CHAPTER 9

Convexity in Random Resistor Networks*
Kenneth Goldent
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description of disordered conductors. In particular, consider the bulk conductivity
a*(p) of the bond lattice in Z¢, where the conductivity of the bonds is either |
with probability p, or € > 0 with probability 1 — p. When € = 0, we can view the
conductivity 0 bonds as vacant. In this case, the associated percolation problem
concerns Pe(p), the probability that the origin is connected to an infinite cluster
of occupied (conductivity 1) bonds. For p below some critical probability p,, called
the percolation threshold, Peo(p) = 0, while for p > p., Poo(p) > 0. The bulk
conductivity o*(p) has a similar behavior, with o*(p) = 0 for p < p, and o*(p) >0
for p > p., although there is apparently no simple relation between o*(p) and Pyp)
[5]. As p — pF, it is believed that o*(p) exhibits critical scaling, o*(p) ~ (p-p.)!
where ¢ is called the conductivity critical exponent [6].

Since their introduction, random resistor networks have been widely studied in
the physics literature {7, 8]. Given their central place in the theory of disordered
conductors, it is surprising that there has been little rigorous analysis of random
resistor networks. The main exceptions are the works of Grimmett and Kesten
[9] (see also ref. [10]) and Chayes and Chayes [11,12]. One of the principl
contributions of these works is to establish the coincidence of the conduction and
percolation thresholds for d = 2, where p. = % [9], as well as for higher dimensions
[11). In addition, the Chayes [11] obtain bounds on ¢ (assuming it exists) in termsof
some percolation exponents. In d = 2 it has also been established, using arguments
that can be made rigorous, that ¢ > 1 [13, 14, see also ref. 12]. Furthermore, it
is rigorously known that o*(p) is continuous at p. = 3 in d = 2, which is proven
via the continuity of Po(p) at p. = 1 [15] and the bound o*(p) < pdP2(p) [11)
In higher dimensions it is certainly believed that o*(p) is continuous at p, but this
has not been rigorously proven yet.

The purpose of the present work is to introduce a new approach to the ra.
dom resistor problem based on convexity, which has played an important role i
many problems of statistical physics, but has apparently all but been ignored iy the
present context. As Straley [16] remarks, o*(p) is “ necessarily positive but hy
* no convexity property, with the consequence that no rigorous exponent inequalitjes
~can be proved.” Nevertheless, casual inspection of numerical simulations [6, 17-20)

of the graph of o*(p) for bond or site models in d > 2 suggests convexity in p 4
~least near the percolation threshold p.. (In the site problem, vertices of 74 5,

with all 2d attached bonds, are removed (when € = 0) at random Wwith probahijy

1 - p.) Given the broad and enduring interest in these models, we believe thq i

is important to investigate this convexity, which appears to be a general featyge of
+ the conductivity of lattices near p..

- The principal results discussed in this paper are as follows. First we ohgepy
directly that o*(p) cannot be convex for all p when e = 0, and present numeric|
results outlining the regimes of € and p for which o*(p) is convex. Next, Tigorons
'results for € > 0 are obtained, the main one being that o*(p) for the d = o bond
. ‘problem is convex near p, = 1 for every € > 0. The proof is based on Kellers ;.
terchange Theorem, which holds for certain continuum systems, so that oyp yeq,
holds for them as well. Finally the € = 0 case is considered, and a genera] physica



usgument explaining convexity near p. is offered. Our physical argument is sup-
prted by a rigorous result asserting that a certain transformation which maps the
'p=1 lattice to a well-known model of the conducting backbone near p., namely
e node-link model, is “convexity improving”. Further analysis leads us to pro-
pose upper and lower bounds on #, in terms of some percolation exponents, which
become tighter with increasing dimension, and coincide for d = 6, where mean field
behavior is believed to hold, with ¢ = 3.

2. Formulation. We formulate the bond conductivity problem for an arbi-
wary graph. Let G be a finite graph consisting of N bonds {6;} and N' vertices
n}. Assigned to G are N independent random variables ¢;, 1 <¢ < N, the bond
‘onductivities, which take the values 1 with probability p and € > 0 with probability
4=1-p. Distinguish two vertices, say z; = z and zn» = y, and connect thfam
‘oa battery which keeps the voltage drop between them equal to 1. The eﬂ:ec.tl've
?,cond“CtiVity o(w) of the network for any realization w of the bond condu'ctmtn‘es
8just the total current i(w) that flows through the network, which is obt.amed via
g‘hlrchoff’s laws. We define o(p) =< &(w) >, where the expectation < - > 1s over all
%2N realizations. For example, a two bond network has

o(p) = p*5(1,1) + pa(5(1,€) + 5(e, 1)) +4°5(e,€) »

Shere 9(1,1) = §(w) with w = (1,1), and so on. For N bonds, o(p) is an Nth order

§h°m°geneous polynomial in p and q,

N
N—k k
(p) ; (21)
ag = Z Fw*), g=1-p
wk ek
whe k_ _ < fthew[’s *
re OF = [k — (wi,...,wn)|we = € for exactly k o or iypechbiC lattice.

The case i is a square, cubic, .

e, with 4 = 3 e ke g £ L saple o th latice o
;‘Perfectly conducting bus bar,to each of two opposite fedges of Ct}lllev:?::f ((;f those
j © accomplished [9] in the above language by attaching tg eads from one cdge
Pposing edges a perfectly conducting bond. All of these bon o ot & now
?eet at a new vertex z and all the bonds from the ot.her edge mRandom bond
Mex y. Then and y are connected again with the umt batt;ry'L sample. Let
%nductivities are assigned only to the bonds in the original L X

ivi tween z and y. Then
;Lr P) denote (2.1) for the effective conductivi v
121, the bulk conductivity o7 (p) is defined as

ty measured be

2.2
a-z(p) = L2_dUL(P) . ( )



For € > 0, Kiinnemann [21] proved that the infinite volume limit
o*(p) = lim o7 (p) (23)

gxists. For ¢ =0, the existence of (2.3) has still not been proven [0-11 ]t'hgtl o

follows we shall assume that this limit exists. It should bfa rema; " Since

for € > 0, 0*(p,e) = lim o%(p,€) exists and is monotonically decreasing i ¢
L—co

lim 0*(p, €) exists, and provides a reasonable definition for the bulk conduetivity iy
€—0

the € = 0 case. The unsolved problem of the existence ?f .(2.3) dg:cigt};f:}rl €=
then boils down to whether or not the € — 0 and I — oo limits can anged,

3. Regimes of Convexity. We now make an observatlontvl&l’iu;lim
indicates that ¢*(p) cannot generally be a convex function of p. FO;‘1 i do® 1 2
problem with € = 0, it is known [7,19] (although not rigorousl)f) tha __TI{ p=1=)
Now, a straight line with slope 2 at 0*(1) = 1 intersects the p-axis atp ;05' I ”(p)
is convex for all p, then either Pe < 3 or the graph of o*(p) 15 the i iSVe' Straj
line, which is the effective medium solution for this problem. Since lex frlgoro ¥
known [9] that Pe = % for d = 2, the only way o*(p) could be (.10}111" ) or aj) Dis
if effective medium theory gives the correct solution for all P Wh“f gl ES & Criticy)
exponent of t = 1 and contradicts practically every numerical sunula 10.11 of thig
problem. From inspection of the simulations in references [6] or 19}, ai P Mepey,
from 1 to 1, what apparently happens is that o*(p) starts off conV‘;jf ; I; = %, by
eventually the curve “turng over”, i.e. becomes slightly concave, -w lcbt;li IOWS it fo
have the correct slope of 2 at P = 1. We note that this effect 18 iu i © becallse
away from the critical regime (p x %)’ the graph of o*(p) looks nearly tl‘near, N
. effective medium theory is believed to provide a very good approx{mallon' acte

- an expression for "%f’;—lpﬂ is found in reference [19] and is numerically Valyy,

’ ) o Jag
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ffor any realization of the bond conductivities c;
1

S
T beT
(3.1)

it N el

sz biGT,v

there the i :
i den:;?:l;?os};: (I)lumerlator is over all spanning trees T in G, and the sum
ntifiod. Tho numeratZiraa (11 s(;lpannu'lg trees Tyy in G with the vertices z and y
éthe ppopriate adiacency ;at 'enommator are computed via t}‘le determinants of
e ttice, tiam o Yot rices. The graphs we have considered include the
dothors {JV i gular afctlce, trees (Bethe lattice), ladders, Wheatstone bridge
{’520' Vot of theadvet considered bond and site problems, and various ranges ot"
Vaga 15 x 15 Sanjlel (;vvofrltc}sl we have lool.{ed at have been rather small, the largest
Tosummarise Ourp o1 e square lattice.
) convex for o reeS; tg, away from p = 1 all networks we have considered have
mever, bond pmb}l’e v 3 and for both bond and site problems. Near p = 1,
oblemn, opically n ms typically are not convex when € is small enough, while site
e close e 1 ;’ dre 1conv-ex for al.l €> 9 For a typical bond problem, if we start
Heh it becomes I;n ; I(;w it to shfmk, %p% |p=1 is positive until, say € = 0.1, below
Mrpm ] for 0 s iz?.ys negative f;ll the way down to € = 0. This concavity
e convexit is, of course, consistent with the results in [19]. Furthermore,
¥ near p = 1 for site problems is consistent with the results of [20]. We

‘fe then fO t .
r the site problem, o*(p) for the square lattice with € = 0 appears to be
¢ btain a bound on p. using

de result
,,ifaWing . [s1t7,'20] f?r d = 2 that %IP=1 — 7. The bound would be obtained by
raight line of slope 7 through the point p = 1, o*(p) = 1, and noting

Yty j
"% Pc 15 less than the intercept of this line, which leads to

| 1
pc<1—;r’- (3.2)

nvex f . .
or all p. If indeed this is the case, then one can o

{F()I' the d = .
2 site problem, p. is believed [17] to be about .59, whereas 1—1 /7 = .68.

onsider the infinite

In this section we directly ¢
th € > 0. In order

n dimensions d 2 2 wi
d some smoothness in p of o*(p). The
tation for o*(p) which was proved

folu;.e HCIr(:.nVe:{ity when € > 0.
"prove otit 4 (P) for the bond problem i
s forrt}ll)'m-lmpal results, we shall nee
"o com is is base(-i on an integral represen
0 thepe iSP.Onent stationary random media in [24] (see also [25]). The fo‘rmula-
Mingum o n tl.le continuum, but applies in the present conte).(t by replacing the

quations for the electric and current fields with their discrete analogs,

* Kir s
choff’s laws. We repeat here only the relevant features.
a complex vari

et s =
1/(1 — €). We shall consider $ to be
here in the s-plane except

plane to the up

able. It can be
for the interval
per half plane,

oy 4 :
1), F};a:ho*([),s) is analytic everyw
rthermore, o*(p,s) maps the upper half
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i.e., Im o*(p,s) > 0 when Im s > 0. As a consequence of these analytic properties,
o*(p, s) has the following integral representation,

L=a(ps) = | %:(m—x) ; (41)

where p is a positive Borel measure on [0, 1] which depends on p. Notice that this
representation separates the dependence of o*(p, s) on s from its dependence onp.
(In fact, (4.1) applies even when € = 0.) The dependence of p on p is most easly
obtained through its moments, as follows. For [s| > 1, (4.1) can be expanded about
a homogeneous medium (s = oo or € = 1), yielding

o (p,s) = uo(p) /‘13(21’) uzsgp) )

un=L zdp(z) . (43)

By equating (4.2) to a similar expansion of a resolvent representation for o*, on
can obtain a formula for g,(p) in terms of the iterates of a self adjoint operator
on L?(Q = set of realizations of the bond conductivities) involving the Green’s
function of the discrete Laplacian. Because the bond conductivities are independent,
these moments can be computed in principle (see, e.g., [26]), but they become very
complicated. The first two are

po(p)=1-p

(p) = p(l—-p) (44)
T d

In general, p,(p) is an (n + 1)-order polynomial in p.
. We are now ready to state

“LEMMA 4.1:(d > 1 bond problem) For every e > 0, there exists an open neigh-
* borhood V. in the complex p-plane such that [0,1} C V. and o*(p) is analyticin
Y

. PrROOF: Fix s =1/(1 —¢) > 1. The idea is to produce a neighborhood containing

i [0,1] in which (4.2) converges uniformly. Since for p € [0,1], po(p) = 1 - pand
tta(p) > pint1(p) for all n (via (4.3)),

pa(p) <1, pelo,1]. (43)

Now we must extend what we can of (4.5) into the complex plane. Consider I} =
{p e Clp ¢ [0,1]}. Conformally map W onto the unit disk D in the z-plane, so that
p = oo gets mapped to z = 0, and [0, 1] gets mapped to the unit circle |z| =1. I¢f
m =n+ 1. Since pn(p) is an mth order polynomial in p, pn(z) has at worst an mth
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xder pole at 2 = 0. Thus z™u,(2) is analytic in D. Since [pa(z)] < 1 for [2] =1,
iy the maximum modulus principle,

n(z)| € ==, z€D. (46)

K

%For any small 6’ > 0, there is a small § > § > 0 such that in the annulus Ag
ifned by 1> [z[ > 1 ¢

n(2)] < (L8, 2 €A . (&)
EF‘“ our given s > 1 (or € > 0), we can choose § and §' such that
| lun(p)| €1+ 8™ <™, peVe, (4.8)
vhere V/, conformally maps to Ag. Then (4.2) converges uniformly in Ve, which

! ov
roves the lemma.

H
{

 The conformal mapping trick used to obtain (4.8) arose from a wonderful conver-
hor gratefully acknowledges

;:;ition with C. McMullen and C. Simpson, and the aut

§§;;11ark' Le.mmf.l 4.1 and its proof hold for a large class of continu '
iy (’)D%mely infinitely interchangeable media, which have recently been 1n‘troduced
%where; 11r ane [27]'. This class is a generalization of Miller’s c?ll materials [28],
ondy i:. f)f space is divided up into cells, such as spheres of all sizes, and thenfhc
o ctivity of each cell is a random variable (independent f?om the others) takfng
i o IIlOI:e) values with probability p and 1-p. While the integral representation
1) holds in great generality, along with (4.5), what is needed to make the proof go

ff‘hrollgh is that the pn(p) are polynomials in p. The proof of this fact for infinitcly
gorous upper and lower

Yerchangeable media is contained in [29] (along with ri

: unds on o *(p) for the d = 2 bond problem with € > 0). We also note t.lmt
:!:Qrmrna, 41 presumably does not hold for all composite media. For example, 513)
?:Egl'a })erxodlc array of spheres of volume fraction p enllbedded in 'ix host mat}crm 1}5
Mle‘ed to be analytic at p = 0 only in the variable p3, so that @ (p) has a brancil
M there (see, e.g., [30]).

9{; Now return to convexity. In the previous
e (p, €) appears to be lost only when € becomes sma

% . .
: Wt provides some basis for this observation. _
“DROPOSITION 4.1: (d > 1 bond problem) For € sufficiently close to 1, a*(p) is
| Wex for a]] p € [0, 1]'—

Moar.
00F: From (4.2) and (4.4)

um systems as

section it was found that convcx'ity
I enough. The following

= 1-p)/d 4.9
a*(p,5)=1,<l_s.£+£(_?—»+...). (4.9)

|
§
|
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By Lemma 4.1,

d?e* 2/d 1
= T O(’s?> ! .

which is positive for all p € [0, 1] when s is sufficiently large.

In the previous section it was observed that convexity can only be lost near p=1.
At the other end, p = 0, convexity can never be lost, as shown in

PROPOSITION 4.2: For any finite graph G with € > 0,

d?o

== >o. (411)
dp2 =0

PROOF: The proof is elementary and follows directly from (5.9).

Finally we come to the principal result of this section.

THEOREM 4.1:(d = 2 bond problem) For every € > 0, there exists an open neigh.
borhood U, C [0, 1] containing p. = 1 such that o*(p) is convex on .

ProoF: The proof is based on Keller’s Interchange Theorem

o*(01,02)0%(02,01) = 0102 , (412)

~ where ¢*(01,07) is the bulk conductivity of a statistically isotropic, tWO'COInpoHem
- stationary random medium in d = 2 with component conductivities 1 and 02, ang

' 0*(02,01) is the bulk conductivity with o, and oy interchanged [31-33), Fo,r th
'd = 2 bond lattice with 9; = 1 in proportion p and o2 = € In Proportioy 1 _ e
*(4.12) is also known as a duality relation [16], and is written as b

o’ (plo*(1-p)=e, (4
h’so that at p= %
@)= ve. (419

In order to prove the theorem, we compute the second derivative of ¢ *(p) at p

> f ot
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d?o* w1
dp? |p=% = lim d (5 +h) —20*(%)_*_0*(% —h)
g 0 h? (4.15)
*(1
_ i CG N - 2VEt G )
ho B : (4.16)

fere (4.16) is obtai i
tere (4. ained via (4.13) and (4.14 i
‘xthe smoothness of o*(p) provided by(L.emz;lz;I‘ Z.(lzompute phe fimit, e need some

o*(1 4+ h) = Ve+ah+O(h?), (4.17)

terea > 0 (wh
. en 0 . .
Hain (when 0 < e < 1). Inserting (4.17) into (4.16) and taking the limit, we

d*o*
(4.18)

dp? p=1

>0.

SR

i
fin using Lemma 4.1, £ is : ,
) “gpr 182 continuous function of p, so that it is positive in

tteighborho
od U of p. = %, which proves the theorem.

_, and

d -
depends only on %IP—z
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problem dating back to Maxwell [34] and Rayleigh [35], namely, a periodic array
of perfectly conducting spheres occupying a volume fraction p of a host medium of
unit conductivity. The variation that we consider here in d = 2 has been studied in
[36] and [37], and is described as follows. At each integer pair (i,;) € Z2 placea
small square prism so that the center of the prism is at (7,5) and its vertices lie on
the line segments joining (4, 7) to its four nearest neighbors. Let the prisms have
conductivity 1 and occupy a volume fraction p, and fill the rest of space with a
medium of conductlmty €, with 0 < € << 1. As the prisms grow in size, p increases.
When p = 5, the corners of the prisms touch, and it is around p = 1 5 that the
conducting transition occurs (when € = 0, p, = 1). Keller’s Theorem apphes to thls
problem, and presumably 0*(p) is analytic in p when € > 0, at least near p = :
in which case Theorem 4.1 applies as well, which says that o*(p) is convex in the
transition regime when € > 0. This ﬁndmg is consistent with Figure 4 in [36]. The
interesting question here is what happens as ¢ — 0. Is the convexity near p = % a
finite € effect which vanishes as € — 0, or does it persist as € — 0. In the € = 0 limit,
convexity is not a general feature of these types of systems near the transition. For
a related problem in d = 2 involving circles (with p, # %) rather than squares,
the critical exponent for conductivity is 1 [38], indicating concavity rather than
convexity at threshold when € = 0.

5. Convexity when ¢ = 0 and Conjectured Bounds on t. We begn
this section by proposing a physical argument which we believe explains observed
convexity of 0*(p) in bond and site lattice problems with e = 0 and d > 2 for p near
Pe, P > pe. Before giving the argument, we must introduce the notion of correlation
length, which for p > p. is somewhat more delicate than for p < p.. For the infinite
bond lattice in d > 2 with a fraction p of occupied bonds, let

71(0,z) = Prob,{0 and z belong to the same finite
cluster of occupied bonds} .

(5.1)
“Then the correlation length can be defined (see [39]) by

1 1
— = lim ——log7/(0,z) , 5.2)
€p) s~ o © (©.2) (

‘where the limit is taken as 2 moves out to infinity in a fixed direction. This limit was
- proved to exist for p > p. in [39]. We shall assume that £ diverges with exponent
Sy,
(o) ~(p-p)™, p—pt. (53)

For simplicity we formulate the argument for the d = 2 bond problem. Fix p>p,

and consider an L X L sample of the square lattice with L >> £(p). Let us vie

convexity as a decrease in dd‘; as p decreases, where for convenience we have dropped

the L subscript in (2.2). To accomplish a decrease in %, remove one occupied
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md b from the sample, and let §;0 be the expected drop in the conductivity
swe average over all possible removals. It should be remarked that the occupied
mds can be divided into two types, the “backbone” and the “dangling” bonds.
lckbone bonds have current flowing through them and dangling bonds do not -
kyare dead ends for the current. Consequently, a decrease in the conductivity can
iy be obtained by removing a backbone bond; the removal of a dangling bond does
teontribute to é;0. Now, the removal of a backbone bond can create many new
agling bonds, for example if it breaks a “string” of connected bonds. Presumably,
¥ probability of creating dangling bonds many correlation lengths away from b,
sexponentially small. Consider then the removal of a second occupied bond b;. If
visfar away (with respect to £) from by, then the contribution from such bonds to
le expected drop 620 in the conductivity will be essentially 6;0. However, when
1is close to b1, the corresponding average contribution to 820 will be less than
i, due to the increased density of dangling bonds around &, the removal of which
atributes nothing to §,0. Thus 6,0 < 6,0, which is equivalent to convexity. Far
wy from p. the creation of dangling bonds will be a minor effect. For example,
p=1 the removal of a single bond cannot create any dangling bonds. HOWer?I‘
59~ pf, £ diverges, the backbone becomes more “stringy”, and this effect will
*more pronounced.

horder to make the intuition in the above argument more quantitative, we define
e fOHOWing quantities. Let G be any graph (we have in mind an L x L saleple of
tesquare lattice) with N bonds having conductivities 1 or € 2 0, and let w* be as

5(2-1). Now define

N—k ok
oty = 3 [rlot) ~a(eta)]

=1

(5.4)

; . . k(1) = ok
tere given w¥ ¢ runs over the N —k bonds which have conductl\.nt'y 1, w, (l)d_t W
ad wf (€) is the same realization but with the ith bond conductivity changed to €.

?imilarly, let

.5)

N 5
RCUEDY [a'(w,-‘;(l,l)) +5(w(e @) ~F(w(1:9) “’(“’5‘6’1))} -

s

— k bonds which have conductivity 1,
h and jth bond conductivities c.hz%nged
vity changed to € and similarly
and (5.5) represent discrete

‘lhere, given w*, § and j run over the N
il 1) = W, Wk (e €) is wk but with the it
"58(1,€) is w but with the jth bond conducti

(e 1) with ¢ - onsin (5.4 .
. u\& 1) with ¢ instead of j. The expressions 1 { make this
ft ad second derivatives of the conductivity with respect to p. To
"ection more precise, we define

(5.6)

b= Y 650"

wk EQF
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wkenk '

Then the exact relation is contained in

LEMMA 5.1: Let G be any N-bond graph with bond conductivities 1 and e > 0.
Then

o N
s 59
P k=0
d2e NZ2
== = 2w P (53)
P k=0

Proor: Differentiate o(p) in (2.1) keeping in mind that since ¢ =1—-p, 4= —diq-
Then we have ’

N
_1; Zak[(N k)pN—k -1 _k kpN qu—l]

N-1

il

pN-k-—lqk [(N ~k)ag - (k + l)ak+1] )
k=0

which can be written as (5.8). Taking one more derivative, we have

do &
W = Zak [(N - k)N - k—1)pN k24

k=0
_ 2(N _ k)kpN-k—lqk-l + k(k _ 1)pN—qu—2]

N-2
pN-“k[N E)(N =k — 1)ax

k=0

= 2(N -k - 1)k + Dagss + (k+2)(k+ l)ak+2] )

_which can be written as (5.9).

~ When the number of bonds in G goes to infinity, the appropriate limits of fi
and vk yield exact formulas for the first and second derivatives of o(p). When 6

is a hypercubic sample of the lattice with side L, then N ~ dL¢. In this case ¥

}clonsider o*(p) in (2.3), assuming that the infinite volume limit exists. Then ¥
ave
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[tuMA 5.2: For the lattice in d > 2 with € > 0 and fixed p,

: 2—d N do”
(Jm LB/ () =r, (5.10)
. d’o*
2—d N
k,llfglooL 7]‘/(]() =p2 dp2 9 (5'11)

vhere the simultaneous limits of k and L — oo are taken so that

lim —= b
k,L—o0 N k,L—o0 dL4

‘ProOF: Equation (5.8) can be written as

d
Q9 _ Z BipN k. (5.12)

glote .that .in (5.6) there are (I;] ) terms §6(w*). When N is large, the weight of
e binomial distribution is concentrated on values of k such that k/N is nearly
?z 1-p. Appropriately scaling B¢ with L?~¢ yields the result (5.10), and similarly
r (5.11). See [40] for more details about this type of argument.

s of Lemmas 5.1 and
=2 (Wlth €= 0) 50
«*? potation)

t out the implication:
Jet us consider d
after dropping the

52“ is important at this juncture to poin

t}-l for our analysis of i;f{—. For simplicity,
2- .

that [2=4 = 1 in (5.11), which can be written as (

%o - (5.13)

P =< §*5(wf) >p >
there wP s & configuration of the bond lattice with 2 fraction p of the box}ds
cupied (which can be viewed as a random graph), and < Z» denotes averaging
%ersuch configurations. Since §°(w” ) involves all pairs of bonds in w”, prcsum'ably
W ergodic theory argument shows that it suffices in (5.13) to cons:dex: a single
pof occupied bonds

[‘typicaln configuration B(p) of the bond lattice with a fraction "
ie., B(p) belongs to a set of full Bernoulli measure in the standard perco ation

Pfoblem). Then (5.13) can be written as

d20' 2

(5.14)

jon. Also note that, given any graph G

«~» potat :
function a(p),

‘\v
bere we have now dropped the .
d conductivity

v
th bond conductivities 1 and 0 an

_Ciz_q = 620(G) .
dp2 p=1

(5.15)
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Then we see via (5.14) that pz%:—‘,’(p) for the lattice can be computed by finding

%:TE |p=1, where & is the conductivity function for G = B(p). Similar considerations

hold for ‘;—;, with the analog of (5.15) being

o) se(a) . (5.16)
dp |,y

We now return to the physical argument given above. The principal objection
that one can raise to this argument is that the first removal b, can set up a situation
where the second removal results in a larger drop in the conductivity than did the
first. For example, consider a configuration of connected bonds in the shape of a Y,
where the current flows in through the single leg and out through the two arms. For
simplicity let each “limb” of the Y be composed of 1 bond of conductivity 1, with b
the leg and b, and b3 the arms. Consider now 620(Y’) = 2(612 + 623 + 613), where the
§ij are the summands in (5.5). Elementary calculation shows that 15 = 613 = +;
and 83 = 3}, so that 620(Y) = 0. The important point to note is that (2,3)
is a pair of bonds in parallel, while (1,2) and (1,3) are pairs in series. The pair
(2,3) is an example of the objection raised. When by is removed, the current
can still flow through b3, and the drop in conductivity is minimal. When b; is
subsequently removed, the effect is to cut off all current flow, with the result that
the net contribution of the pair to §20(Y") is negative. However, when b is removed
first, the flow is stopped immediately, so that b, and b3 are dangling bonds whose
subsequent removal does not affect the conductivity, which is the principal reason
why 615 and 6,3 are positive.

For an arbitrary graph G, there is no particular reason why the positive §;s
should outweigh the negative ones. However, for graphs that are sufficiently stringy,
Positive contributions from series pairs in a given string should tip the balance to
a net positive §20(G) > 0. For example, if we replace each bond in Y above with
2 bonds in series, and call the new graph Y,, then 620(Y2) > 0. The reason is
that the three series pairs in the leg and two arms give new, positive contributions

to 820(Y,) which were not present in 620(Y). Such considerations led us to the
) fOllOWing

THEOREM 5.1: Let G be any finite connected graph with bond conductivities I or

?, and let S,G be a new graph formed by replacing each bond of G with n bonds
In series. Then

820(5n.G) =n6%0(G) + (n — 1)65(G) (5.17)
6a(G) > 0. (5.18)
Before we prove the theorem, its principal consequence is given in

CoRoLLARY 5.1: If G satisfies

1626(G)| < 60(G) , (5.19
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ten there exists a positive constant C such that
620(Sp,G)~Cn, C>0,n—o00. (5.20

1ooF 1 OF THEOREM 5.1: In order to calculate §%0(S»G), we must consider al
airs of bonds (4,7), ¢ # 7, in the new graph SpG. Let the pairs in the origina
qph be labeled by (', '), i' # j'. Now, the pairs in S,G are of two types, those
ich arise from 4’ 5 j’ and those which arise from one original bond ¢'. Denoting
te summands in (5.5) again as §;;, for those (%, ) pairs of the first type, we have

bij = —71-1-6,'11': , (5.21)

ere the factor of 1 appears because

o(SaG) = %U(G) , (5.22)

e the conductivity of » bonds in series is % For pairs of the second type,

5,']' = %(Ji‘(l) — 0’,’!’(0)) , (5'23)

‘Where 0i(1) = ¢(G) and c(0) is o of G without bond i'. Note that2 bij ‘in (5.23)
Salways non-negative. For each (i',j') pair in G, i # j', there are n® pairs of tl‘le
It type in S,G. For each #' in G, there are n(n — 1) pairs of the second type 1n
%G. Thus

(nzﬁza(G) +n(n— 1)80(G)) (5.24)

S|

620(SnG) =
which yields (5.17).

Remark SnG is composed of a graph G whose elements are strings f’f ?hb?rsl:lrsix:g
ies. Removal of any one of these bonds converts all the other bonds in d%lll s
U0 dangling bonds. Their subsequent removal has no effe-ct on the cozxhe secon(i
;lnd this effect is the source of the positive term (5.23), which becomes
fMin (5.17).

"H00F 2 OF TEOREM 5.1: Let the conductivity

A

b), and that of G be denoted by o(p). Then

function of S5,.G be denotedﬁby"

(5.25)

1
3(p) = ") -
' ing p = 1 yields
Merentiating both sides of (5.25) twice with respect 107 and sctting P
~ do 5.26
11_2_3 = néi‘z +(n- 1)‘3; 7 ( )
dp2 p=1 de p=1 p=1




which is equivalent to (5.17).

Proof 2 was a joint observation with S. Goldstein, which was made subsequent to
the original Proof 1. We chose to include Proof 1'as well because it shows explicitly
the convexity improving effect of creating dangling bonds.

We are interested in applying Theorem 5.1 and its corollary to the lattice. Hence-
forth let G, be a square (or cubic or hypercublc) sample of side L of the square
(or cubic or hypercubic) lattice in d > 2 with p'=.1.-(Think of G, as standing for
“grid”.) Let G be the infinite volume limit of G 'L- Furthermore, let

60*(Q) = hm L2~ d&JL(GL) (5.27)

#0°(G) = Jim I~ da%L(GL), (5:23)

where on the right hand sides of (5.27) and (5 28) we have simply added n L
subscript to the notation used in (5.15) and (5.16). In order for Coroll?’bry
apply to Gy, and G, condition (5.19) (appropnately scaled in L) must be & tsf ed
As stated before, for d = 2, ST

do*
l S

dp 'p=1

60*(G) =

§%0*(G) = d2" (5.

I r= 1 z.'—,:t

L lazg,

so that condition (5.19) is presumably satlsﬁed for both G and G, with dions [y

- although we have not rigorously proven such a statement In higher dim?®”
“dp =1 ;;. ;d";rl 2

Sy § f *(
while numerical simulation of o*(p) in d = 3 [6] and analytlcal solutio? iy ling Y
for the Bethe lattice, supposedly representing large d [41, 42], are practi¢ POy
near p =1, so that 52 o*(G) 1s also small, as in d 2. We thus styte an u?

. CONJECTURE 5.1: Condition (5.19) is satisfied by the bulk conductlwt}’
‘square (or cubic or hypercubic) lattice in d > 2.-

60*(G) =

for tl}

: d ap
- Let us now describe the picture we have in mmd We begin wity, ¢ ﬂ; 13*«535*
. Sy to it, for some large n. The result, S,Gy, can ‘be thought of as a 511? ﬂnecth
. or grid with side of length nL, composed of “stnngs or “macroljpks” @ d to th&
the old vertices or “nodes” of Gr. This super-lattice is closely conneo ﬂear
so-called “node-link” model of the backbone of the infinite cluste, for ﬂes <l
p > pe, proposed independently by Skal and Shlovskii [43] ang g, felis tef h]
In this model, the length n of the strings connecting the nodes g gfe 5> t}\
the distance between the nodes, reflecting the observation in acgy,, cl" |
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‘“rings” are not straight but tend to wander around. The distance between the
wdes is assumed to be on the order of a correlation length €. The geometrical
nrameters n and £ in the node-link model are related to p via the scaling relations
sp-pf, ' |

| &) ~(—pc)”" (5.32)
| n(p) ~ (p—pe) ¢ - (5.33)
The Chayes [12] have rigorously shown that ¢ > v, and also that ¢ > min{1, z}h
ir an appropriately defined ¢, where v’ is the correlation length exponent as p
iproaches p, from below. It is believed, however, that v’ = v, and we shall assume
bat ¢ > 1. Under these assumptions, an easy calculation leads to the following
upression for the conductivity critical exponent,

t=(d-2v+(. (5.34)

We can make the correspondence between our super lattice S,GL ‘and t}'1e node-
Ik model exact by allowing our strings to wander as well, and stipulating that
be length of a side of S,Gy, is £L, rather than nL. This variation does fxot alter
be conductivity or its derivatives, but only the way the graph is situated-m space.
Ishould be remarked that in the node-link model we have generat.ed via SnGL,
bur strings meet at each node in d = 2. Apparently, though, i.t is much more
mmon in actual percolation clusters to observe three fo.ld meetings (D. Il"'xs:l.er,
Fivate communication). This can be taken into account in our x'nodel by let ;)Illg
€. be a sample of the hexagonal lattice instead of the square.lattlce. Prz?sulrlr}ah y :
(§.19) still holds for the hexagonal lattice. Similar considerations apply in hig er%

ensions as well. . .

Apparently it is now generally accepted [14, 12] that thfa node-h.nk mf)del ;s ?
"ersimplification of the backbone structure, particularly in low dimension, fsfhc
fly d =2 Stanley [45] has suggested that a more accu.rate represex:itatlon :r the
ackbone is provided by a “node-link-blob” model. In .thxs model, node; s;gs) ted
va distance ¢ are connected by strings or links (of singly connected bo ) and
e (of multiply connected bonds). One can visualize the conr’lectlor; between
odes as o Segment’ of a necklace of beads on a string where there is sg;:)lbs svance
“Ween the beads. Also, a node may actually be 2 blob. Tlﬁese lob
“hsimila structure, i.e., ,they have a node-link-blob struitur(i1 tl t :rcnos:onar-y ander

We now wish to explore the consequences of Theore{rl 5. :::_-1 L Theorem
€ assumption of Conjecture 5.1 The case of d = 2 1s con

M yields
(n —1)6o(GL) -
fnite volume limit of (5.35)

(5.35)
520'(5,,GL) = n62a(GL) +

Ynce [2~4 _ 1 for d = 2, we can directly take the in

“Suming it exists) to obtain
* (5.36)
§25*(5,G) = né0"(G) + (n - 1)80*(G) -
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Under Conjecture 5.1,
820*(SpG) ~ Can, n — 00,0y >0. (5.37)

The upshot of (5.37) is that, if one assumes that the backbone of the infinite clus-
ter behaves like the node-link model, then not only is d;“)’; positive as p — pf,
indicating convexity, but it diverges to +o00. Presumably a similar result can be
obtained for a good approximation of a node-link-blob model by taking an appro-
priate G with a sufficient number of levels of self similarity in each blob (and such

that (5.19) holds). Such considerations lead us to
CONJECTURE 5.2: (d = 2 bond problem)

dto*
dp?

— 400 asp-— p;* . (5'38)

Consequently, a*(p) is convex in (pc,pc + a), for some small a, and

1<t<2. (5.39)

The first inequality in (5.39), as already mentioned, has been rigorou51y esta‘ub‘
lished, but is explained here via convexity of o* near p. = 3. The second inequality
t < 2 comes from (5.38) and

d2 *
d; ~ (p - pc)t-——2 . (5'40)

A tighter upper bound on t is provided by the node-link relation for ¢ i% (5‘3‘1)
for d = 2,

t<¢, (540

where a reasonable numerical estimate for { in d = 2 is about 1.35 [46]. A'ﬂgomlls
argument yielding (5.41) was shown to the author by H. Kesten. What thS bo“‘ld
amounts to is that the conductivity of the node link backbone is smaller than thy
conductivity of the actual backbone, i.e.,

7*(5.G) < o*(B(p)) , (5.4
jvhere B(p) is a typical backbone configuration at volume fraction p andtn iy
SBiven by (5.33). Inequality (5.42) is physically reasonable if we imagine B(P ) to hg
& constructed from S,G by adding bonds, which increases the conductivity (see alg()

(12]) B
We now apply Theorem 5.1 to higher dimensions, with d = 3 fst. DMdlhg
(5.35) by the length éL of a side of S,,G 1, yields

P0(SuG1) _ nf(G1) , (n = 1)50(Gr) (54
& i AN )



CONVEXITY IN RANDOM RESISTOR NETWORKS 167

Tiking the limit as L — co gives

§20*(S — e n—1.,
0*(5.G) €6 a*(G) + g 8c*(G) . (5.44)
Under Conjecture 5.1,
2 _* n
60’(SnG)NCg,E, Tl,ﬁ—-)w,03>0. (5,45)
Yow, as we will discuss below, we have rigorous evidence that
| 620*(SaG) > 6%0*(B(p)) (5.46)
which, using (5.45), (5.32) and (5.33), becomes
d*o*
~(p— pc)t—2 <(p- pC)V—C ) (5:47)

dp?
fivin .
g a lower bound on t. Repeating the same procedure, but dividing by the
he analog of (5.42) in higher

. .
d}i)prop.rlate power of (L in (5.43), and considering t
mensions, leads us to

CONJECTURE 5.3: (3 < d < 6 bond problem)
d—2w+@2-)<tS(d-2w+6

dimension and co
th t = 3. Using numerical values

otted in Figure 1 the

(>1. (5.48)

Th i ‘
wheres.e t-)ound.s become tighter with increasing nverge in d = 6
. Ce it is believed that v = 1 and ( = 1, wi
and v in dimensions 2 through 5 [46,47, 8], we have pl

Moposed bounds (5.48), as well as the bound 1 < t < (in d = 2. In our choices
ble ones, which make the bounds

of va]
the Wlilzs for ¢, we have chosen the largest reasona
est. The best current numerical estimate for t in d = 2 appears to be
as well established. In [49],

1303788 (48], while L e
a“relativel. 1 5, Wh'lle in d = 3 the s1tuat.1on is not as 3 t 19
Slimate y well established” value of & 1.9 is quoted, while vex",y recent numerical
Commun.s of.C- Lobb indicate that ¢ in d =3 is “very close to 2" [C. Lobb, pI’lVaFC:s:f
Wimerj llc at‘(_’n]. These values fall within the proposed bounds. The (.)nly recent _
4] W}cla eStl.mateS of ¢ for d = 4 and 5 known t0 the author are those 11 [46] and -
W,e ere t is computed via (5.34), which is just the upper bf)und in (5..48).
than 51210? explain (5.46), which says that §20* for the nc.>d.e—hnk moéel is greater
e, Tha for an actual backbone configuration. The intuitive reason is fairly fS1m-
¥ithin y flOde-link model is composed purely of strings, 2an:i pairs of bozds zon;
backt, > given string give purely positive contributiox-ls to 6%0™. Howevex;i, t ;: actua
ablobone is composed of strings and regions of multiply con’fxected bonds. ;r;)aglze
om composed of a piece of the lattice G at p=1 (a “fu'll blobz. f’axrs of b ;mhs
X }\lﬂ'lthm the blob will give a small negative contrik?utlc?n to & g . E?'lelzn tl'utbe
£ss thas S.ome string structure within it, the net c9ntr1but10n to 6%c* W1 sdxe ! az
the g; an if there were in its place a pure string with length o.f the Zai.:r.xe or for o
Mo 1ze of the blob. Such statements can be proved under certain coi ions, p
tides a rigorous basis for (5.46) and forms the content of the informally state
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THEOREM 5.2: Let S(n) be a graph composed of n bonds in series, ie., S(n) isa
string of lengthn. Let T(n) be a “necklace” composed from 5 (n), i.e., replace some
sections of S(n) with blobs, which can be pieces of the lattice G at p =1, or pieces
of S G, with m sufficiently small compared to the length of the section of S(n) the
blob replaced. Then

§20(S(n)) > 6% (T(n)) - (5.49)

The proof of this theorem follows along the lines of Proof 1 of Theorem 5.1, but
will be omitted here.

We close by remarking that Straley [13] has proposed a (non-rigorous) lower
bound on ¢ that is better than the one in (5.48), namely, ¢ > (d —2)v + 1. However,
our analysis leading to the lower bound in (5.48) has some interesting consequences
for the behavior of —%’2: as p — p7, particularly in d > 3, which is discussed in [50).

Figure 1. Proposed upper and lower bounds on the condyctiv-
ity exponent ¢ in terms of the percolation exponents v gnd (-
Numerical values for v and { are used to evaluate the boupds in

dimensions d = 2,3,4, 5, and 6. Straight lines have been draw?
between these points.
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