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An analytic continuation method for obtaining
rigorous bounds on the effective complex permittivity
ε∗ of polycrystalline composite materials is developed.
It is assumed that the composite consists of many
identical anisotropic crystals, each with a unique
orientation. The key step in obtaining the bounds
involves deriving an integral representation for
ε∗, which separates parameter information from
geometrical information. Forward bounds are then
found using knowledge of the single crystal permittivity
tensor and mean crystal orientation. Inverse bounds
are also developed, which recover information about
the mean crystal orientation from ε∗. We apply
the polycrystalline bounds to sea ice, a critical
component of the climate system. Different ice
types, which result from different growth conditions,
have different crystal orientation and size statistics.
These characteristics significantly influence the fluid
transport properties of sea ice, which control many
geophysical and biogeochemical processes important
to the climate and polar ecosystems. Using a two-
scale homogenization scheme, where the single crystal
tensor is numerically computed, forward bounds for
sea ice are obtained and are in excellent agreement
with columnar sea ice data. Further, the inverse
bounds are also applied to sea ice, helping to lay the
groundwork for determining ice type using remote
sensing techniques.
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1. Introduction
A polycrystalline composite material consists of many single crystals that can vary in shape,
size, and orientation. A broad range of manufactured and naturally occurring materials are
polycrystalline, including metals, ceramics, rocks, glacial ice, and sea ice. Here we consider
the electromagnetic behavior of polycrystalline media when the wavelength is much larger
than the scale of the underlying microstructure of the composite. When in this regime, the
quasistatic approximation is valid, and the electric and displacement fields can be viewed at time-
independent fields. Then the polycrystalline composite can be characterized electromagnetically
via the effective complex permittivity tensor ε∗.

The macroscopic permittivity or dielectric tensor ε∗ of a polycrystalline composite depends
directly on its microstructural properties, such as the complex permittivity tensor of the
individual crystals and their microstructural geometry, i.e., how the crystals are oriented. Due
to the complicated nature of the microstructure, explicitly calculating ε∗ is highly non-trivial, and
can generally only be accomplished if the exact microstructure is known and with the assistance
of very powerful numerical computations. Therefore, using partial microstructural information
that may be available to estimate or bound ε∗ is a very practical and useful approach.

There has been extensive work in the past on estimating and bounding ε∗ for composite
materials. The books by Cherkaev [1] and Milton [2] thoroughly discuss much of this work. In
particular, ε∗ has been intensively studied for two phase composites. Rigorous bounds were
first obtained in the early 1980’s using the analytic continuation method, where the effective
parameter is treated as an analytic function of the ratio of the component parameters [3–6]. These
bounds assume that the complex permittivity of each component is known and that there is some
partial information available about the microstructure. The most general bounds assume only
knowledge of the relative volume fractions of each material, resulting in the complex versions
of the classical arithmetic and harmonic mean bounds for a two-component material. Tighter
bounds can be found when more geometrical information is available, such as knowing the that
microstructure is isotropic [7], or that the composite has a matrix–particle structure [8,9], etc.

Additionally, the electromagnetic response of a composite material can be used to help
determine microstructural properties when approached as an inverse problem. That is, given
information on ε∗, different microstructural details can be resolved, such as the relative volume
fractions of each component of the material. This has also been extensively investigated for a two-
component composite [10–21], and computational approaches [15,16,18–20] as well as analytic
inverse bounds for geometric parameters [12–14] have been developed.

For some composite structures, it is more appropriate to assume that the material consists of
many identical anisotropic pieces that are oriented in different directions. This is the case for a
polycrystalline composite. Polycrystalline materials have been studied for decades [1,2,22–30],
and in particular, there has been a significant amount of work done on bounding the (real)
effective conductivity. The books by Cherkaev [1] and Milton [2] discuss the majority of this work.

Here we develop an analytic continuation method for obtaining complex bounds on ε∗

for a three-dimensional (transversely isotropic, or uniaxial) polycrystalline composite material.
The key step in obtaining the bounds involves deriving an integral representation for the
effective complex permittivity tensor, which separates parameter information from geometrical
information. By making an assumption about the complex permittivity tensor of each individual
crystal and assuming some knowledge about the mean single crystal orientation, we obtain
first order polycrystalline bounds on ε∗ for the entire polycrystal. If we further assume the
polycrystalline material has the “polycrystalline Hashin-Shtrikman condition" [2], which is
essentially geometric isotropy, second order forward bounds are constructed. Further, we use an
inverse analytic bounds method [12–14], and derive inverse bounds for the mean orientation of
crystals in the polycrystalline composite. Thus, knowing ε∗ and the complex permittivity tensor
of an individual crystal, we bound the mean single crystal orientation.
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As a demonstration of the complex polycrystalline bounds, we compare them to sea ice data.
Investigating the electromagnetic behavior of sea ice is not only interesting from a composite
material point of view, but also because of the valuable information that can be recovered using
remote sensing techniques, such as sea ice thickness and fluid transport properties. Sea ice covers
between 7-10% of the earth’s ocean surface and is both an indicator and agent of climate change
[31–33]. Since the 1980’s there has been a steady decline in Arctic summer sea ice extent, with a
much more rapid decline over the past decade [34]. During the winter months in the Arctic and
Antarctic, the extensive sea ice packs serve as the boundary layer which mediates the exchange
of heat, moisture, and momentum between the atmosphere and ocean [32,35]. The vast expanses
of sea ice also serve as a habitat for rich microbial communities living in the brine microstructure
of porous sea ice [32,36,37]. In turn, these microbial communities are primary providers for the
complex food webs in the polar oceans.

Due to the global nature of monitoring the earth’s sea ice packs, large scale information is
usually obtained via remote sensing from platforms on satellites, aircraft and ships [17,38–41].
One of the grand challenges of sea ice remote sensing is to accurately recover the thickness
distribution of the pack. Assessing the impact of climate change on the polar regions involves
monitoring not only the ice extent, but the ice volume, which requires knowledge of ice thickness.
Recently there has been increasing interest in using low frequency electromagnetic induction
devices to estimate sea ice thickness [42]. In addition to assessing ice thickness, remotely
monitoring the fluid transport properties of sea ice is of increasing interest because of the broad
range of geophysical and biological processes it mediates in the polar marine environment. For
example, the evolution of melt ponds and summer ice albedo is constrained by drainage through
porous sea ice [43], where ice-albedo feedback is believed to play a key role in the decline of
summer Arctic sea ice [34]. Fluid flow also facilitates snow-ice formation [44], the evolution of the
salt budget [32], convection-enhanced thermal transport [45], CO2 exchange [46], and biomass
build-up sustained by nutrient fluxes [32,36]. In a recent study [47], we found evidence that
different ice microstructures, such as columnar versus granular, can dramatically change the fluid
transport properties of sea ice. Thus, determining ice type using remote sensing techniques may
be a particularly useful application.

There has been considerable work in the past on estimating and bounding ε∗ for sea
ice, particularly in the microwave region [9,14,40,48–56]. The rigorous two-component bounds
mentioned above have successfully been used to bound ε∗ for sea ice [9,14,53–56]. These bounds
assume that sea ice is a two-component material, consisting of a pure ice and brine phase. The
forward bounds recover information on ε∗ using information about the microstructure, such as
brine volume fractions or porosity φ (and sometimes further assuming statistical isotropy), while
the inverse bounds attempt to recover φ from ε∗.

Here we apply the first order forward polycrystalline bounds to sea ice. We see a dramatic
improvement over the classic two-component bounds, because these new bounds include
additional information about single crystal orientations. Here we use the data set presented
in [51] to compare the polycrystalline bounds to sea ice. This data set is the same one used
in [9,14,53], thus helping provide some continuity between different types of bounds. In addition
to providing ε∗ and φ measurements, the data set provides detailed crystallographic data, which
will be critical when in applying the bounds. Notationally, we will reserve R1 and R2 to indicate
the previously reported two-component forward bounds and use R3 and R4 to describe the
new polycrystalline forward bounds. The single crystal complex permittivity tensor is obtained
by numerical simulation using X-ray CT data on sea ice, along with with known brine volume
fractions and ice and brine permittivities. Further, the inverse method that we develop is applied
to sea ice and we obtain bounds on the mean single crystal orientation. Columnar and granular
microstructures (see Figure 1) have different mean single crystal orientations [57], thus this
inverse approach helps lay the groundwork for determining ice type when using remote sensing
techniques.
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2. Forward Bounds on the Effective Complex Permittivity of a
Polycrystalline Material

Consider the constitutive relation D(x, ω) = ε(x, ω)E(x, ω), where D(x, ω) and E(x, ω) are
stationary random displacement and electric fields and ε(x, ω) is the permittivity tensor of
some medium. Here x∈Rd and ω ∈Ω, where d is the spatial dimension and Ω is the set of
all realizations of the random medium. Let us consider a polycrystalline material, where each
crystal has the same complex permittivity tensor but with different orientation. Thus, we let
ε(x, ω) = B−1(x, ω)εdB(x, ω), where B(x, ω) is a rotation matrix describing the orientation of a
crystal at location x and realization ω, and εd is the same permittivity tensor for each crystal and
can be written

εd =

ε1 0 0

0 ε2 0

0 0 ε2

 .
Here, we are assuming that each crystal has the same permittivity value ε2 in both horizontal

directions (transversely isotropic or uniaxial) with anisotropy occurring in the vertical direction
with permittivity value ε1. It is assumed that ε1 and ε2 can take complex values. Then making
the assumptions that we are in the quasistatic regime and there is no free charge, we can write
∇× E(x, ω) = 0 and ∇ ·D(x, ω) = 0. Now, letting 〈·〉 represent an ensemble average over Ω or a
spatial average over all of Rd, we then write 〈E(x, ω)〉= ek, where ek is a unit vector in the kth
direction for some k= 1, .., d. For notational simplicity, we write E(x, ω) = E and D(x, ω) = D. The
effective complex permittivity tensor is then defined via

〈D〉= ε∗〈E〉. (2.1)

From this we can write [ε∗]kk = eTk ε
∗ek = 〈eTk εE〉 and then define ε∗ = [ε∗]kk. This allows us

to strictly examine the kkth component of the effective permittivity tensor and simplifies the
notation. Thus, we can rewrite the equation as ε∗ = 〈eTk B−1εdBE〉. Due to the homogeneity of
the effective parameters ε∗(λε1, λε2) = λε∗(ε1, ε2), ε∗ only depends on the ratio h= ε1/ε2 and we
define m(h) = ε∗/ε2. Therefore, we have the equation

m(h) =
ε∗

ε2
= 〈eTk B−1

h 0 0

0 1 0

0 0 1

BE〉.

Notice that this is equivalent to

m(h) = 〈eTk (I− (1− h)B−1CB)E〉

where C = e1(e1)T , I is a 3x3 identity matrix, and e1 is a unit vector in the first direction [2,29]. To
simplify the notation, we define R = B−1CB, and can then write m(h) = 〈eTk (I− (1− h)R)E〉.

The two main properties of m(h) are that it is analytic off (−∞, 0] in the h-plane, and that it
maps the upper half plane to the upper half plane [3,6], so that it is an example of a Herglotz or
Stieltjes function. The key step for obtaining forward bounds is to use an analytic continuation
method which involves obtaining an integral representation for ε∗. If we let s= 1/(1− h), then
we can define

F (s) = 1−m(h) = 1− ε∗/ε2 = 〈(s−1eTk R)E〉.

From here, we must now obtain a resolvent representation for E, which will allow us to find an
integral representation for F (s).

To find the resolvent representation of E, first examine ∇ ·D = 0, which implies that ∇ · εE =

0. Then, let G be a vector representing the mean fluctuations in the electric field and call E =

ek + G. Expand ε and E using the previous definitions and formulate the equation
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∇ · (I− s−1R)(ek + G) = 0, (2.2)

where I is again a 3x3 identity matrix. After multiple algebraic manipulations, one can obtain the
equation

sG +∇(−∆)−1∇ · (RE) = 0. (2.3)

Now, define the operator ∇(−∆)−1∇·=Γ , which is the same gamma in [6,16,53,54,56], and find
the resolvent representation for E to be

E = s[sI + ΓR]−1ek. (2.4)

Using this resolvent representation to express F (s), one finds the equation

F (s) = 〈eTk R(sI + ΓR]−1ek〉. (2.5)

Using the spectral representation theorem F (s) takes the particularly nice form

F (s) =

∫1
0

dµ(z)

s− z , (2.6)

where the positive measure µ on [0, 1] is the spectral measure of the self-adjoint operator ΓR. F (s)

is also analytic off [0, 1] in the s-plane, which is the only restriction for this integral representation.
All of the geometrical information is now contained inside of µ and all of the parameter
information is contained in s, including the electromagnetic wave frequency. Expanding F(s), we
find

F (s) = 〈eTk Rek〉/s+ 〈eTk RΓRek〉/s2 + ..., (2.7)

F (s) = µ0/s+ µ1/s
2 + ... . (2.8)

Thus, statistical assumptions about the geometry that are incorporated into µ via its moments
µn =

∫1
0 z

ndµ(z), can be calculated from the correlation functions of the random medium, with
µn = (−1)n〈eTk R[(ΓR)nek]〉. For the complex elementary bounds it is assumed that we know
only µ0 = 〈eTk Rek〉. This quantity can be easily and quickly calculated provided we know the
dimension of the composite and crystal orientation statistics. A calculation of this will be done
when the bounds are compared to actual sea ice data in section 4. The statistical average 〈eTk Rek〉
can be thought of as the “mean orientation,” or as the percentage of the single crystals in the kth
direction.

Bounds on ε∗, or F (s), are obtained by fixing s in (2.6), varying over admissible measures
µ (or admissible geometries), such as those that satisfy only µ0 = 〈eTk Rek〉, and finding the
corresponding range of values of F (s) in the complex plane [6]. The bound R3 assumes only that
the mean crystal orientation 〈eTk Rek〉 of the single crystals is known, with µ0 = 〈eTk Rek〉 satisfied.
In this case, the admissible set of measures form a compact, convex setM0. Since (2.6) is a linear
functional of µ, the extreme values of F are attained by extreme points ofM0, which are the Dirac
point measures 〈eTk Rek〉δz . The values of ε∗ lie inside the regionR3 bounded by circular arcs, one
of which is parameterized in the F–plane by

C3(z) =
〈eTk Rek〉
s− z , −∞≤ z ≤∞. (2.9)

To display the other arc, we use the auxiliary function [3,58]E(s) = 1− ε1/ε∗, which is a Herglotz
function like F (s), analytic off [0, 1]. Then in the E–plane, we can parameterize the other circular
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boundary of R3 by

Ĉ3(z) =
1− 〈eTk Rek〉

s− z , −∞≤ z ≤∞. (2.10)

In the common ε∗–plane,R3 takes the following form for the “lower” and “upper” bounds, which
are still circular arcs, ε∗l and ε∗u, respectively.

ε∗u(z) = ε2 − ε2

(
〈eTk Rek〉
s− z

)
, −∞≤ z ≤∞. (2.11)

ε∗l (z) = ε1

(
1− 1− 〈eTk Rek〉

s− z

)−1

, −∞≤ z ≤∞. (2.12)

When ε1 and ε2 are real and positive, the bounds collapse to the interval

1/(〈eTk Rek〉/ε1 + (1− 〈eTk Rek〉)/ε2 ≤ ε∗ ≤ 〈eTk Rek〉ε1 + (1− 〈eTk Rek〉)ε2.

These are the analogous arithmetic (upper) and harmonic (lower) mean bounds for a
polycrystalline material in the single direction k.

To obtain second order complex bounds further assumptions need to be made. For instance,
if the polycrystalline composite is assumed to have the “polycrystalline Hashin-Shtrikman
condition” [2] or essentially geometric isotropy, then µ1 =−〈eTk RΓRek〉= (d− 1)/d3, where d
is the dimension of the polycrystalline composite. In two dimensions, we define a polycrystalline
material to be geometrically isotropic if for every crystal in the polycrystalline composite with
orientation off the vertical direction described by the normalized vector <x, y >, there exist three
other crystals that have orientations <x,−y >, < y, x >, and < y,−x>. A similar definition can
be made for three dimensions, where groups of 24 crystals are needed instead of groups of four.
(Note: Several special examples in two dimensions where only groups of two are required include
polycrystalline materials where all the single crystals are vertically and horizontally aligned or all
the single crystals have an orientation angle of +π/4 radians or +45 degrees off the vertical
axis. In a similar fashion, if all the single crystals are vertically or horizontally aligned in three
dimensions, only groups of three crystals are required.)

Here we show the derivation for the value of µ1 =−〈eTk RΓRek〉 for two dimensions. (An
analogous argument can be demonstrated for three dimensions.) Recall that Γ =∇(−∆)−1∇·
and define (−∆)−1 in terms of a Green’s function so that ((−∆)−1f)(x) =

∫
U g(x, y)f(y)dy,

where ∆g(x) =−δy(x) and U is a translationally invariant domain. Therefore, we can write

µ1 = 〈eTk R∇
∫
U
g(x, y)∇ · Rekdy〉, (2.13)

where in two dimensions R takes the form

R =

[
cos2(θ) −cos(θ)sin(θ)

−cos(θ)sin(θ) sin2(θ)

]
=

[
a −b
−b c

]
,

where for notation simplicity define a= cos2(θ), −b=−cos(θ)sin(θ), and c= sin2(θ), where θ
is the angle of orientation off the vertical axis. Define R̃ = R− I(〈eT1 Re1〉, 〈eT2 Re2〉)T , which is
translationally invariant, and then under the divergence theorem we can write

µ1 = 〈−eTk R∇
∫
U
(∇g(x, y)) · Rekdy

−eTk R∇
∫
U
(∇g(x, y)) · I(〈eT1 Re1〉, 〈eT2 Re2〉)T ekdy

+eTk R∇
∫
∂U

(g(x, y)R̃ek) · ndA〉,

(2.14)

where ∂U is the boundary of domain U.
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Again for simplicity, let us consider the terms separately. The intent here is to find crystal
orientation combinations so that the Laplacian operator is recovered, and together with g(x, y)

we obtain a delta function inside the integral, or for the term to become zero. Examining the first
term, analyzing the first direction (k= 1), and using the notation Dx =d/dx, we see that

− eT1 R∇
∫
U
(∇g(x, y)) · Re1dy=

∫
U
(a2Dxx − 2abDxy + b2Dyy)g(x, y)dy. (2.15)

A similar result is found when examining the second direction,

− eT2 R∇
∫
U
(∇g(x, y)) · Re2dy=

∫
U
(b2Dxx − 2bcDxy + c2Dyy)g(x, y)dy. (2.16)

Together, these describe the vertical and horizontal components of a single crystal inside a
statistical average. If we now impose the condition that the vertical and horizontal components
have the same statistical average for a single crystal, we observe that

〈−eTk R∇
∫
U
(∇g(x, y)) · Rekdy〉= 1/d〈

∫
U
[(a2 + b2)Dxx − 2(ab+ bc)Dxy + (b2 + c2)Dyy]g(x, y)dy〉.

(2.17)
Thus, for the term [(a2 + b2)Dxx − 2(ab+ bc)Dxy + (b2 + c2)Dyy] to become the Laplacian
operator, a2 = c2 and b= 0. This is equivalent to every crystal in the polycrystalline material
having either perfect vertical or horizontal rotations with an equal amount of crystals in the
vertical direction and horizontal direction. Therefore, 〈−eTkR∇

∫
U(∇g(x, y)) ·Rekdy〉= 1/d2.

This same line of reasoning can be expanded into a geometrically isotropic polycrystalline
material. That is, let us now consider “groups” of four single crystals under the statistical average.
If four crystals are examined at once, the condition for recovering the Laplacian operator becomes

(a21 + a22 + a23 + a24 + b21 + b22 + b23 + b24)Dxx

−2(a1b1 + a2b2 + a43b3 + a4b4 + b1c1 + b2c2 + b3c3 + b4c4)Dxy

+(b21 + b22 + b23 + b24 + c21 + c22 + c23 + c24)Dyy = q(Dxx +Dyy),

(2.18)

where q is some constant. Thus, a21 + a22 + a23 + a24 = c21 + c22 + c23 + c24 and a1b1 + a2b2 + a43b3 +

a4b4 + b1c1 + b2c2 + b3c3 + b4c4 = 0. These conditions are satisfied provided that the orientation
off the vertical directions for the four crystals, in terms of normalized vectors are <x, y >, <
x,−y >, < y,−x>, and < y, x >. Conveniently, for these four specific crystals, q takes the value
of q= 1/d. Therefore, the same result holds for the statistical average as before and we see that

〈−eTk R∇
∫
U
(∇g(x, y)) · Rekdy〉= 1/d2. (2.19)

Now consider the second term from equation 2.14, which is
−eTk R∇

∫
U(∇g(x, y)) · I(〈eT1 Re1〉, 〈eT2 Re2〉)T ekdy. Similar to the technique applied above, if we

consider a group of four crystals and examine the vertical and horizontal components (i.e., k=
1, 2), then over the statistical average

〈−eTk R∇
∫
U
(∇g(x, y)) · I(〈eT1 Re1〉, 〈eT2 Re2〉)T ekdy〉

= 1/d(〈eT1 Re1〉〈
∫
U
[(a1 + a2 + a3 + a4)Dxx − (b1 + b2 + b3 + b4)Dxy]g(x, y)dy〉

+〈eT2 Re2〉〈
∫
U
[(c1 + c2 + c3 + c4)Dyy − (b1 + b2 + b3 + b4)Dxy]g(x, y)dy〉.

(2.20)

If geometric isotropy as defined above is assumed, then 〈eT1 Re1〉= 〈eT2 Re2〉, a1 + a2 + a3 +

a4 = c1 + c2 + c3 + c4, and b1 + b2 + b3 + b4 = 0. Therefore, the second term also introduces a
Laplacian operator and we see that
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〈−eTk R∇
∫
U
(∇g(x, y)) · I(〈eT1 Re1〉, 〈eT2 Re2〉)T ekdy〉= (1/d)(1/d)(1/d). (2.21)

Finally, consider the third term from equation 2.14, which is eTk R∇
∫
∂U(g(x, y)R̃ek) · ndA.

Here, we see that if we consider the same group of four crystals as above that are geometrically
isotropic, and under the statistical average,

〈eTk R∇
∫
∂U

(g(x, y)R̃ek) · ndA〉

= (1/d)(〈
∫
∂U

[(a21 + a22 + a23 + a24 + b21 + b22 + b23 + b24)Dx

+(−a1b1 − a2b2 − a3b3 − a4b4 − b1c1 − b2c2 − b3c3 − b4c4)Dy,

(−a1b1 − a2b2 − a3b3 − a4b4 − b1c1 − b2c2 − b3c3 − b4c4)Dx

+(c21 + c22 + c23 + c24 + b21 + b22 + b23 + b24)Dy]
T · ndA

−
∫
∂U

(1/d)[(a1 + a2 + a3 + a4)Dx + (−b1 − b2 − b3 − b4)Dy,

(−b1 − b2 − b3 − b4)Dx + (c1 + c2 + c3 + c4)Dy]
T · ndA〉= 0.

(2.22)

Putting all of this together, we see that µ1 in equation 2.14, under the assumption of
geometrical isotropy, satisfies

µ1 = (1/d)[(1/d)− (1/d)(1/d)] =
d− 1

d3
. (2.23)

This value for µ1 is analogous to the µ1 = (1/d)[p1 − p21] value found for a two-component
material in [6].

Thus, if the polycrystalline material is further assumed to have the Hashin-Shtrikman
condition, then F (s) is known to second order, with µ0 = 1/d and µ1 = (d− 1)/d3, so that

F (s) = 1/(sd) + (d− 1)/(s2d3). (2.24)

A convenient transform F1(s) = 1/(〈eTk Rek〉)− 1/sF (s) allows for this information to be
included. It is known [59] that F1(s) is an upper half plane function analytic off [0, 1] and has
the representation

F1(s) =

∫1
0

dµ1(z)

s− z , (2.25)

Under the additional assumption of geometric isotropy F1(s) is known only to first order,
where F1(s) = (d− 1)/(ds) + ..., and µ01 = (d− 1)/(ds). Thus the values of F1(s) lie in the
circular arc (d− 1)/[(d)(s− z)], −∞≤ z ≤∞. Mapping this arc back into the F–plane, we can
parameterize one boundary of R4 by

C4(z) =
(1/d)(s− z)
s(s− z − d−1

d2 )
, −∞≤ z ≤∞. (2.26)

Similarly, to display the other arc, we use the auxiliary function E(s) = 1− ε1/ε∗ = (1−
sF (s))/(s(1− F (s))), and find that E(s) = (d− 1)/(ds) + (d2 − 2d− 1)/(d3s2). Again, using a
similar method as with F (s), an arc can be found in the E–plane, and we can parameterize the
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other circular boundary of R4 by

Ĉ4(z) =
((d− 1)/d)(s− z)
s(s− z − d−1

d2 )
, −∞≤ z ≤∞. (2.27)

When ε1 and ε2 are real and positive, the bounds collapse to the interval

ε2(1− 1/(ds− [d− 1]/d)≤ ε∗ ≤ ε1/(1− [(d− 1)/(ds− [d− 1]/d)]), (2.28)

where s= ε2/(ε2 − ε1) and ε2 ≤ ε1. These are exactly the Hashin-Shtrikman bounds for an
isotropic polycrystalline composite [22]. Further, if we evaluate the two-dimensional second order
complex forward bounds for a two-component material [4–6], where each material has a volume
fraction of 50%, we see that they are in agreement with the two dimensional second order complex
forward polycrystalline bounds. The three-dimensional bounds are also in agreement.

For the purpose of comparing these bounds to previously established ones on the (real)
effective permittivity [1,2,23–27], let us further consider that the polycrystal is isotropic in the
sense that 〈eT1 Re1〉= 〈eT2 Re2〉= 〈eT3 Re3〉. Then 〈eTk Rek〉= 1/2 in two dimensions and
〈eTk Rek〉= 1/3 in three dimensions. Here, our upper bound is in agreement with the upper
bound presented in [25] for a uniaxial isotropic polycrystal. However, our lower bound is in
disagreement with the lower bound presented in [25] for a uniaxial isotropic polycrystal. A quick
argument can justify the difference. The lower bound in Avellaneda et al. [25] is achieved with the
sphere assemblage model conjectured by Schulgasser [23,24]. The reason being that the conductivity
in each direction is simultaneously minimized in the equation ε∗ = (1/3)tr(ε∗)≥ εs [25], where
εs is the permittivity of the sphere assemblage model and ε∗ is the full permittivity tensor. Therefore,
a minimum is found and achieved with the sphere assemblage model because all directions have
the same minimum permittivity. The lower bound we find here is only for 〈eTk Rek〉 the same in
each direction, not necessarily the permittivity to be the same. Thus, in a single direction, the
minimum value that can be obtained is still the harmonic bound (i.e., resistors in series). Using
a nearly identical argument, there is also no reason for these lower bounds to be the same in the
anisotropic case. The bounds we find here are needed to examine sea ice because we are interested
in the effective complex permittivity for a single direction.

3. Inverse Bounds for Structural Parameters
The objective of inverse bounds is to use data from the electromagnetic response of a
polycrystalline material to recover information about its structural parameters. In previous work
[10–14,17], this is typically done to recover information about the volume fractions of the two
constituents of a composite material. Here, we will show how to recover information about the
mean crystal orientation 〈eTk Rek〉 of the polycrystalline material. The inverse method [12–14],
we use here, yields intervals of uncertainty for the mean crystal orientation 〈eTk Rek〉. Given an
observed value of the complex permittivity in a single direction ε∗, 〈eTk Rek〉 is increased until the
value of ε∗ touches one boundary of the region R3 described in the previous section, and is then
decreased until the value touches the other boundary. This procedure gives an analytic estimate
(the first order inverse bounds [12–14]) of the range of values of the mean crystal orientation
〈eTk Rek〉l ≤ 〈eTk Rek〉 ≤ 〈eTk Rek〉u, with

〈eTk Rek〉l = |f |2
Im(s)

Im(f)
, 〈eTk Rek〉u = 1− |g|

2Im(t)

Im(g)
, (3.1)

where f is the known value of F (s) and g is the known value of G(t) = 1− ε∗/ε1 with t= 1− s.
The objective of the second order inverse bounds would be to obtain a better estimate for the

mean orientation of crystals in the kth direction. However, as demonstrated in the second order
forward bounds, the mean orientation must be the same in all directions. Thus we already know
that, 〈eTk Rek〉= 1/d and therefore, the second order inverse bounds provide no new information
or are essentially meaningless for polycrystalline composites.
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4. Comparison of the Bounds to Sea Ice Data
Here the polycrystalline bounds derived in the current work, are applied to sea ice composite,
and the results are compared with the measured effective permittivity of sea ice in [51]. This
data set is obtained from primarily columnar sea ice; it was previously used to compare effective
permittivity of sea ice with the bounds for the effective property of a two-component material
[14,53], of a statistically isotropic two-component composite [14,53], and of a two-component
matrix-particle material [9,21]. Applying the polycrystalline bounds to the same set of data allows
for comparison between different types of bounds and a deeper understanding of the physical
relationship the polycrystalline bounds provide in the case of sea ice data. To calculate the forward
polycrystalline bounds, the method uses information on the complex permittivity tensor of the
identical single crystals (i.e., ε1 and ε2), and the crystal orientation statistics (i.e., 〈eTk Rek〉). This
information is available for the set of data in [51] as it is accompanied by a detailed analysis of the
crystalline structure of the ice.

The single crystal complex permittivity tensor for sea ice is obtained by evaluating X-ray CT
data with known ice and brine permittivities and volume fractions φ using Comsol 3.5a. We
examine 222 single crystals at a frequency of 4.75 GHz and at a temperature of−6◦C, where brine
has a permittivity value of 51.0741 + i45.1602 [60] and pure ice has a permittivity of 3.15 + i0.002.
In reality, ice is a tree-component composite consisting of pure ice with air bubbles and pockets
of brine. As was demonstrated in [14], it is important to model the effect of the air phase in sea ice
when calculating the complex permittivity. Thus, to account for the air phase, a Maxwell-Garnett
mixing formula is used to calculate the permittivity of the ice with air bubbles as was done in [14].
Therefore, the permittivity used for the air-ice phase is 3.07 + i0.0019. Different single crystal
microstructures were calculated at different values of volume fractions φ and a data set of single
crystal complex permittivity tensors was generated (Table 1).

Different sea ice single crystal geometric configurations can have significantly different
permittivity tensors for the same brine volume fraction φ value as is shown in Table 1. In
particular, the permittivity in the vertical direction can dramatically change depending on the
brine connectedness in the vertical direction. Furthermore, the two horizontal components tend
to have slightly different permittivity values. The polycrystalline bounds are derived under the
assumption that the composite material is transversely isotropic or uniaxial, i.e. it is composed of
many identical crystals with the same permittivity in two (horizontal) directions and a different
permittivity in the other (vertical) direction. As is quickly observed in Table 1 actual sea ice does
not exactly satisfy these assumptions, namely ice crystals vary and the horizontal permittivities
differ from each other. Additionally, the fraction of brine φ can dramatically change across an
entire sea ice column, thus substantially changing the single crystal permittivities at different
depths. For example, the very bottom layer of a sea ice column can have a brine fraction φ

almost twice as large as the average, which is typical in classic columnar sea ice [61,62]. Further,
as displayed in Table 1, the change of permittivity of the vertical component is not linear with
respect to φ, and averaging permittivities over a small range of φ values to obtain a single crystal
permittivity tensor for the entire ice column will not accurately represent the physics of the ice.

To account for these differences between the assumptions under the polycrystalline bounds
and actual sea ice data, we will “idealize" the sea ice data, so that the polycrystalline bounds may
still be applied. Inherently, this idealization changes the objective from finding an exact forward
bound for a specific configuration with identical single crystals to finding a more general forward
bound that can be applied to a large class of sea ice, such as all columnar sea ice within a certain
brine volume fraction φ range. Thus, to obtain the single crystal permittivity tensor for value of
φ corresponding to the entire ice column, we averaged the permittivities in the vertical direction
and both of the horizontal directions over a range of φ, accounting for a typical variation in φ

across an entire ice column. For example, for an average value of φ= 3.5% we used the following
range of (averaged) φ values: 0.025, 0.025. 0.025, 0.03, and 0.07. For an average value of φ= 4%, we
used the following range of (averaged) φ values: 0.03, 0.03, 0.03, 0.03, 0.04, and 0.08. Therefore, the
single crystal permittivity tensor for an entire column of sea ice with overall values of φ= 3.5%
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and φ= 4% are: ε1 = 3.74 + 0.62i (vertical), ε2 = 3.46 + 0.08i (horizontal), and ε1 = 4.11 + 0.67i

(vertical), ε2 = 3.52 + 0.10i (horizontal), respectively.
The polycrystalline forward bounds also incorporate information on the single crystal

orientation statistics 〈eTk Rek〉. Here we use the orientation statistics found in [57]. These data
describe the c-axis distribution statistics of sea ice as a function of depth for ice grown in a region
without a preferred current direction (thus, transversely isotropic). The big picture is that granular
ice (typically found in the top layer of a column of sea ice [57]) has an essentially random uniform
distribution across all angles, whereas columnar ice has a strongly preferred vertical orientation.
The effective complex permittivity data set from [51] is largely columnar and cross-sectional slices
show that the sea ice is transversely isotropic. Examining the orientation statistics [57], it is very
reasonable to conclude that the average crystal orientation 〈eTk Rek〉 for the largely columnar ice
structure used in [51], is between 0 degrees and 30 degrees off the vertical axis.

Due to the necessary idealizations describe above, the objective of the forward bounds is to
capture all possible effective complex permittivity variations that can occur in columnar ice.
The electromagnetic wave propagating through the sea ice column in [51] is orthogonal to the
horizontal plane, thus the electric field is in the horizontal plane. The sea ice structure in the
horizontal plane is isotropic, therefore, we examine one of the horizontal directions (depending on
the direction of the applied electric field). This allows us to reduce the three-dimensional problem
to a two-dimensional one and to use a two-dimensional rotation matrix, which gives the same
result as a three-dimensional rotation matrix in the case when the applied electric field is in one
of the horizontal directions. Therefore, if the electric field is in the k= 2 horizontal direction, for
an average deviation off the vertical axis between 0 and 30 degrees (i.e., columnar ice), the crystal
orientation 〈eT2 Re2〉 takes a value between sin2(0) = 0 and sin2(30) = 0.25. For primarily granular
ice, the average crystal orientation statistics are uniform over the possible range of angles and the
average angle should be close to 45 degrees. An acceptable range might be between 35 and 55
degrees.

The first order polycrystalline forward bounds can then be applied to the data and the
largest area of overlap between the bounds is assumed to be the region where the data must
lie. It is possible that the forward bounds overestimate the region because of this technique
(namely, we assume the mean orientation is between 0 and 30 degrees off the vertical axis).
However, each region in these bounds could still be found by slightly adjusting the single
crystal permittivity tensor (which can have some variability) for a specific orientation. Further
justification of this approach is the large (and possibly unknown) variability in the general
columnar crystal orientation statistics from sample to sample. The bounds are general enough to
accurately predict the permittivity of primarily columnar sea ice without having to know specific
orientation statistics or a specific single crystal permittivity tensor. The second order forward
bounds cannot be compared to this sea ice data set because they assume that the material is
geometrically isotropic. This is not the case for columnar sea ice. However, the second order
bounds are applicable to granular ice.

As displayed in Figure 2 (a) the polycrystalline bounds provide a much tighter bound than
those bounding the permittivity of a general two-component material and statistically isotropic
two-component material for sea ice. This makes sense because we are essentially applying a two-
scale homogenization and including the additional information about rotation statistics. If we
zoom in on the new polycrystalline bounds, we see that except of one data point, the bounds
accurately capture the data for the corresponding volume fraction φ for the ice column (Figure
3 (a)). We suspect that the data point outside the bounds is explained by the variations in single
crystal permittivities. However, we suggest that the three tighter bounds in Figure 2 (a) and the
bounds in Figure 3 (a) might be viewed as bounds for a set of columnar sea ice permittivities for
the whole column, where brine volume fractions φ vary in the interval 3.3%≤ φ≤ 4.1%.

Although the bounds accurately capture the data, due the large variability and potential
noise in both the data in [51] and the single crystal permittivity tensor obtained by numerical
simulations, we further average the data in [51] and compare it to bounds corresponding to the
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single crystal permittivity tensor of the averaged value of φ= 3.75%. This is displayed in Figure
2 (b) and Figure 3 (b), which show that the bounds accurately capture the data point.

We further apply inverse polycrystalline bounds method to evaluate crystal orientation in sea
ice samples using measured data of the ice permittivity. The goal of the inverse bounds is to
estimate the mean crystal orientation potentially revealing the type of ice. For the data falling
within a certain range of the brine fraction φ, the method gives bounds for the mean crystal
orientation. The results are displayed in Figure 4. The mean crystal orientation of the ice crystals
in the ice column from the Arcone et al. experiments is between 8 and 30 degrees off the vertical
axis. Therefore, the ice is certainly columnar. We also examined images [51] of the typical sea
ice structure, representative of the measured ice samples, and estimated that the mean crystal
orientation should be between 11.5 and 19 degrees off the vertical axis. These estimates are within
the range of the inverse bounds on the mean single crystal orientation displayed in Figure 4.

To compare the inverse mean crystal orientation bounds for columnar ice with the bounds
for isotropic granular ice, we use an analytic model of a two-dimensional statistically isotropic
polycrystalline material to calculate the effective permittivity of an isotropic polycrystal. From
[23], it follows that the effective permittivity of such a polycrystalline composite coincides with
the effective permittivity ε∗ =

√
ε1ε2 of a polycrystal made of grains with laminar sub-structure.

Assuming the components of the single crystal take the values of the ice crystal components
shown in Table 1, we calculate the values of the effective permittivity of a statistically isotropic
polycrystal and use them as the data for the inverse bounds. The resulting inverse bounds on
mean single crystal orientation are displayed in Figure 5. The upper and lower inverse bounds
on the angle of deviation from the vertical axis (y−axis), shown for 10 different effective complex
permittivity values (x−axis), are in excellent agreement with the exact value of the deviation angle
equal to 45 degrees. The results demonstrate a significant difference in the reconstructed bounds
for the mean orientation of a single crystal in columnar and in granular ice, which provides a
foundation for distinguishing the types of ice using electromagnetic measurements.

5. Conclusion
We have developed both first and second order forward bounds on the effective complex
permittivity ε∗ for a polycrystalline material using the analytic continuation method.
Additionally, we have derived first order inverse bounds on the mean single crystal orientation
for a polycrystalline material. The first order forward bounds assume a priori knowledge about
the complex permittivity tensor for a single crystal and the mean single crystal orientation to
bound ε∗. The second order polycrystalline forward bounds further require the material to be
geometrically isotropic in the polycrystalline Hashin-Shtrikman sense. The inverse bounds for
the polycrystalline material assume knowledge of the effective permittivity ε∗ and the complex
permittivity tensor for a single crystal to provide bounds for the mean crystal orientation.
Comparison of the derived bounds with actual sea ice data show excellent agreement. These
results provide a foundation for determining ice type with remote sensing techniques.
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6. Figures & Tables

Table 1. A sample of the range of complex permittivity values of a single crystal of sea ice. Note that at a constant brine

volume fraction (BVF) φ of 3.8% and 5.5%, the values of the vertical component can dramatically change. Also note that

the vertical component does not change on a linear scale with an increase in φ. These data were generated by Comsol

numerical simulations of the complex permittivity of sea ice using X-ray CT sea ice microstructures.

BVF Vertical Component Horizontal component 1 Horizontal component 2

0.025 3.4796+0.0795027i 3.34554+0.0386595i 3.2315+0.0150707i
0.03 3.90874+0.376569i 3.32704+0.030911i 3.44001+0.0919011i

0.038 3.62198+0.112947i 3.49521+0.0687332i 3.52569+0.0947335i
0.038 3.79782+0.211531i 3.36183+0.0325894i 3.55585+0.0885505i
0.038 3.88906+0.345808i 3.36387+0.0336083i 3.73552+0.192388i
0.055 4.93418+1.45498i 3.43891+0.0454075i 3.71922+0.103182i
0.055 4.14111+0.267123i 3.63189+0.107398i 3.60756+0.0749424i
0.055 4.33091+0.425696i 3.49575+0.0485316i 3.76794+0.149307i
0.081 6.53291+3.16979i 3.46572+0.0267835i 4.3584+0.256975i
0.124 7.8748+4.23181i 3.82923+0.0618386i 4.77605+0.30978i
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Figure 1. Cross-polarized mages of various types of sea ice with different crystalline structures. In the top row are two

images showing the polycrystalline structure of columnar sea ice from Antarctica. In the bottom row are images of platelet

ice from the Ross Sea (left) and granular ice from the Bellingshausen Sea (right). Granular ice can be viewed as a

statistically isotropic polycrystalline composite material while columnar ice has crystals predominantly oriented in the

vertical direction.



18

rspa.royalsocietypublishing.org
P

roc
R

S
oc

A
0000000

..........................................................

 *)Re(ε  *)Re(ε

 *)Im(ε *)Im(ε

1.6

1.2

5

0.8

0.4

4.5

0

43.53

1.6

1.2

5

0.8

0.4

4.5

0

43.53

(a) (b)

Figure 2. Comparison of previously known and newly derived forward bounds with complex permittivity data. (a) Forward

elementary bounds and isotropic bounds for a two component material are displayed in red [14,53]. The forward

polycrystalline bounds for columnar sea ice are shown in green, brown, and black for the brine volume fraction equal,

respectively, to 4%, 3.75%, and 3.5%. The displayed data points correspond to complex permittivity data taken at 4.75

GHz on the ice samples with the brine volume fraction approximately changing between 3.1% and 4.1%. (b) The forward

polycrystalline bounds for columnar sea ice with the brine volume fraction of 3.75% (blue) are compared with the averaged

effective complex permittivity data taken at 4.75 GHz, on the samples of the averaged brine volume fraction 3.65%.

Forward elementary bounds and isotropic bounds for a two component material are displayed in red [14,53].
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Figure 3. Comparison of new forward bounds with complex permittivity data. (a) “Zoomed-in” version of Figure 2 (a)

displaying the forward polycrystalline bounds for columnar sea ice where the single crystal permittivity tensor has a

brine volume fraction of 4% (green), 3.75% (brown), and 3.5% (black), compared with effective complex permittivity data

taken at 4.75 GHz where the averaged brine volume fraction is 4% (green), 3.65% (brown), and 3.33% (black). The

brown data point that is captured by both the black and brown bounds is used in both (black and brown) data averages.

Note how multiple data points fall within multiple bounds. (b) “Zoomed-in” version of Figure 2 (b) displaying the forward

polycrystalline bounds for columnar sea ice where the single crystal permittivity tensor has a brine volume fraction of

3.75% (blue), compared with the averaged effective complex permittivity data taken at 4.75 GHz where the averaged

brine volume fraction is 3.65% (blue).
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Figure 4. Inverse bounds on the mean crystal orientation. Deviation angle off the vertical axis (y−axis) is shown for

15 different effective complex permittivity data values (x−axis). The dashed line represents inverse bounds for the data

points that were examined for the second order forward bound. The upper inverse bounds are given in red, the lower

inverse bounds are in blue.
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Figure 5. Inverse bounds on the mean crystal orientation of the statistically isotropic polycrystalline composite of ice and

brine. The upper inverse bounds (red) and the lower inverse bounds (blue) for the angle of deviation from the vertical axis

(y−axis) are shown for 10 different effective complex permittivity values (x−axis). The true exact value is 45 degrees.
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