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We present a general theory for critical behavior of transport in binary composite

media. The theory holds for lattice and continuum percolation models in both the

static case with real parameters and the quasi–static case (frequency dependent)

with complex parameters. Through a direct, analytic correspondence between the

magnetization of the Ising model and the effective parameter problem of two phase

random media, we show that the critical exponents of the transport coefficients

satisfy the standard scaling relations for phase transitions in statistical mechanics.

Our work also shows that delta components form in the underlying spectral measures

at the spectral endpoints precisely at the percolation threshold pc and at 1 − pc.

This is analogous to the Lee-Yang-Ruelle characterization of the Ising model phase

transition, and identifies these transport transitions with the collapse of spectral

gaps in these measures.
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I. INTRODUCTION

Lattice and continuum percolation models have been used to study a broad range of dis-

ordered composite materials including semiconductors [48], radar absorbing coatings [32],

bone [25, 46], rocks [8, 9], glacial ice [16], polycrystalline metals [11], carbon nanotube com-

posites [33], and sea ice [23, 24]. A key feature of these materials is the critical dependence

of the effective transport properties on the connectedness, or percolation characteristics, of

a particular component. The behavior of such composite media is particularly challenging

to describe physically, and to predict mathematically.

Here we construct a mathematical framework which unifies the critical theory of transport

in two phase random media. By adapting techniques developed by G. A. Baker for the

Ising model [2], we provide a detailed description of percolation–driven critical transitions

in transport exhibited by such media. The most natural formulation is in terms of the

conduction problem in the continuum Rd, which includes the lattice Zd as a special case

[20, 26]. Although, symmetries in Maxwell’s equations [36] immediately extend our results

to the effective parameter problem of electrical permittivity.

An original motivation for this work was to gain a better understanding of critical transi-

tions in the transport properties of sea ice. In particular, fluid flow through sea ice mediates

a broad range of processes that are important to studying its role in the climate system, and

the impact of climate change on polar ecosystems [22]. In fact, the brine microstructure of

sea ice undergoes a percolation threshold at a critical brine volume fraction φ of about 5%

in columnar sea ice [23, 24, 38]. This leads to critical behavior of fluid flow, where sea ice is

effectively impermeable to fluid transport for φ below 5%, and is increasingly permeable for

φ above 5%, which is known as the rule of fives [23]. Percolation theory can then be used to

capture the behavior of the fluid permeability of sea ice [24]. There has also been evidence

[28, 37] that this critical behavior in the microstructure also induces similar behavior in the

effective electromagnetic properties of sea ice, such as its effective complex permittivity ǫ∗.

In [28] and [37], for example, microstructural properties of the brine phase were recovered

from measurements of the complex permittivity of sea ice. The current paper helps lay the

groundwork for the analysis of sea ice permittivity data collected in the polar regions, and

how it can be used to monitor changes in the microstructure, the fluid transport properties,

and the geophysical and biological processes that are controlled by fluid flow.
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II. BACKGROUND AND SUMMARY OF THE RESULTS

The partition function Z of the Ising model is a polynomial in the activity variable

[2, 34, 42, 44]. In 1952 Lee and Yang [34] showed that the roots of Z lie on the unit

circle, which is known as the Lee–Yang Theorem [34, 42]. They also demonstrated that

the distribution of the roots determines the associated equation of state [51], and that the

properties of the system, in relation to phase transitions, are governed by the behavior of

these roots near the positive real axis.

In 1968 Baker [1] used the Lee–Yang Theorem to represent the Gibbs free energy per

spin f = −(Nβ)−1 lnZ as a logarithmic potential [45], where N is the number of spins,

β = (kT )−1, k is Boltzmann’s constant, and T is the absolute temperature. He used this

special analytic structure to prove that the magnetization per spin M(T,H) = −∂f/∂H

[40] may be represented in terms of a Stieltjes function G in the variable τ = tanh βmH,

M

m
= τ(1 + (1 − τ 2)G(τ 2)), G(τ 2) =

∫ ∞

0

dψ(y)

1 + τ 2y
, (1)

where H is the applied magnetic field strength, m is the (constant) magnetic dipole moment

of each spin [27], and ψ is a non–negative definite measure [1, 2]. The integral representation

in (1) immediately leads to the inequalities

G ≥ 0,
∂G

∂u
≤ 0,

∂2G

∂u2
≥ 0, (2)

where u = τ 2. The last formula in equation (2) is the GHS inequality, which is an important

tool in the study of the Ising model [20].

In 1970 Ruelle [43] extended the Lee–Yang Theorem and proved that there exists a gap

θ0(T ) > 0 in the roots of Z about the positive real axis for high temperatures. Moreover,

he proved that the gap collapses, θ0(T ) → 0, as T decreases to a critical temperature

Tc > 0. Consequently, the temperature–driven phase transition (spontaneous magnetization)

is unique, and is characterized by the pinching of the real axis by the roots of Z [42].

Baker [2, 18] then exploited the Lee–Yang–Ruelle Theorem to provide a detailed descrip-

tion of the critical behavior of the parameters characterizing the phase transition exhibited

by the Ising model [12]. He defined a critical exponent ∆ for the gap in the distribution of

the Lee–Yang–Ruelle zeros, θ0(T ) ∼ (T − Tc)
∆, as T → T+

c , and proved that the measure

ψ is supported on the compact interval [0, S(T )] for T > Tc , with S(T ) ∼ (T − Tc)
−2∆ as
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T → T+
c . He demonstrated that the moments ψn =

∫ ∞

0
yn dψ(y) of ψ diverge as T → T+

c

according to the power law ψn ∼ (T−Tc)
−γn, n ≥ 0, by proving that the sequence γn satisfies

Baker’s inequalities γn+1 − 2γn + γn−1 ≥ 0. They imply that this sequence increases at least

linearly with n. He later proved that this sequence is actually linear in n, γn = γ + 2∆n,

with constant gap γi − γi−1 = 2∆ [2]. The critical exponent γ is defined via the magnetic

susceptibility per spin χ = ∂M/∂H = −∂2f/∂H2 ∼ (T − Tc)
−γ , as T → T+

c .

The phase transition may be concisely described with two other critical exponents. When

H = 0, M(T, 0) ∼ (T −Tc)
β, as T → T−

c , where the critical exponent β is not to be confused

with (kT )−1, and along the critical isotherm T = Tc, M(Tc, H) ∼ H1/δ, as H → 0 [2, 12].

Using the integral representation in (1), Baker obtained (two–parameter) scaling relations

for these critical exponents [2]

β = ∆ − γ, δ = ∆/(∆ − γ), γn = γ + 2∆n. (3)

The critical exponent γ, for example, is defined in terms of the following limit, and γ exists

when this limit exists [2],

γ = lim sup
T→T+

c , H=0

(

− lnχ(T,H)

ln(T − Tc)

)

. (4)

In 1997 Golden [21] demonstrated that Baker’s critical theory may be adapted to provide

a precise description of percolation–driven critical transitions in transport, exhibited by two

phase random media in the static regime. This result puts these two classes of seemingly

unrelated problems on an equal mathematical footing. He did so by considering percolation

models of classical conductive two phase composite media, where the connectedness of the

system is determined, for example, by the volume fraction p of inclusions with conductance

σ2 in an otherwise homogeneous medium of conductivity σ1, with h = σ1/σ2 ∈ [0, 1]. He

demonstrated that the function m(p, h) = σ∗(p, h)/σ2 plays the role of the magnetization

M(T,H), where σ∗ is the effective conductivity of the medium [3, 26, 35]. Moreover, he

showed that the volume fraction p mimics the temperature T while the contrast ratio h is

analogous to the applied magnetic field strength H . More specifically, critical behavior of

transport arises when h = 0 (σ1 = 0, 0 < σ2 < ∞), as p → p+
c [21], and critical behavior

of the magnetization in the Ising model arises when H = 0, as T → T+
c [12]. Using these

mathematical parallels, it was shown that the critical exponents of transport satisfy an

analogue of Baker’s scaling relations (3).
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Here, using a novel unified approach, we reproduce Golden’s static results (h ∈ R) and

obtain the analogous static results associated with a conductive–superconductive medium

in terms of w(p, z) = σ∗(p, z)/σ1, where z = 1/h. Using Stieltjes function integral represen-

tations of m(p, h;µ) and w(p, z;α), where µ and α are each spectral measures of a random

self–adjoint operator, we determine the (two–parameter) critical exponent scaling relations

of each system. We then extend these results to the frequency dependent quasi–static regime

(h ∈ C). We link these two sets of critical exponents, showing that they are all, in general,

determined by only three critical exponents, and are determined by only two critical expo-

nents under a physically consistent symmetry in the properties of µ and α. In arbitrary

finite lattice systems we explicitly show that there are gaps in the supports of the measures

α(dλ) and µ(dλ) about the spectral endpoints λ = 0, 1 for p≪ 1 and 1−p≪ 1, respectively,

which collapse as p tends towards pc. Moreover in infinite lattice or continuum composite

systems, we demonstrate that critical transitions in transport are due to the formation of

delta components in µ and α located at λ = 0, 1. We do so by constructing a measure ̺

which is supported on the set {0, 1} that links µ and α. This general result demonstrates

that, for percolation models, the onset of criticality (the formation of these delta compo-

nents) occurs precisely at the percolation threshold pc and at 1 − pc. We stress that there

are similar critical exponents involving the effective complex permittivity ǫ∗ of two phase

dielectric media [6, 13], and there are direct analogs of our results regarding such media.

III. THE ANALYTIC CONTINUATION METHOD

We now formulate the effective parameter problem for two component conductive media.

Let (Ω, P ) be a probability space, and let σ(~x, ω) and ρ(~x, ω) be the local conductivity and

resistivity tensors, respectively, which are (spatially) stationary random fields in ~x ∈ Rd and

ω ∈ Ω. Here Ω is the set of all geometric realizations of our random medium, P (dω) is the

underlying probability measure, which is compatible with stationarity, and ρ = σ
−1 [26].

Define the Hilbert space of stationary random fields Hs ⊂ L2(Ω, P ), and the underlying

Hilbert spaces of stationary curl free H× ⊂Hs and divergence free H• ⊂Hs random fieldsH× = {~Y (ω) ∈Hs | ~∇× ~Y = 0 weakly and 〈~Y 〉 = 0}, (5)H• = {~Y (ω) ∈Hs | ~∇ · ~Y = 0 weakly and 〈~Y 〉 = 0},
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where ~Y : Ω 7→ Rd and 〈·〉 means ensemble average over Ω, or by an ergodic theorem spatial

average over all of Rd [26].

Consider the following variational problems: find ~Ef ∈H× and ~Jf ∈H• such that [26]

〈σ( ~E0 + ~Ef ) · ~Y 〉 = 0 ∀ ~Y ∈H× and 〈ρ( ~J0 + ~Jf) · ~Y 〉 = 0 ∀ ~Y ∈H• , (6)

respectively. When the bilinear forms a(~u,~v) = ~u T
σ ~v and ã(~u,~v) = ~u T

ρ~v are bounded

and coercive, these problems have unique solutions satisfying [26]

~∇× ~E = 0, ~∇ · ~J = 0, ~J = σ ~E, ~E = ~E0 + ~Ef , 〈 ~E 〉 = ~E0, (7)

~∇× ~E = 0, ~∇ · ~J = 0, ~E = ρ ~J, ~J = ~J0 + ~Jf , 〈 ~J 〉 = ~J0,

respectively. Here ~Ef and ~Jf are the fluctuating electric field and current density of mean

zero, respectively, about the (constant) averages ~E0 and ~J0, respectively.

We assume that the local conductivity σ(~x, ω) of the medium takes the values σ1 and

σ2 and write σ(~x, ω) = σ1χ1(~x, ω) + σ2χ2(~x, ω), where χj is the characteristic function of

medium j = 1, 2, which equals one for all ω ∈ Ω having medium j at ~x, and zero otherwise,

with χ1 = 1 − χ2 [26]. Similarly, we assume that the local resistivity [σ−1](~x, ω) takes the

values 1/σ1 and 1/σ2 and write [σ−1](~x, ω) = χ1(~x, ω)/σ1 + χ2(~x, ω)/σ2.

As ~Ef ∈ H× and ~Jf ∈ H•, equation (6) yields the energy (power density) constraints

〈 ~J · ~Ef〉 = 〈 ~E · ~Jf〉 = 0, which lead to the reduced energy representations

〈 ~J · ~E〉 = 〈 ~J〉 · ~E0 and 〈 ~E · ~J〉 = 〈 ~E〉 · ~J0 . (8)

The effective complex conductivity and resistivity tensors, σ
∗ and ρ

∗, are defined by

〈 ~J 〉 = σ
∗ ~E0 and 〈 ~E 〉 = ρ

∗ ~J0, (9)

respectively, yielding 〈 ~J · ~E〉 = σ
∗ ~E0 · ~E0 = ρ

∗ ~J0 · ~J0. For simplicity, we focus on one diagonal

component of these tensors: σ∗ = σ
∗
kk and ρ∗ = ρ

∗
kk, for some k = 1, . . . , d.

Due to the homogeneity of these functions, e.g. σ∗(aσ1, aσ2) = aσ∗(σ1, σ2) for any com-

plex number a, they depend only on the ratio h = σ1/σ2, and we define the dimensionless

functions

m(h) = σ∗/σ2, w(z) = σ∗/σ1, m̃(h) = σ1ρ
∗, w̃(z) = σ2ρ

∗, (10)
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where z = z(h) = 1/h. The functions m(h) and m̃(h) are analytic off the negative real

axis in the h–plane, and the functions w(z) and w̃(z) are analytic off the negative real axis

in the z–plane [26]. Each take the corresponding upper half plane to the upper half plane,

so that they are examples of Herglotz functions [26]. We assume that 0 < |h| < 1, i.e.

0 < |σ1| < |σ2| <∞, and we further restrict h in the complex plane to the set

U = {h ∈ C : |h| < 1 and h 6∈ (−1, 0]}. (11)

A key step in the method is obtaining integral representations for σ∗ and ρ∗ in terms of

Herglotz functions Ai,j and Stieltjes functions S of the form [30]

Ai,j(ξ; ν) =

∫ 1

0

λidν(λ)

(ξ − λ)j
, S(ξ; ν) =

∫ ∞

0

dν(y)

1 + ξy
, (12)

which follow from resolvent representations of the electric field ~E and the current density ~J ,

~E = s(s+ Γχ1)
−1 ~E0 = t(t+ Γχ2)

−1 ~E0 and ~J = s(s− Υχ2)
−1 ~J0 = t(t− Υχ1)

−1 ~J0, (13)

respectively. Here we have defined s = 1/(1 − h), t = 1/(1 − z) = 1 − s, Γ = ~∇(−∆)−1~∇·,

and Υ = ~∇× (−∆)−1~∇×. These formulas follow from manipulations of equation (7). The

operator −Γ is a projection onto curl-free fields, based on convolution with the free-space

Green’s function for the Laplacian ∆ = ∇ 2 [26]. More specifically −Γ :Hs 7→H×, and for

every ~ζ ∈ H× we have −Γ~ζ = ~ζ. For the convenience of the reader we recall a few vector

calculus facts. For every ~ζ ∈ H• we have ~ζ = ~∇ × ( ~A + ~C) weakly, where ~∇ × ~C = 0

weakly [17, 31]. The arbitrary vector ~C can be chosen so that ~∇· ~A = 0 weakly [31]. Hence,

~∇× ~ζ = ~∇× ~∇× ~A = ~∇(~∇ · ~A)−∆ ~A = −∆ ~A weakly. The vector ~C chosen in this manner

gives the Coulomb gauge of ~ζ [31]. Let C• ⊂H• denote the closure of the space of stationary

divergence free random fields of Coulomb gauge. On the Hilbert space C• one can show that

the operator Υ is a projector, based on convolution with the free-space Green’s function for

the Laplacian ∆. More specifically Υ :Hs 7→H•, and for every ~ζ ∈ C• we have Υ~ζ = ~ζ .

It is more convenient to consider the functions F (s) = 1 −m(h) and E(s) = 1 − m̃(h),

which are analytic off [0, 1] in the s–plane, and G(t) = 1−w(z) and H(t) = 1− w̃(z), which

are analytic off [0, 1] in the t–plane [3, 26], and satisfy

0 < |F (s)|, |E(s)| < 1, 0 < |G(t)|, |H(t)| <∞, h ∈ U , (14)

whereG(t) andH(t) are not to be confused with the Stieltjes function in (1) and the magnetic

field strength in the Ising model, respectively. We write ~E0 = E0 ~ek and ~J0 = J0
~jk, where
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~ek and ~jk are unit vectors, for some k = 1, . . . , d. Using equations (7), (9), (13), and the

Spectral Theorem [39], we obtain the following Herglotz integral representations (12) of

F (s), E(s), G(t), and H(t) [3, 26]

F (s) = 〈χ1(s+ Γχ1)
−1~ek · ~ek〉 =

∫ λ1

λ0

dµ(λ)

s− λ
, E(s) = 〈χ2(s− Υχ2)

−1~jk ·~jk〉 =

∫ λ̃1

λ̃0

dη(λ)

s− λ
,

(15)

G(t) = 〈χ2(t+ Γχ2)
−1~ek · ~ek〉 =

∫ λ̂1

λ̂0

dα(λ)

t− λ
, H(t) = 〈χ1(t− Υχ1)

−1~jk ·~jk〉 =

∫ λ̌1

λ̌0

dκ(λ)

t− λ
,

or in the compact notation of (12) F (s) = A0,1(s;µ), E(s) = A0,1(s; η), G(t) = A0,1(t;α),

H(t) = A0,1(t; κ). Equation (15) displays Stieltjes transforms of the bounded positive mea-

sures µ, η, α, and κ which are supported on Σµ,Ση,Σα,Σκ ⊆ [0, 1], respectively, and depend

only on the geometry of the medium [5, 26]. The supremum and infimum of these sets are

defined to be the upper and lower limits of integration displayed in equation (15).

The integro-differential operators Mj = χj(−Γ)χj and Kj = χjΥχj , j = 1, 2, are com-

positions of projection operators on the associated Hilbert spaces H× and C•, respectively,

and are consequently bounded by 1 in the underlying operator norm [17, 41]. They are

self–adjoint on L2(Ω, P ) [26]. Consequently, in the Hilbert space L2(Ω, P ) with weight χ2 in

the inner product, for example, Γχ2 is a bounded self–adjoint operator [26]. Equation (15)

involves spectral representations of resolvents involving these self adjoint operators. The

measures µ, η, α, and κ are spectral measures of the family of projections of these operators

in the respective 〈~ek, ~ek〉 or 〈~jk,~jk〉 state [26, 39].

A key feature of equations (8), (9), and (15) is that the parameter information in s and

E0 is separated from the geometry of the composite, which is encapsulated in the measures µ,

η, α, and κ through their moments µn, ηn, αn, and κn, n ≥ 0, respectively, which depend on

the correlation functions of the medium [26]. For example, α0 = η0 = p and µ0 = κ0 = 1−p.

A principal application of the analytic continuation method is to derive forward bounds on

σ∗ and ρ∗, given partial information on the microgeometry [4, 5, 26, 35]. One can also use

the representations in (15) to obtain inverse bounds, allowing one to use data about the

electromagnetic response of a sample to bound its structural parameters such as p [25].
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IV. STIELTJES FUNCTION REPRESENTATIONS OF σ∗ AND ρ∗

In Section III we formulated the effective parameter problem for two–component con-

ductive media and obtained integral representations of the effective complex conductivity

σ∗ and resistivity ρ∗. In this section we derive Stieltjes function representations of σ∗ and

ρ∗. These alternate representations will be used in Sections V and VI to provide spectral

characterizations of critical behavior exhibited by σ∗ and ρ∗.

In order to illuminate the many symmetries of this mathematical framework, we will

henceforth focus on the complex variable h = hr + ihi, where hr = Reh and hi = Imh.

Moreover, in the last two formulas of equation (15), we will make the change of variables

t(s) = 1 − s and λ 7→ 1 − λ, so that G(t(s)) = −
∫ 1−λ̂0

1−λ̂1
[−dα(1 − λ)]/(s − λ), for example.

The change of variables s(h) = 1/(1−h) and λ(y) = y/(1+ y) ⇐⇒ y(λ) = λ/(1−λ) yield

Stieltjes function representations [2] of the formulas in (15). For example,

F (s) = (1 − h)

∫ S

S0

(1 + y)dµ( y
1+y

)

1 + hy
, G(t(s)) = (h− 1)

∫ Ŝ

Ŝ0

(1 + y)[−dα( 1
1+y

)]

1 + hy
, (16)

where S0 = λ0/(1 − λ0), S = λ1/(1 − λ1), Ŝ0 = (1 − λ̂1)/λ̂1, and Ŝ = (1 − λ̂0)/λ̂0, so

that limλ0→0 S0 = limλ̂1→1 Ŝ0 = 0 and limλ1→1 S = limλ̂0→0 Ŝ = ∞. Moreover, dµ( y
1+y

) is

the measure dµ(λ) under the variable change λ 7→ λ(y) = y/(1 + y) and [−dα( 1
1+y

)] is the

measure dα(λ) under the variable change λ 7→ 1 − λ(y), where the negative sign accounts

for the switch of integration limits in the second formula of (16). By equations (15) and

(16), the Stieltjes function representations of m(h) and w(z(h)) are given by

m(h) = 1 + (h− 1)g(h), g(h) =

∫ ∞

0

dφ(y)

1 + hy
, dφ(y) = (1 + y)dµ(λ(y)), (17)

w(z(h)) = 1 − (h− 1)ĝ(h), ĝ(h) :=

∫ ∞

0

dφ̂(y)

1 + hy
, dφ̂(y) = (1 + y)[−dα(1 − λ(y))],

with analogous formulas for m̃(h) and w̃(z(h)) involving Stieltjes functions g̃(h) = S(h; φ̃)

and ǧ(h) = S(h; φ̌), respectively. Equation (17) should be compared to equation (1) regard-

ing the Ising model. The Stieltjes functions g(h), g̃(h), ĝ(h), and ǧ(h) are analytic for all

h ∈ U [26]. As µ, η, α, and κ are positive measures on [0, 1], φ, φ̃, φ̂, and φ̌ are positive

measures on [0,∞]. Consequently, the following inequalities hold

∂2nζ

∂h2n
> 0,

∂2n−1ζ

∂h2n−1
< 0,

∣

∣

∣

∣

∂nζ

∂hn

∣

∣

∣

∣

> 0, ζ = g(h), g̃(h), ĝ(h), ǧ(h), h ∈ U , (18)
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for n ≥ 0, which are analogs of equation (2) for the Ising model [20]. The first two inequalities

in (18) hold for h ∈ U ∩ R, and the last inequality holds for h ∈ U such that hi 6= 0.

By equation (17), the moments φn of φ satisfy

φn =

∫ ∞

0

yndφ(y) =

∫ ∞

0

yn(1 + y)dµ(λ) =

∫ 1

0

λndµ(λ)

(1 − λ)n+1
= An,n+1(1;µ) . (19)

A partial fraction expansion of λn/(1 − λ)n+1 then shows that

(−1)n

n!
lim
s→1

∂nF (s)

∂sn
=

∫ 1

0

dµ(λ)

(1 − λ)n+1
=

n
∑

j=0

(

n

j

)

φj . (20)

Equation (20) demonstrates that φn depends on
∫ 1

0
dµ(λ)/(1 − λ)n+1 and all the lower

moments φj, j = 0, 1, . . . , n− 1, of φ.

We now show that the moments φj have physical significance. The energy constraints

〈 ~J · ~Ef〉 = 〈 ~E · ~Jf 〉 = 0 lead to detailed decompositions of the system energy in terms of

Herglotz functions involving µ, η, α, and κ. For example, 〈 ~J · ~Ef〉 = 0, ~E = ~E0 + ~Ef ,

〈 ~Ef 〉 = 0, and σ = σ2(1−χ1/s) imply that 0 = 〈σ ~E · ~Ef〉 = 〈σ2(1− χ1/s)( ~Ef · ~E0 +E2
f)〉 =

σ2

[

〈E2
f〉 − (〈χ1

~Ef · ~E0〉 + 〈χ1E
2
f 〉)/s

]

. The Spectral Theorem [39] then yields

〈E2
f 〉/E

2
0 = A1,2(s;µ) = A1,2(t;α), 〈J2

f 〉/J
2
0 = A1,2(s; η) = A1,2(t; κ). (21)

Equation (21) then leads to Herglotz function representations of all such energy components

involving µ, η, α, and κ, e.g. 〈χ1
~Ef · ~E0〉/E

2
0 = A1,1(s;µ) = A1,1(t;α).

From equations (15) and (21), we see that the first two moments, φ0 and φ1, of φ are

identified with energy components:

φ0 = lim
s→1

〈χ1
~E · ~E0〉

E2
0

, φ1 = lim
s→1

〈E2
f〉

E2
0

. (22)

Thereby equation (20), all of the higher moments φj, j ≥ 2, depend on these energy com-

ponents. Equations (14) and (19) imply that φ0 is bounded. We prove in Lemma V.1 below

that the higher moments φn, n ≥ 1, become singular as λ1 = sup{Σµ} → 1.

Similarly, the moments φ̂n of φ̂ satisfy

φ̂n =

∫ 1

0

(1 − λ)ndα(λ)

λn+1
,

(−1)n+1

n!
lim
s→1

∂nG(t(s))

∂nt
=

∫ 1

0

dα(λ)

λn+1
=

n
∑

j=0

(

n

j

)

φ̂j . (23)

Equations (15) and (21) also identify the first two moments, φ̂0 and φ̂1, of φ̂ with energy

components. Equation (23) then implies that all of the higher moments φ̂j, j ≥ 2, depend
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on these energy components. We prove in Lemma V.1 below that all the moments φ̂n,

n ≥ 0, become singular as λ̂0 = inf{Σα} → 0. By the symmetries in equations (15) and

(17), equations (19) and (20) hold for φ̃ with E(s) and η in lieu of F (s) and µ, respectively,

and equation (23) holds for φ̌ with H(t(s)) and κ in lieu of G(t(s)) and α, respectively.

We now give some key formulas which will be used extensively. Equations (8) and (9) yield

the energy representations 〈 ~J · ~E〉 = σ2m(h)E2
0 = σ1w(z(h))E2

0 and 〈 ~E · ~J〉 = m̃(h)E2
0/σ1 =

w̃(z(h))E2
0/σ2 involving σ∗ and ρ∗, which imply that

m(h) = hw(z(h)) ⇐⇒ 1 − F (s) = (1 − 1/s)(1 −G(t(s))), (24)

and an analogous formula linking m̃(h) and w̃(z(h)). Equations (17) and (24) then yield

g(h) + hĝ(h) = 1, g̃(h) + hǧ(h) = 1, h ∈ U . (25)

For h ∈ U , the functions g(h), ĝ(h), g̃(h), and ǧ(h) are analytic [26] and have bounded h

derivatives of all orders [41]. An inductive argument applied to equation (25) yields

∂ng

∂hn
+ n

∂n−1ĝ

∂hn−1
+ h

∂nĝ

∂hn
= 0,

∂ng̃

∂hn
+ n

∂n−1ǧ

∂hn−1
+ h

∂nǧ

∂hn
= 0, n ≥ 1. (26)

When h ∈ U such that hi 6= 0, the complex representation of equation (26) is, for example,

∂ngr

∂hn
+ n

∂n−1ĝr

∂hn−1
+ hr

∂nĝr

∂hn
− hi

∂nĝi

∂hn
= 0,

∂ngi

∂hn
+ n

∂n−1ĝi

∂hn−1
+ hr

∂nĝi

∂hn
+ hi

∂nĝr

∂hn
= 0,

∂ngr

∂hn
= Re

∂ng

∂hn
,

∂ngi

∂hn
= Im

∂ng

∂hn
,

∂nĝr

∂hn
= Re

∂nĝ

∂hn
,

∂nĝi

∂hn
= Im

∂nĝ

∂hn
. (27)

The analog of the formulas in (27) involving g̃ and ǧ follows from the substitutions g 7→ g̃

and ĝ 7→ ǧ. The integral representations of equations (26) and (27) follow from Lemma IV.1

below. We focus on the measures φ and φ̂, as the analogous results involving φ̃ and φ̌ follow

by symmetry.

Lemma IV.1 Set Yi,j(h, y) = yi/(1 + hy)j. Then for all h ∈ U and i, j ∈ R satisfying

0 < i ≤ j − 1, we have Yi,j(h, y) ∈ L1(φ̂(dy)), and for 0 < i ≤ j, Yi,j(h, y) ∈ L1(φ(dy)).

Consequently ([17] Theorem 2.27), the Stieltjes functions g(h) and ĝ(h) may be repeatedly

differentiated under the integral sign, i.e. for all n = 0, 1, 2, . . . we have

∂ng(h)

∂hn
= (−1)nn!

∫ ∞

0

yndφ(y)

(1 + hy)n+1
,

∂nĝ(h)

∂hn
= (−1)nn!

∫ ∞

0

yndφ̂(y)

(1 + hy)n+1
. (28)
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Before we prove Lemma IV.1, we note that equations (26) and (28) imply that

∫ ∞

0

yndφ(y)

(1 + hy)n+1
=

∫ ∞

0

yn−1dφ̂(y)

(1 + hy)n
− h

∫ ∞

0

yndφ̂(y)

(1 + hy)n+1
, n ≥ 1, h ∈ U . (29)

Moreover, Lemma IV.1 and equation (29) yield the integral representations of (27) using,

for example,

(−1)n

n!

∂ng(h)

∂hn
=

∫ ∞

0

yndφ(y)

|1 + hy|2(n+1)
(1 + h̄y)n+1 =

n+1
∑

j=0

(

n+ 1

j

)

h̄j

∫ ∞

0

yn+jdφ(y)

|1 + hy|2(n+1)
, (30)

where h̄ denotes complex conjugation of the complex variable h.

Proof of Lemma IV.1: The supports of φ and φ̂ are Σφ = [S0, S ] and Σφ̂ = [Ŝ0, Ŝ ],

respectively, which are defined in terms of Σµ and Σα, respectively, directly below equation

(16). For every h ∈ U , it is clear that there exists real, strictly positive Sh such that

1 ≪ |h|Sh <∞. (31)

Set h ∈ U and 0 ≪ Sh <∞ satisfying equation (31), and write Σφ = [S0, Sh]∪(Sh, S ] and

Σφ = [Ŝ0, Sh]∪ (Sh, Ŝ ]. Equations (14) and (19) imply that 0 ≤ limh→0 |m(h)| = 1−φ0 < 1,

which implies that the mass φ0 of φ is uniformly bounded. Therefore for all h ∈ U ,

∫ Sh

S0

|Yi,j(h, y)|dφ(y) ≤
Si

h φ([S0, Sh])

|1 + hS0|j
<∞,

∫ Sh

Ŝ0

|Yi,j(h, y)|dφ(y) ≤
Si

h φ̂([Ŝ0, Sh])

|1 + hŜ0|j
<∞,

Here φ([S0, Sh]) is the bounded φ measure of the set [S0, Sh], and the boundedness of the

second formula follows from equations (16) and (17), showing that the φ̂ measure of the

compact interval [Ŝ0, Sh] is bounded. Specifically, in terms of Σα we have λ̂1 = 1−Ŝ0/(1+Ŝ0)

and λ̂h = 1 − Sh/(1 + Sh) > 0. Thus equations (16) and (17) imply that

φ̂([Ŝ0, Sh]) =

∫ Sh

Ŝ0

dφ̂(y) =

∫ Sh

Ŝ0

(1 + y)

[

−dα

(

1

1 + y

)]

=

∫ λ̂1

λ̂h

dα(λ)

λ
≤
α0

λ̂h

<∞.

If Σφ and Σφ̂ are compact intervals, we are done. Otherwise set S = Ŝ = ∞. In terms of

Σµ and Σα, we have λh = Sh/(1 + Sh) and λ1 = S/(1 + S) ≡ 1, and λ̂0 = 1− Ŝ/(1 + Ŝ) ≡ 0

and λ̂h = 1 − Sh/(1 + Sh), respectively, where 0 ≪ λh < 1 and 0 < λ̂h ≪ 1. When

0 < i ≤ j − 1, equations (17) and (31) imply that, for all h ∈ U ,

|h|j
∫ Ŝ

Sh

|Yi,j(h, y)|dφ̂(y) ∼

∫ Ŝ

Sh

1 + y

yj−i
dα

(

1

1 + y

)

=

∫ 1−λ̂0

1−λ̂h

(1 − λ)j−i−1 [−dα(1 − λ)]

λj−i

=

∫ λ̂h

λ̂0

λj−i−1 dα(λ)

(1 − λ)j−i
≤

λ̂j−i−1
h α0

(1 − λ̂h)j−i
<∞.
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When 0 < i ≤ j, equations (14), (17), and (31) imply that, for all h ∈ U ,

|h|j
∫ S

Sh

|Yi,j(h, y)|dφ(y) ∼

∫ λ1

λh

(1 − λ)j−i−1

λj−i
dµ(λ) ≤

(1 − λh)
j−i

λj−i
h

∫ 1

λh

dµ(λ)

1 − λ
<∞,

as 0 < F (1) =
∫ 1

0
dµ(λ)/(1 − λ) ≤ 1. This concludes the proof of Lemma IV.1 ✷.

All the equations given in this section display general formulas holding for two–component

stationary random media in the lattice and continuum settings [21]. In section V below,

we demonstrate that equations (24) and (25), and the Stieltjes-Perron Inversion Theorem

[30] allow us to construct measures ̺ and ˜̺, supported on the set {0, 1}, which link the

measures µ and α and the measures η and κ, respectively. The properties of ̺ and ˜̺ imply

that critical transitions in the transport properties of σ∗ and ρ∗ are due to the formation of

delta function components in the spectral measures µ, α, η, and κ at λ = 0, 1.

V. SPECTRAL CHARACTERIZATION OF CRITICALITY IN TRANSPORT

In this section we demonstrate that the integral representations of σ∗ and ρ∗ in (15) and

(17), and the Stieltjes–Perron inversion theorem [30] provide a precise spectral characteri-

zation of critical transport behavior in binary composite media. More specifically, we will

construct measures ̺ and ˜̺ which are supported on {0, 1} which link the measures µ and

α, and the measures η and κ, respectively. This result characterizes the critical behavior of

σ∗ and ρ∗ via the formation of delta components in these spectral measures at the spectral

endpoints.

The Stieltjes transforms of these measures completely determine the effective transport

properties of the medium. Conversely, given the Stieltjes transform of a measure, the

Stieltjes-Perron Inversion Theorem [30] allows one to recover the underlying measure, e.g.

µ(υ) = −
1

π
lim
ǫ↓0

ImF (υ + iǫ) , υ ∈ Σµ. (32)

To evoke this theorem directly, in equation (15) we define dα̃(λ) = [−dα(1−λ)] and dκ̃(λ) =

[−dκ(1 − λ)], and write G(t(s)) = −
∫ 1

0
dα̃(λ)/(s − λ) and H(t(s)) = −

∫ 1

0
dκ̃(λ)/(s − λ).

Setting s = υ + iǫ, equations (24) and (32) imply that

υµ(υ) = (1 − υ)[−α(1 − υ)] − υ̺(υ), ̺(υ) = lim
ǫ↓0

−ǫ/π

υ2 + ǫ2

∫ 1

0

(υ + λ− 1) dα(λ)

(υ + λ− 1)2 + ǫ2
, (33)

and an analogous formula involving a measure ˜̺ which links η and κ.
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We now demonstrate that equations (24), (25), and (33) explicitly determine the measures

̺ and ˜̺. The integral representations of equation (25) follow from equation (17), and are

given by
∫ ∞

0

dφ(y)

1 + hy
+ h

∫ ∞

0

dφ̂(y)

1 + hy
= 1,

∫ ∞

0

dφ̃(y)

1 + hy
+ h

∫ ∞

0

dφ̌(y)

1 + hy
= 1. (34)

Due to the underlying symmetries of this framework, without loss of generality, we hence-

forth focus on F (s;µ), G(t(s);α), g(h;φ), and ĝ(h; φ̂). We wish to re-express the first

formula in equation (34) in a more suggestive form by adding and subtracting the quantity

h
∫ ∞

0
y dφ(y)/(1 + hy). This is permissible if the modulus of this quantity is finite for all

h ∈ U [17, 41]. The affirmation of this fact is given by Lemma IV.1 and we may therefore

add and subtract it in equation (34), yielding

h

∫ ∞

0

dΦ0(y)

1 + hy
≡ 1 − φ0 = m(0), dΦ0(y) = dφ̂(y) − y dφ(y), h ∈ U , (35)

as 1 − φ0 = 1 − F (s)|s=1 = m(h)|h=0 (see equation (19)). Equation (35) provides another

representation for the quantity m(0) and shows that the transform h
∫ ∞

0
dΦ0(y)/(1 + hy) of

Φ0, a signed measure [41], is independent of h for all h ∈ U . Equation (17) and the identity

y = λ/(1 − λ) ⇐⇒ λ = y/(1 + y) relates this representation of m(0) to the measure ̺

defined in equation (33):

dΦ0(y) =
1

(1 − λ)2
((1 − λ) [−dα(1 − λ)] − λ dµ(λ)) =

λ d̺(λ)

(1 − λ)2
= y(1 + y) d̺

(

y

1 + y

)

.

We may now express equation (35) in terms of ̺(dλ) as follows:

m(0) = h

∫ ∞

0

dΦ0(y)

1 + hy
= h

∫ ∞

0

y(1 + y)d̺( y
1+y

)

1 + hy
=

∫ 1

0

λ d̺(λ)

(1 − λ)2/h+ λ(1 − λ)
. (36)

Remark V.1 Define the transform D(h; ̺) of the measure ̺ by

D(h; ̺) =

∫ 1

0

λ d̺(λ)

(1 − λ)2/h+ λ(1 − λ)
. (37)

Equations (14) and (36) show that D(h; ̺) has the following properties for all h ∈ U :

(1) D(h; ̺) is independent of h, (2) 0 ≤ |D(h; ̺)| < 1, and (3) D(h; ̺) = m(0) 6≡ 0.

Lemma V.1 Let the quantities m(0) = m(h)|h=0 = 1 − F (s)|s=1 and w(0) = w(z)|z=0 =

1 − G(t)|t=1 be defined as in equation (15), which satisfy 0 ≤ m(0), w(0) < 1. If D(h; ̺),

defined in equation (37), satisfies the properties of Remark V.1 for all h ∈ U , then

̺(dλ) = −w(0)δ0(dλ) +m(0)(1 − λ)δ1(dλ), (38)

where δλ0
(dλ) is the Dirac measure centered at λ0.
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Proof : The proof of the second formula in equation (38) follows directly from the proof of

the first formula in (38) and the underlying symmetries of this mathematical framework. Let

D(h; ̺), defined in equation (37), satisfy properties (1)–(3) of Remark V.1. The measure ̺

is independent of h [26]. If the support Σ̺ of the measure ̺ is over continuous spectrum [39]

then D(h; ̺) depends on h, contradicting property (1). Therefore the measure ̺ is defined

over pure point spectrum [39]. The most general pure point set Σ̺ which satisfies properties

(1) and (3) is given by Σ̺ = {0, 1}. This implies that the measure ̺ is of the form

̺(dλ) = W0(λ)δ0(dλ) +W1(λ)δ1(dλ),

where the Wj(λ), j = 0, 1, are bounded functions of λ ∈ [0, 1] which are to be determined. In

view of the numerator of the integrand in equation (37), we may assume that the function

W0(λ) ≡ W0(0) = W0 6≡ 0 is independent of λ. In order for properties (2) and (3) to

be satisfied we must have W1(λ) ∼ (1 − λ)1 as λ → 1 (any other power of 1 − λ would

contradict one of these two properties). Therefore without loss of generality, we may set

W1(λ) = w1 (1 − λ), where w1 is independent of λ. Property (3) now yields w1 = m(0).

We have shown that ̺(dλ) = W0 δ0(dλ) +m(0)(1 − λ)δ1(dλ), W0 6≡ 0. By plugging this

formula into equation (33) (λdµ(λ) = (1−λ)[−dα(1−λ)]−λd̺(λ) ), we are able determine

W0. Indeed using the definition of F (s) in (15), equation (24) (F (s) − (1 − 1/s)G(t(s)) =

1/s ), and (1 − λ)/(λ(s− λ)) = −(1 − 1/s)/(s− λ) + 1/(sλ), we find that

F (s) = −

(

1 −
1

s

)
∫ 1

0

[−dα(1 − λ)]

s− λ
+

1

s

∫ 1

0

[−dα(1 − λ)]

λ
−

∫ 1

0

d̺(λ)

s− λ
(39)

=

(

1 −
1

s

)

G(t(s)) +
1

s

∫ 1

0

dα(λ)

1 − λ
−
W0

s
−m(0) lim

λ→1

1 − λ

s− λ
, ∀ |s| > 1,

which implies that −W0 = 1 −
∫ 1

0
dα(λ)/(1 − λ) = w(0) ✷.

Corollary V.1 If we instead focus on the contrast variables z and t in lieu of h and s,

respectively, equations (33) and (38) become

υα(υ) = (1 − υ)[−µ(1 − υ)] − υ̺(υ), ̺(dλ) = −m(0)δ0(dλ) + w(0)(1− λ)δ1(dλ), (40)

It is worth mentioning that equation (29) can be written as
∫ ∞

0
dΦn−1(y)/(1+hy)n+1 ≡ 0,

for all n ≥ 1 and h ∈ U , in terms of the signed measure dΦn−1(y) = yn−1dΦ0(y). By Lemma

IV.1, this integral involving Φn−1(dy) is defined. Furthermore in equation (27) for n = 1,



16

equation (30) implies that
∫ ∞

0
dΦ1(y)/|1 + hy|4 ≡ 0, for all h ∈ U such that hi 6= 0. These

formulas are consistent with equation (38) of Lemma V.1.

Lemma V.1 and Corollary V.1 are the key results of this section. They provide a rigorous

justification, and a generalization of an analogous result found in [14] by heuristic means.

They demonstrate that λ = 1 is a removable simple singularity under µ, α, η, and κ, and

illustrate how the relations in (14), 0 < |F (s)|, |E(s)| ≤ 1, can hold even when s = 1 (h = 0)

and the spectra extends all the way to λ = 1. In Section VI, we discuss how these general

features relate to percolation models of binary composite media.

VI. SCALING LAWS FOR CRITICAL EXPONENTS OF TRANSPORT IN

LATTICE AND CONTINUUM PERCOLATION MODELS

We now formulate the problem of percolation–driven critical transitions in transport

exhibited by two–component conductive media. In modeling transport in such materials,

one often considers a two component random medium with component conductivities σ1

and σ2, in the volume fractions 1 − p and p. The medium may be continuous, like the

random checkerboard [7, 47] and Swiss cheese models [6, 29, 49], or discrete, like the RRN

[6, 13, 49]. In the simplest case of the 2–d square RRN [49, 50], the average cluster size of

the σ2 inclusions grows as p increases, and there is a critical volume fraction pc, 0 < pc < 1,

called the percolation threshold, where an infinite cluster of σ2 bonds first appears. In the

limit h = σ1/σ2 → 0, the system exhibits two types of critical behavior. First, as h → 0

(σ1 → 0 and 0 < |σ2| <∞), the effective complex conductivity σ∗(p, h) = σ2 m(p, h) and the

effective complex resistivity ρ∗(p, z) = σ−1
2 w̃(p, z(h)) undergo a conductor–insulator critical

transition [6]:

|σ∗(p, 0)| = 0, for p < pc, and 0 = |σ1| < |σ∗(p, 0)| < |σ2| <∞, for p > pc, (41)

lim
p→p+

c

|ρ∗(p, z(0))| = ∞, and 0 < |σ2|
−1 < |ρ∗(p, z(0))| < |σ1|

−1 = ∞, for p > pc.

Second, as h→ 0 (σ2 → ∞ and 0 < |σ1| <∞), the effective complex conductivity σ∗(p, z) =

σ1w(p, z(h)) and the effective complex resistivity ρ∗(p, h) = σ−1
1 m̃(p, h) undergo a conductor–
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superconductor critical transition [6]:

0 < |σ1| < |σ∗(p, z(0))| < |σ2| = ∞, for p < pc, and lim
p→p−c

|σ∗(p, z(0))| = ∞. (42)

0 = |σ2|
−1 < |ρ∗(p, 0)| < |σ1|

−1 <∞, for p < pc, and |ρ∗(p, 0)| = 0, for p > pc.

We will focus on the conductor–insulator critical transition of the effective complex con-

ductivity σ∗(p, h) = σ2m(p, h) and the conductor–superconductor critical transition of

the effective complex conductivity σ∗(p, z(h)) = σ1w(p, z(h)). It is clear from equations

(17), (41), (42) and that our results immediately generalize to ρ∗(p, h) = σ−1
1 m̃(p, h) and

ρ∗(p, z(h)) = σ−1
2 w̃(p, z(h)), respectively, with p 7→ 1 − p.

This critical behavior in transport is made more precise through the definition of critical

exponents. Recall that the existence of a critical exponent is determined by the existence

of a limit like that given in (4). In the static limit, h ∈ U ∩ R, as h → 0 the effective

conductivity σ∗(p, h) = σ2 m(p, h) exhibits critical behavior near the percolation threshold

σ∗(p, 0) ∼ (p − pc)
t, as p → p+

c . Here, the critical exponent t, not to be confused with the

contrast parameter, is believed to be universal for lattices, depending only on dimension [21].

At p = pc, σ
∗(pc, h) ∼ h1/δ as h→ 0. We assume the existence of the critical exponents t and

δ, as well as γ, defined via a conductive susceptibility χ(p, 0) = ∂m(p, 0)/∂h ∼ (p − pc)
−γ,

as p → p+
c . For p > pc, we assume that there is a gap θµ ∼ (p − pc)

∆ in the support of µ

around h = 0 or s = 1 which collapses as p→ p+
c , or that any spectrum in this region does

not affect power law behavior [21]. Consequently, for p > pc the support of φ is contained in

the interval [0, S(p)], with S(p) ∼ (p− pc)
−∆ as p→ p+

c . We demonstrated in (19) that the

moments φj of φ become singular as θµ → 0. We therefore assume the existence of critical

exponents γn such that φn(p) ∼ (p − pc)
−γn as p → p+

c , n ≥ 0. When h ∈ U such that

hi 6= 0, we also assume the existence of critical exponents tr, δr, ti and δi corresponding to

mr = Re(m) and mi = Im(m). In summary:

m(p, 0) ∼ (p− pc)
t, mr(p, 0) ∼ (p− pc)

tr , mi(p, 0) ∼ (p− pc)
ti , as p→ p+

c (43)

m(pc, h) ∼ h1/δ, mr(pc, h) ∼ |h|1/δr , mi(pc, h) ∼ |h|1/δi , as |h| → 0,

χ(p, 0) ∼ (p− pc)
−γ, φn ∼ (p− pc)

−γn , S(p) ∼ (p− pc)
−∆, as p→ p+

c .

We also assume the existence of critical exponents γ′, γ′n, and ∆′ associated with the left

hand limit p → p−c . The critical exponents γ, δ, ∆, and γn for transport are different from

those defined in section II for the Ising model in (3).
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In a similar way we define critical exponents for the conductor-superconductor system:

w(p, z(0)) ∼ (p− pc)
−s, wr(p, z(0)) ∼ (p− pc)

−sr , wi(p, z(0)) ∼ (p− pc)
−si, as p→ p−c

w(pc, z(h)) ∼ h−1/δ̂, wr(pc, z(h)) ∼ |h|−1/δ̂r , wi(pc, z(h)) ∼ |h|−1/δ̂i, as |h| → 0,

χ̂(p) ∼ (p− pc)
−γ̂′

, φ̂n ∼ (p− pc)
−γ̂′

n, Ŝ(p) ∼ (p− pc)
−∆̂′

, as p→ p−c ,

(44)

where s is the superconductor critical exponent, not to be confused with the contrast pa-

rameter. We also assume the existence of critical exponents γ̂, γ̂n, and ∆̂, associated with

the right hand limit p→ p+
c .

The key result of this section is the two–parameter scaling relations between the critical

exponents of the conductor–insulator system, defined in equations (43), and that of the

conductor–superconductor system, defined in equations (44). Moreover, Lemma V.1 shows

that measures µ and α, hence φ and φ̂ are related, and we therefore anticipate that these two

sets of critical exponents are also related. This is indeed the case and, assuming a symmetry

in the properties of µ and α, the resultant relationship between the critical exponents t and

s is in agreement with the seminal paper by A. L. Efros and B. I. Shklovskii [15]. These

results are summarized in Theorem VI.1 below.

Theorem VI.1 Let t, tr, ti, δ, δr, δi, γ, γn, ∆, γ′, γ′n, and ∆′ be defined as in equation

(43), and s, sr, si, δ̂, δ̂r, δ̂i, γ̂
′, γ̂′n, ∆̂′, γ̂, γ̂n, and ∆̂ be defined as in equation (44). Then

the following scaling relations hold:

1) γ1 = γ, γ′1 = γ′, γ̂1 = γ̂, and γ̂′1 = γ̂′. 2) γ′0 = 0, γ0 < 0, γ′n > 0 and γn >, n ≥ 1.

3) γ̂′n > 0 for n ≥ 0. 4) γ = γ̂0 and ∆ = ∆̂. 5) γ′ = γ̂′0 and ∆′ = ∆̂′.

6) γn = γ + ∆(n− 1) for n ≥ 1. 7) γ̂′n = γ̂′0 + ∆̂′n = γ̂′ + ∆̂′(n− 1) for n ≥ 0.

8) t = ∆ − γ. 9) s = γ̂′0 = γ̂′ − ∆̂′. 10) δ =
∆

∆ − γ
. 11) δ̂ =

∆̂′

γ̂′0
=

∆̂′

γ̂′ − ∆̂′
.

12) tr = ti = t. 13) sr = si = s. 14) δr = δi = δ . 15) δ̂r = δ̂i = δ̂.

16) If ∆ = ∆′ and γ = γ′, then t+ s = ∆ and 1/δ + 1/δ̂ = 1.

17) In general 1/δ + 1/δ̂ = 1, t/∆ + s/∆̂′ = 1, and ∆ = ∆̂′ ⇐⇒ γ = γ̂′0.

It is important to note that the scaling relations tr = ti = t and sr = si = s are a fundamental

identity, as these sets of critical exponents are defined in terms of m(p, 0) and w(p, z(0)),
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where h = 0 ∈ R. The relation 1/δ + 1/δ̂ = 1 is also a fundamental identity which follows

from equation (24) and the definition of these critical exponents. The calculation of these

scaling relations will serve as a consistency check of this mathematical framework.

Before we present the proof of Theorem VI.1, which is given in section VIB below, we

first demonstrate that the critical exponents of effective medium theory (EMT) satisfy the

critical exponent scaling relations therein. This verification is essential, as there exists a

binary composite medium which realizes the effective parameter of EMT [36]. Through our

exploration of EMT, we will uncover features which illuminate general features of critical

transport transitions exhibited by two phase random media. These features will be discussed

in detail in Section VIC.

A. Effective Medium Theory

An EMT for the effective parameter problem may be constructed from dilute limits [14].

The EMT approximation for σ∗ with percolation threshold pc is given by [14]

p
σ2 − σ∗

1 + pc (σ2/σ∗ − 1)
+ (1 − p)

σ1 − σ∗

1 + pc (σ1/σ∗ − 1)
= 0. (45)

Equation (45) leads to quadratic formulas involving m(p, h) = σ∗/σ2 and w(p, z(h)) = σ∗/σ1.

The quadratic equation demonstrates that the relation m(p, h) = hw(p, z(h)) in (24) is

exactly satisfied and that

m(p, h(s)) =
−b (s, p, pc) +

√

−ζ(s, p)

2s(1 − pc)
, ζ(λ, p) = −λ2 + 2(1 − ϕ)λ+ ν2 − (1 − ϕ)2, (46)

w(p, z(t)) =
−b (s, 1 − p, pc) +

√

−ζ(t, 1 − p)

2t(1 − pc)
, ζ(λ, 1 − p) = −λ2 + 2ϕλ+ ν2 − ϕ2,

where b(λ, p, pc) = (2pc − 1)λ + (1 − p − pc), ϕ = ϕ(p, pc) = p (1 − pc) + pc(1 − p), and

ν = ν(p, pc) = 2
√

p (1 − p) pc(1 − pc).

The spectral measures µ and α in (15) may be extracted from equation (46) using

the Stieltjes–Perron Inversion Theorem in (32). These measures are absolutely continu-

ous, i.e. there exist density functions such that µ(dλ) = µ(λ)dλ and α(dλ) = α(λ)dλ.

Direct calculation shows that, for p 6= pc, 1 − pc, these measures have gaps in the spec-

trum about λ = 0, 1: µ(λ) = 0 ⇐⇒ ζ(λ, p) ≤ 0 ⇐⇒ |λ − (1 − ϕ)| ≥ ν and

α(λ) = 0 ⇐⇒ ζ(λ, 1 − p) ≤ 0 ⇐⇒ |λ − ϕ| ≥ ν. The Stieltjes transformations of µ
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and α are given by

F (p, s) =

∫ 1−θ

λ0

√

ζ(λ, p)dλ

2π(1 − pc)λ(s− λ)
, G(p, t) =

∫ λ̂1

θ

√

ζ(λ, 1 − p) dλ

2π(1 − pc)λ(t− λ)
, (47)

where θ = θ(p, pc) = ϕ − ν and λ̂1 = 1 − λ0 = ϕ + ν define spectral gaps, which satisfy

limp→1−pc
λ0 = 0, limp→pc

θ = 0, and limp→1−pc
λ̂1 = 1.

Define a critical exponent ∆ for the spectral gap θ(p) ∼ |p − pc|
∆, as p → pc, in µ(dλ)

about λ = 1 and α(dλ) about λ = 0. Using the definition of a critical exponent in (4)

and L’Hôpital’s rule we have shown that ∆ = 2. Moreover λ0 = 1 − λ̂1 ∼ |p − (1 − pc)|
∆,

as p → 1 − pc, with the same critical exponent. The absolutely continuous nature of the

measures µ and α in EMT implies that critical indices are the same for p→ p+
c and p→ p−c .

Therefore the spectral symmetry properties in the hypothesis of Lemma VI.11 hold for EMT.

We have explicitly calculated the integrals in equation (47) for real and complex h using

the symbolic mathematics software Maple 15. Using the exact representation in (47) of

G(p, t(h)), as a function of 0 ≤ θ ≪ 1 and 0 ≤ |h| ≪ 1, we have calculated the critical

exponents s, δ̂, δ̂r, δ̂i, and γ̂n, for n = 0, 1, 2, . . . These results are in agreement with our

general theory. With h = 0 and 0 < θ ≪ 1, we found that w(p, z(0)) ∼ θ−1/2 which yields

s = ∆/2 = 1. When θ = 0 and 0 < h ≪ 1, one must split up the integration domain,

Σα ⊃ (0, h− ǫ) ∪ (h+ ǫ, λ̂1), and take the principal value of the integral as ǫ→ 0. Doing so

yields δ̂ = δ̂r = δ̂i = 2. As in our general theory, the values of the exponents are independent

of the path of h to zero. More specifically, these relations hold for 0 < |hr| = |ahi| ≪ 1 with

arbitrary a ∈ R, and for independent hr and hi satisfying 0 < |hr|, |hi| ≪ 1. The critical

exponents γ̂n associated with the moments φ̂n of the measure φ̂ satisfy our general relation

γ̂n = γ̂0 + ∆n with γ̂0 = ∆ = 2 so that γ̂n = ∆(n + 1).

Similarly, using the exact representation of F (p, h) in (47), as a function of 0 ≤ θ ≪ 1 and

0 ≤ |h| ≪ 1, we have calculated the critical exponents t, δ, δr, δi, and γn, for n = 0, 1, 2, . . .

These results are also in agreement with our general theory. In accordance with [14], we

obtain t = ∆/2 = 1, so that the relation s+ t = ∆ = 2 is satisfied. By direct calculation we

have obtained δ = δr = δi = 2. We have also obtained these values using m(p, h) = hw(p, h)

and the associated relations for complex h, mr = hrwr − hiwi and mi = hrwi + hiwr, with

δ̂ = δ̂r = δ̂i and 1/δ + 1/δ̂ = 1. The mass φ0(p) = F (p, 1) of the measure φ behaves

logarithmically as θ → 0, yielding γ0 = 0. The exponents of the higher moments satisfy our

general relation γn = γ0 + ∆n = γ + ∆(n− 1), or γn = ∆n, for n = 0, 1, 2, . . ..
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In summary, we have extended EMT to the complex quasi–static regime and shown that

the critical exponents of EMT exactly satisfy our scaling relations displayed in Theorem

VI.1. Moreover we have shown that, in EMT, the percolation threshold pc and 1 − pc

coincide with the collapse of gaps in the spectral measures about the spectral endpoints

λ = 0, 1. We will discuss this link between spectral gaps and the percolation threshold in

more detail in Section VIC.

B. Proof of Theorem VI.1

Baker’s critical theory characterizes phase transitions of a given system via the asymptotic

behavior of the underlying Stieltjes functions near a critical point. This powerful method

has been very successful for the Ising model, precisely characterizing the phase transition

(spontaneous magnetization) [2]. We will now show how this method may be adapted

to provide a detailed description of phase transitions in transport, exhibited by binary

composite media. Theorem VI.1 will be proven via a sequence of lemmas as we collect some

important properties of m(p, h), g(p, h), w(p, z(h)), and ĝ(p, h), and how they are related.

The following theorem characterizes Stieltjes functions (series of Stieltjes) [2].

Theorem VI.2 Let D(i, j) denote the determinant

D(i, j) =

∣

∣

∣

∣

∣

∣

∣

∣

∣

ξi ξi+1 · · · ξi+j

...
...

. . .
...

ξi+j ξi+j+1 · · · ξi+2j

∣

∣

∣

∣

∣

∣

∣

∣

∣

. (48)

The ξn form a series of Stieltjes if and only if D(i, j) ≥ 0 for all i, j = 0, 1, 2, . . .

Baker’s inequalities for the sequences γn and γ̂n of transport follow directly from Theorem

VI.2. For example, φn ∼ (p − pc)
−γn and Theorem VI.2 with φi = ξi, i = n, and j = 1,

imply that, for |p− pc| ≪ 1,

(p− pc)
−γn−γn+2 − (p− pc)

−2γn+1 ≥ 0 ⇐⇒ (p− pc)
−γn−γn+2+2γn+1 ≥ 1

⇐⇒ −γn − γn+2 + 2γn+1 ≤ 0 ⇐⇒ γn+1 − 2γn + γn−1 ≥ 0 . (49)

The sequence of inequalities in (49) are Baker’s inequalities for transport, corresponding

to m(p, h), and they imply that the sequence γn increases at least linearly with n. The
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symmetries in equations (17), (43), and (44) imply that Baker’s inequalities also hold for

the sequences γ′n, γ̂n, and γ̂′n.

The following lemma provides the asymptotic behavior of the h derivatives of g(p, h) and

ĝ(p, h), which will be used extensively in this section.

Lemma VI.1 Let 0 < |h| ≪ 1 and |p− pc| ≪ 1. Then the integrals in equation (28) have

the following asymptotics for n ≥ 0

∂ng(p, h)

∂hn
∼ φn,

∂nĝ(p, h)

∂hn
∼ φ̂n. (50)

Proof : The asymptotic behavior in equation (50) follows from equations (19), (20), (23),

Baker’s inequalities (49), and equation (17) (g(p, h) = sF (p, s) and ĝ(p, h) = −sG(p, t(s))).

These equations imply that, for cj , bj ∈ Z,

lim
h→0

∂ng(p, h)

∂hn
=

n
∑

j=0

cj lim
s→1

∂jF (p, s)

∂sj
∼ φn , lim

h→0

∂nĝ(p, h)

∂hn
=

n
∑

j=0

bj lim
s→1

∂jG(p, t(s))

∂tj
∼ φ̂n ✷.

Lemma VI.2 γ1 = γ, γ′1 = γ′, γ̂1 = γ̂, and γ̂′1 = γ̂′

Proof : Set 0 < p− pc ≪ 1. By equations (17) (g(p, h) = sF (p, s)), (20), (43), and (49)

(p− pc)
−γ ∼ χ(p, 0) =

∂m(p, 0)

∂h
= lim

s→1

[

−
∂F (p, s)

∂s

]

= φ0 + φ1 ∼ φ1 ∼ (p− pc)
−γ1 , (51)

hence γ1 = γ. Similarly for 0 < pc − p ≪ 1, we have γ′1 = γ′. By equation (51), the

symmetries between m and w given in (17), and the critical exponent definitions given in

(43) and (44), we also have γ̂1 = γ̂ and γ̂′1 = γ̂′ ✷.

Equation (24) is consistent with, and provides a link between equations (41) and (42).

We will see that the fundamental asymmetry between m(p, h) and w(p, z(h)) (γ′0 = 0 and

γ̂′0 > 0), given in Theorem VI.1.2-3, is a direct and essential consequence of equation (24),

and has deep and far reaching implications.

Lemma VI.3 Let the sequences γn and γ′n, n ≥ 0, be defined as in equation (43). Then

1) γ′0 = 0, γ0 < 0, γ′n > 0, and γn > 0, for n ≥ 1.

2) 0 < lim
h→0

〈χ1
~E · ~E0〉/E

2
0 < 1 for all p ∈ [0, 1], h ∈ U .

Proof : By equation (42) |w(p, z(0))| is bounded for all p < pc. Thus for all p < pc, equations

(20), (24), and (43) imply that

0 = lim
h→0

hw(p, z(h)) = lim
h→0

m(p, h) = lim
s→1

(1 − F (p, s)) = 1 − φ0(p) ∼ 1 − (pc − p)−γ′

0 ,
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where the rightmost relation holds for 0 < pc − p≪ 1 and the leftmost relation is consistent

with equation (41). Therefore, γ′0 = 0 and φ is a probability measure for all p < pc. The

strict positivity of the γ′n, for n ≥ 1, follows from Baker’s inequalities in (49). Thus, from

equation (51) we have

∞ = lim
p→p−c

φ1(p) = − lim
p→p−c

∂m(p, 0)

∂h
. (52)

For p > pc, equations (20) and (41) imply that 0 < limh→0 |m(p, h)| = 1 − φ0 < 1.

Therefore, (p − pc)
−γ0 ∼ φ0 < 1 for all 0 < p− pc ≪ 1, hence γ0 < 0. The strict positivity

of γ1 follows from equation (52), and the strict positivity of the γn for n ≥ 2 follows from

Baker’s inequalities (49). Equation (22) and the inequality 0 < limh→0 |m(p, h)| = 1−φ0 < 1

imply that 0 < limh→0〈χ1
~E · ~E0〉/E

2
0 < 1 for all p ∈ [0, 1] ✷.

Lemma VI.4 Let the sequence γ̂′n, n ≥ 0, be defined as in equation (44). Then

1) γ̂′n > 0 for all n ≥ 0.

2) lim
h→0

〈E2
f 〉 = ∞ for all p > pc .

Proof : By equation (41) we have 0 < limh→0 |m(p, h)| < 1, for all p > pc. Therefore

equation (24) implies that limh→0w(p, z(h)) = limh→0m(p, h)/h = ∞, for all p > pc, which

is consistent with equation (42). More specifically, for all p > pc, equations (24) and (41)

imply that 0 ≤ limh→0 |m(p, h)| = limh→0 |hw(p, z(h))| = L(p) < 1, where L(p) = 0 for all

p < pc. Therefore, by equation (17), we have

lim
h→0

|hw(p, z(h))| = lim
h→0

|h ĝ(p, h)| ∈ (0, 1), for all p > pc, (53)

lim
h→0

|hw(p, z(h))| = lim
h→0

|h ĝ(p, h)| = 0, for all p < pc .

By equations (23), (42), and (44) we have, for all p > pc,

∞ = lim
p→p−c

lim
h→0

w(p, z(h)) = lim
p→p−c

lim
s→1

(1 −G(p, t(s))) = 1 + lim
p→p−c

φ̂0(p) ∼ 1 + lim
p→p−c

(pc − p)−γ̂′

0 ,

hence γ̂′0 > 0. Baker’s inequalities then imply that γ̂′n > 0 for all n ≥ 0. Equations (22) and

(53), and γ̂′0 > 0 imply that limh→0〈E
2
f 〉 = ∞ for all p > pc ✷.

The asymptotic behavior of ĝ(p, h) in equation (50), and Lemma VI.4 motivates the

following fundamental homogenization assumption of this section [2]:
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Remark VI.1 Near the critical point (p, h) = (pc, 0), the asymptotic behavior of the Stieltjes

function ĝ(p, h) is determined primarily by the mass φ̂0(p) of the measure φ̂ and the rate of

collapse of the spectral gap θα.

By remark VI.1, and in light of Lemmas VI.2–VI.4, we make the following variable changes:

q̂ = y(pc − p)∆̂′

, Q̂(p) = Ŝ(p)(pc − p)∆̂′

, dπ̂(q̂) = (pc − p)γ̂′

0 dφ̂(y), (54)

q = y(p− pc)
∆, Q(p) = S(p)(p− pc)

∆, dπ(q) = (p− pc)
γ y dφ̂(y),

so that, by equations (43) and (44), Q̂(p), Q(p) ∼ 1 and the masses π̂0 and π0 of the measures

π̂ and π, respectively, satisfy π̂0, π0 ∼ 1 as p→ pc.

Equation (54) defines the following scaling functions Gn−1(x), Ĝn(x̂), Gn−1,j(x), and

Ĝn,j(x̂) as follows. For h ∈ U ∩ R, equations (28) and (54) imply, for n ≥ 0, that

∂ng

∂hn
∝ (p− pc)

−(γ+∆(n−1))Gn−1(x),
∂nĝ

∂hn
∝ (pc − p)−(γ̂′

0
+∆̂′n)Ĝn(x̂), (55)

Gn−1(x) =

∫ Q(p)

0

qn−1dπ(q)

(1 + xq)n+1
, Ĝn(x̂) =

∫ Q̂(p)

0

q̂ ndπ̂(q̂)

(1 + x̂q̂)n+1
,

x = h(p− pc)
−∆, 0 < p− pc ≪ 1, x̂ = h(pc − p)−∆̂′

, 0 < pc − p≪ 1.

Analogous formulas are defined for the opposite limits involving ∆̂, γ̂0, ∆′, and γ′.

For h ∈ U such that hi 6= 0, we define the scaling functions Rn−1(x), In−1(x), R̂n(x̂),

and În(x̂) as follows. Using equations (30) and (54) we have, for 0 < p− pc ≪ 1,

∂ng

∂hn
= (−1)nn!

n+1
∑

j=0

(

n+ 1

j

)

h̄j

∫ S(p)

0

yn+jdφ(y)

|1 + hy|2(n+1)
(56)

= (−1)nn!

n+1
∑

j=0

(

n+ 1

j

)

[x̄(p− pc)
∆]j(p− pc)

−(γ+∆(n−1+j))Gn−1,j(x)

= (−1)nn!(p− pc)
−(γ+∆(n−1))Kn−1(x), Kn−1(x) = Rn−1(x) + i In−1(x),

∂nĝ

∂hn
= (−1)nn!(p− pc)

−(γ̂0+∆̂n)K̂n(x̂), K̂n(x̂) = R̂n(x̂) + i În(x̂).

Here, x and x̂ are defined in equation (55) and

Gn−1,j(x) =

∫ Q(p)

0

qn−1+jdπ(q)

|1 + xq|2(n+1)
, Ĝn,j(x̂) =

∫ Q̂(p)

0

q̂ n+jdπ̂(q̂)

|1 + x̂q̂|2(n+1)
, (57)

Kn−1(x) =

n+1
∑

j=0

(

n+ 1

j

)

x̄ jGn−1,j(x), K̂n(x̂) =

n+1
∑

j=0

(

n+ 1

j

)

¯̂xjĜn,j(x̂),
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where we have made the definitions Rn−1(x) = Re(Kn−1(x)), In−1(x̂) = Im(Kn−1(x)),

R̂n(x̂) = Re(K̂n(x̂)), and În(x̂) = Im(K̂n(x̂)). Analogous formulas are defined for the

opposite limit, 0 < pc − p≪ 1, involving ∆̂′, γ̂′0, ∆′, and γ′.

From equation (18) we have, for h ∈ U , p ∈ [0, 1], and n ≥ 0,

Gn−1(x) > 0, Gn−1,j(x) > 0, Ĝn(x̂) > 0, Ĝn,j(x̂) > 0. (58)

By our gap hypothesis the h derivatives of g(p, h) and ĝ(p, h), of all orders, are bounded at

h = 0 for p > pc and p < pc , respectively. Therefore,

lim
h→0

Gn−1(x) <∞, lim
h→0

Gn−1,j(x) <∞, for all p > pc, n ≥ 0 (59)

lim
h→0

Ĝn(x̂) <∞, lim
h→0

Ĝn,j(x̂) <∞, for all p < pc, n ≥ 0.

Lemma VI.5 Let Ĝn(x̂), Gn−1(x), and the associated critical exponents be defined as in

equation (55), for p > pc. Then

1) Gn−1(x) ∼ 1 as x→ 0 (h→ 0 and 0 < p− pc ≪ 1) for all n ≥ 1.

2) [Ĝn−1(x̂) − x̂Ĝn(x̂)] ∼ 1 as x̂ → 0 (h→ 0 and 0 < p− pc ≪ 1) for all n ≥ 1.

3) γ = γ̂0 .

4) ∆ = ∆̂ .

Proof : Let h ∈ U ∩ R and p > pc. Equations (29), (55), (58), and (59) imply that we have,

for all n ≥ 1, 0 < p− pc ≪ 1, and 0 < h≪ 1,

(0,∞) ∋ (p− pc)
−(γ+∆(n−1))Gn−1(x) = (p− pc)

−(γ̂0+∆̂(n−1))[Ĝn−1(x̂) − x̂Ĝn(x̂)]. (60)

Equations (58) and (59) imply that Gn−1(x) ∼ 1 as x→ 0, for all n ≥ 1. Equation (60) then

implies that [Ĝn−1(x̂)− x̂Ĝn(x̂)] ∼ 1 as x̂→ 0, for all n ≥ 1 (a competition in sign between

two diverging terms). Or equivalently, generalizing equation (53), Ĝ0(x̂) − x̂nĜn(x̂) ∼ 1.

Therefore,

γ + ∆(n− 1) = γ̂0 + ∆̂(n− 1), n ≥ 1. (61)

Which in turn, implies that γ = γ̂0 and ∆ = ∆̂ ✷.
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Lemma VI.6 Let Ĝn(x̂), Gn−1(x), and the associated critical exponents be defined as in

equation (55), for p < pc. Then

1) [Ĝn−1(x̂) − x̂Ĝn(x̂)] ∼ 1 as x̂→ 0 (h→ 0 and 0 < pc − p≪ 1), for all n ≥ 1.

2) Gn−1(x) ∼ 1 as x→ 0 (h→ 0 and 0 < pc − p≪ 1, for all n ≥ 1.

3) γ′ = γ̂′0.

4) ∆′ = ∆̂′.

Proof : Let h ∈ U ∩ R and p < pc. Equations (29), (55), (58), and (59) imply that, for all

n ≥ 1, 0 < pc − p≪ 1, and 0 < h≪ 1,

(0,∞) ∋ (pc − p)−(γ̂′

0
+∆̂′(n−1))[Ĝn−1(x̂) − x̂Ĝn(x̂)] = (pc − p)−(γ′+∆′(n−1))Gn−1(x) (62)

Equations (58) and (59) imply that [Ĝn−1(x̂)− x̂Ĝn(x̂)] ∼ 1 as x̂→ 0 for all n ≥ 1. Equation

(62) then implies that Gn−1(x) ∼ 1 as x→ 0 for all n ≥ 1. Therefore,

γ′ + ∆′(n− 1) = γ̂′0 + ∆̂′(n− 1), n ≥ 1.

Which in turn, implies that γ′ = γ̂′0 and ∆′ = ∆̂′
✷.

Lemma VI.7 Let Ĝn(x̂), Gn−1(x), and the associated critical exponents be defined as in

equation (55). Then

1) γn = γ + ∆(n− 1), for all n ≥ 1.

2) γ̂′n = γ̂′0 + ∆̂′n = γ̂′ + ∆̂′(n− 1), for all n ≥ 0.

3) t = ∆ − γ.

4) s = γ̂′0 = γ̂′ − ∆̂′.

Proof : Let 0 < p− pc ≪ 1. By equations (43), (50), and (55), and Lemma VI.5 we have,

for all n ≥ 1,

(p− pc)
−γn ∼ φn ∼ lim

h→0

∂ng(p, h)

∂hn
∼ (p− pc)

−(γ+∆(n−1)) lim
x→0

Gn−1(x) ∼ (p− pc)
−(γ+∆(n−1)).

Therefore γn = γ + ∆(n − 1) for all n ≥ 1, with constant gap γi − γi−1 = ∆, which is

consistent with the absence of multifractal behavior for the bulk conductivity [49].
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Now let 0 < pc − p ≪ 1. By equations (44), (50), and (55), and Lemma VI.6 we have,

for all n ≥ 1,

(pc − p)−γ̂n ∼ φ̂n ∼ lim
h→0

∂nĝ(p, h)

∂hn
∝ (pc − p)−(γ̂′

0
+∆̂′n) lim

x̂→0
Ĝn(x̂) ∼ (pc − p)−(γ̂′

0
+∆̂′n).

Therefore, by Lemma VI.2, we have γ̂n = γ̂′0 + ∆̂′n = γ̂′ + ∆̂′(n − 1) for all n ≥ 0, with

constant gap γ̂′i − γ̂′i−1 = ∆̂, which is consistent with the absence of multifractal behavior

for the bulk conductivity [49].

Again let 0 < p− pc ≪ 1. Equations (17), (25), (43), (53), and (55) yield

(p− pc)
t ∼ lim

h→0
m(p, h) = 1 − lim

h→0
g(p, h) = lim

h→0
hĝ(p, h) = (p− pc)

∆̂−γ̂0 lim
x̂→0

x̂Ĝ0(x̂)

∼ (p− pc)
∆̂−γ̂0 . (63)

Therefore, by Lemma VI.5 we have t = ∆̂ − γ̂0 = ∆ − γ.

Finally let 0 < pc − p ≪ 1. By equations (17), (44), and (55), and Lemmas VI.4 and

VI.6, we have

(pc − p)−s ∼ lim
h→0

w(p, z(h)) ∼ lim
h→0

ĝ(p, h) = (pc − p)−γ̂′

0 lim
x̂→0

Ĝ0(x̂) ∼ (pc − p)−γ̂′

0.

Therefore, by Lemma VI.7.2, we have s = γ̂′0 = γ̂′ − ∆̂′
✷.

Lemma VI.8 Let Ĝn(x̂), Gn−1(x), and the associated critical exponents be defined as in

equation (55), for p > pc and p < pc. Then for all n ≥ 1

1) Gn−1(x) ∼ [Ĝn−1(x̂) − x̂Ĝn(x̂)] ∼ x−(γ+∆(n−1))/∆ , as x̂→ ∞ (p→ p+
c and 0 < h≪ 1) .

2) Gn−1(x) ∼ [Ĝn−1(x̂) − x̂Ĝn(x̂)] ∼ x−(γ′+∆′(n−1))/∆′

, as x→ ∞ (p→ p−c and 0 < h≪ 1) .

3) δ = ∆/(∆ − γ) .

4) δ̂ = ∆̂′/γ̂′0 = ∆̂′/(γ̂′ − ∆̂′) .

Proof : Let 0 < h ≪ 1, so that g(p, h) and ĝ(p, h) are analytic for all p ∈ [0, 1] [26]. The

analyticity of g(p, h) and ĝ(p, h) implies that all orders of h derivatives of these functions

are bounded as p → pc, from the left or the right. Therefore, equation (60) holds for

0 < p − pc ≪ 1, and equation (62) holds for 0 < pc − p ≪ 1. Moreover, in order to cancel

the diverging p dependent prefactors in equations (60) and (62) we must have, for all n ≥ 1,

Gn−1(x) ∼ x−(γ+∆(n−1))/∆ , [Ĝn−1(x̂) − x̂Ĝn(x̂)] ∼ x̂−(γ̂0+∆̂(n−1))/∆̂ , as p→ p+
c , (64)

Gn−1(x) ∼ x−(γ′+∆′(n−1))/∆′

, [Ĝn−1(x̂) − x̂Ĝn(x̂)] ∼ x̂−(γ̂′

0+∆̂′(n−1))/∆̂′

, as p→ p−c .
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Lemma VI.8.1 and VI.8.2 follow from equation (64) and Lemmas VI.5 and VI.6.

Now by equations (17), (24), (43), (55), and (64) for n = 1, we have

h1/δ ∼ lim
p→p+

c

m(p, h) = lim
p→p+

c

hw(p, z(h)) ∼ lim
p→p+

c

hĝ(p, h) = h lim
p→p+

c

(p− pc)
−γ̂0Ĝ0(x̂) (65)

∼ h(p− pc)
−γ̂0h−γ̂0/∆̂(p− pc)

−∆̂(−γ̂0/∆̂) = h(∆̂−γ̂0)/∆̂.

Therefore by Lemma VI.6, we have δ = ∆̂/(∆̂ − γ̂0) = ∆/(∆ − γ). Similarly by equations

(17), (44), (55), and (64) for n = 1, and Lemma VI.4, we have

h−1/δ̂ ∼ lim
p→p−c

w(p, z(h)) ∼ lim
p→p−c

ĝ(p, h) = lim
p→p−c

(p− pc)
−γ̂′

0Ĝ0(x̂) = h−γ̂′

0
/∆̂ ′

. (66)

Therefore, by Lemma VI.7 we have δ̂ = ∆̂′/γ̂′0 = ∆̂′/(γ̂′ − ∆̂′) ✷.

Lemma VI.9 Let h ∈ U such that hi 6= 0, and Ĝn,j(x̂), R̂n(x̂), În(x̂), and the associ-

ated critical exponents be defined as in equations (56) and (57) for p > pc and p < pc.

Furthermore, let sr, si, tr, and ti be defined as in equations (43) and (44). Then,

1) [Ĝ0,0(x̂) + x̂rĜ0,1(x̂)] ∼ x̂iĜ0,1(x̂) ∼ 1 as x̂→ 0 (h→ 0 and 0 < pc − p≪ 1) .

2) lim
x̂→0

[x̂rĜ0,0(x̂) + |x̂|2Ĝ0,1(x̂)] ∼ lim
x̂→0

[x̂iĜ0,0(x̂)] ∼ 1 for 0 < p− pc ≪ 1.

3) sr = si = γ̂′0 = s.

4) tr = ti = ∆ − γ = t.

Proof : Let 0 < pc − p ≪ 1, h ∈ U such that hi 6= 0, and 0 < |h| ≪ 1. By equations (56)

and (57), for n = 0, we have

ĝ(p, h) =

∫ Ŝ(p)

0

dφ̂(y)

|1 + hy|2
+ h̄

∫ Ŝ(p)

0

y dφ̂(y)

|1 + hy|2
= (pc − p)−γ̂′

0 [Ĝ0,0(x̂) + ¯̂xĜ0,1(x̂)], (67)

so that

ĝr = (pc − p)−γ̂′

0R̂0(x̂) = (pc − p)−γ̂′

0 [Ĝ0,0(x̂) + x̂rĜ0,1(x̂)] (68)

ĝi = (pc − p)−γ̂′

0 Î0(x̂) = −(pc − p)−γ̂′

0 x̂iĜ0,1(x̂).

Equations (53) and (58) imply that R̂0(x̂) ∼ Î0(x̂) ∼ 1 as x̂→ 0 (h→ 0 and 0 < pc−p≪ 1).

Therefore, equations (17), (44), (68) and Lemma VI.4 imply that

(pc − p)−sr ∼ wr(p, 0) ∼ ĝr(p, 0) ∼ (pc − p)−γ̂′

0 lim
x̂→0

R̂0(x̂) ∼ (pc − p)−γ̂′

0 , (69)

(pc − p)−si ∼ wi(p, 0) ∼ ĝi(p, 0) ∼ (pc − p)−γ̂′

0 lim
x̂→0

Î0(x̂) ∼ (pc − p)−γ̂′

0 .
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Equation (69) and Lemma VI.7 imply that sr = si = γ̂′0 = s.

Now let 0 < p − pc ≪ 1 with h as before. In equation (63) we demonstrated that

m(p, 0) = limh→0 hĝ(p, h). Therefore equation (68), for p > pc, implies that

mr(p, 0) ∼ lim
h→0

[hrĝr(p, h) − hiĝi(p, h)] = (p− pc)
∆̂−γ̂0 lim

x̂→0
[x̂rĜ0,0(x̂) + |x̂r|

2Ĝ0,1(x̂)]

mi(p, 0) ∼ lim
h→0

[hiĝr(p, h) + hrĝi(p, h)] = (p− pc)
∆̂−γ̂0 lim

x̂→0
[x̂iĜ0,0(x̂)] (70)

By equation (53) we have limx̂→0[x̂rĜ0,0(x̂) + |x̂|2Ĝ0,1(x̂)] ∼ limx̂→0[x̂iĜ0,0(x̂)] ∼ 1 for all

0 < p− pc ≪ 1. Therefore, equations (43) and (70) imply that

(p− pc)
tr ∼ mr(p, 0) ∼ (p− pc)

∆̂−γ̂0 , (p− pc)
ti ∼ mi(p, 0) ∼ (p− pc)

∆̂−γ̂0 . (71)

Equation (71) and Lemmas VI.5 and VI.7 imply that tr = ti = ∆̂ − γ̂0 = ∆ − γ = t ✷.

Lemma VI.10 Let h ∈ U such that hi 6= 0, and Ĝn,j(x̂), R̂n(x̂), În(x̂), and the associ-

ated critical exponents be defined as in equations (56) and (57) for p > pc and p < pc.

Furthermore, let δ̂r, δ̂i, δr, and δi be defined as in equations (43) and (44). Then,

1) R̂0(x̂) ∼ Î0(x̂) ∼ |x̂|−γ̂′

0
/∆̂′

, as x̂→ ∞ (p→ p−c and 0 < |h| ≪ 1).

2) [x̂rR̂0(x̂) − x̂iÎ0(x̂)] ∼ [x̂rÎ0(x̂) + x̂iR̂0(x̂)] ∼ |x̂|(∆̂−γ̂0)/∆̂, as x̂→ ∞.

3) δ̂r = δ̂i = ∆̂′/γ̂′0 = δ̂ .

4) δr = δi = ∆/(∆ − γ) = δ .

Proof : Let h ∈ U such that hi 6= 0 and 0 < |h| ≪ 1, so that g(p, h) and ĝ(p, h) are analytic

for all p ∈ [0, 1] [26]. Equations (17), (44), (68) and Lemma VI.4 imply that

|h|−1/δ̂r ∼ wr(pc, h) ∼ ĝr(pc, h) ∼ lim
p→p−c

(pc − p)−γ̂′

0R̂0(x̂), (72)

|h|−1/δ̂i ∼ wi(pc, h) ∼ ĝi(pc, h) ∼ lim
p→p−c

(pc − p)−γ̂′

0 Î0(x̂).

The analyticity of g(p, h) and ĝ(p, h) implies that they are bounded for all p ∈ [0, 1]. There-

fore, in order to cancel the diverging p dependent prefactors in equations (72), we must have

R̂0(x̂) ∼ Î0(x̂) ∼ |x|−γ̂′

0
/∆̂′

as x̂→ ∞ (p→ p−c and 0 < h≪ 1). Equation (72) then implies

|h|−1/δ̂r ∼ (pc − p)−γ̂′

0 |h|−γ̂′

0/∆̂′

(pc − p)−∆̂′(−γ̂′

0/∆̂′) = |h|−γ̂′

0/∆̂′

, |h|−1/δ̂i ∼ |h|−γ̂′

0/∆̂′

. (73)

Therefore, by Lemma VI.8, δ̂r = δ̂i = ∆̂′/γ̂′0 = δ̂. It’s worth mentioning that these scaling

relations are independent of the path of the limit h→ 0.
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Equations (17) and (24) imply that m(pc, h) ∼ limp→p+
c
hĝ(p, h), for 0 < |h| ≪ 1. There-

fore equations (43) and (70) implies that

|h|1/δr ∼ mr(pc, h) = (p− pc)
∆̂−γ̂0 lim

p→p+
c

[x̂rĜ0,0(x̂) + |x̂r|
2Ĝ0,1(x̂)], (74)

|h|1/δi ∼ mi(pc, h) = (p− pc)
∆̂−γ̂0 lim

p→p+
c

[x̂iĜ0,0(x̂)].

The analyticity of g(p, h) and ĝ(p, h) implies that they are bounded for all p ∈ [0, 1]. There-

fore, in order to cancel the diverging p dependent prefactors in equations (74), we must have

[x̂rĜ0,0(x̂) + |x̂r|
2Ĝ0,1(x̂)] ∼ x̂iĜ0,0(x̂) ∼ |x|(∆̂−γ̂0)/∆̂ as x̂ → ∞ (p → p+

c and 0 < h ≪ 1).

Therefore equation (74), and Lemmas VI.5 and VI.8 imply that δr = δi = ∆̂/(∆̂ − γ̂0) =

∆/(∆ − γ) = δ. As before, these scaling relations are independent of the path of the limit

h→ 0 ✷.

Lemma VI.11 The measure y dφ(y) has the symmetry property (∆ = ∆′ and γ = γ′) if

and only if the measure dφ̂(y) has the symmetry property (∆̂ = ∆̂′ and γ̂0 = γ̂′0). If either

measure has this symmetry, then

1) s+ t = ∆ . 2) 1/δ + 1/δ̂ = 1. 3) ∆ = ∆̂ = ∆′ = ∆̂′. 4) γ = γ′ = γ̂0 = γ̂′0.

Proof : We have shown in Lemmas VI.5 and VI.6 that γ = γ̂0, ∆ = ∆̂, γ′ = γ̂′0, and ∆′ = ∆̂′.

Therefore, it is clear that, (∆ = ∆′ and γ = γ′) ⇐⇒ (∆̂ = ∆̂′ and γ̂0 = γ̂′0). Assume that

either of the measures, dφ̂(y) or y dφ(y), has this symmetry. Thus, ∆ = ∆̂ = ∆̂′ = ∆′ and

γ = γ̂0 = γ̂′0 = γ′. By Lemma VI.7 we have t = ∆ − γ and s = γ̂′0, and by Lemma VI.8 we

have δ = ∆/(∆ − γ) and δ̂ = ∆̂′/γ̂′0. Therefore,

s+ t = γ̂′0 + ∆ − γ = γ̂0 + ∆ − γ = ∆ .

δ = ∆/(∆ − γ) = 1/(1 − γ/∆) = 1/(1 − γ̂0/∆̂) = 1/(1 − γ̂′0/∆̂
′) = 1/(1 − 1/δ̂) ✷.

As mentioned above, the scaling relations tr = ti = t and sr = si = s that we proved

in Lemma VI.9 are a fundamental identity, and serve as a consistency check of this mathe-

matical framework. Another consistency check was given in Lemma VI.11, where we proved

that 1/δ + 1/δ̂ = 1. This is also a fundamental identity which follows from the relation

in (24), m(p, h) = hw(p, z(h)), and the definition of these critical exponents in (43) and

(44): h1/δ ∼ m(pc, h) = hw(pc, h) ∼ hh−1/δ̂ ∼ h1−1/δ̂, for 0 < |h| ≪ 1. It follows that

the relation in (24) provides a partial converse to the assumption underlying Lemma VI.11.
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FIG. 1. The spectral function for the 2–d and 3–d square random resistor networks (RRN). In

the 2–d RRN (a)–(c), as the volume fraction p increases from left to right, the width of the

gaps in the spectrum near λ = 0, 1 shrink to 0 symmetrically with increasing connectedness as

p → pc = 1 − pc = 0.5. In (c) the effective medium theory (EMT) prediction of the the spectral

measure, which coincides with the exact duality prediction, is also displayed. In the 3–d RRN (d)–

(i), as p → pc ≈ 0.2488 the width of the gap near λ = 0 shrinks to 0, and as p → 1 − pc ≈ 0.7512

the width of the gap near λ = 1 shrinks to 0.

Indeed as 1/δ + 1/δ̂ = 1 in general, where δ = ∆/(∆ − γ) = ∆/t and δ̂ = ∆̂′/γ̂′0 = ∆̂′/s,

then 1 − γ/∆ = 1/δ = 1 − 1/δ̂ = 1 − γ̂′0/∆̂
′ implies that, in general,

t/∆ + s/∆̂′ = 1, and ∆ = ∆̂′ ⇐⇒ γ = γ̂′0. (75)

This concludes the proof of Theorem VI.1 ✷.
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C. Spectral Gaps and Critical Behavior of Transport

We now discuss the gaps θµ and θα in the spectral measures µ and α, respectively. As the

operators −Γ and Υ are projectors on the associated Hilbert spacesH× and C•, respectively,

their eigenvalues are confined to the set {0, 1} [39]. The associated operators Mj and Kj,

j = 1, 2 are positive definite compositions of projection operators, thus their eigenvalues are

confined to the set [0, 1] [19].

While in general, the spectrum actually extends all the way to the spectral endpoints

λ = 0, 1, the part close to λ = 0, 1 corresponds to very large, but very rare connected

regions (Lifshitz phenomenon). It is believed that this phenomenon gives exponentially

small contributions to the effective complex conductivity (resistivity), and does not affect

power law behavior thereof [21]. In [10] O. Bruno has proven the existence of spectral gaps

in matrix/particle systems with polygonal inclusions, and studied how the gaps vanish as the

inclusions touch (like p→ pc). In Figure 1 we give a graphical representation of the spectral

measure α for finite, square 2–d and 3–d RRN [25] (explained in more detail below). In the

2–d RRN, as p→ pc = 0.5 the gaps in the spectrum near λ = 0, 1 shrink to 0 symmetrically.

In the 3–d RRN, as p → pc ≈ 0.2488 the spectral gap near λ = 0 shrinks to 0, and as

p → 1 − pc ≈ 0.7512 the spectral gap near λ = 1 shrinks to 0. As p surpasses pc and

1 − pc the spectra pile up at λ = 0 and λ = 1, respectively, forming delta function–like

components in the measure. In Section VIA we showed that, for EMT, there are gaps in

the spectral measures µ and α for p 6= pc, 1 − pc. The gaps in µ and α about λ = 1 and

λ = 0, respectively, collapse as p → pc, and the gaps in µ and α about λ = 0 and λ = 1,

respectively, collapse as p→ 1 − pc.

This is precisely the behavior displayed in Lemma V.1 and Corollary V.1, which hold

for general percolation models of stationary two phase random media with m(0) = m(p, 0)

and w(0) = w(p, 0). In this way the spectral measures µ and α truly are independent

of the material contrast ratio, and are independent of how we define it. For example, we

have focused on the contrast ratio h = σ1/σ2 and defined an insulator–conductor system by

letting σ1 → 0, resulting in critical behavior (the formation of a delta component in µ at

λ = 1 with weight m(p, 0)) as p surpasses pc, where p = 〈χ2〉 (see Lemma V.1). We could

have instead focused on z = σ2/σ1 and defined an insulator–conductor system by letting

σ2 → 0, resulting in critical behavior (the formation of a delta component in α at λ = 1
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with weight w(p, 0)) as p surpasses 1−pc (see Corollary V.1). Lemma V.1 and Corollary V.1

demonstrate, through spectral means, the equivalence of these two systems. Moreover these

lemmas rigorously prove, for general percolation models of two phase stationary random

media in the lattice and continuum settings, that the onset of critical behavior in transport

is identified with the formation of delta function components in µ and α at λ = 0, 1 precisely

at p = pc and p = 1 − pc.

We now provide an analytical proof for the existence of spectral gaps in α about the

spectral endpoints λ = 0, 1 for arbitrary, finite lattice systems. More specifically, for p≪ 1,

inf Σα > 0 and sup Σα < 1. For lattice systems with a finite number n of lattice sites, the

differential equations in (7) become difference equations (Kirchoff’s laws) [20]. Consequently,

the operators Mj , j = 1, 2 are given by N × N matrices, say [20, 25]. We focus on M2 =

χ2(−Γ)χ2 and α, as our results extend to M1 = χ1(−Γ)χ1 and µ by symmetry.

In this lattice setting, −Γ is a real symmetric projection matrix and can therefore be

diagonalized: −Γ = QDQT , where D = diag(1,. . . ,1,0,. . . ,0) is a diagonal matrix of L ones

and N − L zeros along the principle diagonal, 0 < L < N when N ≫ 1, and Q is a real

orthogonal matrix with columns qi, i = 1, . . . , N , which are the eigenvector of −Γ. More

specifically,

−Γi,j = (~qi · ~qj)L

where (~qi · ~qj)L =
∑L

l=1(~qi)l(~qj)l, and (~qi)l is the lth component of the vector ~qi ∈ RN . Here,

we consider the non–degenerate case L < N .

The spectral measure α(dλ) of the matrix M2 is given by a sum of “Dirac δ functions,”

α(dλ) =

[

N
∑

j=1

mjδλj
(dλ)

]

dλ = α(λ)dλ, (76)

where δλj
(dλ) is the Dirac delta measure centered at λj, mj = 〈~e T

k [~vj~v
T

j ]~ek〉, ~ek is a N–

dimensional vector of ones, and λj and ~vj are the eigenvalues and eigenvectors of M2,

respectively [25]. In this matrix case, the associated Stieltjes transformation of the measure

α(dλ) in (15) is given by the sum G(t) =
∑n

j=1mj/(t − λj), and α(λ) in equation (76) is

called “the spectral function,” which is defined only pointwise on the set of eigenvalues {λj}.

In Figure 1 we give a graphical representation of the spectral measure for finite 2–d and 3–d

RRN. It displays linearly connected peaks of histograms with bin sizes on the order of 10−2.



34

The apparent smoothness of the spectral function graphs in this figure is due to the large

number (∼ 106) of eigenvalues and eigenvectors calculated, and ensemble averaged.

In the matrix case, the action of χ2 is given by that of a square diagonal matrix of zeros

and ones [25]. The action of χ2 in the matrix χ2(−Γ)χ2 introduces a row and column of zeros

in the matrix −Γ, corresponding to every diagonal entry of χ2 with value 0. When there is

only one σ2 inclusion (p = 1/n) located at the jth bond, χ2 has all zero entries except at

the jth diagonal: χ2 = diag(0, · · · , 0, 1, 0, · · · , 0) = diag(~vj). Therefore, the only non-trivial

eigenvalue is given by λ0 = (~qj ·~qj)L =
∑L

l=1(~qj)
2
l = 1−

∑N
l=L+1(~qj)

2
l , with eigenvector ~vj and

weight m0 = 1/n. This implies that there is a gap at λ = 0, θ0 =
∑L

l=1(~qj)
2
l > 0, and a gap

at λ = 1, θ1 =
∑N

l=L+1(~qj)
2
l > 0. It is clear that these bounds hold for all ω ∈ Ω such that

p = 1/n when L≫ 1. We have already mentioned that the eigenvalues of M1 are restricted

to the set {0, 1} when p = 1 (χ2 ≡ IN). Therefore, there exists 0 < p0 < 1 such that, for

all p ≥ p0, there exists a ω ∈ Ω such that θ0(ω) = 0 and/or θ1(ω) = 0. This concludes our

proof.

VII. CONCLUDING REMARKS

We have constructed a mathematical framework which unifies the critical theory of trans-

port for binary composite media, in continuum and lattice settings. We have focused on

critical transitions exhibited by the effective complex conductivity σ∗ = σ2m(h) = σ1w(z),

as the symmetries underlying this framework extend our results to that regarding the effec-

tive complex resistivity ρ∗ = σ−1
1 m̃(h) = σ−1

2 w̃(z). We have shown that critical transitions

in transport properties are, in general, characterized by the formation of delta function

components in the underlying spectral measures at the spectral endpoints. Moreover, for

percolation models, we have shown that the onset of the critical transition (the formation

of these delta components) occurs precisely at the percolation threshold pc and 1 − pc.

The mathematical transport properties of such systems, displayed in section III, hold

for general two–component stationary random media in lattice and continuum settings [26].

Moreover, the critical exponent scaling relations and the various transport properties, dis-

played in Lemmas VI.2–VI.11, hold for general percolation models regarding this class of

composite media [21]. This type of critical behavior has been studied before for the lattice

[6, 13, 15], and alternate methods have shown that ∆ = s + t, δ = (s + t)/t, and γ = s
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[21]. These are precisely the relations that we have shown to hold for general lattice and

continuum percolation models, under the symmetry condition of Lemma VI.11. There is no

apparent mathematical necessity for this spectral symmetry, in general. Although it leads

to the well known two dimensional duality relation s = t for the lattice [6, 13, 15].

As in EMT, our general scaling relations involving |h| are independent of the limiting path

as h→ 0. This represents an alternative to the results of other workers [6, 13, 15] who have

used heuristic scaling forms as a starting point. For our critical theory the starting point is

equation (15), which displays exact formulas for infinite systems [21]. We have verified the

validity of our framework using several consistency checks including the verification that our

relations are satisfied directly by the exponents of effective medium theory.
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