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Abstract. We consider wave propagation in random cell materials when the wavelength is finite,
so that scattering effects must be taken into account. An effective dielectric coefficient is introduced,
which in general, is a spatially dependent function, yet reduces, under the infinite wavelength as-
sumptions, to the constant effective parameter in the quasistatic limit. We present an upper bound
on the effective permittivity and a bound on its spatial variations that depends on the maximum
volume of the inhomogeneities and the contrast of the medium.
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1. Background. Usually, when one considers the propagation of an electromag-
netic wave in a random medium, two parameters are of importance. The first, δ/λ
is the ratio of the length scales of the typical inhomogeneities in the medium to the
wavelength of the electromagnetic wave probing the medium. The second one is the
contrast of the medium. Considerable effort over many decades has been applied to
building effective medium theories that are applicable to wave propagation when the
wavelengths associated with the fields are much larger than the microstructural scale.
This limit where the ratio δ/λ goes to zero is called the quasistatic or infinite wave-
length limit. In this case the heterogeneous material is replaced by a homogeneous,
fictitious medium whose macroscopic characteristics are good approximations of the
initial ones. The solutions of a boundary value partial differential equation describing
the propagation of waves converge to the solution of a limit boundary value problem
which is explicitly described when the size of the heterogeneities goes to zero. Simi-
larly, in the limit when the contrast goes to zero, convergence of the solution to the
solution of a constant coefficient partial differential equation is obtained.

The problem of finding bounds on the effective properties of materials in the
quasistatic limit has been investigated vigorously, and there have been significant
advances not only in deriving optimal bounds, but also in describing the materials
that attain these bounds. See [15] and references within. Wellander and Kristensson
[20] and Conca and Vanninathan [4] have both recently analyzed the homogenization
of time-harmonic wave problems in periodic media, using entirely different methods.
Their results are each applicable to problems in which the wavelength of the incident
field is much larger than the microstructure.

For waves in random media, Keller and Karal [13] and Papanicolaou [17] use
averaging of random realizations of materials in order to describe the effective prop-
erties of the composites when interacting with electromagnetic waves. Both analyses
assume that the random materials deviate slightly from a homogeneous material, i.e.
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the contrast of the random inclusions is small. Keller and Karal assume a priori that
the effective dielectric coefficient is a constant. Using perturbation methods, they
approximate the dielectric constant with a complex number, whose imaginary part
accounts for the wave attenuation.

A comprehensive overview of the subject of wave propagation in random media
is given in a book by Ishimaru [12]. Also, recent results in this field can be found in
the AMS-IMS-SIAM proceedings edited by Kuchment [14].

The above methods that provide bounds and describe the behavior of the dielectric
coefficients do not account for scattering effects which occur when the wavelength
is no longer much larger than the inhomogeneities of the composite and when the
contrast is large. Results for this problem are sparse. The problem is difficult and the
techniques that come from the quasistatic regime cannot be applied directly to the
scattering problem since the quasistatic methods utilize the condition that the size of
the heterogeneities goes to zero.

Even the correct definition of “effective medium” is somewhat unclear outside the
quasistatic regime. In this work, we assume that the purpose of the effective medium
is to reproduce the average or expected wave field as the actual medium varies over a
given set of random realizations.

For simplicity in this work we consider waves in two- or three-dimensional random
cell materials (discussed in Section 2.2) governed by the Helmholtz equation

△u+ ω2εu = f,

where realizations of the random permittivity function ε(x) belong to some probability
space. We average over all the possible material realizations to obtain the equation

△〈u〉 + ω2〈εu〉 = f,

where 〈·〉 denotes expected value, i.e. averaging over the set of realizations, and not a
spatial average. The source f is assumed to be independent of the material. We seek
to find the dielectric coefficient ε∗ that will solve the problem

△〈u〉 + ω2ε∗〈u〉 = f, (1.1)

where 〈u〉 is the expected value of the solution u. From the above two equations, it
is easy to see that the appropriate definition for ε∗ is

ε∗ =
〈εu〉

〈u〉
. (1.2)

Note that the definition of ε∗ does not preclude spatial variations, ε∗ = ε∗(x).
The definition is similar to the definition of the effective dielectric coefficient of

an isotropic medium in the quasistatic case. In this case, the effective permittivity ε∗

is defined by

ε∗〈E〉 = 〈D〉 = 〈εE〉,

where the averaged electric field 〈E〉 = Ē is a given constant, and the averaged
dielectric displacement 〈D〉 is independent of x which ensures that ε∗ in the quasistatic
case is a constant.

Wave localization and cancellation must be accounted for when the wavelength
is on the same order as the size of the heterogeneities, which means that the effective
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coefficients are no longer necessarily constants as in the quasistatic case, but functions
of the spatial variable. We have illustrated in section 4 that as ω increases (which will
decrease the wavelength), we begin to see spatial variations in the effective dielectric
coefficient due to the presence of scattering effects. Nevertheless ε∗ as defined in (1.2)
is a ”correct” definition of the effective dielectric coefficient, in that it reproduces the
average field response through equation (1.1).

Since ε∗ cannot be calculated explicitly in general, to be useful in applications it is
important that we can bound both ε∗ itself, and some measure of the spatial variations
in ε∗. The main result of this paper, presented in Theorem 3.1, is a bound on the
magnitude of ε∗ and a local bound on the total variation, ‖ε∗‖BV . The estimates
hold for any fixed frequency ω > 0 and show an explicit dependence on the feature
size and contrast of the random medium.

The paper is organized as follows. We pose the model problem of electromagnetic
wave propagation in a composite material in subsection 2.1. The two-component com-
posite material is random, and its structure is defined in subsection 2.2 using random
variables which describe its geometry and component dependence. In subsection 2.3
we obtain existence and uniqueness of solutions, uniform bounds on the solutions, as
well as Lipschitz bounds with respect to the dielectric coefficients of the materials.

Both the uniform and Lipschitz bounds are instrumental in obtaining the results
of the paper. Spatial variations due to scattering effects are allowed. Bounds on
the effective dielectric coefficient and its spatial variations are obtained when certain
conditions are satisfied. These results are stated in the theorem in section 3, which is
proved using methods that incorporate both PDE analysis and probability arguments.

We note that while the paper is focused on results in two- and three-dimensional
spaces, simple modifications provide also one-dimensional results.

2. Model Problem.

2.1. Electromagnetic wave propagation. Consider time-harmonic electro-
magnetic wave propagation through nonmagnetic (µ = 1) heterogeneous media. As-
suming that the electric field vector E = (0, 0, u) and ε is independent of x3, Maxwell’s
equations reduce to the Helmholtz equation

△u+ ω2εu = 0, (2.1)

where ω represents the frequency, and ε ∈ L∞(Rn) is the dielectric coefficient. In
media with heterogeneities in all three dimensions, each field component satisfies
(2.1).

Let our bounded spatial domain be Ω ⊆ R
n, where n = 2, 3. The region outside

Ω is filled with a homogeneous material. In particular, assume for x 6∈ Ω, we have
ε(x) = 1. Let S0 the sphere of radius R0, i.e. S0 = {r = R0}, and let Ω0 = {|x| < R0}.

Outside the ball Ω0, we separate the solution u to (2.1) into the incident and scat-
tered field: u = ui + us. The scattered field us can also be separated. Wellposedness
of the problem requires imposing Sommerfeld’s radiation condition as a boundary
condition at infinity, i.e.

lim
r→∞

r
n−1

2

(

∂

∂r
− iω

)

u = 0,

uniformly in all directions, where n = 2, 3 is the spatial dimension. Here, it is assumed
that the time-harmonic field is e−iωtu.
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Let the linear operator T : H
1
2 (S0) → H− 1

2 (S0) (Dirichlet-to-Neumann map) de-
fine the relationship between the traces us|{r=R0} and ∂rus|{r=R0}, i.e. T (us|{r=R0}) =
(∂rus)|{r=R0}. The Dirichlet-to-Neumann operator defines an exact nonreflecting
boundary condition on the artificial boundary S0, i.e. there are no spurious reflec-
tions of the scattered solution introduced at S0. We write T explicitly for the two-
and three-dimensional cases in the Appendix. On the boundary S0 = {r = R0}, the
solution u = ui + us should then satisfy

∂ru− Tu = ∂rui − Tui + ∂rus − Tus = ∂rui − Tui ≡ c.

In this way the problem on R
n is equivalently replaced by

△u+ ω2εu = 0 in Ω0 ⊃ Ω,

(∂ru− Tu) = c on S0.

2.2. Random structure. We are interested in computing expected values of
wave fields as the underlying medium ranges over some class of random materials. In
this section, we define the probability space characterizing these materials.

We fill our bounded domain Ω by random cell materials (see e.g. Milton [15]
Section 15). Our two-phase random materials are constructed as follows. The first
step is to divide Ω into a finite number of cells. The cells may vary in size and shape,
but their volume is bounded by a parameter.

The second step is to randomly assign to each cell a material of permittivity ǫ0
with probability p or ǫ1 with probability 1−p in a way that is uncorrelated both with
the shape of the cell and with the phases assigned to the surrounding cells. We then
have a probability space (Ψδ,Jδ, Pδ), where Ψδ is a set of material realizations with a
σ-algebra Jδ of subsets of Ψδ, and a probability measure Pδ on Jδ with Pδ (Ψδ) = 1.
The parameter δ bounds the volume of each cell and its precise definition is given
later in the section.

Elements ψ ∈ Ψδ are characterized by two random variables, ψ = (m, g), where
the variable m depends on the random variable g. The variable g describes the
geometry of the material by partitioning the domain Ω into Ng parts, each of which is
filled either with material ε0 or material ε1, which is done by the random variable m.
Thus, g describes the subdivision of our domain into subdomains; once the geometry g
is fixed, the random variable m distributes the material in the subdomains. Denoting
some set of partions of Ω by Γδ, the variable g ∈ Γδ, partitions the spatial domain

Ω into Ng disjoint subdomains {Ωj}
Ng

j=1 such that ∪Ωj = Ω. The variable mg =
{m1, . . . ,mNg

} assigns zero for material ε0 with probability p or one for material ε1
with probability 1 − p in each spatial subdomain. The real part of the dielectric
constant in the composite material is defined by

εm,g(x) =

{

ε0 if mj = 0 and x ∈ Ωj ;
ε1 if mj = 1 and x ∈ Ωj .

We assume without loss of generality that ε1 > ε0.
Fix a geometry g. Denote the set of realizations for geometry g by Rg:

Rg = {mg =
(

m1, . . . ,mNg

)

: mj = 0 or mj = 1, j = 1, . . . , Ng}

The set Rg has 2Ng elements. Thus the set of material realizations, Ψδ is described
as follows,

Ψδ = {(g,mg) : g ∈ Γδ, mg ∈ Rg}.
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The probability measure is

P =
∑

mg∈Rg

Ng
∏

j=1

p1−mj (1 − p)
mj Gδ, (2.2)

where Gδ is the probability measure on the space of all geometries, Γδ. The product
describes the multiplication of the probabilities of the materials in each subdomain
Ωj , which is summed over the set of all realizations for a particular geometry g.

(Ψδ,Jδ, Pδ) depends on a parameter δ > 0. Let k be a whole number, independent
of δ. We make the following assumptions on the subdomain partitions in Γδ:

A1: The volume of each subdomain {Ωj}
Ng

j=1 is bounded by δ, i.e., |Ωj | ≤ δ. Note
that since the volume of Ω is fixed, as δ decreases, the set of realizations Ψδ

must change.
A2: For each δ, there exists η with 0 < η ≤ δ such that a ball with volume η, Br(x),

intersects at most k subdomains Ωj for all x ∈ Ω. This condition excludes
from consideration materials with infinitely many subdomains interfacing at
any x ∈ Ω. Here Br(x) denotes the ball of radius r =

√

η/π in two dimensions

and radius r =
(

3η
4π

)1/3
in three dimensions, centered at x.

A3: Using Br(x0) from A2, define the set

Sx0,r =
(

⋃

∂Ωj

)

⋂

Br(x0).

There exists a constant Cp (independent of δ) such that the Lebesgue measure
of the set Sx0,r

Ln−1(Sx0,r) ≤ Cpr
n−1,

for every x0 ∈ Ω. This condition excludes from consideration materials con-
taining subdomains with boundaries with infinite perimeter in Br(x).

.

2.3. Existence and uniqueness of solutions and Lipschitz bounds. For a
fixed dissipation constant ǫi > 0, define a set

A := {ε = εr + i εi : εr = εm,g for some (m, g) ∈ Ψδ}.

Given an incident field ui, we must solve the following problem

△u+ ω2εru+ iω2εiu = 0 in Ω0 (2.3)
(

∂u

∂r
− Tu

)

= c on S0. (2.4)

Existence and uniqueness of weak solutions, with a uniform bound, may be obtained
for materials with a little bit of absorption, i.e. εi > 0.

Throughout the remainder of the paper, in order to simplify estimates within
proofs, C will denote a constant which is independent of (ε, u), whose value may
change from line to line.

Lemma 2.1. For each ε ∈ A, problem (2.3)-(2.4) admits a unique weak solu-
tion u ∈ H2(Ω). Furthermore, there exists a constant C depending on A, such that
‖u‖H2(Ω) ≤ C, independent of ε ∈ A.
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Proof. The ideas for the proof of the lemma come from the proof of a similar
lemma in [6]. Define for u, v ∈ H1(Ω)

a(u, v) =

∫

Ω

∇u · ∇v − ω2

∫

Ω

εuv −

∫

S0

(Tu)v,

and

b(v) = c

∫

S0

v.

Using bounds (7.3) and (7.5) for the two- and three-dimensional problem respectively,
it is straightforward to show that a(u, v) defines a bounded sesquilinear form over
H1(Ω)×H1(Ω), and that b(v) is a bounded linear functional onH1(Ω). Weak solutions
u ∈ H1(Ω) of (2.3) solve the variational problem

a(u, v) = b(v) for all v ∈ H1(Ω). (2.5)

The sesquilinear form a uniquely defines a linear operator A : H1(Ω) → H1(Ω) such
that a(u, v) = 〈Au, v〉H1(Ω), and the functional b(v) is uniquely identified with an
element b ∈ H1(Ω) such that b(v) = 〈b, v〉. By reflexivity, problem (2.5) is then
equivalently stated

Au = b. (2.6)

We intend to show that a is coercive by establishing a bound |a(u, u)| ≥ c > 0 for
all u ∈ H1(Ω) with ‖u‖H1(Ω) = 1. We have

a(u, u) =

∫

Ω

|∇u|2 − ω2

∫

Ω

εr|u|
2 −ℜ

(∫

S0

(Tu)u

)

(2.7)

−iℑ

(∫

S0

(Tu)u

)

− iω2εi

∫

Ω

|u|2.

For the two-dimensional problem we have

∫

S0

(Tu)u =

∫

S0

∞
∑

m=1

γmûme
imθu =

∞
∑

m=1

γm|ûm|2,

where ûm are the Fourier coefficients of the trace u|S0
(See Appendix). ℜ(γm) < 0

and ℑ(γm) > 0 for every m. Thus,

ℜ

(∫

S0

(Tu)u

)

< 0 and ℑ

(∫

S0

(Tu)u

)

> 0.

Similarly, for the three-dimensional case

∫

S0

(Tu)u =

∫

S0

∞
∑

l=0

γl

l
∑

m=−l

ûlmYlmu =
∞
∑

l=0

γl

l
∑

m=−l

|ûlm|2,

where ûlm are the coefficients in the spherical harmonics expansion of the trace u|S0

(See Appendix). ℜ(γl) < 0 and ℑ(γl) > 0 for every l. Thus,

ℜ

(∫

S0

(Tu)u

)

< 0 and ℑ

(∫

S0

(Tu)u

)

> 0.
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Assuming ‖u‖2
H1(Ω) =

∫

Ω
|∇u|2 +

∫

Ω
|u|2 = 1, and noticing that the first three terms

on the right-hand side of (2.7) are purely real and the last two terms are purely
imaginary, we find

2|a(u, u)| ≥

∣

∣

∣

∣

1 −

∫

Ω

(1 + ω2εr|u|
2 −ℜ

(∫

S0

(Tu)u

)∣

∣

∣

∣

+

∣

∣

∣

∣

−ω2εi

∫

Ω

|u|2 −ℑ

(∫

S0

(Tu)u

)∣

∣

∣

∣

.

For convenience, write r =
∫

Ω(1 + ω2εr)|u|
2, s =

∫

Ω |u|2, and

t =

{

−
∑∞
m=1 ℜ(γm)|ûm|2 in two dimensions;

−
∑∞
l=0 ℜ(γl)

∑l
m=−l |ûlm|2 in three dimensions.

Obviously t, r, and s are nonnegative real numbers which depend on u (and ε in the
case of r). Although t and s are essentially independent, r must satisfy

(1 + ω2ε0)s ≤ r ≤ (1 + ω2ε1)s. (2.8)

With this notation,

2|a(u, u)| ≥ |1 + t− r| + ω2εis.

Note that in the case s ≥ 1
2(1+ω2ε1) , we have |a(u, u)| ≥ 1

2ω
2εis ≥

ω2εi

4(1+ω2ε1) . Other-

wise, s < 1
2(1+ω2ε1) so that r < 1

2 , and |a(u, u)| ≥ 1
2 |1 + t − r| > 1

4 . Hence, for all

s, t ≥ 0, and all r satisfying (2.8),

|a(u, u)| ≥ c = min

{

ω2εi
4(1 + ω2ε1)

,
1

4

}

.

The bound thus holds for every u with ‖u‖H1(Ω) = 1 and for every ε ∈ A with
εi > 0. Given this coercivity bound, direct application of the Lax-Milgram Theorem
yields existence of the bounded solution operator A−1 for problem (2.6) such that
‖A−1‖ ≤ 1/c. Thus ‖u‖H1(Ω) ≤ ‖b‖H1(Ω)/c.

Given the bound on ‖u‖H1(Ω), a uniform H2(Ω) bound follows easily, since △u =
−ω2εu is uniformly bounded in L2(Ω).

Lemma 2.2. There exists a constant K such that for every εs, εt ∈ A, if us(εs),
ut(εt) are the corresponding solutions of the Helmholtz equation (2.3)-(2.4), then us
and ut satisfy the Lipschitz condition:

‖ut − us‖H2 ≤ K‖εt − εs‖L2 . (2.9)

Moreover, there exists a constant C such that,

‖ut − us‖W 1,∞ ≤ CK‖εt − εs‖L2 (2.10)

Proof. We subtract one of the Helmholtz equations from the other to obtain:

△ut −△us + ω2εtut − ω2εsus = 0.
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Subtract ω2εtus on both sides:

△(ut − us) + ω2εt(ut − us) = −ω2(εt − εs)us.

Let w = ut − us. Thus the above equation is written as:

△w + ω2εtw = −ω2(εt − εs)us (2.11)

The function −ω2(εt−εs)us ∈ L2(Ω) and thus Lemma 2.1 applies and w is a solution
to our equation (2.11). Let us rewrite (2.11) using the operator Lεt

:

Lεt
w := △w + ω2εtw = −ω2(εt − εs)us.

Lemma 2.1 ensures that the inverse operator L−1
εt

: L2(Ω) → H2(Ω) exists and is
uniformly bounded with respect to εt ∈ A. Thus,

w = −ω2L−1
εt

(εt − εs)us.

Both when we have two- and three- dimensional materials, Sobolev Imbedding The-
orem implies that H2(Ω) ⊂ C0

B(Ω) [1] and hence ‖us‖L∞ is bounded, so

‖w‖H2 ≤ ‖L−1
εt

‖L2(Ω),H2(Ω)‖εt − εs‖L2‖us‖L∞ ≤ K‖εt − εs‖L2 .

To prove the second part of the Lemma, we use Sobolev Imbedding Theorem and
interpolation inequalities. We prove that w ∈ W 2,q for any q such that 3 < q < ∞.
Using the interpolation inequalities [1] we see that for any solution u of (2.3)-(2.4)

‖△u‖Lq ≤ ‖△u‖
2/q
L2 ‖△u‖

1−2/q
L∞ ≤ ω2‖u‖

2/q
H2 ‖εu‖

1−2/q
L∞ ≤ ω2ε

1−2/q
1 ‖u‖H2 .

Thus u ∈W 2,q. But Sobolev Imbedding Theorem [1] implies that W 2,q(Ω) ⊂ C1
B(Ω),

i.e. there exists a constant C such that

‖ut − us‖1,∞ ≤ C‖ut − us‖W 2,q ≤ CK‖εt − εs‖L2, (2.12)

where

‖u‖1,∞ := max
0≤|α|≤1

sup
x∈Ω

|Dαu(x)|.

We deduce the Lipschitz condition (2.10) from (2.12).
We also obtain a Lipshitz-type bound that estimates the proximity of solutions

u of the Helmholtz equation (2.3)-(2.4) and the solution ũ of the constant coefficient
Helmholtz equation, where the constant coefficient is the expected value of ε, i.e.
ε̃ ≡ 〈ε〉 = ε0p+ ε1(1−p). The bound is in terms of the local proximity of the random
medium ε and the homogeneous medium ε̃.

Lemma 2.3. Let ũ be the solution to the Helmholtz equation with constant coef-
ficient ε̃ = ε0p+ ε1(1 − p), still satisfying boundary condition (2.4):

△ũ+ ω2ε̃ũ = 0. (2.13)

Let ν > 0 and 3 < q < ∞ be fixed. For any subdomain Ω̃ ⊂ Ω we define the
diameter

d(Ω̃) = sup
x,y∈Ω̃

|x− y|.
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There exist constants K∗ and K∗
∞, and γ > 0 such that if Ω is divided into N ′

non-overlapping subdomains Oi such that d(Oi) ≤ γ for all i = 1, . . . , N ′, then

‖u− ũ‖L2 ≤ K∗





N ′

∑

i=1

∣

∣

∣

∣

∫

Oi

(ε̃− ε) dx

∣

∣

∣

∣



+ ν (2.14)

and

‖u− ũ‖L∞ ≤ K∗
∞(q)



K∗





N ′

∑

i=1

∣

∣

∣

∣

∫

Oi

(ε̃− ε) dx

∣

∣

∣

∣



+ Cν





1
q

, (2.15)

for all realizations (u, ε), and 3 < q <∞.
Proof. In the following proof, the difference between the solutions of the two equa-

tions (2.1) and (2.13) is written in terms of the solution operator L−1
ε̃ . This compact

solution operator is approximated by a sequence of finite-rank operators L−1
n , written

in their canonical form in terms of orthonormal bases functions. These measurable
functions are approximated outside of a set of small measure by continuous functions.
The domain Ω is divided into N ′ non-overlapping subdomains Oi of diameter at most
γ, such that the uniformly continuous functions are approximated by a sequence of
step functions with characteristic functions of Oi. Hölder continuity of u is proven,
and the difference between the solution u for every x in Oi and the maximum of u
over the set Oi is bounded in terms of the diameter γ. All of these are combined to
give the desired inequalities. The details of the proof follow.

Subtract the two equations (2.1) and (2.13) and manipulate them to get the
equation:

△(u− ũ) + ω2ε̃(u− ũ) = ω2(ε̃− ε)u

for any realization (ε, u). Thus, we can apply the solution operator L−1
ε̃ to obtain:

u− ũ = ω2L−1
ε̃ ((ε̃− ε)u).

The L−1
ε̃ is a bounded operator L−1

ε̃ : L2 → H2 and a compact operator L−1
ε̃ : L2 →

L2. Since L−1
ε̃ : L2 → L2 is compact, it can be approximated by a sequence of

finite-rank operators L−1
n , and for every given error ν1 > 0, there exists M1 such that

‖L−1
ε̃ − L−1

n ‖L2(Ω),L2(Ω) ≤ ν1 for n ≥ M1 [5]. We apply the triangular inequality to
obtain:

‖u− ũ‖L2 = ω2‖L−1
ε̃ (ε̃− ε)u‖L2

≤ ω2‖L−1
ε̃ − L−1

n ‖L2(Ω),L2(Ω)‖ε̃− ε‖L∞‖u‖L2 + ω2‖L−1
n (ε̃− ε)u‖L2

≤ Cν1 + ω2‖L−1
n (ε̃− ε)u‖L2,

where C is independent of material ε. Finite-rank operators can be decomposed

L−1
n (ε̃− ε)u =

N
∑

i=1

wni 〈(ε̃− ε)u, gni 〉L2

where gni ∈ L2(Ω) and wni ∈ Range(L−1
n ). Thus,

‖L−1
n (ε̃− ε)u‖L2 = ‖

N
∑

i=1

wni

∫

Ω

(ε̃− ε)ugni dx‖L2 ≤

N
∑

i=1

‖wni ‖L2

∣

∣

∣

∣

∫

Ω

(ε̃− ε)ugni dx

∣

∣

∣

∣

.
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Fix n ≥M1; g
n
i is a measurable function on Ω. Given ν2 ≥ 0, there exist continuous

functions vni on Ω such that |Sν2 | = m{x : gni (x) 6= vni (x)} ≤ ν2, for each i = 1, . . . , N
[18]. Decompose the integral

∫

Ω

(ε̃− ε)ugni dx =

∫

Ω\Sν2

(ε̃− ε)ugni dx+

∫

Sν2

(ε̃− ε)ugni dx.

Using this we obtain the following bound for each i = 1, . . . , N

∣

∣

∣

∣

∫

Ω

(ε̃− ε)ugni dx

∣

∣

∣

∣

≤

∣

∣

∣

∣

∣

∫

Ω\Sν2

(ε̃− ε)ugni dx

∣

∣

∣

∣

∣

+

∣

∣

∣

∣

∣

∫

Sν2

(ε̃− ε)ugni dx

∣

∣

∣

∣

∣

≤

∣

∣

∣

∣

∣

∫

Ω\Sν2

(ε̃− ε)ugni dx

∣

∣

∣

∣

∣

+ ‖ε̃− ε‖L∞ |Sν2 |
1
2 ‖u‖L∞‖gni ‖L2 ≤

∣

∣

∣

∣

∣

∫

Ω\Sν2

(ε̃− ε)ugni dx

∣

∣

∣

∣

∣

+ C2ν2.

The function vni is continuous on the compact domain Ω and thus it is uniformly con-
tinuous and can be approximated by a sequence of step functions ψN ′ . Divide Ω into

N ′ non-overlapping subdomains Oi such that d(Oi) ≤ γ. Define ψN ′ =
∑N ′

i=1 a
N ′

i χOi
,

where χOi
is a characteristic function of the subdomain Oi. For every given error

ν3 > 0, there exists γ > 0 such that ‖vni − ψN ′‖L∞ ≤ ν3. Thus,

∣

∣

∣

∣

∣

∫

Ω\Sν2

(ε̃− ε)ugni dx

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∫

Ω\Sν2

(ε̃− ε)uvni dx

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∫

Ω

(ε̃− ε)uvni dx−

∫

Sν2

(ε̃− ε)uvni dx

∣

∣

∣

∣

∣

≤

∣

∣

∣

∣

∫

Ω

(ε̃− ε)uvni dx

∣

∣

∣

∣

+ ‖ε̃− ε‖L∞ |Sν2 | ‖u‖L∞‖vni ‖L∞

≤

∣

∣

∣

∣

∫

Ω

(ε̃− ε)u(vni − ψn′) dx

∣

∣

∣

∣

+

∣

∣

∣

∣

∫

Ω

(ε̃− ε)uψN ′ dx

∣

∣

∣

∣

+ C2ν2

≤

∣

∣

∣

∣

∫

Ω

(ε̃− ε)uψN ′ dx

∣

∣

∣

∣

+ ‖vni − ψN ′‖L∞‖ε̃− ε‖L1‖u‖L∞ + C2ν2

≤

∣

∣

∣

∣

∣

∣

∫

Ω

(ε̃− ε)u

N ′

∑

i=1

aN
′

i χOi
dx

∣

∣

∣

∣

∣

∣

+ C3ν3 + C2ν2 ≤

N ′

∑

i=1

|aN
′

i |

∣

∣

∣

∣

∫

Oi

(ε̃− ε)u dx

∣

∣

∣

∣

+ C3ν3 + C2ν2.

Lemma 2.2 implies there exists a constantK such that ‖u‖H2 ≤ K for every realization
u. Since H2 imbeds in C0,1/2, there exists a constant KL such that

|u(x) − u(y)| ≤ KL|x− y|1/2,

for all u and for all x, y ∈ Ω. Let

uiγ = max
x∈Oi

u(x)

and we have

|u(x) − uiγ | ≤ KLγ
1/2
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for all x ∈ Oi. Thus,

∣

∣

∣

∣

∣

∫

Ω\Sν2

(ε̃− ε)ugni dx

∣

∣

∣

∣

∣

≤

N ′

∑

i=1

|aN
′

i |

∣

∣

∣

∣

∫

Oi

(ε̃− ε)(u− uiγ) dx

∣

∣

∣

∣

+

N ′

∑

i=1

|aN
′

i |

∣

∣

∣

∣

∫

Oi

(ε̃− ε)(uiγ) dx

∣

∣

∣

∣

+ C3ν3 + C2ν2

≤ KLγ
1/2

N ′

∑

i=1

|aN
′

i |

∣

∣

∣

∣

∫

Oi

(ε̃− ε) dx

∣

∣

∣

∣

+

N ′

∑

i=1

|aN
′

i |

∣

∣

∣

∣

∫

Oi

(ε̃− ε)(uiγ) dx

∣

∣

∣

∣

+ C3ν3 + C2ν2

≤ Cγ1/2 +

N ′

∑

i=1

|aN
′

i ||uiγ |

∣

∣

∣

∣

∫

Oi

(ε̃− ε) dx

∣

∣

∣

∣

+ C3ν3 + C2ν2.

We obtain the desired bound by taking γ, ν2, and ν3 sufficiently small. Let Cγ1/2 +
C2ν2 + C3ν3 < ν; hence

‖u− ũ‖L2 ≤ K∗





N ′

∑

i=1

∣

∣

∣

∣

∫

Oi

(ε̃− ε) dx

∣

∣

∣

∣



+ ν. (2.16)

The interpolation inequality [1] states that there exists a constant KI such that

‖u‖W 1,q ≤ KI‖u‖
1
2

W 2,q‖u‖
1
2

Lq .

Since W 1,q imbeds in CB for 3 < q <∞ [1], there exists a constant C such that

‖u− ũ‖L∞ ≤ C‖u− ũ‖W 1,q .

Also, the interpolation inequality for Lp-spaces [8] states that when 3 < q <∞

‖u‖Lq ≤ ‖u‖
2
q

L2‖u‖
q−2

q

L∞ .

Combining the above inequalities and the bound (2.16), we prove the second bound
in the statement of the Lemma:

‖u− ũ‖L∞ ≤ CKI‖u− ũ‖
1
2

W 2,q‖u− ũ‖
1
2

Lq ≤ CKI‖u− ũ‖
1
2

W 2,q‖u− ũ‖
1
q

L2‖u− ũ‖
q−2

2q

L∞

≤ K∗
∞(q)



K∗





N ′

∑

i=1

∣

∣

∣

∣

∫

Oi

(ε̃− ε) dx

∣

∣

∣

∣



+ ν





1
q

.

3. Effective Dielectric Coefficient. The expected value 〈u〉 of the solution u
of the Helmholtz equation (2.3)-(2.4), that depends on the random variables through
its dependence on the composite material, is defined, recalling (2.2), as follows

〈u〉 =

∫

Ψδ

u dP =

∫

Γδ

∑

mg∈Rg

Ng
∏

j=1

p1−mj (1 − p)
mj u(εm,g, x) dGδ. (3.1)
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Note that 〈〉 is an expectation over material realizations, not the spatial variables, so
that 〈u〉 is in general still a function of x. Thus, the effective dielectric coefficient,
defined in (1.2) as

ε∗ =
〈εu〉

〈u〉
,

is a function of the spatial variable x.

Our main theorem gives a bound on the dielectric coefficient and its spatial vari-
ations provided we have a lower bound on the expected value of u. Such a bound
is proven to exist for sufficiently small δ. The theorem shows that as the maximum
volume δ of the subdomains decreases, so does the magnitude of the spatial variations,
and as δ → 0, the effective coefficient equals the constant predicted by the quasistatic
case.

Theorem 3.1. Let ε∗(x) be the effective dielectric coefficient of the medium
defined by (1.2). There exists δ0 > 0 and a constant C∗ such that for all 0 < δ < δ0
and any x0 ∈ Ω, the local total variation of ε∗ satisfies

∫

Br(x0)

|∇ε∗| dx ≤ C∗|ε1 − ε0|δ,

where r is determined as in Assumption A2. As the size of the inhomogeneities goes
to 0, the spatial variations decrease in magnitude, and ε∗(x) → pε0 + (1 − p)ε1.

Thus, |ε∗(x)| is uniformly bounded above for all x, and the spatial variations of
ε∗ are bounded in terms of the size of the inhomogeneities δ and the contrast of the
medium |ε1 − ε0|.

Proof. The proof applies to one-, two-, and three-dimensional random media. In

order to obtain a bound on |ε∗| = |〈εu〉|
|〈u〉| , we must obtain a lower bound on the denom-

inator |〈u〉|. We show that a uniform bound exists provided δ is chosen sufficiently
small, i.e. |〈u〉| ≥ c > 0 for all x ∈ Ω. The proof is based on a probability argument
that shows that the probability that the solutions u will be within a certain radius
α from the solution of the constant boundary value problem with dielectric constant
ε̃ = pε0 + (1 − p)ε1 goes to one as the maximum volume δ or the contrast |ε1 − ε0|
goes to zero. The probability β that a solution u lies outside the circle with radius
α depends on the parameter δ, and β → 0 as δ → 0. This prevents 〈u〉 to equal 0
and gives a lower bound on |〈u〉| ≥ c > 0. The numerical experiment in Figure 3.1
illustrates this argument, and the proof follows.

We let α and β be arbitrary constants such that β ≤ 1 and α ≤ K1. We want to
prove that for every such α and β, one can find δ > 0 such that

|〈u〉| ≥ (1 − β)(A − α) − βK1,

where ‖ũ‖L∞ = A and ‖u‖L∞ ≤ K1.

We use Lemma 2.3. There our domain Ω was divided into N ′ non-overlapping
subdomains Oi such that d(Oi) ≤ γ for all i = 1, . . . , N ′. Each Oi contains atmost Ñ
subdomains Ωj and subdomains Ωj ∩Oi. We are guaranteed that any subdomain Ωj
coming from material realizations has volume less than or equal to δ, hence |Ωj∩Oi| ≤
δ. Denote by χ the indicator function assigning 1 if we have material ε0 or 0 if we have
material ε1 in a given domain. Given the radius α and using Chebyshev’s inequality
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Fig. 3.1. Proximity to the constant coefficient solution. Left: From numerical experiments,
solutions u for a medium with 10 layers at x = 0.5 (red dots) and the solution to the constant
coefficient problem ũ(0.5) (blue square); Right: For appropriate parameter δ, the probability that
solutions u cluster within a circle with center ũ and radius α is 1 − β. The probability β that
solutions lay outside this circle depends on δ, and β → 0 as δ → 0. All solutions are contained in
the circle with radius K1, since ‖u‖L∞ ≤ K1.

[7] and estimate (2.15), we obtain

P (‖u− ũ‖L∞ ≤ α) ≥ P






K∗

∞



K∗





N ′

∑

i=1

∣

∣

∣

∣

∫

Oi

(ε̃− ε) dx

∣

∣

∣

∣



+ ν





1
q

≤ α







≥ P



max
i

∣

∣

∣

∣

∫

Oi

(ε̃− ε) dx

∣

∣

∣

∣

≤

(

α
K∗

∞

)q

− ν

K∗N ′





≥ P





∣

∣

∣

∣

∣

∣

Ñ
∑

j=1

χj |O
M
j | − p|OM |

∣

∣

∣

∣

∣

∣

≤

(

α
K∗

∞

)q

− ν

K∗N ′(ε1 − ε0)





= 1 − P





∣

∣

∣

∣

∣

∣

Ñ
∑

j=1

χj |O
M
j | − p|OM |

∣

∣

∣

∣

∣

∣

≥

(

α
K∗

∞

)q

− ν

K∗N ′(ε1 − ε0)





≥ 1 −

(

(K∗
∞)qK∗N ′(ε1 − ε0)

αq − ν(K∗
∞)q

)2

Var





Ñ
∑

j=1

χj |O
M
j |





≡ 1 − β (3.2)

Here OM is the set over which the quantity
∣

∣

∣

∫

Oi
(ε̃− ε) dx

∣

∣

∣ is maximized and the sets

ØM
j ≡ Ωj ∩ OM . We have also used the fact that

〈

∑Ñ
j=1 χj |O

M
j |
〉

= p|OM |. We

notice that the random variables χj are independent and calculate the variance

Var





Ñ
∑

j=1

χj |O
M
j |



 =

Ñ
∑

j=1

|OMj |2Var(χj) = p(1 − p)

Ñ
∑

j=1

|OMj |2 ≤ p(1 − p)Ñδ2.
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Thus,

β ≡

(

(K∗
∞)qK∗N ′(ε1 − ε0)

αq − ν(K∗
∞)q

)2

Var





Ñ
∑

j=1

χj |O
M
j |





≤

(

(K∗
∞)qK∗N ′(ε1 − ε0)

αq − ν(K∗
∞)q

)2

p(1 − p)Ñδ2.

We have shown that the probability that solutions u are within radius α of the
constant coefficient solution ũ goes to one as either δ or the contrast in the media
|ε1 − ε0| goes to 0.

Let us call ‖u− ũ‖L∞ ≤ α condition L and the complement - condition Lc. Define
the conditional expectations

〈u|L〉 ≡

∫

Ψδ(L) u dP

P (L)
and 〈u|Lc〉 ≡

∫

Ψδ(Lc) u dP

P (Lc)
,

and note that P (L) ≥ 1 − β and P (Lc) ≤ β. The expected value 〈u〉 is given by

〈u〉 = P (L)〈u|L〉 + P (Lc)〈u|Lc〉,

and using estimate (3.2) we obtain

|〈u〉| ≥ (1 − β)|〈u|L〉| − β|〈u|Lc〉|.

If u satisfies condition L, then u satisfies the inequality

‖u‖L∞ ≥ ‖ũ‖L∞ − α ≥ A− α.

And now using the uniform upper bound ‖u‖L∞ ≤ K1, we obtain the desired result:

|〈u〉| ≥ (1 − β)(A − α) − βK1,

where the constant β depends on δ, the maximum volume of the subdomains, and
on the contrast |ε1 − ε0|, and β → 0 as δ or |ε1 − ε0| → 0. Thus by picking the
appropriate α and β, where β is controlled by the parameter δ, we obtain the lower
bound |〈u〉| ≥ c > 0 for all x ∈ Ω. This provides a bound on the effective dielectric
coefficient:

|ε∗| ≤
ε̃K1

c
.

The uniform lower bound on |〈u〉| is utilized in proving that ‖ε∗‖BV ≤ C∗|ε1−ε0|δ,
as follows. Formally, the gradient ∇ε∗ is given by:

∇ε∗ =
〈u〉〈(∇ε)u〉 + 〈u〉〈ε∇u〉 − 〈∇u〉〈εu〉

〈u〉2
, (3.3)

where ∇ε is understood in the sense of a distribution. Now choose δ such that
|〈u〉| ≥ c > 0. We want to bound the numerator in terms of this δ and the contrast
|ε1 − ε0|. First we bound

|〈u〉〈ε∇u〉 − 〈∇u〉〈εu〉| ≤ C1δ|ε1 − ε0| (3.4)
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x
.

x
.

Fig. 3.2. Sample materials in Ψ0

δ
and Ψ1

δ
for fixed x. Left: Material realization ψ0; Right:

Corresponding material realization ψ1 obtained by switching material ε0 with material ε1 in the
domain containing x.

pointwise, where C1 is a constant. In the proof we use the Lipschitz bound (2.10)
from Lemma 2.2.

The bound (3.4) is obtained by looking at material realizations that differ only in
one particular subdomain Ωj and realizing that the pointwise difference in solutions
propagating through two such material realizations can be bounded in terms of the
L2-norm of the difference in the two materials, where the two materials differ only on
subdomain Ωj with |Ωj | ≤ δ.

Fix x. Divide the set of material realizations Ψδ into two subsets Ψδ = Ψ0
δ ∪ Ψ1

δ,
where Ψ0

δ is the subset of realizations such that ε(x) = ε0 and Ψ1
δ is the subset of

realizations such that ε(x) = ε1. Representative elements of subsets Ψ0
δ and Ψ1

δ are
shown in Figure 3.2. For each geometry g, let R0

g and R1
g be subsets of the set of

material assignments Rg such that

R0
g = {mg =

(

m1, . . . ,mNg

)

: mj = 0 for x ∈ Ωj},

and

R1
g = {mg =

(

m1, . . . ,mNg

)

: mj = 1 for x ∈ Ωj}.

Thus, Rg = R0
g ∪R

1
g. The expected value of u is given by:

〈u〉(x) =

∫

Ψδ

u dP =

∫

Γδ

∑

mg∈Rg

Ng
∏

l=1

p1−ml (1 − p)
ml u(εm,g, x) dGδ

= p

∫

Γδ

∑

mg∈R0
g

Ng
∏

l=1

l 6=j

p1−ml (1 − p)
ml u dGδ + (1 − p)

∫

Γδ

∑

mg∈R1
g

Ng
∏

l=1

l 6=j

p1−ml (1 − p)
ml u dGδ

= = p〈u〉Ψ0
δ
+ (1 − p)〈u〉Ψ1

δ
,

where 〈u〉Ψ0
δ

= 〈u|ε(x) = ε0〉 and 〈u〉Ψ1
δ

= 〈u|ε(x) = ε1〉. Using this notation we can
rewrite

〈u〉〈ε∇u〉 − 〈∇u〉〈εu〉

= ε1p(1 − p)
(

〈u〉Ψ0
δ
〈∇u〉Ψ1

δ
− 〈u〉Ψ1

δ
〈∇u〉Ψ0

δ

)

+ ε0p(1 − p)
(

〈u〉Ψ1
δ
〈∇u〉Ψ0

δ
− 〈u〉Ψ0

δ
〈∇u〉Ψ1

δ

)

.
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For every material described by Ψ0
δ, there exists a material described by Ψ1

δ such that
the two materials differ only in a subdomain Ωj ∋ x. Let us call uψ0

the solution of
the Helmholtz equation when the material realization belongs to Ψ0

δ and uψ1
the cor-

responding solution of the Helmholtz equation when the material realization, differing
only in mj , belongs to Ψ1

δ. We have

∣

∣

∣

∣

∣

∫

Ψ1
δ

uψ1
(x) dP −

∫

Ψ0
δ

uψ0
(x) dP

∣

∣

∣

∣

∣

≤

∫

Γδ

2Ng−1

∑

i=1

Ng
∏

l=1

l 6=j

p1−mi
l (1 − p)

mi
l |uψ1

− uψ0
|(x) dGδ

≤ sup
g∈Γδ

m1∈R1
g

m0∈R0
g

‖uψ1
(m1, g) − uψ0

(m0, g)‖L∞

≤ CK sup
g∈Γδ

m1∈R1
g

m0∈R0
g

‖εψ1
(m1, g) − εψ0

(m0, g)‖L2 ≤ CKδ|ε1 − ε0|.

The preceding comes from the fact that for any material realization in Ψ1
δ, there exists

a material realization in Ψ0
δ. The application of Lemma 2.2 yields the second-to-last

inequality. Thus, we have that
∣

∣

∣〈u〉Ψ1
δ
− 〈u〉Ψ0

δ

∣

∣

∣→ 0 pointwise as δ → 0. By a similar

argument,
∣

∣

∣〈∇u〉Ψ1
δ
− 〈∇u〉Ψ0

δ

∣

∣

∣ ≤ CKδ|ε1−ε0|, and
∣

∣

∣〈∇u〉Ψ1
δ
− 〈∇u〉Ψ0

δ

∣

∣

∣→ 0 pointwise

as δ → 0. Now,

∣

∣

∣〈u〉Ψ0
δ
〈∇u〉Ψ1

δ
− 〈u〉Ψ1

δ
〈∇u〉Ψ0

δ

∣

∣

∣ (3.5)

≤
∣

∣

∣〈u〉Ψ0
δ

∣

∣

∣

∣

∣

∣〈∇u〉Ψ1
δ
− 〈∇u〉Ψ0

δ

∣

∣

∣+
∣

∣

∣〈∇u〉Ψ0
δ

∣

∣

∣

∣

∣

∣〈u〉Ψ1
δ
− 〈u〉Ψ0

δ

∣

∣

∣ .

Referring to Lemmas 2.2 and 2.1, we know that u ∈ C1
B(Ω), and that there exist

constants K1 and K2 such that ‖u‖L∞ ≤ K1 and ‖∇u‖L∞ ≤ K2 for every u. Then

∣

∣

∣
〈u〉Ψ0

δ
〈∇u〉Ψ1

δ
− 〈u〉Ψ1

δ
〈∇u〉Ψ0

δ

∣

∣

∣
≤ KC|ε1 − ε0|δ(K1 +K2).→ 0 as δ → 0

and similarly for the second term in (3.5). Thus, we obtain the following bound

|〈u〉〈ε∇u〉 − 〈∇u〉〈εu〉| (3.6)

≤ ε1p(1 − p)
∣

∣

∣〈u〉Ψ0
δ
〈∇u〉Ψ1

δ
− 〈u〉Ψ1

δ
〈∇u〉Ψ0

δ

∣

∣

∣+ ε0p(1 − p)
∣

∣

∣〈u〉Ψ1
δ
〈∇u〉Ψ0

δ
− 〈u〉Ψ0

δ
〈∇u〉Ψ1

δ

∣

∣

∣

≤ KCp(1 − p)(ε1 + ε0)|ε1 − ε0|(K1 +K2)δ.

Looking back at (3.3) to get an upper bound on |∇ε∗|, we now want to prove that
|〈(∇ε)u〉| ≤ C2δ|ε1 − ε0| in the distributional sense.

Since ε(x) equals a constant in every subdomain Ωj, ∇ε = 0 there, and the
only problem occurs at the interface between two or more subdomains with different
materials, where ε is discontinuous and ∇ε is defined only in the distributional sense.

Fix a realization ψα such that x0 is at the interface between k subdomains Ωj ,
j = 1...k with alternating materials ε0 and ε1 in them. This assumption will pose no
loss of generality since the other cases are attained at material realizations satisfying
our assumptions. Call ψβ the realization that has the same geometry as realization ψα,
but with the materials in the k subdomains interfacing at x0 switched, e.g. Figure 3.3.
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 .x0
x0

Fig. 3.3. Sample materials in Ψα
δ

and Ψβ
δ

for fixed x on the boundary between several ma-
terials. Left: Material realization ψα; Right: Corresponding material realization ψβ obtained by
interchanging the materials at domains interfacing at x.

Without loss of generality let realization ψα have material ε0 in Ω1; thus realization
ψβ has material ε1 in the same subdomain Ω1. Let φ be a test function φ ∈ C∞

0 (Ω,Rn)
such that suppφ ⊂ Br(x0). We can find ∇(εα)uα at x0 in the generalized sense:

∫

Br(x0)

uα∇(εα)φdx

= (ε1 − ε0)

∫

∂(Ω1∩Ω2)

uαφν∂(Ω1∩Ω2) dx+ (ε1 − ε0)

∫

∂(Ω2∩Ω3)

uαφν∂(Ω2∩Ω3) dx+ · · ·

+(ε1 − ε0)

∫

∂(Ωk−1∩Ωk)

uαφν∂(Ωk−1∩Ωk) dx+ (ε1 − ε0)

∫

∂(Ω1∩Ωk)

uαφν∂(Ω1∩Ωk) dx,

where ∂(Ω1 ∩ Ω2) is the interface between subdomains Ω1 and Ω2 and ν∂(Ω1∩Ω2)

is the unit normal vector to Ω1 on the interface with Ω2. Note that ν∂(Ω1∩Ω2) =
−ν∂(Ω2∩Ω1).

Similarly, we find that ∇(εβ)uβ at x0 in the generalized sense is

∫

Br(x0)

uβ∇(εβ)φdx

= −(ε1 − ε0)

∫

∂(Ω1∩Ω2)

uβφν∂(Ω1∩Ω2) dx− (ε1 − ε0)

∫

∂(Ω2∩Ω3)

uβφν∂(Ω2∩Ω3) dx− · · ·

−(ε1 − ε0)

∫

∂(Ωk−1∩Ωk)

uβφν∂(Ωk−1∩Ωk) dx− (ε1 − ε0)

∫

∂(Ω1∩Ωk)

uβφν∂(Ω1∩Ωk) dx

Divide again Ψδ into three subsets Ψδ = Ψc
δ ∪ Ψα

δ ∪ Ψβ
δ : Ψc

δ is the subset of
realizations such that x0 is inside some subdomain; Ψα

δ is the subset of realizations
such that x0 is at the interface between k subdomains Ωj , j = 1 . . . k for any integer k

with alternating materials ε0 and ε1 in them and material ε0 in Ω1; Ψβ
δ is the subset

of realizations such that x0 is at the interface between k subdomains Ωj , j = 1 . . . k
for any integer k with alternating materials ε1 and ε0 in them and material ε1 in Ω1.



18 L. B. SIMEONOVA, D. C. DOBSON, O. ESO AND K. M. GOLDEN

Note that 〈∇ε〉Ψc
δ

= 0. Utilizing assumptions A2 and A3, we obtain

∣

∣

∣

∣

∣

〈

∫

Br(x0)

(u∇ε)φdx〉

∣

∣

∣

∣

∣

(3.7)

≤ |ε1 − ε0| ‖φ‖L∞

k
∑

j=1

‖χΩj
‖BV

∫

Gδ

2Ng−1

∑

i=1

p
k
2 (1 − p)

k
2

Ng
∏

l=1

l 6=j+1...

j+k

p1−mi
l (1 − p)m

i
l ‖uα − uβ‖L∞ dGδ

≤ kKCCpp(1 − p)‖φ‖L∞ |ε1 − ε0|
2
δ.

Note that the inequality

‖uα − uβ‖L∞ ≤ kKC |ε1 − ε0| δ

comes from Lemma 2.2 and the fact that for any material in Ψα
δ one can find a material

in Ψβ
δ , which differs only on the subdomains Ωj through Ωj+k each with volume less

than or equal to δ.
Choose δ small enough that |〈u〉| ≥ c > 0. Using the lower bound |〈u〉| ≥ c > 0,

(3.6), and (3.7), we obtain
∫

Br(x0)

|∇ε∗| dx ≤
C|ε1 − ε0|δ‖φ‖L∞

c2
≤ C∗|ε1 − ε0|δ, (3.8)

where ∇ε∗ is defined in the generalized sense. This will ensure that ε∗ ∈ BV (Ω), and
thus, we can bound the spatial variations of ε∗

V (ε∗,Ω) := sup

{∫

Ω

ε∗divφ : φ ∈ C1
0 (Ω,Rn), ‖φ‖L∞(Ω) ≤ 1

}

≤ C

∫

Ω

|∇ε∗| dx→ 0 as δ or |ε1 − ε0| → 0.

The formula that prescribes the appropriate δ takes into account the contrast |ε1−ε0|
in the medium (Theorem 3.1, (3.6) and (3.8)).

Note that

ε∗ =
〈εu〉

〈u〉
=
pε0〈u〉Ψ0

δ
+ (1 − p)ε1〈u〉Ψ1

δ

p〈u〉Ψ0
δ
+ (1 − p)〈u〉Ψ1

δ

.

Since
∣

∣

∣〈u〉Ψ1
δ
− 〈u〉Ψ0

δ

∣

∣

∣ → 0 pointwise as δ → 0, we obtain that ε∗ → pε0 + (1 − p)ε1

as δ → 0, which is consistent with the quasistatic case since by letting δ → 0, we are
effectively operating in the quasistatic limit.

We can obtain an estimate of how much ε∗ differs from the expected value ε̃:

|ε∗ − ε̃| =
|〈εu〉 − ε̃〈u〉|

|〈u〉|

≤
|pε0〈u〉Ψ0

+ (1 − p)ε1〈u〉Ψ1
− (pε0 + (1 − p)ε1)(p〈u〉Ψ0

+ (1 − p)〈u〉Ψ1
)|

c

≤
p(1 − p)|ε1 − ε0||〈u〉Ψ1

− 〈u〉Ψ0
|

c
≤ p(1 − p)C|ε1 − ε0|δ.
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Fig. 4.1. Sample realizations in a six layers medium: ε (top) and corresponding real part of u
(bottom).

4. Numerical Experiments. We observe the spatial dependence of the effec-
tive dielectric coefficient by numerically calculating ε∗ and graphing it as a function of
x. In these numerical experiments, ε∗ is calculated by dividing the interval (0, 1) into
the corresponding number of intervals m, each layer of length 1

m , and going through
all possible realizations by assigning in each layer either material of type one or ma-
terial of type two, both with probability 1

2 . The solution u for each particular layered
material is computed by the transfer matrix method [19]. Sample realizations in the
case of a six-layer medium are given in Figure 4.1. In these numerical experiments
ω = 53. The graph on the left shows the sample six-layers medium, composed of
material of type one (ε0 = 1) in the first, second, and fifth layers, and material of
type two (ε1 = 2) in the third, forth, and sixth layers (above), and the solution u and
the product εu (below). The graph on the right shows a six-layers sample medium,
composed of material of type one (ε0 = 1) in the first, second, and sixth layers, and
material of type two (ε1 = 2) in the third, forth, and fifth layers (above), and the
solution u and the product εu.

The expected 〈u〉 is obtained by evaluation the solution u for each realization and
multiplying it by the probability of the particular realization, i.e.

〈u〉 =
∑

mg∈Rg

u(x,mg)

Ng
∏

j=1

p1−mj (1 − p)
mj .

In the case when both materials are assigned according to probability 1
2 , each solution

u is multiplied by
(

1
2

)m
. The expected 〈εu〉 is computed similarly. We observe that

when the length of the layers is 1/6, the spatial variations of ε∗ are more pronounced
than in the case when the length of the layer is 1/16 (Figure 4.2).

Without loss of generality, assume that the dielectric coefficient of the medium is

ε(x) = 1 + zχ(x, ψ),

where the function χ(x, ψ) is a random characteristic function in x. The main theorem
3.1 showed that the spatial variations in the effective coefficient are bounded by the
contrast in the medium z (or as appears in the theorem, |ε1 − ε0|).
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Fig. 4.2. Spatial Variations. Upper left: Real and imaginary ε∗ in a medium of six layers;
upper right: Real part of 〈εu〉 (interrupted line) and 〈u〉 (solid line) in a medium of six layers; lower
left: Real and imaginary ε∗ in a medium of sixteen layers; lower right: Real part of 〈εu〉 (interrupted
line) and 〈u〉 (solid line) in a medium of sixteen layers.

Numerical experiments also show that the spatial variations decrease in magni-
tude when the contrast z between the two materials is small (Figure 4.3). In these
experiments we are looking at a ten-layers medium and ω = 53. We vary the contrast.
In the first experiment, we assign material of type one (ε0 = 1) or material of type
two (ε1 = 1.5), both with probability 1

2 . In the second experiment, we assign material
of type one (ε0 = 1) or material of type two (ε1 = 13), both with probability 1

2 . The
dependence of the magnitude of the spatial variations on the contrast in the medium
is obvious.

Numerical experiments are performed in a two dimensional random medium, that
is periodic in the x direction. The medium is obtained by randomly picking points
in a square cell with sides equal to 2π and drawing circles of random radii around
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Fig. 4.3. Spatial variations. Upper left: Real and imaginary ε∗ in a medium of ten layers and
contrast z = 0.5; upper right: real part of 〈εu〉 (interrupted line) and 〈u〉 (solid line) in a medium
of ten layers and contrast z = 0.5; lower left: Real and imaginary ε∗ in a medium of ten layers and
contrast z = 12; lower right: real part of 〈εu〉 (interrupted line) and 〈u〉 (solid line) in a medium of
ten layers and contrast z = 12.

the randomly selected points. The coordinates of the points and the values of the
radii are drawn from a normal distribution. After the cell is divided into subdomains
either material ε0 or material ε1 is assigned to each subdomain both with probability
1/2. The variational problem (2.6) was discretized with a first-order finite element
method, using piecewise bilinear elements on a uniform, rectangular grid. The design
variable ε was approximated by a piecewise constant function on the same uniform
grid. The nonlocal boundary operators T defined by (7.1) were approximated by
explicitly calculating the Fourier coefficients of the traces of the finite element basis,
then truncating the sum in (7.1). The resulting finite element scheme can be shown
to converge and to conserve energy, provided all the propagating terms are included
in the sum [2]. This discretization leads to a large, sparse (except for the boundary
terms), non-Hermitian matrix problem, which for simplicity is solved using the direct
sparse solver in Matlab. Despite the convenience of imposing a positive lower bound
on the imaginary part of ε in Lemma 2.1 for obtaining a uniform upper bound on
solutions, we found that the numerical experiments were quite insensitive to small
dissipations. Thus in all of the examples below, we set εi = 0.

In all two-dimensional numerical experiments, the frequency ω = 1.2. In Figure
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Fig. 4.4. Sample Material I: constitutive materials ε0 = 1 and ε1 = 1.5 (top). Contributions
from Sample Material I to the real part of solution u (middle) and real part of εu (bottom).

4.4 a single material realization (top), the real part of the corresponding solution u
(middle) and the real part of the product εu (bottom) for a medium with contrast
z = 0.5 are displayed. In Figure 4.5 another material realization (top), the real part of
the corresponding solution u (middle) and the real part of the product εu (bottom) for
a medium with contrast z = 3 are shown. The average 〈εu〉 is calculated by calculating
εu for each material realization, summing up over realizations, and dividing the sum
by the number of realizations. In our experiments the number of material realizations
is 75000. The expectation 〈u〉 is calculated similarly. The effective coefficient ε∗ is

the quotient of these quantities: ε∗ = 〈εu〉
〈u〉 .

In Figure 4.6 the expectations 〈u〉 and 〈εu〉 are shown. The effective dielectric
coefficient for random medium with contrast z = 0.5 is displayed in Figure 4.6. Let
us investigate the effect of increasing the contrast z in the medium on the magnitude
of spatial variation on ε∗. In Figure 4.7 we have shown the averaged quantities 〈u〉
and 〈εu〉 for a random medium with contrast z = 3. The spatial variations of the
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Fig. 4.5. Sample Material II: constitutive materials ε0 = 1 and ε1 = 4 (top). Contributions
from Sample Material II to the real part of solution u (middle) and real part of εu (bottom).

effective coefficient (Figure 4.7) are much larger in magnitude for the media with the
greater contrast.

5. Approximation formulas. In general, it is difficult to calculate exactly the
effective dielectric coefficient ε∗. Thus, finding good approximation formulas is impor-
tant. These approximation formulas are derived assuming smallness of the contrast z.
They take into account the geometry of the material through the material distribution
and correlation functions.

Keller and Karal analyzed the propagation of waves in a random medium assum-
ing that the medium differs slightly from a homogeneous medium. Assuming that the
homogenized medium has a constant dielectric coefficient, and thus the averaged wave
is a plane wave, the authors derive an equation satisfied by the average wave that is
correct through terms of order ν2, where ν measures the deviation of the medium
from homogeneity. From this equation, they determine the effective dielectric con-
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stant of the medium. The propagation constant for the average or coherent wave is
complex even for a nondissipative medium, because the coherent wave is continually
scattered by the inhomogeneities and converted into the incoherent wave. The prop-
agation velocity of the average wave is also diminished by the inhomogeneities. The
effective dielectric constant depends upon certain trigonometric integrals of the auto-
and cross-correlation functions of the coefficients in the original equations, i.e., of the
various coefficients characterizing the medium [13].

In our analysis, we also calculate the effective dielectric coefficient using integrals
of the the auto- and cross-correlation functions of the coefficients in the original equa-
tions as suggested by Keller and Karal. However, our analysis does not assume that
the effective dielectric coefficient is a constant, but allows for spatial variations. We
illustrate below by considering a media with particular random variations that our
approximation formulas capture the spatial variations.

Let gω be the free-space Green’s function for the operator Lv = v′′ + ω2v (with
the outgoing wave condition). Our problem can be rewritten to yield the Lippmann-
Schwinger equation

u(x) = −zω2

∫

Ω

gω(x− y)χ(y)u(y)dy + q(x), (5.1)

where q = gω ⋆ f . Define the operator Aω : L2(Ω) → L2(Ω) by

(Aωv)(x) =

∫

Ω

gω(x− y)v(y)dy, x ∈ Ω. (5.2)

In the case when |zω2|‖Aω‖ < 1,

u = (I + zω2Aωχ)−1q, (5.3)

and the Neumann series

u = q − zω2Aωχq + z2ω4(Aωχ)2q − . . . (5.4)

converges absolutely. Take the average over all realizations to obtain

〈u〉 = q − zω2Aω〈χ〉q + z2ω4Aω〈χAωχ〉q − . . .

= q − zpω2Aωq + z2ω4Aω〈χAωχ〉q − . . .

and

〈χu〉 = 〈χ〉q − zω2〈χAωχ〉q + z2ω4〈χAωχAωχ〉q − . . .

= pq − zω2〈χAωχ〉q + z2ω4〈χAωχAωχ〉q − . . .

Thus, the effective dielectric coefficient can be represented with a Taylor series ex-
pansion in z

ε∗(x) = 1 + zp− 2z2ω2 〈χAωχ〉q − p2Aωq

q
(5.5)

+ 6z3ω4

(

〈χAωχAωχ〉q − p〈χAωχ〉q

q
−
pAωq(〈χAωχ〉q − p2Aωq)

q2

)

. . .

We have also proven that the complex-valued 〈u〉 is a holomorphic function of
z provided that 1

z belongs in the resolvent of the operator ω2Aωχ. In this case, we
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can approximate the effective dielectric coefficient by the Taylor series expansion in
z. In the case of small z every term in the series is a constant provided the medium
is stationary. In such media, the correlation functions depend only on the distance
between the points, and not their positions. In this case all the correlation functions
depend on the distance between all of the points, i.e., the three-point correlation
function N(x, y, s) = N(|x − y|, |x − s|, |s − y|). An example of such medium is one
constructed by varying the length of the first layer (and thus the last to compensate),
and leaving the length of the middle layers constant. The material in each layer is
assigned with a chosen probability. Knowing the N -point correlation function allows
us to approximate ε∗. In order to do that we must develop a method to evaluate the
terms of form 〈χAωχ〉q, 〈χAωχAωχ〉q, etc. Keller and Karal suggest how this can be
done when calculating 〈χAωχ〉q. The mean value theorem for the solution q = gω ⋆ f
of the constant coefficient problem

u′′ + ω2u = f

is applied [13], where f is the delta function and q is a plane wave solution. The
Green function for this problem is

gω =
ieiω|x|

2ω
.

Knowing the correlation function N(x, y) = N(|x − y|) = N(r) and using the mean-
value theorem in one dimension, we can calculate

〈χAωχ〉q = (p− p2)

∫

gω(|x − y|)N(|x− y|)q(y) dy + p2

∫

gω(|x− y|)q(y) dy

= 2(p− p2)

∫ ∞

0

gω(r)N(r)cos(ωr) dr q(x) + 2p2

∫ ∞

0

gω(r)cos(ωr) dr q(x)

In a medium where the length of the first layer varies from 0 to d, the correlation
function is

N(x, y) = N(|x− y|) =

{

1 − |x−y|
d when 0 ≤ |x− y| ≤ d;

0 otherwise.

Calculating the integrals for r ∈ supp(N) , we obtain

〈χAωχ〉q =

(

−
(p− p2)i

8ω3d
(2d2ω2 − 1 + e2iωd) +

p

4ω2
(e2iωd + 2iωd− 1)

)

q(x).

The mean value theorem is applied repeatedly to calculate the multiple integrals of
the form 〈χAω . . . χAωχ〉q, when the N -point correlation is given. Once these are
calculated our formula (5.5) gives the approximation to the needed order, e.g.

ε∗ ≈ 1 + zp

− 2zω2

(

−
(p− p2)i

8ω3d
(2d2ω2 − 1 + e2iωd) +

p

4ω2
(e2iωd + 2iωd− 1) − p2

(

id

2ω
+
e2iωd

4ω2
−

1

4ω2

))

.

Numerical experiments show that in a medium with a correlation function de-
pending on position, the best approximation may be a function of the space variable.
In the numerical experiments illustrated in Figures 5.1 and 5.2, we have graphed the
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real and imaginary parts of ε∗ and its second order spatially dependent approxima-
tion, calculated using (5.5). The appropriate correlation function for the medium is
spatially dependent and assigns 1 (or fully correlated), if the two points are in the
same interval and 0 (no correlation), otherwise. Since the expansion is done around
z = 0, it gives better approximation for small z’s and ω’s. In the experiment, depicted
in Figure 5.1, we use media of four layers and contrast z = 0.1 and z = 0.5, when the
frequency ω = 10. We see that our second order approximations (thick line) give very
good approximation of both the real and imaginary parts of ε∗ (thin line), capturing
the spatial variations. In Figure 5.2, we observe the real and imaginary parts of ε∗

(thin line), and its second order spatially dependent approximation (thick line) in a
medium of four layers, contrast z = 0.5, and ω = 2. The approximation is very good
in the case when z and ω are small even if we have only four, relatively long, layers. In
the last numerical experiment depicted in Figure 5.2, ω = 53. For large frequencies,
we expect the approximation to fail, but nevertheless, we see that our second order
spatially dependent approximation (thick line) captures some of the behavior of the
real and imaginary parts of ε∗ (thin line). In this experiment, we are looking at a
medium of four layers and contrast z = 0.5.

6. Conclusions. When we consider wave propagation in a medium for which
the size of the inhomogeneities is of the same order as the wave length, scattering
effects must be accounted for and the effective dielectric coefficient is no longer a
constant, but a spatially dependent function. In this paper we use novel approaches
to bound the spatial variations of the effective permittivity. Numerical experiments
confirm the presence of spation variations and their dependence on the size of the
inhomogeneities and the magnitude of the contrast. Related optimization problems
that seek the class of materials, described by the probability density function of the
geometry of the medium, that optimize certain properties of the effective permittivity
will be considered in the future. .

7. APPENDIX. In two dimensions using polar coordinate frame (r, θ) and
assuming no incoming waves, the exterior scattered solution is

uex(r, θ) =

∞
∑

m=1

AmH
1
m(ωr)eimθ

where H1
m(ωr) are Hankel functions of first kind. Suppose that the Dirichlet datum

uin is given on the circle. The interior solution uin ∈ L2(S0), and thus it has a Fourier
series representation

uin(θ) =
∞
∑

m=1

ûme
imθ,

where

ûm =
1

2π

∫ 2π

0

u(ωR0, θ
′)e−imθ

′

dθ′.

The constants Am are found from the Dirichlet condition to be

Am =
ûm

H1
m(ωR0)

.
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Fig. 5.1. Second order approximation I. Above: Real and imaginary ε∗ (thin line), and its
second order spatially dependent approximation (thick line) in a medium of four layers, contrast z =
0.1; below: Real and imaginary ε∗ (thin line), and its second order spatially dependent approximation
(thick line) in a medium of four layers, contrast z = 0.5. The frequency ω = 10.

Thus the radiating solution is given by

us(r, θ) =
∞
∑

m=1

H1
m(ωr)

H1
m(ωR0)

ûme
imθ.

Differentiating in the radial direction and setting r = R0 leads to

∂us
∂r

(R0, θ) = ω

∞
∑

m=1

∂H1
m

∂r (ωR0)

H1
m(ωR0)

ûme
imθ ≡ (Tus)(θ).
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Fig. 5.2. Second order approximation II. Above: Real and imaginary ε∗ (thin line), and its
second order spatially dependent approximation (thick line) in a medium of four layers, contrast
z = 0.5, ω = 2; Below: Real and imaginary ε∗ (thin line) and its second order spatially dependent
approximation (thick line) in a medium of four layers, contrast z = 0.5, ω = 53.

Thus, we see that

(Tv)(θ) = ω
∞
∑

m=1

(

∂H1
m

∂r (ωR0)

H1
m(ωR0)

)

v̂me
imθ, (7.1)

where v̂m are the Fourier coefficients of v, where v satisfies Helmholtz equation (2.1).
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Let

γm ≡ ω

∂H1
m

∂r (ωR0)

H1
m(ωR0)

. (7.2)

By using the properties and identities of Hankel functions, it can be shown that
ℑ(γm) > 0 and ℜ(γm) < 0 for all m.

For m ≥ 0 and r in compact subsets of (0, ∞), we have [3]

∣

∣H1
m(ωr)

∣

∣ ≤ C
2mm!

(ωr)m
.

The derivative of the Hankel function

∂H1
m

∂r
(ωr) =

mH1
m(ωr)

r
− ωH1

m+1(ωr).

This way we can bound the ratio

∣

∣

∣

∣

∣

∂H1
m

∂r (ωR0)

H1
m(ωR0)

∣

∣

∣

∣

∣

≤ Cm.

We obtain the bound

‖Tv‖2

H− 1
2 (S0)

≤

∞
∑

m=1

(1 +m2)−
1
2

∣

∣

∣

∣

∣

∂H1
m

∂r (ωR0)

H1
m(ωR0)

∣

∣

∣

∣

∣

2

|v̂m|2

≤

∞
∑

m=1

C(1 +m2)−
1
2m2|v̂m|2

≤
∞
∑

m=1

C(1 +m2)
1
2 |v̂m|2 ≤ C‖v‖2

H
1
2 (Γ0)

≤ C‖v‖2
H1(Ω0)

,

where we have used the trace imbedding theorem [1].
In three dimensions using spherical coordinate frame (r, θ, φ) assuming ε(x) = 1

and no incoming waves, the scattered solution

uex(r, θ, φ) =

∞
∑

l=0

l
∑

m=−l

Blmh
1
l (ωr)Ylm(θ, φ),

where h1
l (ωr) are spherical Hankel functions of first kind and Ylm(θ, φ) are the nor-

malized spherical harmonics. The latter form an orthonormal complete set of L2(S0)
[16]. Suppose that the Dirichlet datum is given on the sphere. Since uin ∈ L2(S0), it
can be expanded into spherical harmonics as

uin(θ, φ) =

∞
∑

l=0

l
∑

m=−l

ûlmYlm(θ, φ)

with

ûlm =

∫

S0

u(R0, θ
′, φ′)Ylm(θ′, φ′) dS′.
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The constants Blm are found from the Dirichlet condition to be

Blm =
ûlm

hl(wR0)
.

Thus,

us(r, θ, φ) =

∞
∑

l=0

h1
l (ωr)

hl(ωR0)

l
∑

m=−l

ûlmYlm(θ, φ).

Differentiating in the radial direction and setting r = R0 gives

∂us
∂r

(R0, θ, φ) =

∞
∑

l=0

ω

∂h1
l

∂r (ωR0)

h1
l (ωR0)

l
∑

m=−l

ûlmYlm(θ, φ) ≡ (Tus)(θ, φ).

We see that

(Tv)(θ, φ) =

∞
∑

l=0

ω

(

∂h1
l

∂r (ωR0)

h1
l (ωR0)

)

l
∑

m=−l

v̂lmYlm(θ, φ), (7.3)

where v̂lm are the coefficients in the spherical harmonics expansion of v, where v
satisfies Helmholtz equation (2.1).

Let

γl ≡ ω

∂h1
l

∂r (ωR0)

h1
l (ωR0)

. (7.4)

The following is obtained by very slight modification of the analysis of the exterior
scattering problem discussed in [11]: for all l, ℑ γl > 0 and ℜ γl < 0.

The Sobolev space Hs(S0) with real parameter s consists of all distributions f
such that

‖f‖2
Hs(S0)

=

∞
∑

l=0

l
∑

m=−l

(1 + λl)
s|f̂lm|2 <∞,

where f̂lm are the spherical harmonics Fourier coefficients and λl = l(l + 1), l ≥ 0 is
the eigenvalue of the Laplace-Beltrami operator on S0. For l ≥ 0 and r in compact
subsets of (0, ∞), we have

∣

∣h1
l (ωr)

∣

∣ ≤ C
2ll!

(ωr)l+1
.

The derivative of the spherical Hankel function

∂h1
l

∂r
(ωr) =

1

2

(

ωh1
l−1(ωr) −

h1
l (ωr) + ωrh1

l+1(ωr)

r

)

.

This way we can bound the ratio

∣

∣

∣

∣

∣

∂h1
l

∂r (ωR0)

h1
l (ωR0)

∣

∣

∣

∣

∣

≤ Cl.
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We obtain the bound

(7.5)

‖Tv‖2

H− 1
2 (Γ0)

≤ ω

∞
∑

l=0

l
∑

m=−l

(1 + l(l+ 1))−
1
2

∣

∣

∣

∣

∣

∂H1
l

∂r (ωR0)

H1
l (ωR0)

∣

∣

∣

∣

∣

2

|v̂l,m|2

≤ ω
∞
∑

l=0

l
∑

m=−l

C(1 + l(l+ 1))
1
2 |v̂l,m|2 ≤ C‖v‖2

H
1
2 (Γ0)

≤ C‖v‖2
H1(Ω0)

,

where we have used the trace imbedding theorem [1].
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