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Abstract

Cancellous bone is a porous composite of calcified tissue interspersed with soft marrow. Sea

ice is also a porous composite, consisting of pure ice with brine, air, and salt inclusions.

Interestingly, the microstructures of bone and sea ice exhibit notable similarities. In recent

years, we have developed mathematical and experimental techniques for imaging and char-

acterizing the brine microstructure of sea ice, such as its volume fraction and connectivity,

as well as a range of theoretical approaches for studying fluid, thermal, and electromagnetic

transport in sea ice. Here we explore the application of our sea ice techniques to investigate

trabecular bone. For example, percolation theory that quantifies brine connectivity and its

thermal evolution can also help assess the impact of osteoporosis on trabecular structure.

Central to our approach is the spectral measure of a composite material, which contains

detailed information about the mixture geometry, and can be used in powerful integral rep-

resentations to compute the effective properties. The spectral measure is obtained from the

eigenvalues and eigenvectors of a self adjoint operator determined exclusively by the com-

posite microgeometry. Here we compute the spectral measures for discretizations of images

of healthy and osteoporotic bone. The measures are used to compute the effective electro-

magnetic properties of the bone specimens. These data are then inverted to reconstruct the

porosity of the original specimens, with excellent agreement.
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1 Introduction

Bone displays a complex, porous microstructure whose characteristics depend on its macrostruc-

ture, whether cortical or cancellous, as well as age and health of the individual. The strength

of bone and its ability to resist fracture depend strongly on this porous microstructure, and

in particular, on the quality of the connectedness of the hard, solid phase (Odgaard 1997,

Kabel et al. 1999, Hollister et al. 1994). For example, in dense cortical bone the pores can

be sparse and disconnected, yet exhibit increasing volume fraction and connectivity with the

onset of osteoporosis. Cancellous bone displays a broad range of biconnected microstruc-

tures, ranging from a solid network of connected trabeculae containing numerous connected

pores, to sparse solid fibers within a dominant, connected pore space. With the onset of

osteoporosis, cancellous bone can become more disconnected and remaining connections can

become more tenuous or fragile. There have been many studies of bone structure (includ-

ing porosity) and mechanics, and how they depend on aging and other factors (Ural and

Vashishth 2006, Fritsch and Hellmich 2007, Nalla et al. 2004, Hildebrand et al. 1999, Coelho

et al. 2009, Burghardt et al. 2010, Hollister et al. 1994).

In this paper we consider what percolation theory, or the mathematical theory of con-

nectedness, can tell us about bone structure. In particular, we investigate the spectral

measures for two examples of porous bone microstructure. A spectral measure is the key

mathematical object appearing in integral representations for effective transport and elastic

properties of two phase composites (Golden and Papanicolaou 1983, Kantor and Bergman

3



1984). It contains, in principle, most of the geometrical information about the composite.

For example, the mass of the measure is the porosity, or volume fraction of one phase, and

the absence of large-scale connectivity is associated with a gap in the spectrum. Here we

intend to introduce methods of analyzing bone microstructure and its properties which may

eventually help in clinical applications. Steps in this direction have been taken already in

(Bonifasi-Lista and Cherkaev 2005; 2008; 2009, Bonifasi-Lista et al. 2009), where inverse

homogenization theory (Cherkaev 2001, Cherkaeva and Golden 1998) has been extended to

the evaluation of bone structure, which is discussed in detail below.

Here we observe that some of the natural questions we ask about sea ice, as well as the

methods to address them, are also relevant for studies of bone. For sea ice we have applied

percolation theory to understand the thermal evolution of the brine microstructure and its

connectedness (Golden et al. 1998a; 2007, Pringle et al. 2009). We have also developed X-ray

CT imaging methods and pore structure analysis (Golden et al. 2007, Pringle et al. 2009)

to investigate the microstructure and verify our earlier conjecture of a connectedness and

fluid transport transition at a brine volume fraction of about 5%, which corresponds to a

critical temperature of −5◦C for a typical bulk salinty of 5 parts per thousand, known as the

rule of fives (Golden et al. 1998a). In studying the role of sea ice in the climate system, we

are then interested in how this complex microstructure determines the fluid (Golden et al.

2007) and thermal transport properties of sea ice. The electromagnetic properties of sea ice

with applications to remote sensing are studied extensively in (Golden 1995a; 1997a, Golden
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et al. 1998c;b, Gully et al. 2007). An overview is given by Golden (2009). Microstructural

imaging and characterization of bone (Fritsch and Hellmich 2007, Hildebrand et al. 1999,

Kazakia et al. 2008, Issever et al. 2009, Burghardt et al. 2010) is fundamental to studies of its

effective mechanical properties (Ural and Vashishth 2006, Nalla et al. 2004, Oyen et al. 2008,

Coelho et al. 2009, Hollister et al. 1994), as well as its fluid (Piekarski and Munro 1977,

Anderson and Knothe Tate 2008, Knothe Tate et al. 2009), electromagnetic (Sierpowska

et al. 2003, Singh and Saha 1984, Saha and Williams 1992, Williams and Saha 1996), and

thermal (Davidson and James 2000, Biyikli et al. 1986) transport properties.

It should be mentioned that there have been other mathematical approaches to char-

acterizing the connectivity of trabecular architecture and its relation to bone quality and

strength. In particular, there has been substantial research focused on using the so-called

Euler-Poincaré characteristic, an integral geometrical quantity, to provide an estimate of the

connectivity of the pore space structure (Odgaard and Gundersen 1993, Odgaard 1997, Kabel

et al. 1999, Jinnai et al. 2002, Roque et al. 2009). An important aspect of this characteristic

is that it does not change under deformation or scaling of an object – it is a topological

invariant which has been investigated to distinguish between osteoporotic and healthy bone.

The percolation and spectral characterization of bone microstructure presented here is more

statistical in nature, rooted in issues of long range order and connectedness, and motivated

by statistical mechanics and the theory of random composites. Understanding the relations

between our approach and the Euler-Poincaré characteristic is a topic for future research.
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2 Mathematical Methods

2.1 Analytic continuation and the spectral measure

Homogenization denotes a field of applied mathematics where the goal is to find a homo-

geneous medium which behaves macroscopically just like a given inhomogeneous medium.

We briefly describe the analytic continuation method for studying the effective properties of

composite materials (Bergman 1980, Milton 1980, Golden and Papanicolaou 1983, Golden

1997a), or for homogenizing inhomogeneous media. Let ε(x, ω) be a spatially stationary

random field in x ∈ Rd, where d is spatial dimension, and ω ∈ Ω, where Ω is the set of

all realizations of the random medium, which represents the local values of the complex

permittivity. This key parameter is defined in basic electromagnetism and determines the

propagation properties of an electromagnetic wave in a medium. The real part represents

the polarizability of the medium, and the imaginary part the losses. We assume ε(x) (where

we supress the ω notation) takes the values ε1 in bone marrow and ε2 in bone, where both

of these parameters depend on frequency, and write ε(x) = ε1(1 − χ(x)) + ε2χ(x), where χ

is the characteristic function of the bone, which equals one for all realizations ω ∈ Ω having

bone at x, and equals zero otherwise. Let E(x) and D(x) be the stationary random electric

and displacement fields satisfying the constitutive law D(x) = ε(x)E(x) and the equations

∇ · D = 0, ∇× E = 0, (1)

with 〈E(x)〉 = ek, where ek is a unit vector in the kth direction for some k = 1, . . . , d, and

〈·〉 means an ensemble average over Ω or spatial average over all of Rd.
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The effective complex permittivity tensor ε
∗ is defined by

〈D〉 = ε
∗〈E〉. (2)

Without loss of generality, we focus on one diagonal coefficient ε∗ = ε∗kk. Due to homo-

geneity, ε∗(aε1, aε2) = aε∗(ε1, ε2), for any complex number a, ε∗ depends only on the ratio

h = ε2/ε1, and we define m(h) = ε∗/ε1. The two main properties of m(h) are that it is

analytic off (−∞, 0] in the h–plane, and that it maps the upper half plane to the upper

half plane, so that it is an example of a Herglotz, or Stieltjes function. The key step in the

analytic continuation method is obtaining an integral representation for ε∗.

It is more convenient to work with the function F (s) = 1 − m(h), where s = 1/(1 − h),

which is analytic off [0, 1] in the s–plane. It was proven (Golden and Papanicolaou 1983,

Bergman 1978) that F (s) has the representation

F (s) =

∫
1

0

dµ(λ)

s − λ
, s /∈ [0, 1] , (3)

where µ is a positive measure on [0, 1]. This formula arises from the resolvent representation

of the electric field E = s(s+Γχ)−1ek, where Γ = ∇(−∆)−1∇· and ∆ = ∇2 is the Laplacian,

yielding

F (s) = 〈χ[(s + Γχ)−1ek] · ek〉. (4)

In the Hilbert space L2(Ω) with weight χ in the inner product, Γχ is a bounded self adjoint

operator. Formula (3) is the spectral representation of the resolvent, and µ is a spectral

measure of Γχ, in the ek state. The integral representation (3) separates the parameter

7



information in s from information about the mixture geometry contained in µ. Statistical

assumptions about the geometry are incorporated into µ via its moments µn =
∫

1

0
λndµ(λ),

which can be calculated from the correlation functions of the random medium, with

µn = (−1)n〈χ[(Γχ)nek] · ek〉. (5)

The mass µ0 is the bone volume fraction φ (with 1 − φ the porosity),

µ0 =

∫
1

0

dµ(z) = 〈χ〉 = φ. (6)

A principal application of the analytic continuation method is to derive forward bounds

on ε∗ given partial information on the microgeometry (Bergman 1980, Milton 1980, Golden

1997a, Golden et al. 1998c, Gully et al. 2007). The objective of inverse bounds is to use

data about the electromagnetic response of a composite to bound its structural parameters

such as φ (Cherkaeva and Golden 1998, Golden et al. 1998b, McPhedran et al. 1982, McPhe-

dran and Milton 1990, Cherkaeva and Tripp 1996, Tripp et al. 1998). Below we will use

a more sophisticated inversion scheme over frequency to reconstruct the spectral measure,

and obtain accurate estimates of bone volume fraction φ. A powerful application of this in-

verse homogenization approach (Cherkaev 2001) is that once the spectral measure has been

reconstructed, it can be used to calculate other effective properties such as DC electrical

conductivity or thermal conductivity, which have analogous integral representations. Thus,

through this spectral coupling, other transport properties can be estimated indirectly from

EM monitoring (Cherkaev 2001; 2003, Cherkaev and Zhang 2003).
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2.2 Reconstruction of the spectral measure

The problem of extracting microstructural information from bulk property measurments was

introduced previously by McPhedran et al. (1982) and McPhedran and Milton (1990). They

estimated the volume fraction of one component in a two phase mixture from measurements

of the effective complex permittivity of the composite material. An analytical approach

to estimating the volume fractions of materials in a composite was developed (Cherkaeva

and Tripp 1996, Tripp et al. 1998), and extended to the problem of finding bounds on

the microstructural parameters for isotropic composite materials in (Cherkaeva and Golden

1998). The analytical method is based on the integral representation in (3) and gives explicit

formulas for bounds on the volume fraction of one of the constituents (Cherkaeva and Golden

1998).

The problem of characterizing microstructural information from effective property mea-

surements was formulated as an inverse problem for the spectral measure µ in the Stieltjes

analytic representation (Cherkaev 2001). Uniqueness of the reconstruction of the spectral

measure (Cherkaev 2001) gives a basis for the theory of inverse homogenization. The spectral

measure µ in the integral representation (or spectral function) can be uniquely reconstructed

if measurements of the effective properties of the composite are available along an arc in the

complex s–plane Cherkaev (2001). Such data can be obtained from measurements in an

interval of frequency provided that at least one of the constituents is frequency dependent.

The numerical problem of reconstructing the spectral function is ill-posed, that is, the

9



solution is highly sensitive to changes in the data, and requires regularization (Cherkaev

2001). Several regularized algorithms have been developed (Cherkaev 2001; 2003, Cherkaev

and Zhang 2003). To obtain a stable reconstruction of the spectral measure, an inversion

method based on constrained rational approximation of the spectral function was developed

in (Zhang and Cherkaev 2008; 2009).

The inverse homogenization method was extended to the viscoelastic problem in (Bonifasi-

Lista and Cherkaev 2005; 2008) for torsion of a cylinder whose microstructure does not

change in the axial direction. With this simplified model of bone, this method was used

successfully to recover porosity from measurements of the effective shear modulus simulated

using micro-CT images of cancellous bone (Bonifasi-Lista and Cherkaev 2008, Bonifasi-Lista

et al. 2009). An electrical impedance spectroscopy method developed in (Bonifasi-Lista and

Cherkaev 2009) shows potential for reconstructing bone porosity from effective electrical

measurements. The method is based on reconstruction of the spectral function from electri-

cal measurements and calculating the zeroth moment, which gives the volume fraction of one

of the bone components (Bonifasi-Lista and Cherkaev 2009). The method was applied to the

effective electrical properties of cancellous bone, and numerically calculated using micro-CT

images of human vertebrae to find the bone porosity. It was shown that bone porosity can be

accurately reconstructed even in the presence of errors in the measured data and uncertainty

in the properties of bone and bone marrow.

The problem of reconstructing the spectral measure µ can be reduced to an inverse
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potential problem. It was shown in (Cherkaev 2001) that F (s) admits a representation as a

logarithmic potential of the measure µ:

F (s) =
∂Φ

∂s
, Φ(s) =

∫
1

0

ln |s − λ| dµ(λ) , (7)

where ∂
∂s

= ∂
∂x

− i ∂
∂y

. The potential Φ solves the Poisson equation −∆Φ = ρ, where ρ(λ) is

a density on [0, 1]. A solution to the forward problem is given by the Newtonian potential

with µ(dλ) = ρ(λ)dλ. The inverse problem is to find ρ(λ) (or µ) given values of Φ, ∂Φ /∂n,

or ∇Φ.

To construct the solution to the inverse problem we formulate the related minimization

problem:

minµ ||Aµ − F || , (8)

where Aµ = ∂
∂s

∫
1

0
ln |s − λ| dµ(λ), the norm is the L2−norm, and F is the given function

of the measured data, F (s) = 1 − ε∗(s)/ε1, s ∈ C. The solution of the problem does not

depend continuously on the data. Unboundedness of the operator A−1 leads to arbitrarily

large variations in the solution, and the problem requires a regularization technique.

A regularization algorithm developed in (Cherkaev 2001) is based on constrained mini-

mization. It introduces a stabilization functional which constrains the set of minimizers. As

a result, the solution depends continuously on the input data. Instead of minimizing (8) over

all functions, the minimization is performed over a convex subset of functions, which results

in a stable reconstruction algorithm. The stabilization functional added to the minimization

functional in (8), with regularization parameter α, was chosen (Cherkaev 2001, Bonifasi-Lista
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and Cherkaev 2009) as a quadratic functional corresponding to Tikhonov regularization. We

use this approach here as well.

2.3 Percolation theory

Lattice and continuum percolation theories (Stauffer and Aharony 1992, Torquato 2002,

Hornung (Ed.) 1997) have been used to model a broad range of disordered materials where

the connectedness of one phase dominates effective behavior. Consider the square (d = 2) or

cubic (d = 3) network of bonds joining nearest neighbor sites on the integer lattice Zd. We

consider the problem of electrical transport through the network. The bonds are assigned

electrical conductivities σ0 > 0 (open) or 0 (closed) with probabilities p and 1 − p. Groups

of connected open bonds are called open clusters, and the average cluster size grows as

p increases. The striking feature of this model is that there is a critical probability pc,

0 < pc < 1, called the percolation threshold, where an infinite cluster of open bonds first

appears. In d = 2, pc = 1

2
, and in d = 3, pc ≈ 0.25. Typical configurations for the d = 2

square lattice above and below the threshold are shown in Figure 2. Near the threshold,

or transition point, the order parameters of the system, such as the infinite cluster density,

the correlation length, and the effective conductivity are characterized by universal critical

exponents which depend only on dimension, and not on the details of the lattice.

An important feature of phase transitions in statistical mechanics, such as in the Ising

model of a ferromagnet (Thompson 1988), is the collapse of a spectral gap as the critical

point is approached (Baker 1990; 1968). Similarly, there is a gap in the support of the
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spectral measure for p below pc (Clerc et al. 1990, Day and Thorpe 1996, Golden 1997b;

1995b, Jonckheere and Luck 1998), which collapses as the threshold is approached.

3 Results

3.1 Numerical calculation of the spectral measure for bone

In Section 2 we discussed how the effective properties of a composite such as bone may

be expressed in terms of the spectral measure µ of a self adjoint operator Γχ, where χ is

the indicator function for the bone and Γ = ∇(−∆)−1∇· acts as a projector onto curl free

fields. We observed that Γχ is a self-adjoint operator with respect to the inner product with

weight χ. Here it is more convenient to use the standard L2 inner product and consider the

self-adjoint operator χΓχ (the two approaches are easily seen to be equivalent). In order to

identify bone microstructures with spectral measures, we have set threshold levels and then

discretized two SEM images of trabecular bone from http://hansmalab.physics.ucsb.edu.

The first image, shown in Figure 3a, is from a young (22-year old) healthy adult man.

The second, shown in Figure 3b, is from an elderly, osteoporotic woman in her eighties.

Discretizations of these images are shown in Figure 3c and 3d. We remark that the images

in Figure 3a and 3b are three dimensional, but our discretizations are two dimensional

representations (surface slices) of the underlying images. Our subsequent calculations of the

spectral measure are then two dimensional as well.

The discretizations are associated with networks of 1’s (bone) and 0’s (marrow), as in

the 2-D square lattice percolation model, in order to calculate the corresponding spectral
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measures. On this square lattice the action of the differential operators ∇ and ∇· are defined

in terms of the forward and backward difference operators (Golden 1992). Furthermore, the

action of χ is that of a square diagonal matrix with ones and zeros along the diagonal cor-

responding to type two bonds (bone) and type one bonds (marrow), respectively. Therefore

the action of the self adjoint operator χΓχ on this lattice is given by that of a real symmetric

matrix, and the spectral measure may be calculated directly from its eigenvalues {λi} and

eigenvectors {vi} via the formula

dµ(λ) =
n∑

i=1

miδ(λ − λi)dλ, mi = 〈eT
0
viv

T
i e0〉, (9)

where δ(λ) is the Dirac delta function and e0 is a vector of ones. The effective complex

permittivity is given by

F (s) =
∑

i

mi

s − λi

, ε∗ = ε1(1 − F (s)), (10)

where s = 1/(1 − ε2/ε1).

As the system size N increases, the size of the matrix n increases proportionally by N2,

and the eigenvalues become increasingly dense in the spectral interval [0,1]. For a random

system averaged over many realizations (or using a large-enough spatial sample of a fixed

realization), a high resolution histogram of the spectral measure begins to resemble a smooth

curve, as in Figure 4c and 4d. The presence or absence of spectral gaps at the endpoints

of the spectral interval and the details of how large the gap is or how large the spectral

values mi are at the collapse give important information pertaining to the connectivity and

electromagnetic transport properties of the system.
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We have approximated the 2-D geometric structure in pictures of sliced healthy and

osteoporotic trabecular bone by a 540×540 square lattice bond network. The CPU time for

solving the spectral problem for a given square sample grows like N6. We have optimized the

use of our algorithm by averaging over six coarser discretizations of the original 540 × 540

discretizations. Each of the 90×90 coarser representations sample every 6th data point of the

original 540×540 system with a shifted starting point, sampling every data point of the fine

mesh 540×540 discretization. As in (Jonckheere and Luck 1998), where the spectral measure

was obtained by an indirect method, in our method of calculating the spectral measure, we

separate the calculation of the delta function at the left endpoint λ = 0 from the calculation

of the spectral measure in the rest of the interval. In order to see the details of the spectral

measure throughout the interval, we avoid plotting the delta function at λ = 0.

The spectral measures for healthy and osteoporotic bone are shown in Figure 3e and

3f, respectively. The actual bone volume fractions in the discretized images are 0.5386 and

0.2431, respectively. For comparison, in Figure 4a and 4b we show realizations of the 30×30

percolation model with p = 0.5 and p = 0.25, respectively, along with direct calculations of

the spectral meaures (averaged over 5000 statistical samples) in c and d. The graphs show

linearly connected peaks of histograms with bin sizes on the order of 10−2 and 10−1 for p = 0.5

and p = 0.25, respectively. The function constructed in this way from the weights mi in the

spectral measure is called the spectral function µ(λ), and provides a graphical representation

of the measure. The apparent smoothness of the spectral function graphs corresponding to

15



the random bond networks is due to the large number (∼ 106) of eigenvalues and eigenvectors

calculated. In contrast, the jaggedness of the spectral function graphs corresponding to the

discretizations of trabecular bone is due to the relatively small number (∼ 104) of eigenvalues

and eigenvectors calculated. In order to reveal the detail of the spectral functions with p = 0.5

for the lattice model and for the young bone, we have limited the plot domain to (η, 1 − η)

with η ∼ 10−15, eliminating some of the divergent behavior in the graph. No such restriction

was necessary for the spectral functions with p = 0.25 for either the lattice model or the old

bone.

In Figure 5 we show how the connectedness of the brine microstructure in sea ice changes

dramatically with small changes in temperature. If trabecular connectedness behaved simi-

larly, an individual could develop osteoporosis from a fever!

3.2 Numerical inversion for the spectral measure

To simulate the effective complex permittivity of the sample, we used data on the permittivity

of bone and bone marrow in (Gabriel et al. 1996a;b), and calculated the values of F (s) for

a set of points in the s-plane. Some of the data in the s-plane used in the reconstruction

are shown in Figure 6. The reconstructed spectral functions are shown in Figure 7. We use

dashed curves to indicate the results obtained for the old bone, and solid curves to show

the spectral functions corresponding to young bone. We plot two curves in each case for

reconstructions using the real or imaginary parts of the integral operator A.

The porosity of the samples was estimated as the zeroth moment of the spectral measure.
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We averaged the values over a range of the regularization parameter α to avoid the problem of

choosing its appropriate value. We did not add any additional noise to the data, however, the

results obtained in (Bonifasi-Lista and Cherkaev 2009) indicate that by using this approach,

the values of the porosity can be stably recovered from the effective properties, even in the

presence of large noise. In (Bonifasi-Lista and Cherkaev 2009), an L-curve method was

used to find an optimal value of the parameter α, the regularized method used a Tikhonov

stabilization functional.

4 Discussion

Properties of the spectral measure provide valuable information about the structure of tra-

becular bone and the degradation in the quality of connectedness as osteoporosis progresses.

Interestingly, we observe that the spectral function for young, healthy bone with volume

fraction φ ≈ 0.54 in Figure 3e closely resembles the spectral function for the lattice perco-

lation model with p = 0.5. Both geometries exhibit long-range connectedness, and this is

reflected in the absence of a spectral gap in both cases. However, for the osteoporotic bone

with volume fraction φ ≈ 0.24, its spectral function shown in Figure 3f does not have an

obvious gap as in the corresponding lattice model with p = 0.25. While the lattice model is

below its percolation threshold, the bone is still connected over the scale of the image, even

if the connections are tenuous or fragile, and the gap is not present. The tenuousness of

the connections is nevertheless manifested by a sudden decrease in the height of the spectral

function from mi ∼ 10−6 for 1− λi . 10−3 to mi ∼ 10−35 for 1− λi & 10−3. Therefore, even
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though the gap has effectively collapsed, the weakness of the connection is manifested in the

spectral function. Due to these tenuous connections the spectral function of osteoporotic

trabecular bone has characteristics of both of the random networks shown in Figure 4.

For our reconstructions of the spectral measure, estimates of the bone volume fraction

obtained by averaging the zeroth moment of the spectral measures reconstructed with α =

0.1, 0.01, 0.001 give excellent agreement with the values calculated from the images. For

young and old bone samples, the true bone volume fraction was calculated as 0.5386 and

0.2431, and the reconstructed values were 0.5384 and 0.2418, respectively. Other features of

the reconstructed spectral functions for the young bone agree well with the spectral function

in Figure 3e. The reconstructed spectral function for the older bone, however, shows some

discrepancy with Figure 3f. While the zeroth moments match up very closely, we believe

that the different behavior near λ = 0 may be due to the much larger bin size used for the

reconstructions. Such issues will be investigated further in subsequent work.

We remark that the validity of our approach can be tested experimentally. The spectral

measure for a bone specimen can be calculated as we have here from microstructural imagery.

Then using this measure in an integral representation for an effective material property, such

as the complex permittivity or electrical conductivity, the predicted material property could

be compared with experimental measurements of the same property. In this regard, while we

have computed the spectral measure here only in two dimensions, the method extends easily

to three dimensions, although the numerical calculations are significantly more intensive and
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time consuming.

In conclusion, we have introduced a new way of characterizing the porous microstructure

in bone. We have applied our methods to specimens of trabecular bone, although the same

approach can be applied to the porous microstructure of cortical bone as well. A particular

strength of focusing on a spectral characterization of the microstructure as we have here is

that the spectral measure is precisely what enters into calculations of material properties.

On the other hand, it is not clear at this stage how to obtain very specific, small scale

information about the microstructure, such as the sizes or shapes of the trabeculae from the

spectral measure. This represents a limitation of our current approach, and an interesting

area for future research.
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Figure Captions

Figure 1: The porous microstructure in the proximal femur of a 52 year old female with

normal bone density is shown on the left (photo courtesy of Maria-Grazia Ascenzi). The

brine inclusions in sea ice are shown on the right.

Figure 2: The two dimensional square bond lattice below its percolation threshold pc = 1/2

in a, and above its threshold in b. Below pc, there is no bulk transport, and above pc the

transport coefficient takes off with power law behavior, as shown in c.

Figure 3: SEM images of healthy and osteoporotic trabecular bone are shown in a and b,

respectively, and their coarsened lattice discretizations are shown in c and d. The graphs

of the associated spectral functions are shown in e and f. The spectral functions have been

normalized by the uniform bin size so that the area under each graph represents the mass φ

of the spectral measure, or the bone volume fraction.

Figure 4: Realizations of the two dimensional lattice percolation model are shown in a and b,

and the corresponding spectral functions (averaged over 5000 random realizations) are shown

in c and d. In d, there is a spectral gap around λ = 1, indicating the lack of long-range order

or connectedness. The gap collapses in c when the percolation threshold of p = pc = 0.5

has been reached, and the system exhibits long-range connectedness. Note the difference in

vertical scale in the graphs in c and d.

Figure 5: Thermal evolution of X-ray CT images of the brine phase within a lab-grown
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sea-ice single crystal with salinity of 9.3 ppt. The (non-collocated) 8 × 8 × 2 mm volumes

illustrate a pronounced change in the micro-scale morphology and connectivity of the brine

inclusions during warming. As the sample warms beyond the percolation threshold at a

brine volume fraction φ of about 0.05, the images show the development of long-range order,

in the form of connected pathways which facilitate transport.

Figure 6: Data points in the complex s-plane, where s = 1/(1 − ε2/ε1), ε1 is the complex

permittivity of marrow, and ε2 is the complex permittivity of bone. Both of these parameters

depend on the frequency of the applied electric field, and the values of s form an arc in the

complex plane as the frequency is varied over the range from 10 Hz to 100 GHz, although

only the lower part of this range is shown here.

Figure 7: Reconstruction of the spectral function using the Tikhonov regularization method.

The dashed curves denote reconstructions for the old bone, and the solid curves show the

recovered spectral function for the young bone. For these reconstructions, the values have

not been normalized by the bin size as in Figures 3 and 4, so that the bone porosity is

not obtained by the area under the curve, but by the sum of the reconstructed spectral

data points. Also, the bin size here is much larger than in Figure 3, which explains the

discrepancies in the details of the graphs.
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