sub-diffusive or super-diffusive depending on ice pack and advective conditions Hurst exponent.

Floe Scale Model of Anomalous Diffusion in Sea Ice Dynamics

Huy Dinh, Elena Cherkaev, Court Strong, Ken Golden 2020

$$\langle |\mathbf{x}(t) - \mathbf{x}(0) - \langle \mathbf{x}(t) - \mathbf{x}(0) \rangle|^2 \rangle \sim t^{\alpha}$$

 $\alpha = \text{Hurst}$ exponent, a measure of anomalous diffusion.

Measured from bouy position data. Detects ice pack crowding and advective forcing.

J.V. Lukovich, J.K. Hutchings, D.G. Barber Annals of Glaciology 2015

diffusive $\alpha = 1$ Sparse packing, uncorrelated advective field.

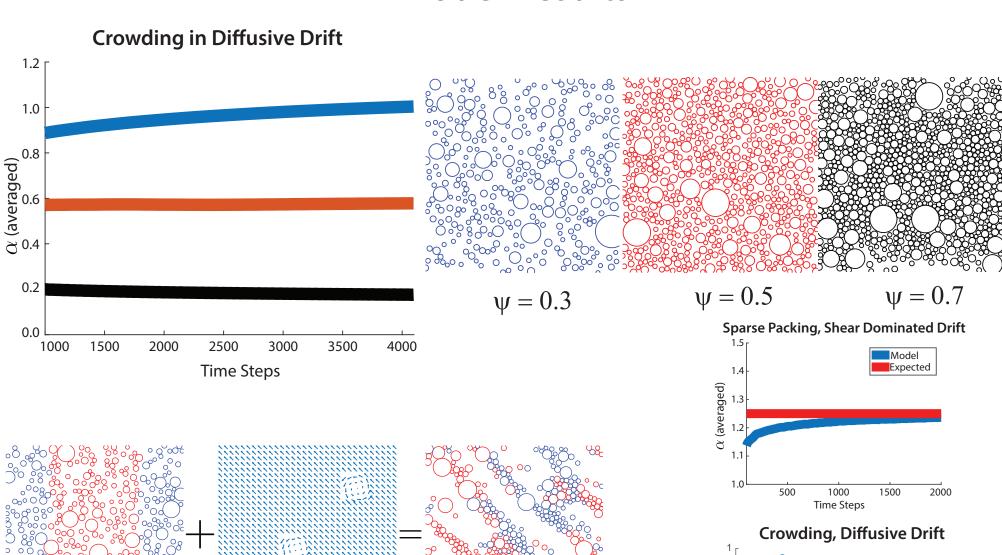
sub-diffusive $\alpha < 1$ Dense packing, crowding dominates advection.

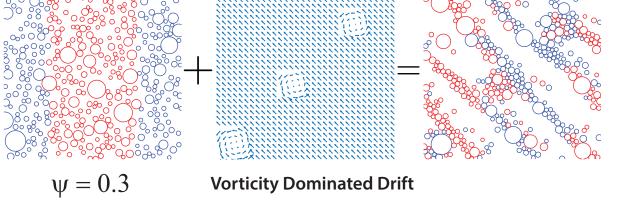
super-diffusive $\alpha = 5/4$ Sparse packing, shear dominates advection.

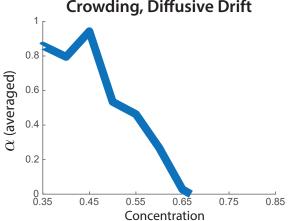
 $\alpha = 5/3$ Sparse packing, vorticity dominates advection.

Goal: Develop numerical model to analyze regimes of transport in terms of ice pack crowding and advective conditions.

Model Results



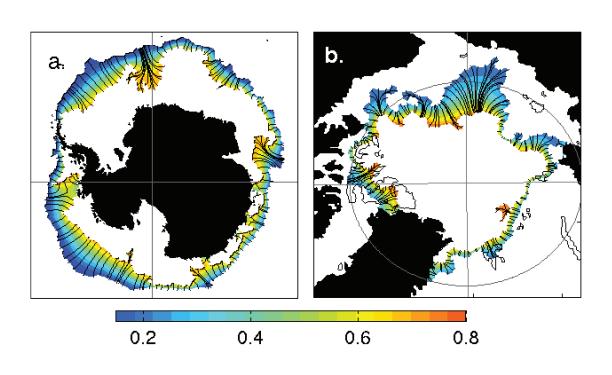




Marginal Ice Zone

MIZ

- biologically active region
- intense ocean-sea ice-atmosphere interactions
- region of significant wave-ice interactions



transitional region between dense interior pack (c > 80%) sparse outer fringes (c < 15%)

MIZ WIDTH

fundamental length scale of ecological and climate dynamics

Strong, *Climate Dynamics* 2012 Strong and Rigor, *GRL* 2013 How to objectively measure the "width" of this complex, non-convex region?

Objective method for measuring MIZ width motivated by medical imaging and diagnostics

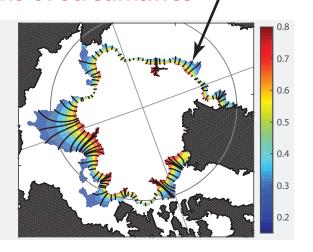
Strong, *Climate Dynamics* 2012 Strong and Rigor, *GRL* 2013

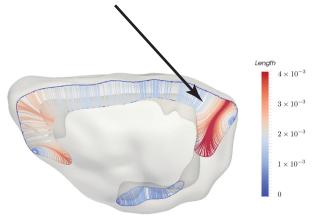
streamlines of a solution to Laplace's equation

39% widening 1979 - 2012

"average" lengths of streamlines ,

MIZ pack ice





Arctic Marginal Ice Zone

crossection of the cerebral cortex of a rodent brain

analysis of different MIZ WIDTH definitions

Strong, Foster, Cherkaev, Eisenman, Golden J. Atmos. Oceanic Tech. 2017

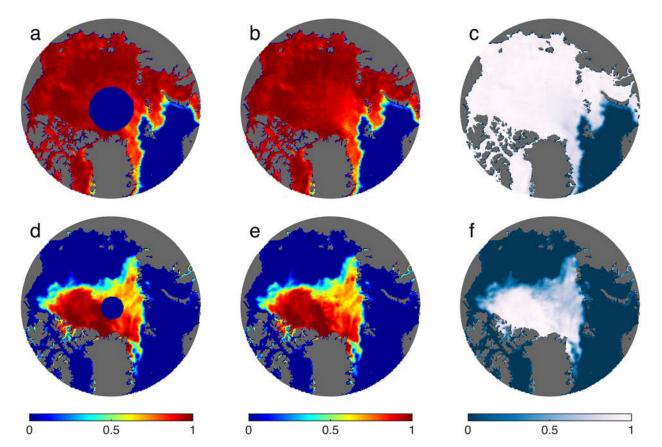
Strong and Golden
Society for Industrial and Applied Mathematics News, April 2017

Filling the polar data gap with partial differential equations

hole in satellite coverage of sea ice concentration field

previously assumed ice covered

Gap radius: 611 km 06 January 1985



Gap radius: 311 km 30 August 2007

fill with harmonic function satisfying satellite BC's plus stochastic term

Strong and Golden, *Remote Sensing* 2016 Strong and Golden, *SIAM News* 2017 NOAA/NSIDC Sea Ice Concentration CDR product update will use our PDE method.

Partial differential equation models for sea ice concentration

Delaney Mosier, Court Strong, Jingyi Zhu, Elena Cherkaev, Ken Golden

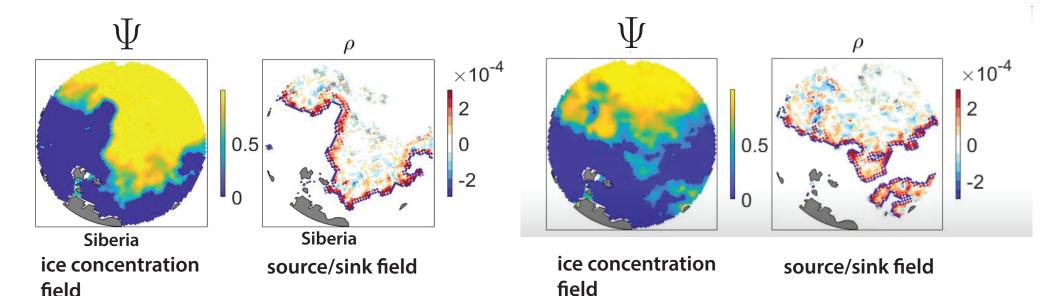
$$\Delta\Psi = 0$$

Generalize simplistic Laplace equation (steady state heat equation) model for Ψ

$$\nabla \cdot (D \nabla \Psi) = 0 \qquad \Delta \Psi = \rho$$

Advection diffusion equation model to generate more realistic dynamics of Ψ

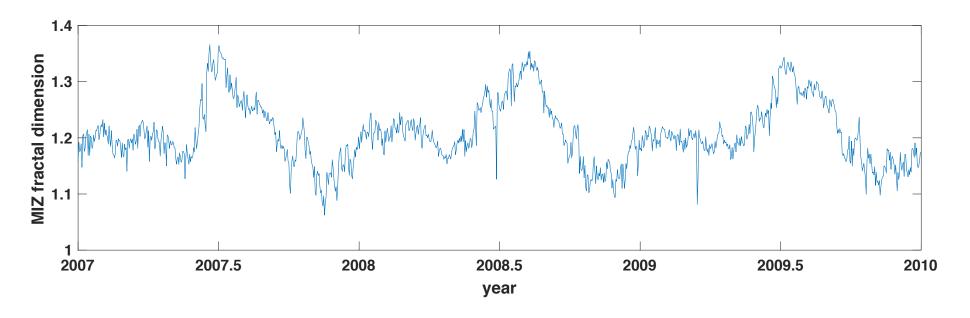
$$\frac{\partial \Psi}{\partial t} = \nabla \cdot (D\nabla \Psi) - \vec{v} \cdot \nabla \Psi \qquad \nabla \cdot \vec{v} = 0$$



NSIDC

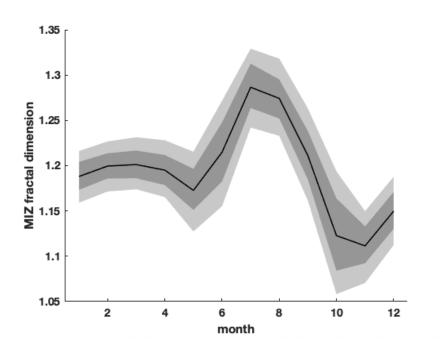
Poisson equation to identify sources and sinks of ice concentration

The shape of the MIZ becomes more complex during the melt season, increasing its fractal dimension.



- MIZ fractal dimension undergoes a pronounced seasonal cycle, maximizing around July
- We have preliminary evidence of decadal trends in MIZ fractal dimension

MIZ fractal dimension



For daily Arctic values 1979-2019

Bold curve: mean

Shading: 10th-90th and 25th-75th

percentiles

- MIZ fractal dimension undergoes a pronounced seasonal cycle, maximizing around July
- We have preliminary evidence of decadal trends in MIZ fractal dimension

MIZ model: macroscale horizontal Stefan problem with mushy layer - composite of ice and ocean

$$\rho c \frac{\partial T}{\partial t} = \nabla \cdot (k \nabla T) + S$$

$$S = [\rho(c_l - c_s)T + \rho L] \frac{\partial \psi}{\partial t}$$

$$= 1 - \left(\frac{T - T_s}{T_l - T_s}\right)^{\alpha}$$

 ρ effective density

sity ψ sea ice concentration

T temperature

k effective diffusivity

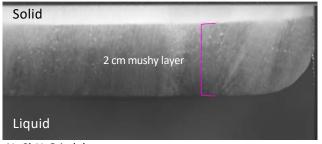
c specific heat

l liquid, s solid

L latent heat of fusion HOMOGENIZED

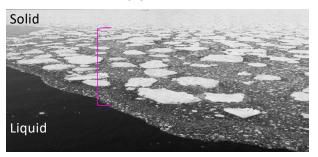
HOMOGENIZED PARAMETERS

Classical small-scale application



NaCl-H₂O in lab (Peppin et al., 2007;, J. Fluid Mech.)

Macroscale application

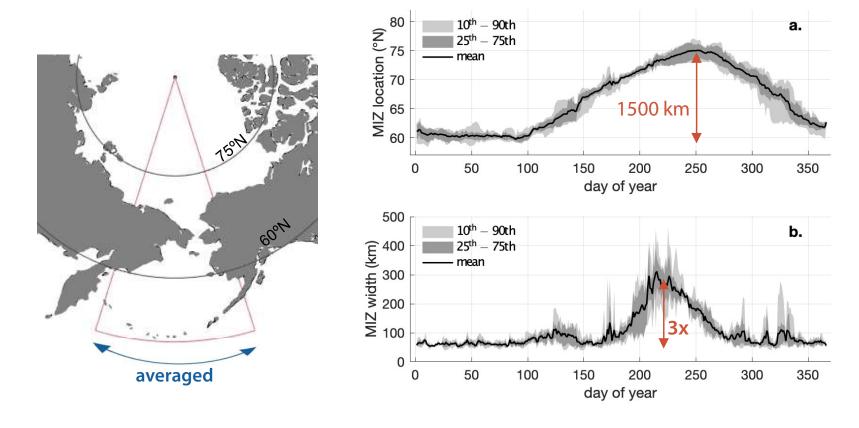


- Eigenmodes of solution skillfully capture seasonal cycle of MIZ location and width
- Model could ultimately be used to explain trends toward wider and more poleward MIZ

Court Strong, Elena Cherkaev, Ken Golden 2020

Observed location and width

Observational analysis 2000-2004 in Bering-Chukchi Sea sector



The first principal component of simulated temperature (PC1) accounts for 98% of the MIZ location seasonal cycle.

Poleward MIZ migration follows large scale warming.

Third component (PC3) accounts for 95% of the MIZ width annual cycle.

University of Utah Sea Ice Modeling Group (2017-2020)

Senior Personnel: Ken Golden, Distinguished Professor of Mathematics

Elena Cherkaev, Professor of Mathematics

Court Strong, Associate Professor of Atmospheric Sciences

Ben Murphy, Ph.D.

Postdoctoral Researcher: Noa Kraitzman (now at Australian National University)

Graduate Students: Kyle Steffen (now at UT Austin with Clint Dawson)

Christian Sampson (now at UNC Chapel Hill with Chris Jones)

Huy Dinh (starting sea ice MURI Postdoc at NYU/Courant)

Rebecca Hardenbrook

David Morison (Physics Department)

Ryleigh Moore

Delaney Mosier + incoming

Undergraduate Students: Kenzie McLean, Jacqueline Cinella Rich, Dane Gollero, Samir Suthar, Anna Hyde, Kitsel Lusted, Ruby Bowers Kimball Johnston, Jerry Zhang

High School Students: Jeremiah Chapman, Titus Quah, Dylan Webb

Sea Ice Ecology Group

Postdoc Jody Reimer, Grad Student Julie Sherman, Undergrads Anna Hyde, Kayla Stewart + incoming

Conclusions

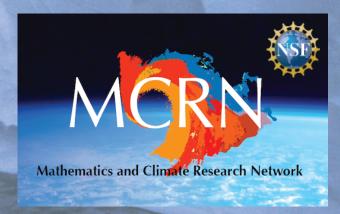
- 1. Sea ice is a fascinating multiscale composite with structure similar to many other natural and man-made materials.
- 2. Mathematical methods developed for sea ice advance the theory of composites and inverse problems in general.
- 2. Homogenization and statistical physics help *link scales in sea ice* and composites; provide rigorous methods for finding effective behavior; advance sea ice representations in climate models.
- 3. Fluid flow through sea ice mediates melt pond evolution and many processes important to climate change and polar ecosystems.
- 5. Field experiments are essential to developing relevant mathematics.
- 6. Our research will help to improve projections of climate change, the fate of Earth's sea ice packs, and the ecosystems they support.

THANK YOU

Office of Naval Research

Applied and Computational Analysis Program

Arctic and Global Prediction Program



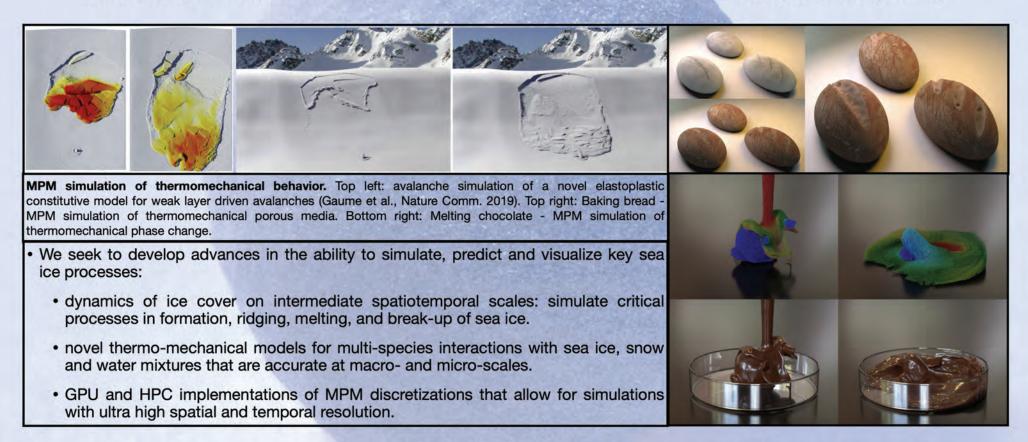
Most promising extensions of current research program:

Partial differential equation models of the large scale behavior of sea ice

- 1. MIZ location, width, geometry seasonal and long term trends
- 2. Advection diffusion model for sea ice concentration use floe scale model to study advective forcing on ice concentration, use homogenization on sub-grad scale to upscale to coarse grid, "learn" the effective advection field from data. (thickness, ...)
- 3. Anomalous diffusion in large scale ice mass transport effects of crowding, jamming, ice "diffusion coefficient"; connection to fractional PDE.
- 4. Anderson transition for waves in the sea ice pack? effects of floe configurations and ice concentration

Ultra-Realistic Modeling and Simulation of Arctic Sea Ice

Kenneth Golden (Univ. Utah), Jennifer Hutchings (Oregon State), Joseph Teran (UCLA)



Long term "blue sky" research program, new perspective on sea ice modeling:

Learning the statistical mechanics of sea ice

Develop a statistical physics framework to analyze and model collective sea ice phenomena. Treat sea ice from a "systems" perspective, with a large number of interacting components, as in statistical mechanics of gases, liquids, solids, phase transitions, complex materials, etc.

- 1. What are the Hamiltonians, order parameters, entropy, ...? Ising model and statistical mechanics of granular media point way; evolution models based on minimization over energy landscapes.
- 2. Gas, liquid, solid description of ice pack; phase transitions; phase diagrams, mass transport transitions.
- 3. Develop algorithms to learn the parameters of the Hamiltonian,
- 4. Statistical mechanics framework opens renormalization schemes; hierarchical appraches, employ multiscale homogenization.
- 5. Statistical framework enables new techniques for data assimilation, studying the effects of advective forcing, waves, etc.