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Abstract. The analytic continuation method of homogenization theory provides Stieltjes inte-
gral representations for the effective parameters of composite media. These representations involve
the spectral measures of self-adjoint random operators which depend only on the composite geometry.
On finite bond lattices, these random operators are represented by random matrices and the spectral
measures are given explicitly in terms of their eigenvalues and eigenvectors. Here we provide the
mathematical foundation for rigorous computation of spectral measures for such composite media,
and develop a numerically efficient projection method to enable such computations. This is accom-
plished by providing a novel formulation of the analytic continuation method which is equivalent to
the original formulation and holds for both the finite lattice setting and the infinite settings. We also
introduce a family of random bond lattices and directly compute the associated spectral measures
and effective parameters. The computed spectral measures are in excellent agreement with known
theoretical results. The behavior of the associated effective parameters is consistent with the sym-
metries and theoretical predictions of models, and the computed values fall within rigorous bounds.
Some previous calculations of spectral measures have relied on finding the boundary values of the
imaginary part of the effective parameter in the complex plane. Our method instead relies on direct
computation of the eigenvalues and eigenvectors, which enables, for example, statistical analysis of
the spectral data.
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1. Introduction Over the years a broad range of mathematical techniques have
been developed that reduce the analysis of complex composite materials, with rapidly
varying structures in space, to solving averaged, or homogenized equations involving
an effective parameter. Homogenization for composite media with rapidly varying
coefficients of thermal conductivity, electrical conductivity, electrical permittivity, or
magnetic permeability, for example, was established by Papanicolaou and Varadhan
[65] for the steady state, static case with real parameters [58]. This work was extended
by Golden and Papanicolaou [34, 35] to the quasi-static frequency dependent case
with complex parameters. Analysis of the effective dielectric problem for the fully
frequency dependent case described by the Helmholtz equation is given in [71].

The analytic continuation method (ACM) of homogenization theory for two-
component media in the quasi-static limit was developed by Bergman [7], Milton
[55], and Golden and Papanicolaou [34], leading to Stieltjes integral representations
for the effective parameters. The Golden-Papanicolaou formulation of this method is
based on the spectral theorem and resolvent formulas involving random self-adjoint
operators. This formulation demonstrated that the measures underlying these in-
tegral representations are spectral measures associated with the random operators,

∗murphy@math.utah.edu
†elena@math.utah.edu
‡choheneg@math.utah.edu
§golden@math.utah.edu

1
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which depend only on the composite geometry. These measures contain all the infor-
mation about the mixture geometry, and provide a link between microgeometry and
transport. Local geometry is encoded in “geometric” resonances in the measures [47],
while global connectivity is encoded by spectral gaps in the measures at the spectral
endpoints [60, 47]. A remarkable feature of the method is that once the spectral
measures are found for a given composite geometry, by the spectral coupling of the
governing equations [13, 58, 14, 18], the effective electrical, magnetic, and thermal
transport properties are all completely determined by these measures.

The integral representations yield rigorous forward bounds on the effective param-
eters of composites, given partial information on the microgeometry [7, 55, 34, 8, 10].
One can also use the integral representations to obtain inverse bounds, where data on
the electromagnetic response of a sample, for example, is used to bound its structural
parameters, such as the volume fractions of the components [53, 54, 16, 13, 17, 78,
9, 15, 21, 33], and even the separation of the inclusions in matrix particle composites
[62]. Furthermore, the spectral measure can be uniquely reconstructed [13] when the
data is given for a continuous interval of electromagnetic frequency. This, in turn,
can be used to calculate other effective parameters, such as the viscoelastic modu-
lus [15], effective thermal conductivity [14, 18], and recover the associated structural
parameters [13, 17, 78, 9, 15, 21, 33]. For classes of composites which undergo a
percolation transition [73, 76], the integral representations have been used to obtain
detailed information regarding the critical behavior of the effective parameters in the
scaling regime [31, 60]. The relationship between the effective parameters and the
system energy [60] has also led to a physically consistent statistical mechanics model
for two-component dielectric media which is also mathematically tractable [59].

Despite the many applications which have stemmed from the ACM, explicit an-
alytical calculations of the effective parameters and spectral measures have been ob-
tained for only a handful of composite microstructures. There are various numerical
methods which have been used to compute the effective parameters of two-component
composites. These computations may, in principle, be used to compute the corre-
sponding spectral measures through the Stieltjes–Perron inversion theorem. This
theorem states that the measure is recovered as a weak limit of the imaginary part of
the effective parameter in the complex plane.

Highly accurate numerical computations of the effective permittivity for a class
of continuum composites which have sharp corners are described in [42]. The compu-
tations are based on a multigrid recursive compressed inverse preconditioning method
[43, 41, 40] developed for calculation of the effective conductivity of random checker-
boards. In [20] the effective conductivity of the 2D random resistor network (RRN)
was computed using an efficient algorithm that implements Y -∆ transformations of
the network. In [37, 12, 36] the Fast Multipole Method was exploited to compute the
electrostatic fields and the effective conductivity for two-component matrix particle
composites.

In [42, 20], the spectral measures associated with the composite microstructures
of interest were computed using the Stieltjes–Perron inversion theorem. However, the
presence of delta components or essential singularities in the measures, for example,
makes it difficult to resolve details of the spectrum using this approach. To help
overcome this limitation, here we develop a mathematical framework which provides
a rigorous way to directly compute the spectral measures and effective parameters
for finite lattice composite microstructures, or discretizations of continuum compos-
ites. In particular, we provide a novel formulation of the ACM which is equivalent to
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the original formulation [34, 10] and holds for both the finite lattice setting and the
infinite settings. This analysis demonstrates that, in the finite lattice setting, the ran-
dom operators underlying the integral representations of the effective parameters are
represented by random matrices, and the spectral measures are determined explicitly
by their eigenvalues and eigenvectors.

As a consequence, our approach provides a direct connection between the statis-
tical behavior of spectral data of random matrices and the behavior of the effective
transport processes of composites. This, in turn, has provided a direct connection
between the ACM and random matrix theory, and has shown that transitions in the
connectedness or percolation properties of composites are reflected in the short and
long range eigenvalue correlations of the underlying random matrices [59, 61]. More-
over, this transitional behavior is captured by a one parameter universality class of
random matrix ensembles and provides a mechanism for the collapse of gaps in the
spectral measures [59, 61], which leads to critical behavior in the effective transport
coefficients of composites [60]. This characterization of critical behavior of transport
in composites by the statistical properties of eigenvalues and eigenvectors of random
matrices is a key feature of the ACM and our computational approach.

2. Mathematical Methods We now formulate the effective parameter prob-
lem for random two-phase conductive media in the continuum and lattice settings,
yielding Stieltjes integral representations for the effective conductivity and resistivity
tensors. In Section 2.1, we review and extend the ACM for the continuum setting
[34], while the lattice setting is discussed in Section 2.2. The mathematical framework
underlying the infinite lattice setting [11, 29], reviewed in Section 2.2.1, is analogous
to that of the continuum case [11], and the integral representations for the effective
parameters follow with minor modifications in the theory. In Section 2.2.2, we develop
a mathematical framework for the finite lattice setting, leading to integral represen-
tations for the effective parameters, summarized in Theorem 2.1, which are analogous
to that of the infinite, continuum and lattice cases. In order to derive the integral
representations for the finite lattice setting, significant modifications must be made
to the underlying mathematical framework. Toward this goal, in Section 2.2.3 we
provide a novel formulation of the ACM which unifies the infinite settings and the
finite lattice setting. The proof of Theorem 2.1 is given in Section 2.2.4.

2.1. Continuum Setting Consider a random two-phase conductive medium
filling all of Rd, which is determined by the probability space (Ω,P ). Here, Ω is the set
of all geometric realizations of our random medium, which is indexed by the param-
eter ω∈Ω representing one particular geometric realization, and P is the associated
probability measure. Details regarding the underlying sigma-algebra are discussed in
[65]. Let σ(~x,ω) and ρ(~x,ω), ~x∈Rd, be the local complex conductivity and resistiv-
ity tensors associated with the conductive medium, which are related by σ =ρ

−1 and
have components σjk(~x,ω) and ρjk(~x,ω), j,k =1, . . .,d, that are (spatially) stationary
random fields.

A stationary random field, f :Rd×Ω→C, is a field such that the joint distribu-
tion of f(~x1,ω), . . . ,f(~xn,ω) and that of f(~x1 +~ξ,ω), . . . ,f(~xn +~ξ,ω) is the same for

all ~ξ∈Rd and n∈N [34, 65]. More specifically, we assume that there is a group of
transformations τx :Ω→Ω and measurable functions f ′(ω)= f(0,ω) on Ω such that
f(~x,ω)= f ′(τ−xω) for all ~x∈Rd and ω∈Ω, with τxτy = τx+y. Moreover, we shall as-
sume that the group is one-to-one and preserves the measure P , i.e., P (τxA)=P (A)
for all P -measurable sets A [34, 65]. For notational simplicity, we will not distinguish
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between the functions f ′ :Ω→C and f :Rd×Ω→C, as the context of each is now
clear.

The group of transformations τx acting on Ω induces a group of operators Tx on
the Hilbert space L2(Ω,P ) defined by (Txf)(ω)= f(τ−xω) for all f ∈L2(Ω,P ). Since
τx is measure preserving, the operators Tx form a unitary group and therefore have
closed densely defined infinitesimal generators Li in each direction i=1, . . .,d with
domain Di ⊂L2(Ω,P ) [34, 65]. Thus,

Li =
∂

∂xi
Tx

∣

∣

∣

∣

x=0

, i=1, . . .,d, (2.1)

where xi is the ith component of the vector ~x and differentiation is defined in the sense
of convergence in L2(Ω,P ) for elements of Di [34]. The closed subset D=∩d

i=1Di of
L2(Ω,P ) is a Hilbert space [34] with inner product 〈·,·〉D given by 〈f,g〉D = 〈f,g〉L2 +
∑d

i=1〈Lif,Lig〉L2 , where 〈·,·〉L2 is the L2(Ω,P ) inner product.

Consider the Hilbert spaceH =
⊗d

i=1L2(Ω,P ) with inner product 〈·,·〉 defined by

〈~ξ,~ζ 〉= 〈~ξ ·~ζ 〉, where ~ξ ·~ζ = ~ξ †~ζ denotes the dot-product on Cd and 〈·〉 means ensemble
average over Ω or, by an ergodic theorem [34], spatial average over all of Rd. Define
the Hilbert spaces [34] of “curl free” H× and “divergence free” H• random fields

H× =
{

~Y ∈H | ~∇× ~Y =0 weakly and 〈~Y 〉=0
}

, (2.2)

H• =
{

~Y ∈H | ~∇· ~Y =0 weakly and 〈~Y 〉=0
}

,

where we have used the simplified notation 〈~Y 〉=0 ⇐⇒ 〈Yi〉=0 for all i=1, . . .,d,
~∇· ~Y =

∑d
i=1LiYi, and ~∇× ~Y =0 means LiYj −LjYi =0 for all i,j =1, . . .,d. Consider

the following variational problems [34]. Find ~Ef ∈H× and ~Jf ∈H• such that

〈σ( ~E0 + ~Ef ) · ~Y 〉=0 ∀ ~Y ∈H× (2.3)

〈ρ( ~J0 + ~Jf ) · ~Y 〉=0 ∀ ~Y ∈H• ,

respectively. When the bilinear forms Ψ(~ξ,~ζ)=σ~ξ ·~ζ and Φ(~ξ,~ζ)=ρ~ξ ·~ζ are bounded
and coercive, these problems have unique solutions [34, 65] satisfying the quasi-static
limit of Maxwell’s equations [46]

~∇× ~E =0, ~∇· ~J =0, ~J =σ ~E, 〈 ~E 〉= ~E0, (2.4)

~∇× ~E =0, ~∇· ~J =0, ~E =ρ ~J, 〈 ~J 〉= ~J0.

Here, ~E(~x,ω)= ~E0+ ~Ef (~x,ω) is the random electric field, where ~Ef is the fluctuating

field of mean zero about the (constant) average ~E0. Similarly, ~J(~x,ω)= ~J0+ ~Jf (~x,ω)

is the random current density. Moreover, the components of ~Ef and ~Jf are stationary
random fields [34].

As ~Ef ∈H× and ~Jf ∈H•, equation (2.3) yields the energy (power) [46] constraints

〈 ~J · ~Ef 〉=0 and 〈 ~E · ~Jf 〉=0, respectively, which leads to the following reduced energy

representations 〈 ~J · ~E〉= 〈 ~J 〉 · ~E0 and 〈 ~E · ~J 〉= 〈 ~E〉 · ~J0. The effective complex conduc-
tivity and resistivity tensors, σ

∗ and ρ
∗, are defined by

〈 ~J 〉=σ
∗ ~E0 (2.5)

〈 ~E 〉=ρ
∗ ~J0.
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Consequently, we have the following energy representations involving the effective
parameters

〈 ~J · ~E〉=σ
∗ ~E0 · ~E0, (2.6)

〈 ~E · ~J 〉=ρ
∗ ~J0 · ~J0.

We assume that the composite is a locally isotropic random medium so that
σjk(~x,ω)=σ(~x,ω)δjk and ρjk(~x,ω)=ρ(~x,ω)δjk, where δjk is the Kronecker delta and
j,k =1, . . .,d. We further assume that the composite is a two-component medium, so
that σ(~x,ω) takes the complex values σ1 and σ2, and ρ(~x,ω) takes the complex values
1/σ1 and 1/σ2, and satisfy [34]

σ(~x,ω)=σ1χ1(~x,ω)+σ2χ2(~x,ω), (2.7)

ρ(~x,ω)=σ−1
1 χ1(~x,ω)+σ−1

2 χ2(~x,ω).

Here, χi(~x,ω) is the characteristic function of medium i=1,2, which equals one for
all ω∈Ω having medium i at ~x and zero otherwise, with χ1 =1−χ2. For simplicity,
we focus on one component, σ∗

jk =[σ∗]jk and ρ∗jk =[ρ∗]jk, of these symmetric tensors,
for some j,k =1, . . .,d.

Due to the homogeneity of these functions, e.g., σ∗
jk(aσ1,aσ2)=aσ∗

jk(σ1,σ2) for
any complex number a, they depend only on the ratio h=σ1/σ2, and we define the
tensor-valued functions m(h)=σ

∗/σ2, w(z)=σ
∗/σ1, m̃(h)=σ1ρ

∗, and w̃(z)=σ2ρ
∗

with components

mjk(h)=σ∗
jk/σ2, wjk(z)=σ∗

jk/σ1, (2.8)

m̃jk(h)=σ1ρ
∗
jk, w̃jk(z)=σ2ρ

∗
jk,

where z =1/h. The dimensionless functions mjk(h) and m̃jk(h) are analytic off the
negative real axis in the h-plane, while wjk(z) and w̃jk(z) are analytic off the negative
real axis in the z-plane [34]. Each take the corresponding upper half plane to the upper
half plane and are therefore examples of Herglotz functions [22, 34].

A key step in the ACM is obtaining Stieltjes integral representations for σ
∗ and

ρ
∗. These follow from resolvent representations for the electric field ~E [34] and current

density ~J [60]

~E = s(sI−Γχ1)
−1 ~E0 = t(tI−Γχ2)

−1 ~E0, s∈C\[0,1], (2.9)

~J = t(tI−Υχ1)
−1 ~J0 = s(sI−Υχ2)

−1 ~J0, t∈C\[0,1],

where I is the identity operator on Rd and we have defined the complex variables
s=1/(1−h) and t=1/(1−z)=1−s. The operator Γ= ~∇(∆−1)~∇· is based on convo-

lution with the free-space Green’s function for the Laplacian ∆= ~∇· ~∇=∇2, and the
operator Υ= ~∇×(~∇× ~∇×)−1 ~∇× involves the vector Laplacian ∆=−~∇× ~∇×+~∇~∇·
when d=3 [34, 60]. These (non-random) integro-differential operators and the origin
of the resolvent equations in (2.9) are discussed in more detail below.

If the current density ~J(~x,ω) and the electric field ~E(~x,ω) are sufficiently smooth
for all ~x∈Rd when ω∈Ω, equation (2.9) is obtained as follows. The operator ∆−1 is
well defined in terms of convolution with respect to the free-space Green’s function
of the Laplacian ∆ [34, 26]. Similarly, the inverse ∆−1 of the vector Laplacian ∆ is
defined in terms of component-wise convolution with respect to the free-space Green’s
function of the Laplacian.
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Applying the integro-differential operator ~∇(∆−1) to the formula ~∇· ~J =0 in equa-

tion (2.4) yields Γ ~J =0, where Γ= ~∇(∆−1)~∇· is an orthogonal projection [34] fromH
onto the Hilbert space H× of curl-free random fields, Γ :H 7→H×. More specifically,

for every sufficiently smooth ~ζ ∈H× there exists [46] a scalar potential ϕ which is

unique up to a constant such that ~ζ = ~∇ϕ. Consequently, since ∆= ~∇· ~∇, it is clear
that Γ~ζ = ~ζ for all such ~ζ ∈H×.

For simplicity, we discuss only the analogous properties of divergence free vector
fields and the projection operator Υ= ~∇×(~∇× ~∇×)−1 ~∇×, restricting our attention
to d=3 to avoid a more involved discussion regarding differential forms [19]. Applying

the integro-differential operator −~∇×(∆−1) to the formula ~∇× ~E =0 in equation

(2.4) yields Υ ~E =0. Here, Υ=−~∇×(∆−1)~∇× is an orthogonal projection from H
onto the Hilbert spaceH• of divergence-free random fields, Υ :H 7→H•, of transverse
gauge [60]. This can be seen as follows. For every sufficiently smooth ~ζ ∈H• we

have the representation ~ζ = ~∇×( ~A+ ~C), where ~A is a vector potential associated

with ~ζ and the arbitrary vector field ~C satisfies ~∇× ~C =0 [46]. Without loss of

generality, the vector field ~C can be chosen so that ~A satisfies ~∇· ~A=0 [46]. Hence,
~∇×~ζ = ~∇× ~∇× ~A= ~∇(~∇· ~A)−∆ ~A=−∆ ~A. The vector field ~C chosen in this manner

gives the transverse gauge of ~ζ [46]. Choosing the members of H• to have transverse

gauge, the action of ~∇× ~∇× on H• is given by that of −∆. Therefore, the action of
Υ on H• is given by that of

Υ= ~∇×(~∇× ~∇×)−1~∇×=−~∇×(∆−1)~∇×, (2.10)

and it is clear from the above discussion that Υ~ζ = ~ζ for all such ~ζ ∈H•. In general,
the differential operators ~∇, ~∇·, and ~∇× are interpreted in a weak sense in terms of
the operators Li in (2.1) [34].

We now derive the resolvent formulas in equation (2.9). Write σ and ρ in equation
(2.7) as σ =σ2(1−χ1/s)=σ1(1−χ2/t) and ρ=(1−χ2/s)/σ1 =(1−χ1/t)/σ2. Recall

that ~E = ~E0 + ~Ef , where ~E0 is a constant field and ~Ef ∈H× so that Γ ~E = ~Ef , and

similarly Υ ~J = ~Jf . Consequently, from Γ ~J =0 and Υ ~E =0 we have the following
formulas which are equivalent to that in (2.9)

~Ef =
1

s
Γχ1

~E =
1

t
Γχ2

~E, (2.11)

~Jf =
1

s
Υχ2

~J =
1

t
Υχ1

~J.

On the Hilbert space H×, the operators Γ and χi, i=1,2, act as projectors [34].
Therefore Mi =χiΓχi, i=1,2, are compositions of projection operators on H×, and
are consequently positive definite and bounded by 1 in the underlying operator norm
[67]. They are self-adjoint with respect to the H -inner-product 〈·,·〉 [34]. Therefore,
on the Hilbert space H× with weight χ1 in the inner-product, 〈·,·〉1 = 〈χ1 ·,·〉 for
example, Γχ1 is a bounded linear self-adjoint operator with spectrum contained in
the interval [0,1] [34, 26, 67]. Hence the resolvent operator (sI−Γχ1)

−1 in (2.9) is also
a linear self-adjoint operator with respect to the same inner-product, and is bounded
for s∈C\[0,1] [75]. Similarly, (tI−Υχ1)

−1 in (2.9) is a linear self-adjoint operator on
H• with respect to the inner-product 〈·,·〉1, and is bounded for t∈C\[0,1].

To obtain integral representations for σ
∗ and ρ

∗, it is more convenient to consider
the functions Fjk(s)= δjk−mjk(h) and Ejk(s)= δjk−m̃jk(h) which are analytic off
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[0,1] in the s-plane, and Gjk(t)= δjk−wjk(z) and Hjk(t)= δjk− w̃jk(z) which are
analytic off [0,1] in the t-plane [34]. For the formulation of the effective parameter
problem involving H× and σ

∗, define the coordinate system so that in (2.5) the

constant vector ~E0 is given by ~E0 =E0~ej , where ~ej is the standard basis vector on
Rd in the j th direction for some j =1, . . .,d. In the other formulation involving H•

and ρ
∗, define ~J0 =J0~ej. Equations (2.5) and (2.9), and the spectral theorem for

bounded linear self-adjoint operators [66, 75] then yield the following Stieltjes integral
representations [34, 6, 8, 60] for the effective parameters σ∗

jk and ρ∗jk (see Sections 2.2.3
and A-1.1 for more details)

mjk(h)= δjk−Fjk(s), Fjk(s)= 〈χ1(sI−Γχ1)
−1~ej ·~ek〉=

∫ 1

0

dµjk(λ)

s−λ
, (2.12)

wjk(z)= δjk−Gjk(t), Gjk(t)= 〈χ2(tI−Γχ2)
−1~ej ·~ek〉=

∫ 1

0

dαjk(λ)

t−λ
,

m̃jk(h)= δjk−Ejk(s), Ejk(s)= 〈χ2(sI−Υχ2)
−1~ej ·~ek〉=

∫ 1

0

dηjk(λ)

s−λ
,

w̃jk(z)= δjk−Hjk(t), Hjk(t)= 〈χ1(tI−Υχ1)
−1~ej ·~ek〉=

∫ 1

0

dκjk(λ)

t−λ
.

Equation (2.12) displays Stieltjes integrals involving spectral measures of random
operators. More specifically, dµjk(λ) and dαjk(λ) are spectral measures associated
with the random operators χ1Γχ1 and χ2Γχ2, while dηjk(λ) and dκjk(λ) are spectral
measures associated with the random operators χ2Υχ2 and χ1Υχ1, respectively. In
particular, there is a one-to-one correspondence between the bounded linear operator
χ1Γχ1 onH×, for example, and a family of projection operators Q(λ), parameterized
by λ∈ [0,1], which satisfies limλ→0Q(λ)=0 and limλ→1Q(λ)= I, where 0 and I are
the null and identity operators on H×, respectively [75]. The strictly increasing
function µjk(λ)= 〈Q(λ)~ej ,~ek〉1 of the spectral variable λ is of bounded variation [75].
The spectral measure dµjk(λ) is a Stieltjes measure [27] associated with the function
µjk(λ) [75] (see Section A-1.1 for more details). For notational simplicity, we will
often refer to the measure µjk, not to be confused with the function µjk(λ).

By the Stieltjes–Perron inversion theorem [44, 58], the matrix valued function
µ(λ) with components µjk(λ), j,k =1, . . .,d, for example, is given by the weak limit
µ(λ)=−(1/π)limε↓0 Im(F(λ+ ıε)), i.e.,

∫ 1

0

ξ(λ)dµ(λ)=− 1

π
lim
ε↓0

∫ 1

0

ξ(λ) Im(F(λ+ ıε))dλ, (2.13)

for all smooth test functions ξ(λ), where [F(s)]jk =Fjk(s) and [dµ(λ)]jk =dµjk(λ).
From equation (2.13) and the identities mjk(h)=hwjk(z) and m̃jk(h)=hw̃jk(z),
which follow from equation (2.8), it has been shown [60] that the functions µjk(λ)
and αjk(λ), and the functions ηjk(λ) and κjk(λ) are related by

λαjk(λ)= (1−λ)µjk(1−λ)+λ̺(λ), d̺(λ)=mjk(0)δ0(dλ)+wjk(0)(λ−1)δ1(dλ),

λκjk(λ)= (1−λ)ηjk(1−λ)+λ ˜̺(λ), d˜̺(λ)= m̃jk(0)δ0(dλ)+ w̃jk(0)(λ−1)δ1(dλ).
(2.14)

Here, m(0)=m(h)|h=0 and w(0)=w(z)|z=0, for example, and δa(dλ) is the delta
measure concentrated at λ=a.
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Equations (2.12) and (2.14) demonstrate the many symmetries between the func-
tions mjk(h), wjk(z), m̃jk(h), and w̃jk(z), and the respective measures µjk, αjk, ηij ,
and κjk. Because of these symmetries, for simplicity, we will focus on mjk(h) and
µjk, and will reintroduce the other functions and measures where appropriate.

A key feature of equations (2.5), (2.8), and (2.12) is that the parameter informa-
tion in h and E0 is separated from the geometry of the composite, which is encoded
in the spectral measure µjk via its moments µn

jk [34, 11]

µn
jk =

∫ 1

0

λndµjk(λ)= 〈χ1[Γχ1]
n~ej ·~ek〉, n=0,1,2, . . .., (2.15)

where the second equality follows from the spectral theorem displayed in equation
(A-2) with f(λ)=λn. Since χ1 operates pointwise on Rd and the constant vectors
~ej , j =1, . . .,d, are non-random, we see from equation (2.15) that the mass µ0

jk of the
measure µjk is given by

µ0
jk =p1δjk, (2.16)

where p1 = 〈χ1〉 is the volume fraction of material component one. This demonstrates
that the diagonal components µkk, k=1, . . .,d, of µ are positive measures, while the off-
diagonal components µjk, j 6=k=1, . . .,d, have zero mass and are consequently signed
measures [27, 67]. The positivity of the measure µkk also follows from the fact that
Q(λ) is a self-adjoint projector on H× so that 〈Q(λ)~ek ·~ek〉1 = 〈Q(λ)~ek ·Q(λ)~ek〉1 =
‖Q(λ)~ek‖2

1 is a strictly increasing function of λ [66, 75]. Therefore, the measure of an
arbitrary set A⊆ [0,1] is positive:

µkk(A)=

∫

A

dµkk(λ)=

∫

A

d‖Q(λ)~ek‖2
1≥0, (2.17)

where ‖·‖1 denotes the norm induced by the inner-product 〈·,·〉1.
The higher order moments µn

jk, n=1,2,3, . . ., in principle, may be found using
a perturbation expansion of Fjk(s) about a homogeneous medium (σ1 =σ2, s=∞)
[34]. In particular µ0

jk =p1δjk, generically, and µ1
jk =(p1p2/d)δjk for a statistically

isotropic random medium [34, 32, 11], where p2 =1−p1 = 〈χ2〉 is the volume fraction
of material component 2. In the case of a square bond lattice, which is an example
of an infinitely interchangeable random medium [11], µ2

kk =p1p2(1+(d−2)p2)/d2 for
any dimension d and µ3

kk =p1p2(p
2
2−p2−1)/8 for d=2. In general, the moments µn

jk

depend on the (n+1)-point correlation functions of the random medium [34, 11].
A principal application of the ACM is to derive forward bounds on the diagonal

components σ∗
kk of the tensor σ

∗, k=1, . . .,d, given partial information on the mi-
crogeometry [7, 55, 34, 8]. This information may be given in terms of the moments
µn

kk, n=0,1,2, . . ., of the measure µkk [57, 34]. Given this information, the bounds
on σ∗

kk follow from the special structure of Fkk(s) in (2.12). More specifically, it is
a linear functional of the positive measure µkk. The bounds are obtained by fixing
the contrast parameter s, varying over an admissible set of measures µkk (or geome-
tries) which is determined by the known information regarding the two-component
composite. Knowledge of the moments µn

kk for n=1, . . .,J confines σ∗
kk to a region

of the complex plane which is bounded by arcs of circles, and the region becomes
progressively smaller as more moments are known [57, 28]. When all the moments
are known, the measure µkk is uniquely determined [1], hence σ∗

kk is explicitly known.
The bounding procedure is reviewed in Section 2.3.
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We conclude this section with a discussion regarding some consequences of the
energy constraints 〈 ~J · ~Ef 〉=0= 〈 ~E · ~Jf 〉, which follow from equation (2.3), and are at
the heart of the existence and uniqueness of solutions to the formulas of equation
(2.4). We first note that the formulas Γ ~E = ~Ef and Υ ~J = ~Jf are sufficient conditions
for these constraints. The sufficiency of these conditions can be seen by writing
σ =σ2(1−χ1/s) and ρ=(1−χ1/t)/σ2 in ~J =σ ~E and ~E =ρ ~J, respectively, to obtain

〈 ~J · ~Ef 〉=σ2(〈 ~E · ~Ef 〉−〈χ1
~E · ~Ef 〉/s), 〈 ~E · ~Jf 〉=(〈 ~J · ~Jf 〉−〈χ1

~J · ~Jf 〉/t)/σ2, (2.18)

for s 6=0 (h 6=+∞) and t 6=0 (h 6=0). Now, if we have Γ ~E = ~Ef then ~∇· ~J =0 yields

the formula ~Ef =Γχ1
~E/s of equation (2.11). Therefore, as Γ is a self-adjoint operator

on H [72, 75, 26], we have

〈χ1
~E · ~Ef 〉= 〈χ1

~E ·Γ ~E〉= 〈Γχ1
~E · ~E〉= s〈 ~Ef · ~E〉. (2.19)

Consequently, from equation (2.18) we have 〈 ~J · ~Ef 〉=0 for s 6=0. The argument

involving the operator Υ and the vector field ~Jf is analogous.
We see from equation (2.18) that the energy constraints are equivalent to the

following “field representations” for the contrast parameters s and t

〈χ1
~E · ~Ef 〉/〈 ~E · ~Ef 〉= s=1− t=1−〈χ1

~J · ~Jf 〉/〈 ~J · ~Jf 〉, (2.20)

when 〈 ~E · ~Ef 〉 6=0 (if and only if 〈χ1
~E · ~Ef 〉 6=0 when s 6=0 from (2.19)), for example.

Moreover, the energy constraints provide the limiting behavior of the ratio R(h)=

〈 ~E · ~Ef 〉/〈χ1
~E · ~Ef 〉=1/s, for example,

lim
h→0

R(h)=1, lim
h→1

R(h)=0, lim
h→+∞

R(h)=−∞, (2.21)

which is otherwise a very complicated object in the absence of these energy constraints.
We also note that equation (2.20) provides a relationship between the members ~Ef

and ~Jf of the Hilbert spaces H× and H•, respectively.
The energy constraints also lead to detailed decompositions of the system en-

ergy 〈 ~J · ~E〉 in terms of Herglotz functions involving the measures µjj , αjj , ηjj ,

and κjj [60, 59]. For example, 〈 ~J · ~Ef 〉=0, ~E = ~E0 + ~Ef , ~E0 =E0~ej, 〈 ~Ef 〉=0, and

σ =σ2(1−χ1/s) together imply that 0= 〈σ ~E · ~Ef 〉= 〈σ2(1−χ1/s)( ~Ef · ~E0 +E2
f )〉=

σ2

[

〈E2
f 〉−(〈χ1

~Ef · ~E0〉+〈χ1E
2
f 〉)/s

]

. Equations (2.9) and (2.12), and the spectral the-

orem [66] then yield [60]

〈E2
f 〉

E2
0

=

∫ 1

0

λdµjj(λ)

(s−λ)2
=

∫ 1

0

λdαjj(λ)

(t−λ)2
. (2.22)

Equation (2.22), in turn, leads to Herglotz representations of all such energy compo-

nents involving these measures [59]. Analogous energy decompositions involving ~Jf

and the measures ηjj and κjj similarly follow. In [59] this energy decomposition has
lead to a physically transparent statistical mechanics model of two-phase dielectric
media.

2.2. Lattice Setting In this section, we formulate the effective parameter
problem for the infinite and finite, two-component bond lattice on Zd (formulations
for other lattice topologies are analogous). The infinite bond lattice, reviewed in
Section 2.2.1, is a special case of the stationary random medium considered in Section
2.1. In Section 2.2.2, we develop a mathematical framework for the ACM in the finite
lattice setting, a key theoretical contribution of this work.
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2.2.1. Infinite Lattice Setting Consider a two-component bond lattice on
all of Zd determined by the probability space (Ω,P ), and let σ(~x,ω) be the local
complex conductivity tensor with components σjk(~x,ω)=σj(~x,ω)δjk, j,k=1, . . .,d.
Here, σj(~x,ω) is the conductivity of the bond emanating from ~x∈Zd in the positive
j th direction for ω∈Ω, which is a stationary random field that takes the complex
values σ1 and σ2 with probabilities p1 and p2 =1−p1, respectively [29, 11]. The

configuration space Ω={σ1,σ2}dZ
d

represents the set of all realizations of the random
medium and the probability measure P is compatible with stationarity. Analogous
to equation (2.7), the local conductivity σj(~x,ω) of the two-phase random medium
takes the form [29]

σj(~x,ω)=σ1χ
j
1(~x,ω)+σ2χ

j
2(~x,ω), j =1, . . .,d. (2.23)

Here, χj
i (~x,ω) is the characteristic function of medium i=1,2, which equals one for

all realizations ω∈Ω having medium i in the j th positive bond at ~x, and equals zero
otherwise.

In this lattice setting, the differential operators ~∇× and ~∇· in equation (2.4) are
given [29, 11] in terms of forward and backward difference operators D+

j and D−
j ,

respectively, where

D+
j =T +

j −I, D−
j = I−T−

j , j =1, . . .,d. (2.24)

Here, I is the identity operator on Zd, and T +
j =T+ej

and T−
j =T−ej

are the gen-

erators (through composition) of the unitary group Tx acting on L2(Ω,P ) defined
by (Txf)(0,ω)= f(~x,ω), for any f ∈L2(Ω,P ) which is a stationary random field [29].

Define H =
⊗d

i=1L2(Ω,P ) and let ~E, ~J ∈H be the random electric field and current

density, respectively, where ~E(~x,ω)= (E1(~x,ω), . . .Ed(~x,ω)) and Ej(~x,ω) is the elec-
tric field in the bond emanating from ~x in the positive j th direction, and similarly for
~J(~x,ω).

As in Section 2.1 we write ~E = ~E0 + ~Ef , where ~Ef is the fluctuating field of mean

zero about the (constant) average ~E0. The variational problem in (2.3) for this lattice
setting has a unique solution satisfying Kirchhoff’s circuit laws [34, 11]

D+
i Ej −D+

j Ei =0,

d
∑

k=1

D−
k Jk =0, J i =σiEi, 〈 ~E〉= ~E0, (2.25)

where i,j =1, . . .,d and the components Ei(~x,ω) and J i(~x,ω) of ~E(~x,ω) and ~J(~x,ω)
are stationary random fields. Equation (2.25) is a direct analogue of equation (2.4)
when written in component form [34]. The effective complex conductivity tensor σ

∗

is defined by 〈 ~J〉=σ
∗ ~E0, and has components σ∗

jk =σ2mjk(h), j,k=1, . . .,d, where
h=σ1/σ2. The representation formula for mjk(h) in (2.12) still holds in this infinite
lattice setting, with Γ in (2.9) now given by

Γ=∇+(∆−1)∇−, ∇± =(D±
1 , . . . ,D±

d ), (2.26)

where ∆−1 is based on discrete convolution with the lattice Green’s function for the
Laplacian ∆=∇−∇+ [11]. The formulation of the ACM for the effective resistivity
tensor ρ

∗ in the infinite lattice setting is analogous to that for σ
∗ given here. In Section

2.2.2 we discuss in detail the operator Υ underlying the integral representations for
ρ
∗ in the lattice setting.
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2.2.2. Finite Lattice Setting Consider a finite, two-component bond lattice
on Zd

L ⊂Zd determined by the probability space (Ω,P ), where

Z
d
L ={~x∈Z

d | 1≤xi≤L, i=1, . . .,d}, (2.27)

L∈N, L≥2, and xi =(~x)i is the ith component of the vector ~x. Let σ(~x,ω) be the local
complex conductivity tensor with components σjk(~x,ω)=σj(~x,ω)δjk, j,k =1, . . .,d,
where σj(~x,ω) is defined in equation (2.23) for ~x∈Zd

L and ω∈Ω. The configuration

space Ω= {σ1,σ2}dZ
d
L represents the set of all 2N realizations of the finite random bond

lattice, where N =dLd and P is the associated (discrete) probability measure. Define

H =
⊗d

i=1L2(Ω,P ) and let ~E, ~J ∈H be the random electric field and current density,
respectively, which satisfy Kirchhoff’s circuit laws (2.25) with appropriate boundary
conditions. Analogous to equation (2.5), the effective complex conductivity tensor

σ
∗ is defined by 〈 ~J〉=σ

∗ ~E0, and has components σ∗
jk =σ2mjk(h), where ~E0 = 〈 ~E〉

and 〈·〉 denotes ensemble average over Ω. In a similar way we define the functions
σ∗

jk =σ1wjk(z) and ρ∗jk =σ1m̃jk(h)=σ2w̃jk(z) introduced in Section 2.1.
In this section, we obtain discrete versions of the integral representations for

mjk(h) and w̃jk(z) in equation (2.12) for this finite bond lattice setting, involving
spectral measures µjk and κjk associated with real-symmetric random matrices. The
formulation involving the functions m̃jk(h) and wjk(z) are analogous. Toward this
goal, we define a bijective mapping Θ from the d-dimensional set Zd

L onto the one
dimensional set NL ⊂N, Θ :Zd

L→NL, given by

NL ={i∈N | i≤dLd}, Θ(~x)=x1+

d
∑

k=2

(xk −1)Lk−1. (2.28)

Under the bijection Θ the components Ej(~x,ω), j =1, . . .,d, of the random elec-

tric field ~E(~x,ω)= (E1(~x,ω), . . . ,Ed(~x,ω)) are mapped to vector valued functions

Ej(~x,ω) 7→ ~Ej(ω)= (Ej
1(ω), . . . ,Ej

Ld(ω)) so that

Θ( ~E(~x,ω))= ( ~E1(ω), . . . , ~Ed(ω))∈C
N , (2.29)

for each ω∈Ω, and similarly for ~J(~x,ω). Moreover, the bijection Θ maps the standard
basis vector ~e1 =(1,0, . . .,0)∈Zd, for example, to the vector (~1,~0, . . . ,~0)∈ZN , where ~1
and ~0 are vectors of ones and zeros of length Ld, respectively, and similarly for the ~ej

for j =2, . . .,d. Therefore, the vectors êi, i=1, . . .,d, satisfying

êi =Θ(~ei)/Ld/2, êi · êj = δij , (2.30)

serve as the standard basis vectors on NL.
On NL the difference operators D±

j , j =1, . . .,d, in equation (2.24) are given in
terms of finite difference matrices Dj [23], where the rows of Dj correspond to the
bonds of the lattice, the columns correspond to the nodes, and the numbering of the
nodes on NL is determined by the bijection Θ in (2.28). In this finite lattice setting, the
Laplacian ∆ and the projection operator Γ in (2.26) are replaced by the real-symmetric
matrices ∆=∇T∇ and Γ=∇(∆−1)∇T , respectively, where ∇T =(DT

1 , . . . ,DT
d ). The

matrices ∆ and Γ depend only on the topology and the boundary conditions of the
underlying finite bond lattice Zd

L, and Γ is a projection matrix satisfying Γ2 =Γ.
The matrix Γ is invariant under arbitrary permutations in the numbering of the

nodes on NL, and is therefore independent of the specific form of the bijective mapping
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Θ:Zd
L 7→NL in equation (2.28). More specifically, let Ξ be a permutation matrix

satisfying Ξ−1 =ΞT such that ~ξ T Ξ is the vector ~ξ T with the entries permuted in an
arbitrary manner. Such a permutation in the numbering of the nodes is equivalent to
the mapping Dj 7→DjΞ, j =1, . . .,d. By the properties of transposition and inversion
for products of matrices [45], it is easily verified that the matrix Γ=∇(∆−1)∇T is
invariant under this mapping. Similarly, permuting the numbering of the bonds is
equivalent to the mapping Dj 7→ΞDj , and under this mapping Γ 7→ΞΓΞT .

The projection matrix representation of the operator Υ for the lattice setting is
obtained as follows. For simplicity, we restrict our attention to d=2,3. On R3 the
curl operation ~∇× is given by

~∇×~ζ =Det





~e1 ~e2 ~e3

∂1 ∂2 ∂3

ζ1 ζ2 ζ3



=C~ζ, C =





0 −∂3 ∂2

∂3 0 −∂1

−∂2 ∂1 0



, (2.31)

where ~ζ = ~ζ(~x) for ~x∈R3, we have denoted ∂i, i=1,2,3, to be partial differentiation

in the i th direction ~ei, and C is the curl operator ~∇× in matrix form. One can
check directly that C 2 =−CT C =−∆+ ~∇~∇·, where ∆ is the vector Laplacian. The
two-dimensional case follows from (2.31) by setting ~ζ(~x)= [ζ1(~x),ζ2(~x),0]T with ~x=
[x1,x2,0]T , yielding

~∇×~ζ =(∂1ζ2−∂2ζ1)~e3 =(~∇·R~ζ2)~e3, ~∇·=
[

∂1 ∂2

]

, R=

[

0 1
−1 0

]

, (2.32)

where R is a 90◦ rotation matrix, we have defined ~ζ2 =[ζ1 ζ2]
T , and the action of ~∇·R

on ~ζ2 is given by that of the operator [−∂2 ∂1].
In view of equations (2.25) and (2.31), the matrix representation of the curl

operator ~∇× for the infinite lattice setting on Z3 is given by C in (2.31) under the
mapping ∂i 7→D+

i , i=1,2,3, while on NL the curl operator is given by C in (2.31)
under the mapping ∂i 7→Di. In two dimensions, pointwise rotations of fields by 90◦

convert curl free fields to divergence free fields, and vice versa [58]. With this in
mind and in view of equation (2.32), in two-dimensions it is natural to define the curl

operator by ~∇×= ~∇·R=[−∂2 ∂1]. Consequently, for the infinite lattice setting on Z2

we have ~∇×=[−D+
2 D+

1 ], while on NL we have

~∇×~ζ =CT ~ζ, CT =
[

−DT
2 DT

1

]

, (2.33)

where CT C =∇T∇=∆, the matrix representation of the Laplacian. From the above
discussion and in view of equation (2.10), in the lattice setting, it is natural to define
the operator Υ as

Υ= ~∇×(~∇× ~∇×)−1~∇×=C(CT C)−1CT , (2.34)

which is clearly a projection operator satisfying Υ2 =Υ. With this definition of curl
and Υ for two-dimensions, we have Υ=RTΓR.

Analogous to the properties of the matrix Γ, in the finite lattice setting the matrix
Υ is invariant under arbitrary permutations in the numbering of the nodes. More
specifically, let Ξ be defined as above and define Ξ=diag(Ξ, . . . ,Ξ), so that Ξ−1 =ΞT .
Such a permutation in the numbering of the nodes is equivalent to the mapping C 7→
CΞ. It is straight forward to verify that Υ is invariant under this mapping. Similarly,
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permuting the numbering of the bonds is equivalent to the mapping C 7→ΞC, and
under this mapping Υ 7→ΞΥΞT .

We now discuss the matrix representation of the characteristic function χj
1(~x,ω)

on NL. By writing the constitutive relation Jj(~x,ω)=σj(~x,ω)Ej(~x,ω) displayed in
equation (2.25) as Jj(~x,ω)=σ2(1−χj

1(~x,ω)/s)Ej(~x,ω), we see that the characteristic

function χj
1(~x,ω) in (2.23) operates on the electric field Ej(~x,ω) in each individual

bond j =1, . . .,d emanating from ~x∈Zd
L. In view of this and equation (2.29), on NL

the characteristic function χj
1(~x,ω) is represented by a block diagonal matrix and

χ1(ω)=diag(χ1
1(ω), . . . ,χd

1(ω)), χ2(ω)= I−χ1(ω), (2.35)

where χj
1(ω), j =1, . . .,d, is a diagonal matrix of size Ld×Ld with zeros and ones

distributed according to P along the main diagonal and I is the identity matrix on
RN . Moreover, the matrix χj

1(ω) acts on the vector ~Ej(ω)=Θ(Ej(~x,ω)) in (2.29) for
each j =1, . . .,d. Consequently, χ1(ω) is also a real-symmetric projection matrix of size
N ×N , which determines the geometry and component connectivity of the two-phase
random medium. In summary, on NL the operators M1 =χ1Γχ1 and K1 =χ1Υχ1 are
represented by real-symmetric random matrices of size N ×N [33, 60]. The matrix
representations of the operators M2 =χ2Γχ2 and K2 =χ2Υχ2 are then determined by
the relation χ2(ω)= I−χ1(ω), where I is the identity matrix on RN .

The following theorem provides a rigorous mathematical formulation of integral
representations for the effective parameters of two-phase random media with finite
lattice composite microstructure. The theorem and proof are formulated in terms of
the random matrix M1 =χ1Γχ1. The formulations involving the matrices M2 =χ2Γχ2

and Ki =χiΥχi, i=1,2, are analogous.

Theorem 2.1. For each ω∈Ω, let M1(ω)=U(ω)Λ(ω)U(ω) be the eigenvalue de-
composition of the real-symmetric matrix M1(ω)=χ1(ω)Γχ1(ω). Here, the columns
of the matrix U(ω) consist of the orthonormal eigenvectors ~ui(ω), i=1, . . .,N , of
M1(ω) and the diagonal matrix Λ(ω)=diag(λ1(ω), . . . ,λN (ω)) involves its eigenval-

ues λi(ω). If the electric field ~E(ω) satisfies ~E(ω)= ~E0+ ~Ef (ω), with ~E0 = 〈 ~E(ω)〉
and Γ ~E(ω)= ~Ef (ω), then the effective complex conductivity tensor σ

∗ has compo-
nents σ∗

jk =σ2mjk(h), j,k =1, . . .,d, which satisfy

mjk(h)= δjk−Fjk(s), Fjk(s)=

∫ 1

0

dµjk(λ)

s−λ
, dµjk(λ)=

N
∑

i=1

〈δλi
(dλ)χ1Qiêj · êk〉,

(2.36)

where Qi =~ui~u
T
i . Furthermore, the mass µ0

jk of the measure µjk satisfies

µ0
jk = 〈χ1êk · êk〉δjk =dpk

1 δjk. (2.37)

Here, we have defined pk
1 = 〈Nk

1 (ω)〉/N to be the average number fraction of type-one
bonds in the positive kth direction, Nk

1 (ω)=Trace(χk
1(ω)) is the total number such

bonds for ω∈Ω, and the matrix χk
1(ω) is defined in equation (2.35).

Taking ~E = ~E0 + ~Ef with the condition Γ ~E = ~Ef as a definition greatly simplifies
the proof of Theorem 2.1, by avoiding the formulation and proof of some technical
lemmas regarding the commutativity of the matrices Di, D T

i , i=1, . . .,d, and (∆−1).

To assume the condition Γ ~E = ~Ef is natural, as we showed in equation (2.19) that it
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is a sufficient condition for the energy constraint 〈 ~J · ~Ef 〉=0, which is at the heart of
the existence of solutions to equations (2.4) and (2.25) in the infinite, continuum and
lattice settings, respectively. In the finite lattice setting, where Γ and χ1 are matrices,
this condition leads to equation (2.11) exactly as in Section 2.1.

The proof of Theorem 2.1 is given in Section 2.2.4, after we present a novel
formulation of the ACM in Section 2.2.3, which unifies the infinite settings and the
finite lattice setting and makes the proof of Theorem 2.1 more transparent. Before we
do so, we first introduce an important class of composite microstructures. Namely,
the class of finite bond lattices such that Nk

1 (ω) is a non-random constant Nk
1 for

all k=1, . . .,d, i.e., Nk
1 (ω)=Nk

1 for all ω∈Ω. Consequently, the number N1(ω)=
Trace(χ1(ω)) of ones along the main diagonal of χ1(ω) satisfies N1(ω)=N1 for all
ω∈Ω, with N1 =

∑

k Nk
1 . Moreover, the number fraction of type-one bonds in the kth

positive direction is given by pk
1 =Nk

1 /N and the total number fraction of type-one
bonds is given by p1 =N1/N , with p1 =

∑

kpk
1 .

Given a fixed number fraction p1 of type-one bonds, one can define a class of highly
anisotropic composites by fixing pk

1 close to p1 for some k=1, . . .,d, i.e., p1−pk
1 ≪1.

A class of locally isotropic random media is obtained by requiring that every bond
emanating from ~x∈Zd

L in the positive direction is of the same type, i.e., χj
1(ω)=χk

1(ω)

for all j,k=1, . . .,d and ω∈Ω. Hence N j
1 =Nk

1 for all j,k =1, . . .,d, so that Nk
1 =N1/d

and pk
1 =p1/d for all k =1, . . .,d. In this case, equation (2.37) reduces to

µ0
jk =p1δjk, (2.38)

which is a direct analogue of equation (2.16). Equation (2.38) also holds for statisti-
cally isotropic random media, where the total number N1 of type-one bonds is fixed
and randomly distributed in a uniform fashion among the the total number N of
bonds. In other words, the main diagonals of the matrices χ1(ω), ω∈Ω, are random
permutations of one another. In this case, the Nk

1 (ω), k=1, . . .,d, are independent,
identically distributed random variables with mean 〈Nk

1 (ω)〉=p1N/d.

We note that, by the law of large numbers [25], the formula µ0
jk =dpk

1 δjk in equa-

tion (2.37) also holds in the infinite lattice setting, where pk
1 =limN→∞〈Nk

1 (ω)〉/N is
the volume fraction of type-one bonds in the kth direction. Here, the infinite lattice is
obtained as the infinite volume limit L→∞ (N →∞) of the finite lattice – with Zd

L

in (2.27) redefined in a suitable way so that limL→∞Zd
L = Zd. Consequently, equation

(2.38) also holds in the infinite lattice setting for locally and statistically isotropic
random media.

2.2.3. Unifying formulation of the ACM for the finite lattice setting

and the infinite settings When considering the formulation of Stieltjes integral
representations for the effective parameters of two-phase random media with finite
lattice composite microstructure, there is a fundamental issue with the original for-
mulation of the ACM given in Sections 2.1 and 2.2.1. Namely, the original formulation
[34, 10] holds for the infinite continuum and lattice settings, but it is incompatible
with the finite lattice setting of Section 2.2.2. In this section, we address this issue
by providing a novel formulation of the ACM, which is equivalent to the original
formulation and holds for both the finite lattice setting and the infinite settings.

In the infinite settings, the (infinite-dimensional) operator Γχ1 appears in the bi-
linear functional underlying the Stieltjes integral representation for the effective con-
ductivity tensor σ

∗ =σ2m(h), displayed in equation (2.12). The underlying Hilbert
space is H×, defined in (2.2), equipped with the H -inner-product weighted by the
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characteristic function χ1, and Γχ1 is a self-adjoint operator on H× with respect to
this inner-product. In this abstract (infinite-dimensional) Hilbert space formulation
of the effective parameter problem, the resolvent (sI−Γχ1)

−1 is also self-adjoint with
respect to this inner-product [75].

In contrast, the finite lattice formulation of the effective parameter problem
involves a finite dimensional Hilbert space, and the operators Γ and χ1 are real-
symmetric, non-commutable matrices. In this case, the matrix Γχ1 is not symmetric,
it typically has complex spectrum, and it may not even have a full set of eigenvec-
tors. Consequently, the resolvent (sI−Γχ1)

−1 of this matrix is not symmetric and, in
general, is not defined for all s∈C\[0,1] as required. Therefore, the integral formula
of Theorem 2.1 displayed in equation (2.36), which follows from the spectral theorem
displayed in equation (A-4) for the real-symmetric matrix χ1Γχ1, fails to hold for the
matrix Γχ1, in general. Due to this fundamental difference of the finite lattice set-
ting, the mathematical framework must be modified from that of the infinite settings,
discussed in Sections 2.1 and 2.2.1.

We now develop a novel formulation of the ACM which holds for both the finite
lattice setting and the infinite settings, and yields the integral representations for the
effective parameters displayed in equations (2.12) and (2.36). To make the formulation
independent of the setting, whether finite or infinite, we make use of generic terms such
as symmetric operator, for example, which means real-symmetric matrix in the finite
lattice setting and self-adjoint operator in the infinite settings. Essential differences
in notation will be explicitly stated.

Recall the definition of the effective conductivity tensor 〈 ~J 〉= 〈σ ~E〉=σ
∗〈 ~E〉 and

that σ =σ2(1−χ1/s) and 〈 ~E〉= ~E0, together yielding

σ
∗ ~E0 =σ2( ~E0−〈χ1

~E〉/s). (2.39)

Define the coordinate system so that ~E0 =E0~ej for some j =1, . . .,d (in the matrix
formulation ~ej 7→ êj , where êj is defined in equation (2.30)). Therefore, taking the dot
product of equation (2.39) with the (non-random) basis vector ~ek yields

σ∗
jk =σ

∗~ej ·~ek =σ2

(

δjk −〈χ1
~E ·~ek〉/(sE0)

)

. (2.40)

This demonstrates that the key functional underlying the Stieltjes integral represen-
tation for the effective complex conductivity tensor is 〈χ1

~E ·~ek〉. In fact, in view of

equations (2.12) and (2.40), we have that Fjk(s)= 〈χ1
~E ·~ek〉/(sE0).

We now derive a resolvent formula for the vector field χ1
~E involving the symmetric

operator χ1Γχ1. With use of the identity ~E = ~E0 + ~Ef we rewrite the first formula of
equation (2.11) as

(sI−Γχ1) ~E = s ~E0, (2.41)

where I is the identity operator on the underlying vector space (Rd for the infinite
settings and RN for the finite lattice setting). It is now clear that the formula for
mjk(h)=σ∗

jk/σ2 displayed in (2.12) follows by writing the formula in equation (2.41)

as ~E = s(sI−Γχ1)
−1 ~E0 with ~E0 =E0~ej, and substituting this into (2.40). We wish to

derive an analogous formula for mjk(h) involving the symmetric operator χ1Γχ1. In

order to introduce this operator and to isolate χ1
~E in equation (2.41), we premultiply

this formula by the projection operator χ1, yielding

(sI−χ1Γχ1)[χ1
~E]= sχ1

~E0. (2.42)
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Equation (2.42) is equivalent to the following resolvent formula for χ1
~E

χ1
~E = s(sI−χ1Γχ1)

−1χ1
~E0, (2.43)

which is analogous to that of equation (2.9) for the electric field ~E. Inserting the

resolvent formula for χ1
~E in (2.43), with ~E0 =E0~ej, into equation (2.40) yields

Fjk(s)= 〈(sI−χ1Γχ1)
−1χ1~ej ·~ek〉, which is a bilinear functional representation of the

function Fjk(s). Now, applying the spectral theorem for the symmetric operator
χ1Γχ1, displayed in equations (A-2) and (A-4) with f(λ)= (s−λ)−1, to this func-
tional representation of Fjk(s) yields the following Stieltjes integral representation for
mjk(h)=σ∗

jk/σ2

mjk(h)= δjk−Fjk(s), Fjk(s)= 〈(sI−χ1Γχ1)
−1χ1~ej ·~ek〉=

∫ 1

0

dµjk(λ)

s−λ
. (2.44)

Equation (2.44) demonstrates that, as in the formulation of the ACM given in Sec-
tion 2.1, the natural Hilbert space underlying the integral representation in equation
(2.44) isH× equipped with theH -inner-product weighted by χ1. However, in Section
2.1 the weighting of the inner-product is defined by premultiplication of χ1, so that
〈f(Γχ1)~ej ,~ek〉1 = 〈χ1f(Γχ1)~ej ·~ek〉, for all complex valued functions f ∈L2(µjk). Here,
the weighting of the inner-product is defined by post multiplication of χ1, so that the
inner-product 〈·,·〉1 is instead defined by 〈f(χ1Γχ1)~ej ,~ek〉1 = 〈f(χ1Γχ1)χ1~ej ·~ek〉, for
all f ∈L2(νjk). In the infinite, continuum and lattice settings, the two inner-product
definitions are equivalent, as χ1 acts pointwise on the underlying vector space (Rd in
the continuous setting and Zd in the lattice setting). However, in the finite lattice
setting where χ1 is represented as a matrix, the two inner-product definitions are no
longer equivalent, for all such functions f .

We now argue that the formula for mjk(h) in equation (2.44) is equivalent
to that of equation (2.12) for the infinite, continuum and lattice settings. From
equation (2.12) write Fjk(s;µjk)= 〈χ1(sI−Γχ1)

−1~ej ·~ek〉 and from equation (2.44)

write F̃jk(s,νjk)= 〈(sI−χ1Γχ1)
−1χ1~ej ·~ek〉. We will argue that µjk ≡ νjk so that

Fjk(s;µjk)≡ F̃jk(s,νjk). From the spectral theorem, we have that the moments µn
jk

and νn
jk, n=0,1,2, . . ., of the measures µjk and νjk satisfy

µn
jk =

∫ 1

0

λndµjk(λ)= 〈χ1[Γχ1]
n~ej ·~ek〉, νn

jk =

∫ 1

0

λndνjk(λ)= 〈[χ1Γχ1]
nχ1~ej ·~ek〉.

(2.45)

However, since χ1 is a projection operator, we have that χ1 =χm
1 onH× for all m∈N,

hence χ1[Γχ1]
n =[χ1Γχ1]

nχ1 on H× for all n=0,1,2, . . .. This and equation (2.45)
imply that µn

jk ≡ νn
jk for all n=0,1,2, . . .. Since the Hausdorff moment problem is

determined [70], i.e., knowledge of all the moments uniquely determines the measure,
we have that µjk ≡ νjk. This, in turn, implies that Fjk(s;µjk)≡ F̃jk(s,νjk), which is
what we set out to establish.

2.2.4. Proof of Theorem 2.1 In this section, we prove the various assertions
of Theorem 2.1, which was stated in Section 2.2.2. In particular, we prove that the
functional Fjk(s)= 〈(sI−χ1Γχ1)

−1χ1êj · êk〉 in (2.44) (with ~ej 7→ êj) has the integral
representation displayed in equation (2.36), involving the spectral measure µjk of the
real-symmetric matrix χ1Γχ1, with mass µ0

jk given by that in (2.37). We also provide
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a projection method for the numerically efficient, rigorous computation of µjk. This
projection method is summarized by equations (2.57)–(2.59) below.

Toward this goal, for each ω∈Ω, define the sets N1
L(ω) and N0

L(ω) by

N
1
L(ω)={i∈NL | [χ1(ω)]ii =1}, N

0
L(ω)= NL\N

1
L(ω). (2.46)

Also, define elementary permutation matrices [23] Πℓ,m(ω), ℓ,m=1, . . .,N , N =dLd,

which satisfy Πℓ,m =Π−1
ℓ,m =ΠT

ℓ,m and Πℓ,m
~ξ is the vector ~ξ with the ℓth and mth

entries interchanged.
Since χ1(ω) is a diagonal matrix with N1(ω) ones and N0(ω)=N −N1(ω) zeros

along its main diagonal, it is clear that there exists a permutation matrix Π(ω) which
is a composition of elementary permutation matrices such that

Πχ1Π
T =

[

000 001

010 I1

]

, Π=
∏

ℓ,m∈NL

Πℓm, (2.47)

where ℓ∈N1
L, m∈N0

L, I1 is the identity matrix of size N1×N1, and 0ab is a matrix of
zeros of size Na×Nb, for a,b=0,1. Therefore, since ΠT =Π−1 we have

χ1Γχ1 =ΠT

[

000 001

010 I1

]

ΓΠ

[

000 001

010 I1

]

Π=ΠT

[

000 001

010 Γ1

]

Π=ΠT

[

000 001

010 U1Λ1U
T
1

]

Π

=ΠT

[

I0 001

010 U1

][

000 001

010 Λ1

][

I0 001

010 U T
1

]

Π, (2.48)

where I0 is the identity matrix of size N0×N0. Here, we have defined the real-
symmetric matrix ΓΠ =ΠΓΠT , Γ1 is its lower right principal sub-matrix of size
N1×N1, and Γ1 =U1Λ1U

T
1 is the eigenvalue decomposition of Γ1. As Γ1 is a real-

symmetric matrix, U1 is an orthogonal matrix [45]. Also, since ΓΠ =ΠΓΠT is a
similarity transformation of a projection matrix and Πχ1Π

T is a projection matrix,
Λ1 is a diagonal matrix with entries λ1

i ∈ [0,1], i=1, . . .,N1, along its diagonal [45, 23].
Consequently, equation (2.48) implies that the eigenvalue decomposition of the

matrix χ1Γχ1 is given by

χ1Γχ1 =UΛU T , U =ΠT

[

I0 001

010 U1

]

, Λ=

[

000 001

010 Λ1

]

. (2.49)

Here, U is an orthogonal matrix satisfying UT U =UUT = I, I is the identity matrix on
RN , and Λ is a diagonal matrix with entries λi ∈ [0,1], i=1, . . .,N , along its diagonal.

The eigenvalue decomposition of the matrix χ1Γχ1 displayed in equation (2.49)
demonstrates that its resolvent (sI−χ1Γχ1)

−1 is well defined for all s∈C\[0,1]. In
particular, by the orthogonality of the matrix U , it has the following useful rep-
resentation (sI−χ1Γχ1)

−1 =U(sI−Λ)−1UT , where (sI−Λ)−1 is a diagonal matrix
with entries 1/(s−λi) along its diagonal. This, in turn, implies that the functional
Fjk(s)= 〈(sI−χ1Γχ1)

−1χ1êj · êk〉 displayed in equation (2.44) (with ~ej 7→ êj) can be
written as

Fjk(s)= 〈(sI−Λ)−1 [χ1U ]T êj ·UT êk〉. (2.50)

Since ΠT =Π−1, equations (2.47) and (2.49) imply that

χ1U =ΠT

[

000 001

010 U1

]

, =⇒ χ1~ui =

{

0, for i=1, . . .,N0

~ui otherwise
. (2.51)
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This, in turn, implies that

[χ1U ]T êj ·UT êk =[χ1U ]T êj · [χ1U ]T êk. (2.52)

We are now ready to provide the integral representation displayed in (2.36) for the
functional Fjk(s) in equation (2.50). Denote by Qi =~ui~u

T
i , i=1, . . .,N , the mutually

orthogonal projection matrices, QℓQm =Qℓδℓm, onto the eigen-spaces spanned by the
orthonormal eigenvectors ~ui. Equation (2.51) implies that χ1Qi =Qiχ1 =χ1Qiχ1,
as χ1Qi =0 for i=1, . . .,N0 and χ1Qi =Qi otherwise. This allows us to write the
quadratic form [χ1U ]T êj · [χ1U ]T êk as

[χ1U ]T êj · [χ1U ]T êk =

N
∑

i=1

(χ1~ui · êj)(χ1~ui · êk)=

N
∑

i=1

χ1Qiχ1êj · êk =

N
∑

i=1

χ1Qiêj · êk.

(2.53)

This and equations (2.50) and (2.52) yield

Fjk(s)=

∫ 1

0

dµjk(λ)

s−λ
, dµjk(λ)=

N
∑

i=1

〈δλi
(dλ)χ1Qiêj · êk〉. (2.54)

From equation (A-3) we have that
∑

iQi = I, which implies that the mass µ0
jk of

the measure µjk is given by

µ0
jk =

∫ 1

0

dµjk(λ)=

∫ 1

0

N
∑

i=1

〈δλi
(dλ)χ1Qi êj · êk〉= 〈χ1êj · êk〉= 〈χ1êk · êk〉δjk, (2.55)

as χ1 is a diagonal matrix and the underlying probability space is finite. Therefore, as
in the continuum setting, the diagonal components µkk of the matrix valued measure
µ are positive measures with mass 〈χ1êk · êk〉= 〈χ1êk ·χ1êk〉= 〈|χ1êk|2〉≥0, as χ1 is a
symmetric projection matrix. The off-diagonal components µjk, for j 6=k, have zero
mass and are consequently signed measures.

Using equation (2.35) we may write µ0
jk in equation (2.55) in a more suggestive

form. Recall that ê1 =(~1,~0, . . . ,~0)/Ld/2, where ~1 and ~0 are vectors of ones and zeros of
length Ld, respectively, and similarly for the ~ej for j =2, . . .,d. Since χ1 is a symmetric
projection matrix, equations (2.35) and (2.55) imply that

µ0
jk = 〈χ1êk ·χ1êk〉δjk =

1

Ld
〈χk

1
~1 ·χk

1
~1〉δjk =

1

Ld
〈Trace(χk

1)〉δjk =d
〈Nk

1 (ω)〉
N

δjk,

(2.56)

where Nk
1 (ω)=Trace(χk

1(ω)) is the total number of type-one bonds in the positive
kth direction for ω∈Ω and N =dLd. This proves equation (2.37) and concludes our
proof of Theorem 2.1 ✷ .

We conclude this section with the formulation of a projection method for numeri-
cally efficient, rigorous computation of spectral measures and effective parameters for
composite media with finite lattice microstructure. Note that the sum in equation
(2.54) runs only over the index set i=N0+1, . . .,N , as equation (2.51) implies that the
masses χ1Qiêj · êk of the measure µjk are zero for i=1, . . .,N0. Denote by λ1

i and ~u1
i ,
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i=1, . . .,N1, the eigenvalues and eigenvectors of the N1×N1 matrix Γ1 =U1Λ1U
T
1 ,

defined in equation (2.48). Now, write

Πêj =

[

êπ0

j

êπ1

j

]

, (2.57)

where êπ0

j ∈RN0 and êπ1

j ∈RN1 . Therefore, writing the matrix χ1U in equation (2.51)

in block diagonal form, χ1U =ΠT diag(000,U1), we have that

[χ1U ]T êj · [χ1U ]T êk =[diag(000,U
T
1 )Πêj ] · [diag(00,0,U

T
1 )Πêk]= [UT

1 êπ1

j ] · [UT
1 êπ1

k ].

(2.58)

Denote by Q1
i =~u1

i [~u1
i ]T , i=1, . . .,N1, the mutually orthogonal projection matrices,

Q1
ℓ Q1

m =Q1
ℓ δℓm, onto the eigen-spaces spanned by the orthonormal eigenvectors ~u1

i .
Equations (2.50), (2.52), and (2.58) then yield

Fjk(s)= 〈(sI1−Λ1)
−1[UT

1 êπ1

j ] · [UT
1 êπ1

k ]〉=
〈

N1
∑

i=1

Q1
i ê

π1

j · êπ1

k

s−λ1
i

〉

. (2.59)

Equation (2.59) demonstrates that only the spectral information of the matrices
U1 and Λ1 appear in the functional representation for Fjk(s) in (2.50) and its integral
representation in (2.36). From a computational standpoint, this means that only the
eigenvalues and eigenvectors of the N1×N1 matrix Γ1 need to be computed in order to
compute the spectral measures underlying the integral representations of the effective
parameters for finite lattice systems. This is extremely cost effective for large dilute
systems, where N ≫1 and N1≪N , as the numerical cost of finding all the eigenvalues
and eigenvectors of a real-symmetric N ×N matrix is O(N3) [23].

2.3. Bounding Procedure In this section, we review a procedure which yields
rigorous bounds for the effective transport coefficients of composite media [34, 28].
The bounding procedure associated with the functions Fkk(s) and Ekk(s), defined in
equation (2.12), for example, fixes the contrast parameter s and varies over admissible
sets of measures µkk and ηkk, subject to known information regarding the composite.
This information is given in terms of the moments µn

kk and ηn
kk, n=0,1,2, . . ., of

these measures. Knowledge of these moments for n=1, . . .,J confines the value of the
effective complex conductivity σ∗

kk to a region of the complex plane which is bounded
by arcs of circles, and the region becomes progressively smaller as more moments are
known [57, 28]. Since the bounding procedure associated with the functions Gkk(t)
and Hkk(t) in (2.12) is analogous, we will focus on that involving Fkk(s) and Ekk(s).

The bounds for σ∗
kk and ρ∗kk follow from three important properties of the func-

tions Fkk(s) and Ekk(s). First, their integral representations, displayed in equations
(2.12) and (2.36), separate parameter information in s and E0 from the geometry of
the composite, which is encoded in the underlying spectral measures µkk and ηkk via
their moments µn

kk and ηn
kk, n=0,1,2, . . . [11, 34]. Second, these integral representa-

tions are linear functionals of the spectral measures. Finally, µkk and ηkk are positive
measures, in contrast to µjk and ηjk for j 6=k. In this section, we review how these
three properties yield rigorous bounds for the diagonal components of the effective
parameters σ∗

kk and ρ∗kk [34, 28].
We start our discussion with the masses µ0

kk and η0
kk of the measures µkk and ηkk

for the continuum and lattice settings. By equation (2.16) and the symmetries between
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the functions Fkk(s) and Ekk(s) displayed in equation (2.12), in the continuum setting,
the masses µ0

kk and η0
kk of the measures µkk and ηkk are generically given by µ0

kk =p1

and η0
kk =p2, so that

µ0
kk +η0

kk =1, k=1, . . .,d. (2.60)

By equation (2.37), in the finite lattice setting, we have µ0
kk =dpk

1 generically. The
masses µ0

kk and η0
kk of the measures µkk and ηkk are related in this finite lattice setting

as follows. From equation (2.35) we have that χk
1(ω)+χk

2(ω)= ILd for all k=1, . . .,d
and ω∈Ω, where ILd is the identity matrix of size Ld×Ld. Consequently, by the lin-
earity of the trace operation, we have that Trace(χk

1(ω))+Trace(χk
2(ω))=Trace(ILd),

thus Nk
1 (ω)+Nk

2 (ω)=Ld =N/d. Averaging this formula over Ω and rearranging
yields equation (2.60), where η0

kk =dpk
2 and pk

2 = 〈Nk
2 (ω)〉/N is the average num-

ber fraction of type-two bonds in the positive kth direction. For isotropic ran-
dom media with finite lattice composite microstructure, we have from (2.38) that
µ0

kk =p1 and η0
kk =p2. By the discussion in the paragraph following equation (2.38),

the formulas µ0
kk =dpk

1 and η0
kk =dpk

2 also hold for the infinite lattice setting with
pk

i =limN→∞〈Ni(ω)〉/N , i=1,2, and are given by µ0
kk =p1 and η0

kk =p2 for isotropic
random media.

For simplicity, we will focus on one diagonal component σ∗
kk and ρ∗kk of the effective

conductivity and resistivity tensors σ
∗ and ρ

∗, for some k =1, . . .,d, and set σ∗ =
σ∗

kk, F (s)=Fkk(s), m(h)=mkk(h), µ=µkk, E(s)=Ekk(s), m̃(h)= m̃kk(h), and η=
ηkk. Here, F (s)=1−m(h) and E(s)=1−m̃(h). We will also exploit the symmetries
between F (s) and E(s) in equation (2.12) and initially focus on the function F (s) and
the measure µ, referring to the function E(s) and the measure η where appropriate.

Bounds for σ∗ are obtained as follows, while those for ρ∗ are obtained analogously.
The support of the measure µ is contained in the interval [0,1] and its mass is given by
µ0 =p1, where 0≤p1≤1. Consider the setM of positive Borel measures on [0,1] with
mass ≤1. By equation (2.12), for fixed s∈C\[0,1], F (s) is a linear functional of the
measure µ, F :M 7→C, and we write F (s)=F (s,µ) and m(h)=m(h,µ). Suppose that
we know the moments µn of the measure µ for n=0, . . .,J . Define the set M µ

J ⊂M
of measures by

M

µ
J =

{

ν ∈M
∣

∣

∣

∫ 1

0

λndν(λ)=µn, n=0, . . .,J

}

. (2.61)

The set Aµ
J ⊂C that represents the possible values of m(h,µ)=1−F (s,µ) which is

compatible with the known information about the random medium is given by

Aµ
J ={ m(h,µ)∈C | h 6∈ (−∞,0], µ∈M µ

J } . (2.62)

The set of measuresM µ
J is a compact, convex subset of M with the topology of

weak convergence [34]. Since the mapping F (s,µ) in (2.12) is linear in µ it follows
that Aµ

J is a compact convex subset of the complex plane C. The extreme points of
M

µ
0 are the one point measures aδb, 0≤a,b≤1 [24], while the extreme points of M µ

J

for J >0 are weak limits of convex combinations of measures of the form [48, 34]

dµJ (λ)=
J+1
∑

i=1

aiδbi
(dλ), ai ≥0, 0≤ b1 < · · ·<bJ+1 <1,

J+1
∑

i=1

aib
n
i =µn, (2.63)

for n=0,1, . . .,J .
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For the case of two-dimensional random media in the continuous setting, every
measure µ∈M µ

J gives rise to a function m(h,µ) that is the effective (relative) con-
ductivity of a multi-rank laminate [58]. However, in general [34], not every measure
µ∈M µ

J gives rise to such a function m(h,µ). Therefore, the set Aµ
J will contain

the exact range of values of the effective conductivity [34]. This is sufficient for the
bounding procedure discussed in this section.

By the symmetries between the formulas in equation (2.12), the support of the
measure η is contained in the interval [0,1] and its mass is given by η0 =p2 =1−p1,
where 0≤p2≤1. We can therefore define compact, convex setsM η

J ⊂M and Aη
J ⊂C

which are analogous to those defined in equations (2.61) and (2.62), respectively,
involving the function m̃(h,η)=1−E(s,η). Moreover, the extreme points of M η

0 are
the one point measures cδd, 0≤ c,d≤1, while the extreme points of M η

J are weak
limits of convex combinations of measures of the form given in equation (2.63).

Consequently, in order to determine the extreme points of the sets Aµ
J and Aη

J , it
suffices to determine the range of values in C of the functions m(h,µJ )=1−F (s,µJ)
and m̃(h,ηJ )=1−E(s,ηJ), respectively, where

F (s,µJ )=

J+1
∑

i=1

ai

s−bi
, E(s,ηJ )=

J+1
∑

i=1

ci

s−di
, (2.64)

as the ai, bi, ci, and di vary under the constraints given in equation (2.63). While
F (s,µJ) and E(s,ηJ ) in (2.64) may not run over all points in Aµ

J and Aη
J as these

parameters vary, they run over the extreme points of these sets, which is sufficient due
to their convexity. It is important to note that, as the effective complex conductivity
σ∗ is given by σ∗ =σ2m(h,µ)=σ1/m̃(h,η), the regions Aµ

J and Aη
J have to be mapped

to the common σ∗-plane to provide bounds for σ∗.
We will discuss the bounds for σ∗ in detail for the cases where J =0,1, and briefly

explain how the procedure is generalized to obtain a sequence of nested bounds for
J =2,3, . . . [28]. The bounds corresponding to the case where J =0 follows from the
knowledge of only the masses µ0 and η0 of the measures µ and η. For simplicity,
we assume that µ0 =p1 and η0 =p2. If the random medium is also known to be
statistically isotropic, so that the effective tensors σ

∗ and ρ
∗ are diagonal [58], the

first moments µ1 and η1 are also known to be given by [28]

µ1 =
p1p2

d
, η1 =

p1p2(d−1)

d
, (2.65)

which leads to bounds for the case where J =1.
Consider the case where J =0 in (2.64) and the volume fraction p1 =1−p2 is fixed

with µ0 =p1 and η0 =p2, so that F (s,µJ )=p1/(s−λ) and E(s,ηJ )=p2/(s− λ̃). By
the above discussion, the values of F (s,µ) and E(s,η) lie inside the circles C0(λ) and
C̃0(λ̃), respectively, given by

C0(λ)=
µ0

s−λ
, −∞≤λ≤∞, C̃0(λ̃)=

η0

s− λ̃
, −∞≤ λ̃≤∞. (2.66)

In the σ∗-plane, the intersection of these two regions is bounded by two circular arcs
corresponding to 0≤λ≤p2 and 0≤ λ̃≤p1 in (2.66), and the values of σ∗ lie inside
this region [28]. These bounds are optimal [56, 8], and are obtained by a composite
of uniformly aligned spheroids of material 1 in all sizes coated with confocal shells
of material 2, and vice versa. The arcs are traced out as the aspect ratio varies.
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When the value of the component conductivities σ1 and σ2 are real and positive, the
bounding region collapses to the interval 1/(p1/σ1 +p2/σ2)≤σ∗≤p1σ1 +p2σ2, which
are the Wiener bounds. The lower and upper bounds are obtained by parallel slabs
of the two materials aligned perpendicular and parallel to the field ~E0, respectively
[68].

Now consider the case where J =1 in (2.64). Here, the volume fraction p1 =1−p2

is fixed so that µ0 =p1 and η0 =p2, and the random medium is statistically isotropic
so that the first moments µ1 and η1 are given by that in equation (2.65). A convenient
way of including this information is to use the transformations [8]

F1(s)=
1

p1
− 1

sF (s)
, E1(s)=

1

p2
− 1

sE(s)
. (2.67)

Due to the symmetries between F1(s) and E1(s) in (2.67), we will first focus on the
function F1(s) and introduce the function E1(s) when appropriate. The function
F1(s) is an upper half plane function analytic off [0,1] and therefore has an integral
representation [8, 28] analogous to that in equation (2.12), involving a measure µ1,
say, which is supported in the interval [0,1]. Since only the mass µ0 =p1 and the first
moment µ1 =p1p2/d of the measure µ are known, the transformation (2.67) determines
only the mass µ0

1 =p2/(p1d) of the measure µ1 [8, 28]. This reveals the utility of the
transformation F1(s) in equation (2.67), it reduces the J =1 case for F (s) to the J =0
case for F1(s).

By our previous analysis, the values of F1(s) lie inside a circle p2/(p1d(s−λ)),
−∞≤λ≤∞. Similarly, the values of E1(s) lie inside a circle p1(d−1)/(p2d(s− λ̃)),
−∞≤ λ̃≤∞. Since F and E are fractional linear in F1 and E1, respectively, these
circles are transformed to the circles C1(λ) in the F -plane and C̃1(λ̃) in the E-plane
given by [28]

C1(λ)=
p1(s−λ)

s(s−λ−p2/d)
, C̃1(λ̃)=

p2(s− λ̃)

s(s− λ̃−p1(d−1)/d)
, −∞≤λ,λ̃≤∞.

(2.68)

In the σ∗-plane the intersection of these two circular regions is bounded by two circular
arcs [28] corresponding to 0≤λ≤ (d−1)/d and 0≤ λ̃≤1/d in (2.68).

The vertices of the region, C1(0)=p1/(s−p2/d) and C̃(0)=p2/(s−p1(d−1)/d),
are attained by the Hashin–Shtrikman geometries (spheres of all sizes of material 1 in
the volume fraction p1 coated with spherical shells of material 2 in the volume fraction
p2 filling all of Rd, and vice versa), and lie on the arcs of the first order bounds [28].
While there are at least five points on the arc C1(λ) in (2.68) that are attainable by
composite microstructures [56], the arc C̃1(λ̃) in (2.68) violates [28] the interchange
inequality m(h)m(1/h)≥1 [50, 69], which becomes an equality in two dimensions [58].
Consequently, the isotropic bounds in (2.68) are not optimal, but have been improved
[55, 8] by incorporating the interchange inequality. When σ1 and σ2 are real and
positive with σ1 ≤σ2, the region collapses to the interval

σ1 +p2

/(

1

σ2−σ1
+

p1

dσ1

)

≤σ∗≤σ2 +p1

/(

1

σ1−σ2
+

p2

dσ2

)

, (2.69)

which are the Hashin–Shtrikman bounds.
The higher moments µn, for n≥2, depend on the (n+1)-point correlation func-

tions of the medium [34] and have not be calculated in general. Although, the in-
terchange inequality forces relations among them [57]. If the moments µ0, . . . ,µJ are
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known, then the transformation F1 in (2.67) can be iterated to produce an upper
half plane function FJ with a integral representation, involving a positive measure
µJ which is supported on the interval [0,1]. As in the case where J =1, the first J
moments of the measure µ determine only the mass µ0

J of the measure µJ [28], and
the function FJ (s) can easily be extremized by the above procedure, and similarly for
a function EJ(s) associated with the moments η0, . . . ,ηJ . The resulting bounds form
a nested sequence of lens-shaped regions [28].

3. Numerical Results In Sections 2.2.2–2.2.4 we extended the ACM for rep-
resenting transport in composites to the case of two-phase random media with finite
lattice composite microstructure. This led to discrete, Stieltjes integral representa-
tions for the effective transport coefficients of such media, involving spectral measures
associated with the random operators Mi =χiΓχi and Ki =χiΥχi, i=1,2. More
specifically, we demonstrated in Section 2.2.2 that, in this finite lattice setting, these
random operators are represented by random matrices. In Section 2.2.3, we pro-
vided a novel formulation of the ACM, which holds for both the matrix setting and
the abstract linear operator setting discussed in Sections 2.1 and 2.2.1. In Section
2.2.4 we utilized this novel formulation of the ACM to prove Theorem 2.1, which was
stated in Section 2.2.2. The proof of this theorem establishes the existence of the
integral representations for the effective transport coefficients in the matrix setting,
and demonstrates that the underlying spectral measures are given explicitly in terms
of the eigenvalues and eigenvectors of the random matrices.

In this section, we utilize the mathematical framework described above to compute
spectral measures and effective transport coefficients associated with the family of
random bond lattices introduced in Section 2.2.2. In particular, we developed in
Section 2.2.4 a numerically efficient projection method, summarized by equations
(2.57)–(2.59), to facilitate such computations. Here, we employ this projection method
to directly compute spectral measures and effective transport coefficients associated
with this family of composites, which has various isotropic and anisotropic finite lattice
composite microstructures.

In order to explore the relationship between the values of the effective trans-
port coefficients and the associated bounds discussed in Section 2.3, we will focus on
the diagonal components of the effective tensors and the underlying spectral mea-
sures, e.g., σ∗

kk =σ2mkk(h) and µkk for k=1, . . .,d. In this section, the values of the
component conductivities σ1 and σ2 are taken to be that of the brine and pure ice
phase, respectively, for a sample of sea ice measured at a frequency of 4.75GHz [4],
with σ1 =51.0741+ ı45.1602 and σ2 =3.07+ ı0.0019, so that s≈−0.034+ ı0.032. We
stress that both the values of the effective complex conductivity σ∗

kk and resistivity
ρ∗kk, as well as the associated bounds, depend on the value of the contrast parameter
s=1/(1−σ1/σ2).

We now discuss our numerical method for computing spectral measures and ef-
fective transport coefficients in this matrix setting. Consider a two-phase random
medium with finite lattice composite microstructure, as described by the matrix χ1(ω)
defined in equation (2.35), for ω∈Ω. From equation (2.36), we see that the spectral
measure µkk, k=1, . . .,d, for example, is an ensemble average of spectral measures
µkk(ω) associated with the matrices M1(ω)=χ1(ω)Γχ1(ω), for ω∈Ω. In particular,
for fixed ω∈Ω, the measure µkk(ω) is a weighted sum of δ-measures centered at the
eigenvalues λi(ω) of M1(ω), i=1, . . .,N , with weights [χ1(ω)Qi(ω)êk] · êk involving the
eigenvectors ~ui(ω) of M1(ω) via Qi =~ui~u

T
i .

However, equation (2.51) implies that the measure weights [χ1(ω)Qk(ω)êk] · êk
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are identically zero for i=1, . . .,N0(ω). This was used in equation (2.59) to show
that the measure µkk(ω) depends only on the eigenvalues λ1

i (ω), i=1, . . .,N1(ω), and
eigenvectors ~u1

i (ω) of the principle sub-matrix Γ1(ω) of Π(ω)M1(ω)ΠT (ω), introduced
in equation (2.48), and that the measure weights may be expressed more explicitly as
Q1

i (ω)êπ1

k · êπ1

k with Q1
i =~u1

i [~u1
i ]T . Consequently, for fixed s∈C\[0,1], the value of the

effective complex conductivity σ∗
kk =σ2(1−Fkk(s)) of the medium can be obtained by

computing λ1
i (ω) and ~u1

i (ω) for all i=1, . . .,N1(ω) and each ω∈Ω. Since the compu-
tational cost of finding all the eigenvalues and eigenvectors of a N ×N real-symmetric
matrix is O(N3) [23], this “projection method” makes the numerical computation of
µkk and σ∗

kk much more efficient, especially for dilute systems where the size N1(ω)
of the matrix Γ1(ω) satisfies N1(ω)≪N for all ω∈Ω.

For a random two-component bond lattice on Zd
L, with dimension d and size

L, the cardinality |Ω| of the sample space Ω of geometric configurations is given by
|Ω|=2N , where N =dLd. For large N , it becomes numerically expensive to compute
the eigenvalues and eigenvectors of the matrix Γ1(ω) for every ω∈Ω. In our numerical
computations of the spectral measure µkk, for example, we instead used a reduced
sample space Ω0⊂Ω of randomly generated configurations of Ω. For each ω∈Ω0,
all of the eigenvalues and eigenvectors of the matrix Γ1(ω) were computed using the
MATLAB function eig(). We used lattice sizes L=60 for d=2 and L=10 – 15 for
d=3 and typically averaged over |Ω0|∼104 – 105 geometric configurations.

In order to visually determine the behavior of the function µkk(λ)= 〈Q(λ)êk, êk〉1
underlying the spectral measure µkk, for a given random lattice, we plot a histogram
representation of µkk(λ) called the spectral function, which we will also denote by
µkk(λ). We now describe how we computed this graphical representation of the
measure µkk. First, the spectral interval [0,1] was divided into R sub-intervals Ir,
r=1, . . .,R, of equal length 1/R. Second, for fixed r, we identified all of the eigenvalues
that satisfy λ1

i (ω)∈ Ir, for i=1, . . .,N1(ω) and ω∈Ω0. The assigned value of µkk(λ)
at the midpoint λ of the interval Ir , is the sum of the spectral weights Q1

i (ω)êπ1

k · êπ1

k

associated with all such λ1
i (ω)∈ Ir. In our computations of the spectral functions,

we typically used R∼102. As the system size increases, the eigenvalues become in-
creasingly dense in the spectral interval [0,1]. For a large enough fixed system or for
a random system averaged over many statistical realizations, the spectral functions
µkk(λ), k =1, . . .,d, begin to resemble smooth curves, as shown in Figure 3.1.

In Figure 3.1(a), statistical realizations of the anisotropic 2D bond lattice are
displayed for L=60 and a volume (number) fraction p1 =0.5 of type-one bonds, with
various values of pk

1 , k=1,2, the volume fraction of type-one bonds in the positive kth

direction. The type-one bonds are colored black, while the largest connected cluster
of type-one bonds is colored grey. In Figure 3.1(b) and (c), we display the behavior of
the spectral functions µ11(λ) and µ22(λ), respectively, as pk

1 varies. In Figure 3.1(d),
the computed values of the effective complex conductivities σ∗

11 and σ∗
22 are displayed

along with the first order bounds of equation (2.66) with s≈−0.034+ ı0.032. These
bounds depend only on the mass µ0

kk =dpk
1 of the measure µkk and the value of the

contrast parameter s=1/(1−σ1/σ2). Consistent with the symmetries of the model,
these spectral functions and effective complex conductivities satisfy µ11(λ)=µ22(λ)
and σ∗

11 =σ∗
22 for p1

1 =p2
1 (to numerical accuracy and statistical truncation).

We now consider the locally isotropic and statistically isotropic composite classes
introduced in Section 2.2.2. In Figure 3.2, we display the behavior of the spectral
functions and the effective complex conductivity and resistivity, as a function of p1,
for locally isotropic random media with L=60. Statistical realizations of the compos-
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Anisotropic Random Media

Fig. 3.1. Spectral measures and effective complex conductivities for anisotropic random media.
Statistical realizations of the 2D square bond lattice for p1 =0.5 and various values of pk

1
, k=1,2, are

displayed in (a). The type-one bonds are colored black, while the largest connected cluster of type-one
bonds is colored grey. The corresponding spectral functions µ11(λ) and µ22(λ) are displayed in (b)
and (c), respectively. The values of the effective complex conductivities σ∗

11
and σ∗

22
are displayed

in (d) for p1

1
=p2

1
along with the first-order bounds for s≈−0.034+ ı0.032. The computed spectral

functions have been rescaled so that the area under the graph is the measure mass µ0

kk
=dpk

1
.

ite microstructure are displayed in Figure 3.2(a), with the same bond color scheme
as that for Figure 3.1(a). The associated spectral functions µ11(λ) displayed in Fig-
ure 3.2(b) exhibit a rich resonance structure for small values of p1. These so called
“geometric” resonances have been attributed [47] to the recurrence of local geomet-
ric structures called “fractal animals.” Consistent with isotropy, the behavior of the
spectral function µ22(λ) is very similar to that of µ11(λ) shown in Figure 3.2(b).
The spectral functions µkk(λ), k=1,2, were computed in [60] for the case of statis-
tically isotropic random media. They look very similar to µ11(λ) in Figure 3.2(b).
In Section 2.2.2 we noted that, in two-dimensions, the projection matrices Γ and Υ
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Two Dimensional Locally Isotropic Random Media
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Fig. 3.2. Spectral measures and effective complex conductivities and resistivities for locally
isotropic random media. Realizations of the two-dimensional lattice model are displayed in (a). The
type-one bonds are colored black, while the largest connected cluster of type-one bonds is colored grey.
The corresponding spectral function µ11(λ) is displayed in (b). The values of the effective complex
conductivity σ∗

kk
and resistivity ρ∗

kk
, k =1,2, are displayed in (c) and (d), respectively, along with

the corresponding isotropic bounds for s≈−0.034+ ı0.032. The computed spectral functions have
been rescaled so that the area under the graph is the measure mass µ0

11
=p1.

are related by Υ=RTΓR, where R is 90◦ rotation matrix. As a consequence, the
spectral functions κkk(λ), k=1,2, for 2D locally and statistically isotropic random
media, look very similar to µ11(λ) displayed in Figure 3.2(b). In Figure 3.2(c) and
(d), the values of the effective complex conductivities σ∗

kk and resistivities ρ∗kk, k=1,2
are displayed, respectively, along with the isotropic bounds from equation (2.68) for
s≈−0.034+ ı0.032. Consistent with isotropy, we have that σ∗

11 =σ∗
22 and ρ∗11 =ρ∗22

(to numerical accuracy and statistical truncation) and σ∗
kk =1/ρ∗kk to a relative error

|σ∗
kk −1/ρ∗kk|/|σ∗

kk|. 10−2.
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Fig. 3.3. Statistically self-dual random media. Realizations of various 2D lattice models are
displayed in (a). The type-one bonds are colored black, while the largest connected cluster of type-
one bonds is colored grey. The corresponding spectral function µ11(λ) or κ11(λ) is displayed in (b).
The values of the effective complex conductivity σ∗

11
or resistivity ρ∗

11
, for s≈−0.034+ ı0.032, are

displayed in (c). Also displayed in (b) is the theoretical prediction for infinite, self-dual composite
microstructures. The theoretical prediction for the value of the effective complex conductivity or
resistivity, as well as the first-order and isotropic bounds, are also displayed in (c). The computed
spectral functions have been rescaled so that the area under the graph is the measure mass µ0

11
=p1.

In the infinite lattice setting, the statistically and locally isotropic composite
microstructures are statistically self-dual [58] for d=2 and p1 =0.5. Note that the
class of anisotropic random media for the special case of pk

1 =p1/d, for all k=1, . . .,d,
is also statistically isotropic and self-dual for d=2 and p1 =0.5. For such systems, the
spectral measures and effective transport coefficients may be explicitly calculated [58],
e.g. dµkk(λ)= (

√

(1−λ)/λ )(dλ/π) and σ∗
kk =

√
σ1σ2 , k=1, . . .,d. In particular, the

spectral measure µkk is absolutely continuous with respect to the Lebesgue measure
[26], with density µkk(λ)= (

√

(1−λ)/λ )/π.

These theoretical predictions, holding for infinite systems, are displayed in Figure
3.3 along with our computations of spectral functions and effective transport coef-
ficients for a finite system size L=60. Statistical realizations of the finite lattice
microstructures are displayed in Figure 3.3(a), with the same bond color scheme as
that for Figure 3.1(a). It is remarkable that even for the finite system size L=60, the
computed spectral functions displayed in Figure 3.3(b) agree quite well with the the-
oretical duality prediction, which holds for infinite lattices. The anomalous difference
between the theory and the numerical computation seen in Figure 3.3(b) for locally
isotropic random media, becomes less prominent as L increases and is virtually absent
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for L=100. In Figure 3.3(c), the computed values of the effective transport coeffi-
cients are displayed along with the duality prediction and the first-order and isotropic
bounds from equations (2.66) and (2.68), respectively, with s≈−0.034+ ı0.032. The
computed values of the effective transport coefficients are in excellent agreement with
that of the duality prediction, which holds for infinite systems. The deviation in
the computed values of the effective parameters, relative to the duality prediction, is
typically . 10−2 for L=60 and decreases with increasing L.

The integral representation displayed in equation (2.36) is also valid for the effec-
tive transport coefficients of two-phase random media with three-dimensional, finite
lattice composite microstructure. We now discuss our computations of spectral mea-
sures and effective transport coefficients for such random media. Typical of numerical
simulations associated with three-dimensional systems, there are fundamental numer-
ical challenges that arise when extending our spectral measure computations to 3D
composite microstructures. These challenges are consequences of the size N =dLd of
the matrices M1 =χ1Γχ1 and K1 =χ1Υχ1, for example, which rapidly increases with
system size L when d=3.

One challenge is the numerical cost of computing all of the eigenvalues and eigen-
vectors of a N ×N real-symmetric matrix, which is O(N3) [23]. However, for the
statistically self-dual random lattices discussed above, the deviation in the computed
values of the effective parameters for L=15, relative to the theoretical duality predic-
tion for the infinite lattice, is typically . 10−1. This indicates that the computations of
the effective transport coefficients are reasonably accurate even for small system sizes
L. Moreover, for random media with geometric configurations that are statistically
independent of each other, the numerical computations of the associated eigenvalues
and eigenvectors can be performed in parallel.

Another challenge associated with a large matrix size N , is the numerical ac-
curacy of the computations. We computed the matrices Γ=∇(∆−1)∇T and Υ=
C(CT C)−1CT using the MATLAB mldivide function A\B, i.e., Γ=∇(∆\∇T ) and
Υ=C[(CT C)\CT ]. Since ∇ and C are sparse matrices with integer elements, the ma-
trices Γ and Υ were efficiently computed using MATLAB’s sparse architecture, which
also reduces roundoff error in the computations. The numerical accuracy of these
“matrix inversions” depends on the matrix condition number K(A), for A=∆, CT C.
The matrix A is said to be well-conditioned when K(A) is small and ill-conditioned
when K(A) is large. One must always expect to “lose log10K(A) digits” of accuracy in
computing the solution, except under very special circumstances [77]. The numerical
accuracy of the eigenvalue problem for the matrices M1 =χ1Γχ1 and K1 =χ1Υχ1 is
also determined by the associated eigenvalue condition numbers, which are the re-
ciprocals of the cosines of the angles between the left and right eigenvectors. Large
eigenvalue condition numbers of a symmetric matrix A implies that it is near a ma-
trix with multiple eigenvalues, while eigenvalue condition numbers ≈1 imply that the
eigenvalue problem is well-conditioned.

We now discuss the condition numbers of the matrices ∆ and CT C for the sys-
tem sizes considered in our computations. Recall for d=2 that CT C =∆. In this 2D
case, K(∆)∼103 for L=60 and L=100. In the 3D case CT C 6=∆, and K(∆)∼101

for L=10 and ∼102 for L=15, while K(CT C)∼106 for L=10 and ∼107 for L=15.
These condition numbers were estimated using the MATLAB function condest(). The
eigenvalue condition numbers for the matrices M1 =χ1Γχ1 and K1 =χ1Υχ1 were com-
puted using the MATLAB function condeig(). They are all ≈1 for the system sizes
considered, indicating that the associated eigenvalue problems are well-conditioned.
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Fig. 3.4. Spectral measures and effective conductivities for 3D locally isotropic random media.
The spectral function µ11(λ) is displayed in (a) for various volume fractions p1 of type-one bonds.
Computed values of the effective complex conductivity σ∗

kk
, k=1, . . .,d, are displayed in (b) along

with the isotropic bounds, for s≈−0.034+ ı0.032. The spectral functions have been rescaled so that
the area under the graph is the measure mass µ0

11
=p1.

In summary, within the double precision architecture of MATLAB with a machine ep-
silon ǫ∼10−16, for the system sizes L considered, the spectral measure computations
associated with the matrices M1 and K1 are well-conditioned for d=2. The spectral
measure computations associated with the matrix M1 are also well-conditioned for
d=3, while the spectral measure computations associated with the matrix K1 are rel-
atively ill-conditioned for d=3. The problem of finding an appropriate preconditioner
for the matrix CT C in the 3D case is a topic of current work.

Displayed in Figure 3.4 are computations of spectral functions and effective com-
plex conductivities, for three-dimensional locally isotropic random media with L=15.
Like its 2D counterpart, the spectral function µ11(λ) displayed in Figure 3.4(a) has
a rich resonant structure for small values of p1. Consistent with isotropy, the be-
havior of the spectral functions µkk(λ) for k=2,3 are very similar to that of µ11(λ)
shown in Figure 3.4(a). The spectral functions µkk(λ), k=1,2,3, were computed in
[60] for the case of statistically isotropic random media. They look very similar to
µ11(λ) in Figure 3.4(a). In Figure 3.4(b) the values of the effective complex conduc-
tivities σ∗

kk, k=1,2,3, are displayed along with the isotropic bounds from equation
(2.68) for s≈−0.034+ ı0.032. Consistent with isotropy, σ∗

jj =σ∗
kk for all j,k=1,2,3
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Fig. 3.5. Spectral measures for 3D locally isotropic random media. The spectral function
κ11(λ) is displayed for various volume fractions p1 of type-one bonds. The spectral functions have
been rescaled so that the area under the graph is the measure mass κ0

11
=p1.

(to numerical accuracy and statistical truncation).

Displayed in Figure 3.5 are computations of the spectral function κ11(λ) associ-
ated with the effective complex resistivity ρ∗11, for 3D locally isotropic random media
with various values of p1. In order to increase the numerical stability of the com-
putation, we reduced the system size from L=15 to L=10. The limited numerical
accuracy in the computation of Υ=C(CT C)−1CT , which is then propagated to the
eigenvalue problem for K1 =χ1Υχ1, has a smoothing effect, and there are no promi-
nent resonances in the spectral functions for small values of p1. This smoothing effect
is also typical for regularization of ill-posed inverse problems for the reconstruction
of spectral measures [13]. Consistent with isotropy, κ11(λ)≈κ33(λ) and ρ∗11 ≈ρ∗33.
Although, due to the limited accuracy of the computations, the behavior of κ22(λ)
and the value of ρ∗22 is significantly different from that of the other two components.

We now discuss the gap behavior of the spectral measures [60, 47] and the govern-
ing role that it plays in critical transitions exhibited by the integral representations for
the effective transport coefficients [60, 31]. In the infinite lattice setting, the isotropic
composite microstructures discussed in this section are examples of lattice percola-
tion models [73, 76], which are parameterized by the volume fraction p1 =1−p2 of
the constituents. In these lattice percolation models, the bonds are open with proba-
bility p1, say, and closed with probability p2. Connected sets of open bonds are called
open clusters. The average cluster size grows as p1 increases, and there is a critical
probability pc , 0<pc <1, called the percolation threshold, where an infinite cluster of
open bonds first appears. For the two-dimensional lattice percolation model, pc =0.5
and in three-dimensions pc ≈0.2488 [73, 76].

Now consider transport through the associated RRN, where the bonds are as-
signed electrical conductivities σ1 with probability p1 and σ2 with probability p2.
The effective conductivity σ∗(p1,h), for example, exhibits two types of critical be-
havior as h=σ1/σ2→0. First, when σ1→0 and 0<σ2 <∞, σ∗(p1,0)=0 for p1 >pc
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Fig. 3.6. Behavior of effective complex conductivities σ∗
kk

, k=1, . . .,d, with s≈−0.034+ ı0.032,
and the masses of the spectral measures µkk at λ=0, as a function of volume fraction p1 for 2D
(a) and 3D (b) locally isotropic random resistor network.

while σ∗ >0 for p1 <pc . Second, when σ2→∞ and 0<σ1 <∞, σ∗(p2,0)→∞ as
p2→p−c . Since s=1/(1−h) and t=1−s, we see from equation (2.12) that the associ-
ated critical behavior of the integral representations for mkk(p1,h)=σ∗(p1,h)/σ2 and
wkk(p2,z)=σ∗(p2,z)/σ2 as h→0 depends, in turn, on the behavior of the spectral
measures µkk(p1) and αkk(p2) at the spectral endpoints λ=0,1.

Consider the behavior of the spectral measure µ11 at the spectral endpoints λ=0,1
for the 2D lattice percolation model. In Figures 3.2(b) and 3.3(b) we see that, as
p1 increases from zero and the system becomes increasingly connected, gaps in the
spectral function µ11(λ) at the spectral endpoints λ=0,1 shrink and then vanish
symmetrically at a value of p1 =pc =0.5. The graphs of these spectral functions
indicate that the vanishing of the spectral gaps leads to a buildup in the mass of the
measure at λ=0, while the mass of the measure is approximately zero for λ=1, i.e.,
µ11(1)≈0. Moreover, as p1 increases beyond the percolation threshold pc, the mass
of the measure at λ=1 remains approximately zero, while the buildup of the measure
mass at λ=0 persists and grows.

Now consider the behavior of the spectral measures µ11 and κ11 at the spectral
endpoints λ=0,1 for the 3D lattice percolation model. In Figure 3.4(a), we see
as p1 increases from zero and approaches the percolation threshold pc ≈0.2488, a
spectral gap about λ=0 shrinks and then vanishes, leading to a buildup in the mass
of the measure µ11 at λ=0 for p1 =pc. As p1 increases beyond pc, the mass of µ11

at λ=0 continues to grow, while a spectral gap at λ=1 shrinks and then vanishes
for p1 =1−pc≈0.7512, with µ11(1)≈0. The spectral function κ11(λ) displayed in
Figure 3.5 has an analogous transitional behavior. In particular, as p1 increases from
zero and approaches the percolation threshold pc ≈0.2488, a spectral gap about λ=1
shrinks and then vanishes, with µ11(1)≈0. As p1 increases beyond pc and approaches
1−pc ≈0.7512, a spectral gap about λ=0 shrinks and vanishes, leading to a buildup
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Fig. 3.7. Spectral measure symmetries. Transformations of the computed spectral functions
for 2D (a) and 3D (b) random resistor network, for various values of the volume fraction p1. The
computed spectral functions have been rescaled to make the area under the graph the measure mass.

in the mass of the measure κ11 at λ=0. Since t=1−s, it is physically consistent that
the roles of the spectral endpoints for κ11 have swithced from that of µ11.

For finite lattice systems, the existence of gaps in the spectrum of µ11 about
λ=0,1 for p1≪1, as well as their collapse as p1→1, is a direct consequence [60] of
the projective nature of the matrices χ1 and Γ. However, it has been argued that,
for infinite lattice percolation models, the spectrum of µ11 extends all the way to the
spectral endpoints λ=0,1, with exponentially decaying Lifshitz tails for all 0<p1≪1.
The detailed nature of the Lifshitz tails was numerically verified in [47] for the finite,
2D lattice percolation model for p1 =0.05, 0.1, 0.15, and 0.2, demonstrating that this
behavior of µ11 is present even in the finite lattice setting. The presence of Lifshitz
tails in µ11 for p1 <pc explains the presence of measure masses near λ=0, shown as
vertical lines in the spectral function µ11(λ) displayed in Figures 3.2 and 3.4.

Displayed in Figure 3.6 is the behavior of the effective complex conductivity σ∗
kk

and the mass of the measure µkk concentrated at λ=0, for k =1, . . .,d, as a function
of volume fraction p1, for the 2D (a) and 3D (b) locally isotropic lattice percolation
models in Figures 3.2–3.4. It can be seen in Figure 3.6 that a very small fraction of the
measure mass is concentrated at λ=0 for p1 <pc, where pc =0.5 for 2D and pc ≈0.2488
for 3D. However, as p1 surpasses pc, a significant amount of the measure mass becomes
concentrated at the spectral endpoint λ=0. This δ-function behavior in the measure
at λ=0 leads to large changes in the value of effective complex conductivity σ∗

kk as
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the volume fraction p1 surpasses pc. The associated mass of µkk concentrated at λ=1
is . 10−30 for both the 2D and 3D lattices.

The gap behavior of the spectral measures discussed above is consistent with
equation (2.14), which holds for general stationary random media in the infinite set-
ting [60], and consequently holds for percolation models of such media. This equation
characterizes the percolation transition with the formation of delta components in the
spectral measures at the spectral endpoints λ=0,1, precisely at p1 =pc and p1 =1−pc.
More specifically, recall that the weights mkk(0) and wkk(0) of the delta components
at λ=0 and λ=1 in (2.14), for example, have the following behavior. When σ1 =0
(h=0), the function mkk(0)=mkk(p1,0), k=1, . . .,d, increases from zero as p1 sur-
passes pc (p1→p+

c ). Similarly, when σ2 =0 (z =0), the function wkk(0)=wkk(p2,0)
increases from zero as p1 surpasses 1−pc (p1→1−p−c ). For conductor/insulator or
conductor/superconductor systems, this behavior in the spectral endpoints of the
measures leads to critical behavior in the effective conductivity [60, 30].

Equation (2.14), which holds for infinite systems, also provides a relationship
between the measures µkk(p1) and αkk(p2), and the measures κkk(p1) and ηkk(p2).
In Figure 3.7 we demonstrate that this relationship between the spectral measures
persists in the finite lattice setting. Displayed in Figure 3.7(a) are graphs of trans-
formations of the spectral function κ22(λ) for the 2D lattice percolation model. In
particular, the graph of the function (1−λ)κ22(1−λ) is displayed for volume frac-
tions p1 =0.1, 0.3, and 0.5, along with λκ22(λ) for volume fractions 1−p1 =0.9, 0.7,
and 0.5. Similarly, in Figure 3.7(b) the graphs of (1−λ)µ33(1−λ) and λµ33(λ) are
displayed for the 3D lattice percolation model with various values of p1 and 1−p1,
respectively. The graphs of the transformed spectral functions are virtually identical
except for a “δ-function” at λ=0, in excellent agreement with (2.14). We conclude
this section by noting that, despite the lack of numerical accuracy in our computa-
tions of the spectral function κ22(λ) for 3D finite lattice composite microstructures,
the functions (1−λ)κ22(p1,1−λ) and λκ22(p2,λ) are also virtually identical, other
than a singularity at λ=0.

4. Conclusion In Sections 2.1 and 2.2.1 we reviewed and extended the ACM
for representing transport in two-phase random media, for the infinite continuum
and lattice settings, respectively. This method provides the Stieltjes integral repre-
sentations displayed in equation (2.12) for the effective transport coefficients of such
composite media, which involve spectral measures associated with the self-adjoint
random operators Mi =χiΓχi and Ki =χiΥχi. Here, χi is the characteristic function
for material phase i=1,2 and the operators Γ= ~∇(∆−1)~∇· and Υ=−~∇×(∆−1)~∇×
act as projectors onto curl-free and divergence-free fields, respectively.

In Section 2.2.2 we developed the ACM for representing transport in two-phase
random media, with finite lattice composite microstructure. This novel formulation
yields discrete Stieltjes integral representations for the effective transport coefficients
of such media, displayed in equation (2.36) of Theorem 2.1, which is a key theoretical
contribution of this work. We accomplished this by developing a novel formulation of
the ACM in Section 2.2.3, that is equivalent to the original formulation [34], which
holds for both the finite lattice setting and the infinite, continuum and lattice settings.
We also provided a projection method for numerically efficient, rigorous computation
of spectral measures and effective parameters for composite media with finite lattice
microstructure. This projection method is summarized by equations (2.57)–(2.59). In
this finite lattice case, the operators χi, Γ, and Υ are represented by real-symmetric
projection matrices, and the spectral measures of the associated real-symmetric ran-
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dom matrices Mi and Ki are given explicitly in terms of their eigenvalues and eigen-
vectors, as displayed in equation (2.36).

In Section 2.2.2, following the statement of Theorem 2.1, we introduced three
families of locally isotropic, statistically isotropic, and anisotropic random media
with finite lattice composite microstructure. In Section 3 we employed the projec-
tion method to compute the spectral measures and effective parameters associated
with these families of random media. To our knowledge, this is the first time that
the spectral measures ηkk and κkk underlying the effective complex resistivity ρ∗kk

have been computed for such composite microstructures. These computations not
only demonstrate several important properties of the spectral measures and effective
parameters, but they also serve as a consistency check to the theory developed here.

The computed spectral functions and effective complex parameters for anisotropic
random media, displayed in Figure 3.1, are consistent with the symmetries of the
model. Consistent with general theory [58], our computations of the effective parame-
ters for isotropic random media satisfy σ∗

kk =1/ρ∗kk, k=1, . . .,d (to numerical accuracy
and statistical truncation). Moreover, the computed spectral functions and effective
parameters are consistent with isotropy and satisfy µjj(λ)=µkk(λ) and σ∗

jj =σ∗
kk, for

example, for all j,k=1, . . .,d (to numerical accuracy, finite size effects, and statistical
truncation). Figure 3.3 demonstrates that the projection method accurately calculates
the spectral measures and effective parameters for statistically self-dual composite mi-
crostructures. Furthermore, Figure 3.7 shows that the computed spectral measures
are in excellent agreement with equation (2.14), which holds for general stationary
two-phase random media [60].

The self-consistent mathematical framework developed here helps lay the ground-
work for studies in the effective transport properties of a broad range of important
composites, such as electrorheological fluids [59], multiscale sea ice structures, and
bone [33]. Remarkably, the ACM has also been adapted to provide Stieltjes integral
representations for effective transport coefficients underlying a wide variety of trans-
port processes, such as: the effective diffusivity for steady [52, 2] and time-dependent
[3] fluid velocity fields, the effective complex permittivity for uniaxial polycrystalline
media [5, 38], and the effective elastic moduli of two-phase elastic composites [63, 64].
The Golden-Papanicolaou formulation of the ACM has been pivotal in the develop-
ment of these mathematical frameworks, and in the understanding of these important
transport processes.

A-1. Appendix: The Spectral Theorem In equations (2.12) and (2.36)
of Sections 2.1 and 2.2.2, we display integral representations for the functions Fjk(s)
and Gjk(t), j,k =1, . . .,d, involving spectral measures µjk and αjk associated with
the operators Mi =χiΓχi, i=1,2, as well as that for the functions Ejk(s) and Hjk(t)
involving spectral measures ηjk and κjk associated with the operators Ki =χiΥχi,
i=1,2. In this section, we discuss the spectral theorem as it pertains to the ACM,
which provides the existence of these Stieltjes integral representations. The abstract,
bounded linear self-adjoint operator case [66, 75], associated with the infinite, con-
tinuum and lattice settings, is discussed in Section A-1.1. While the real-symmetric
matrix case [39, 51, 72], associated with the finite lattice setting, is discussed in Section
A-1.2. Since the formulations associated with each of the operators Mi =χiΓχi and
Ki =χiΥχi, i=1,2, are analogous, for simplicity, we will focus on that for the opera-
tor M1 =χ1Γχ1. Also, in Section 2.2.3 we provided a novel formulation of the ACM
involving the operator M1, which is equivalent to the original formulation [34, 10]
involving the operator Γχ1, and holds for both the finite lattice setting and the in-
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finite, continuum and lattice settings. Due to this unification, we will focus on the
formulation of the ACM associated with the operator M1.

A-1.1. Infinite Continuum and Lattice Settings In this section, we review
the spectral theorem as it pertains to the ACM for the infinite, continuous and lattice
settings. Consider the Hilbert space H× defined in equation (2.2). Now, define the
Hilbert space H0 =H×∪Cd by

H0 =
{

~Y ∈H | ~∇× ~Y =0 weakly
}

, (A-1)

where ~∇× ~Y =0 means that LiYj −LjYi =0 for all i,j =1, . . .,d. In other words, H0

is the Hilbert spaceH× with the constant fields Cd included. EquipH0 with the H -
inner-product weighted by the characteristic function χ1, which we denote by 〈·,·〉1. In
the infinite, continuum and lattice settings, the characteristic function acts pointwise
on the underlying vector space, Rd or Zd, and it is therefore a self-adjoint operator
on H0. Clearly, it is also a linear projection operator satisfying 〈χ1

~ξ,~ζ 〉= 〈χ2
1
~ξ,~ζ 〉 for

all ~ξ,~ζ ∈H0, and is therefore bounded on H0 with operator norm ‖χ1‖≤1.
On L2(Ω,P ), the linear operator ∆−1 is bounded and self-adjoint [72]. For all

~ξ∈H0 we have ~∇·~ξ∈L2(Ω,P ), and for all ζ ∈L2(Ω,P ) we have ‖~∇∆−1ζ‖<∞, where
‖·‖ denotes the norm induced by the H -inner-product. It follows that the linear

operator Γ= ~∇(∆−1)~∇· is bounded onH0. Integration by parts then establishes that
Γ is self-adjoint on H0 [34]. It is also clear that Γ is a projection operator satisfying

〈Γ~ξ,~ζ 〉= 〈Γ2~ξ,~ζ 〉 for all ~ξ,~ζ ∈H0, with operator norm ‖Γ‖≤1.
It follows that M1 =χ1Γχ1 is a bounded linear self-adjoint operator on the Hilbert

space H0, with operator norm ‖M1‖≤1 [66, 75]. The spectrum Σ of the self-adjoint
operator M1 is real-valued and the spectral radius of M1 is equal to its operator norm
[66], which implies that Σ⊆ [−1,1]. However, since χ1 and Γ are self-adjoint projection

operators on H0, we have 〈χ1Γχ1
~ξ,~ξ 〉= 〈Γχ1

~ξ,Γχ1
~ξ 〉=‖Γχ1

~ξ‖2≥0 for all ~ξ∈H0.
This implies that M1 is also a positive operator, which implies that its spectrum
satisfies Σ⊆ [0,∞) [75]. Consequently, the spectrum Σ of M1 satisfies Σ⊆ [0,1].

Since Σ⊆ [0,1], the spectral theorem for bounded linear self-adjoint operators
in Hilbert space [75] states that there is a one-to-one correspondence between the
operator M1 and a family of self-adjoint projection operators {Q(λ)}λ∈[0,1] — the
resolution of the identity — that satisfies limλ→0Q(λ)=0 and limλ→1Q(λ)= I, where

0 and I are the null and identity operators on Rd. Furthermore, for all ~ξ,~ζ ∈H0, the
function of λ defined by µξζ(λ)= 〈Q(λ)~ξ,~ζ 〉1 is strictly increasing and of bounded
variation, and therefore has a Stieltjes measure µξζ associated with it [74, 75, 26].
The spectral theorem also states that, for all complex valued functions f ∈L2(µξζ),
there exists a linear operator denoted by f(M1) which is defined in terms of the

functional 〈f(M1)~ξ ·~ζ 〉1 = 〈f(M1)χ1
~ξ ·~ζ 〉. Moreover, this functional has the following

integral representation involving the Stieltjes measure µξζ

〈f(M1)~ξ ·~ζ 〉1 =

∫ 1

0

f(λ)dµξζ(λ), µξζ(λ)= 〈Q(λ)~ξ,~ζ 〉1, (A-2)

where the integration is over the spectrum Σ of M1 [66, 75]. Setting f(λ)= (s−λ)−1

for s∈C\[0,1], ~ξ =~ej, and ~ζ =~ek in equation (A-2), yields the integral formula for
Fjk(s) displayed in equation (2.44), which is equivalent to that displayed in (2.12). It
is now clear why the Hilbert space H× was extended to H0 in our formulation of the
spectral theorem for the ACM: the appearance of the constant fields ~ej , j =1, . . .,d,
in equation (2.44).
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A-1.2. Finite Lattice Setting In this section, we review the spectral theorem
as it pertains to the ACM for the finite lattice setting discussed in Section 2.2.2. In
this case, the operator M1 =χ1Γχ1 is represented by a real-symmetric random matrix
and the spectral theorem for such matrices provides a discrete version of the integral
representation displayed in equation (A-2). This formulation leads to the discrete
integral representation of the function Fjk(s) displayed in equations (2.36) and (2.44).

Recall that we defined in Section 2.2.2 a bijective mapping Θ :Zd
L→NL from the

finite d-dimensional bond lattice Zd
L of size L onto the one dimensional set NL of size

N =dLd. Moreover, we showed that, under the mapping Θ, the random operator
M1 =χ1Γχ1 can be represented by a random matrix of size N ×N [33, 60]. More
specifically, Γ is a non-random, real-symmetric projection matrix satisfying Γ2 =Γ.
Consequently, ‖Γ‖≤1, where ‖·‖ denotes the matrix norm induced by the dot-product
on CN [23]. In this finite lattice setting, the characteristic function χ1 is represented
by a random, diagonal projection matrix satisfying χ2

1 =χ1, with zeros and ones along
its diagonal. Consequently, the matrix χ1 is real-symmetric and satisfies ‖χ1‖≤1.

It follows that M1 is a real-symmetric matrix with ‖M1‖≤1 [23]. It is also
a composition of projection matrices, and is consequently positive definite, i.e., for
every ~ξ∈CN we have that χ1Γχ1

~ξ ·~ξ =(Γχ1
~ξ ) ·(Γχ1

~ξ )≥0. This, implies that the
spectrum Σ of M1 is comprised of real eigenvalues λi, i=1, . . .,N , and that Σ⊆ [0,∞)
[45]. Furthermore, the largest eigenvalue of the matrix M1 is equal to ‖M1‖ [23]. It
follows that Σ⊆ [0,1].

It is well known [45, 49] that the eigenvectors ~ui, i=1, . . .,N , of the real-symmetric

matrix M1 form an orthonormal basis for RN , i.e., ~uT
ℓ ~um = δℓm and for every ~ξ∈RN

we have ~ξ =
∑N

i=1(~u
T
i

~ξ )~ui =
(

∑N
i=1~ui~u

T
i

)

~ξ . Consequently,

N
∑

i=1

Qi = I, Qi =~ui~u
T
i , QℓQm =Qℓδℓm, (A-3)

where I is the identity matrix on RN . Here, we have defined Qi, i=1, . . .,N , to be
the mutually orthogonal projection matrices onto the eigenspaces spanned by the ~ui.

Since M1~ui =λi~ui, the identity Qi =~ui~u
T
i implies that we also have M1Qi =λiQi.

This and equation (A-3) then imply that the matrix M1 has the spectral decomposi-

tion M1 =
∑N

i=1λiQi. By the mutual orthogonality of the projection matrices Qi and

by induction, we have that Mn
1 =

∑N
i=1λn

i Qi for all n∈N. This, in turn, implies that

f(M1)=
∑N

i=1f(λi)Qi for any polynomial f :R 7→C. Consequently, for all ~ξ,~ζ ∈CN ,

the functional 〈f(M1)~ξ ·~ζ 〉1 = 〈f(M1)χ1
~ξ ·~ζ 〉 has the following integral representation

〈f(M1)~ξ ·~ζ 〉1 =

∫ 1

0

f(λ)dµξζ(λ), dµξζ(λ)=

N
∑

i=1

〈δλi
(dλ)Qi

~ξ ·~ζ 〉1. (A-4)

The proof of Theorem 2.1 given in Section 2.2.4 demonstrates that equation (A-4)
also holds for the function f(λ)= (s−λ)−1 when s∈C\[0,1]. In this matrix setting,
the projection valued operator Q(λ) associated with the strictly increasing function

µξζ(λ)= 〈Q(λ)~ξ ·~ζ 〉1, discussed in Section A-1.1, can be written explicitly as

Q(λ)=
∑

i:λi<λ

θ(λ−λi)Qi. (A-5)
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Here, θ(λ) is the Heaviside function which takes the value θ(λ)=0 for λ<0 and
θ(λ)=1 for λ>0 [49].
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