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ABSTRACT

We congider the effective thermal conductivity of two-component
isotropic composites and review bounds obtained through analytic
‘continuation of the effective conductivity as a function of the
-component conductivities. The connection between this conductivity
_functlcn and Stieltjes functions is emphagized. Many of the well-
known bounds on the effective thermal conductivity correspond to
bounds on_Stleltges functions and these bounds, in turn, are
closely related to Padé approximants.

INTRODUCTION

The emphasis of this paper is different from that of the
conference presentation. Here we review analytic properties of the
effective thermal conductivity, R@, of composites, rather than
proving that the well-known effective-medium approximation [1,2]
ig exact for a gspecific class of model composites. These model
. compasztes9 which have a self-similar or fractal-like character,
are described elsewhere [3].

The effective conductivity of a statistileally isotropic and
homogeneous two~component composite iz defined as the constant of
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proportionality, iﬁ, in the egquation

relating the average of the heat current ET(g} to the average of
the temperature gradient VT(x) in the composite. The brackets are
used to denote averages, in this case an average over a large cubic
volume, ), of the composite., The fields JT(g} and T(§} are often
caleulated by solving the microscopic equations of thermal conduc-
tivity:

I = AE@VIE, Ve I =0, @

where the local conductivity A(§) takes two values: Aq{ in component
1 and Az in component 2. Our work is based on these equations. To
justify theilr use we make four simplifying assumptions. First, we
suppose the components are in good thermal contact so that there

is no temperature discontinuity across interfaces. Second, the
temperature must be sufficiently high to ensure that the mean free
path of phonons or free electrons is much smaller than the charac-
teristic gize of inhomogeneities. Third, the temperature must be
low enocugh to neglect heat tramsport due to radiation and comvection.
Last, we suppose the cross—-coupling between different fields is
negligible. (This is reasonable when the thermopowers and thermo-
elastic coefficients are small.)

Qur overall aim is to reproduce known bounds on the effective
conductivity that have practical applications and then provide an
elegant generalization of them. We start by reviewing the well-~
known connection between thermal conductivity in composites and
other transport processes. We then discuss a perturbation solution
for Ag, which is useful when the structure is arbitrary and
8y = Ay -Ap is small. Finally, following Bergman [4,5] and others
[6-11] analytic properties of ig(il’ A9) are studied and used to
obtain bounds on the effective conductivity., We draw attentiom %o
the connection between these bounds and the bounds on Stieltjes
functions derived by Baker [12,131.

RELATED EFFECTIVE CONSTANTS

Flectrical cenductivity in a composite is described by the
equations

TG = - o@WE, eI @ =0, (3)

where Jy(x} is the electrical current, V{x) the elecrric potential
and o(x) is the local electrical conductivity taking values U1 in
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component 1 and O in component 2. The similarity between {2} and
(3) implies that the effective electrical conductivity gg{01, as)
is precisely the same function of 0 and U as Aglhy, Ao} is of

Ay and Ay, for 2 given composite with fized structure. Similarly
the effective dielectric constant egley, €2) is the same fanction
of £1 and €2, {(See the remarks of J. D, Patterson in these pro-
ceedings.) Hence if the ratios o1/iy and 02/A2 are equal, trhen
Go/hp also shares the same value. This implies that if the
Wiedemann-Franz law [14] applies to both component materials, then
it works for the composite as well. The similarity does not extend
to the effective elastic constants of composites, which relate
average stress to average etrain fields., Hevertheless, gimple
correlations between the rhermal conductivity and elastic properties
of compﬂsites have been established Ia1.

A PERTURBATION SOLUTTION
One approach to estimating Xg wsing a perturbation scheme is

due £o Brown [13], who deduced formal expressions for the coef~-
ficlents, Vg, in the series expansion,
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in which fi and £3 = 1 —~ f£1 are the volume fractions occupied by
components 1 and 2. Brown related yy to a multiple integral over
an (m + 1) - point correlation function which gives the probability
that all m + 1 points lie in component 1 (or 2). In the special
cagse m = 1, this integral is independent of the structure of the
composite and Brown proves ¥y = & f1fp/d, where d is the dimension-
ality of the composite. The next important centribution to Ap comes
from the term involving y2. This coefficient can be expressed
{15,161 in the form

2 - _ _ Z
¥y = fle{fZ + {d—i}Cl - dfl}fd = *f1;2Ef1+{d 1)@2 éfszd L {6}

where, for a three-dimensional composite, we define

y 9 e[ asfE 105800
g, 2 1- ;2=5¥§; [y axl, as] du —==—— P, (u), (7>
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in which Pziu} ig a Legendre polvnomial and fiil(r,s,u} iz the
probability that all three vertices of s given triangle lie in
component 1; the triangle having sides v, s and included angle
cos"lu, This fundamental geometric parameter {7 has been calculated
for a varietv of composites, Including cell materials [17] {described
below), regular arrvays of spheres {18}, and systems of both pene-
tvable spheres [19] and hard spheres [20] randomly inserted in a
matrix. The simplest results are for the cell materials, constructed
by dividing space into cells and then flipping the same weighted

coin in each cell: heads, which ocecurs with preobability £31, means

the cell is to be filled with component 1; tails means it is to be
filled with component 2. Miller [17], who deviged these materials,
proves L3 = £ for spherical cells, L7 = {2 for platelike cglls,

and £7 = (f2 + 3£1)/4 for needlelike cells. The results have been
generalised to spheroidal cellis of arbitrary eccentriciry [187,

For cells to be considered truly plarelike, the aspect ratic of the
equatorial axis to the longlitudinal axis must exceed 100. For
needle~like cells, this aspect ratio must be smaller than 1/10.

In the following section, the_coefficients vy In the expansion
{4) are incorporated im bounds on lg. These bounds often give re~
liable estimates for the effective conductivity. HNote that the
serieg expansion is expressible in various eguivalent forms through
a change of variables. For instance, 1!36 can be expressed as a
gseries in terms of

61;}\ = 1/:&1 - 1;A2, ﬁfﬁe =

having the same basic form as (4), but with different coefficients.

£/0 + £,7%,, - {(8)

ANALYTIC PROPERTIES AND BOUNDS

The function Ag(y, A3) has some very beautiful properties
first recognized by Bergman [4] and rigorously proved by Golden
and Papanicclaou [10]. Specifically the function can be expressed
in the form

Aa(kig 12} = agkl + bgkz 4 Algﬂ(kljﬂﬁ)’ {9)
where 2y and éo are real-valued satisfying

an > 0, b, >0, a, +b, <1, {10}

0 %0 Z
and g.{z)} has the integral representatrion
0

o 48y (u)

34 zu ? D

gﬁiz} =



in which $gful is a beunded non-decreasing function normalized to
ensure

AG(E, L= 1. (123

The representatiocn (11) is, in fact, the defining equation for a
Stielties function. The properties of Stieltjes functions have
been extensively studied in the mathematics literature; Baker [13]
gives an excellent review. Evidently from (11}, gp(z) is an analytic
function of z with singularities restricted to the negative real =z
axis. These singularities include simple poles with positive resi-
dues, essential singularities and branch cuts. For exsmple,

Bergman [21] and McPhedran and McKenzie 1221 consider regular arrays
of identical spheres {(and cylinders) of conductivity A, in a matrix
of conductivity Ag. Their numerical work indicates that for these
composites gg(z) has an essential singularity at z = -1 which forms
the accumulation point of a set of poles located along the negative
real axis. In any composite with some degree of randomness, the
poleg are likely to get smeared out and form a branch cut [4]. In-
deed, Dykhne [23] proves vYAjlp is the exact effective conductivity
of any two-dimensional, possibly random, composite that is sym—
metric in the two—-components, like a chequerboard. Thig implies
gO{z) = 1//z, with a branch cut along the entire negative real axis.

Qualitative features of the function ie(kl, Az) can sometimes
be determined from measurements of the effective dielectric constant
raken over those frequencies where the wavelength greatly exceeds
the characteristic size of inhomogeneities. (At higher frequencies
the radiation is scattered.) The dielectric constants €y, €p and
£~ are then generally complex with imaginary parts that govern the
absorption of inecident radiation. For example, in the cermet
Ag ~ $i0p the silica has a real and relatively constant dielectric
dielectric comstani, €g, whereas the dielectric constant, £4, of
silver varies with frequency along a trajectory in the upper half
of the complex plane. This trajectory passes very close to the
negative real ¢, axis, i.e., near where the singularities of go{z)
are expected to have the greatest influence. The measurements of
EG with f1 = 0.39, taken by Abeles and Gittleman [24] exhibit a
pronounced absorption peak at a wavelengrh of about 0.45 microns.
This resonant absorption, not present in either pure gilver or pure
silica indicates the presence of a pole {or short branch cut singu~
larity) im gglzl. Physically it is due to the same sort of reso-
nance occurring in capacitor-inductor networks: the silica acts as
a capacitor and the silver serves as an inductor.

Although the analytic properties of Ag{kl, Ay} have been known
since the pioneering work of Bergman [4], the conmection with
stieltjes functions has been recognized only recently. In fact,
many of the bounds om Ao deduced from first primciples by
Bergman [4,5], Felderhof [8] and one of us (owy [6,71 could have
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been directly cbtained from the bounds on Stieltjes functions de-
rived by Baker [12]. These bounds incorporate the coefficients in
rhe series expansion (4} up to any given ovder and are closely re-
lated to Padé approximants [13]. To see how they arise, we follow
the approach of Baker [12], elsc adopted by ethers [11,42]. For
simplicity, let us suppose Ai > Ag. First note that the inequaliry

a6, () dbg ()

1 0 ®
E}r‘;m igc{z)if{} T for all z > 1, (13}

which follows from {11), can be combined with (¥}, {10} and (12} to
establish the slementary bound,

N URE O (14}

Now the invariance properties of Stielties functions imply thatr if
Ag{r1, A2) has the series expansion (&) with yq = -f;f,/d, then,
recalling the definitioms (3) and (8),

L) = @ - DTG Y, - D/ - A (15)

is a function of the =ame character as RG{Al, A ), i.e. 1t can be
expressed in the form

Y N T T

1Ay Ay {Riflz}, (16)

181

where g1 {z) iz a Stielties funciiom, and a; and by are noa—negative
with sum aq + %1 < 1. The normalization constant {é“l}" in (13)
serves to ensure Rl{i 1) = 1, BSince all the terms in {16} con-
tributing to %, are positive when 2., RE > @, ir follows that

11 > 0 and through (153} this implies

{wzéﬁ"l <y Al (17)

0

These bounds, established by Wiener in 1912 using an entilrely
different method [231, were the best avallable for 50 years. Hashin
and Shtrikman [26] made the next major advance. They discovered

new variationzl principles {incorporating trial "polarization”
fields) which vielded an improved set of bounds. By analogy with
{14} we have

(18)

which in cenjunction with {15) yields bounds on Ag that are in
fact eguivalent to the bounds of Hashin and Shtrikman. They prove
rhere exist composites [76] which attain these bounds. The lower
bound in {18) is attained when the composite is an assenxblage of
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spheres of component 1 each coated with a shell of component 2 such
that the components are in the same proportion, f3:fy, in every
coated sphere. In order to fill all space the coated spheres must
have a wvariety of sizes, ranging to the infinitesimal. The uppey
bound corresponds to a similarly constructed material where the
roles of the components are interchanged. Hence {31.8} are the best
possible bounds that incorporate fi {or fz} and no other information
about the isotropic composite. TFor a comparison with experiment,
gee Corson [27] and DeVera and Strieder [2Z8]. Recently, Tartar and
Murat [29] and Lurie and Cherkaev [30] have generalized these bounds
to anisotropic composites, using the method of compensated compaci-
ness. Their bounds are attained when the composite is an aggregate
of coated ellipsoids that are aligned and fill all space.

Note that (4) and {(6) when substituted in (15), iImply

A, (A, A

2 ~1 2
L, ) = D}, + 008D = ] 08, (18)

whera
- - 1 — £ £
{A}l z gl;\l + gzzzg {zﬁ;i = gi;’}\}_ + g?_,}ng (20)

Hence the geometric parameters I3 and Lo = 1 - L3, defined by {73,
now play a similar role to the volume fractions £y and £3 =1 - £3.
By analogy with (17) we deduce the bounds
-1 kY r

1" < g_Lz}l, (213
which are_identical with bounds due to Beran [311 when expressed in
terms of Ag. [Beran's bounds have been considerably gimplified by
Torquato and Stell [32] and Milten {16]: the connection with (21)
becomes evident only after this simplification]. Few experimental
tests of rhese bounds have been made owing to the difficulty in
measuring the three point correlation function f111(r,s,u) needed
to evaluate T3 via (7) [27]. If, however, the glastic properties
of the composite are known, then this provides an alternative method
for estimating Zj. The bounds on the effective bulk and shear moduli
of composites deduced by Beran and Molyneux 1331, McCoy [34] and
Milton and Phan~Thien [35], in fact, incorporate g3 [16].

An entire sequence of bounds can be comstructed by generaiizing
the preceding arguments [11,12]. We introduce a hierarchy of con=-
ductivity_functions kj{kl, A3) defimed for 1 =1, 2, . . ., in
terms of Ag(hi, Az) through the recursion relation

Aj+1ihl, Ay E njklﬁzﬁkj{ifk}j - i}f{{k}j - AjB, (22}
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where the normslization comstant nj > O 1s chosen to ensure
As41(1, 1) = 1 and the averages

;. = T { = +
{R;j = W},jgl + stjkzs ;Efij} Wl,jjki wzaj!kz, (23}
incorporate non~negative weights Wy 42 Wy i defined by
5 b4

5h, 0,1

i1
=1 -y = N 24
1.3 Y2, % (24

klﬂi

The normalization constants nj and weights wy 4 can be expressed,
using (22), in terms of the coefficients y, in the series expansion
(4)., They respectively depend on 2] + 2 and 2j + 1 point correlation
functions. From {(4), {15} and {20} we have

-1
E — = = {
£ {d iy 7, wi;@ fi’ wi,i gl“ {25)

In the special case where ig{ﬁlg %3) is a rational function of Aq
and Xy, the hierarchy terminates when Ay = {k}j or {1/2Y71: veyond
this the conductivity functions are ciearly not defined.

As i increases, the inequalities

X< Al (26)

Ao < AL < A .
- . J— 3

2 = %y S My

[ A

Tt

3
imply successively tighter bounds on Ay which include progressively
more information about the composite. The nested sequence of bounds
generated by the first pair of inequalities are known as even-order
bounds, since thev depend on correlation functions uwp to an even
order, 2j. The second pair of inequalities generate a nested
sequence of odd-order bounds.

Common |36] and Baker {12] obtain the corresponding sets of
bounds on Stieltjes functions. The problem was first suggested by
Common who deduced a hierarchy of inequalitries, later sharpened
{and extended to complex A4/A;)} by Baker. Beran [31] and Kroner [37]
describe how odd-order and even-order bounds up to arbitrarily high
order can be deduced from variational primciples. Their bounds
coincide with the bounds on Ay implied by {26}, which in turn are
equivalent to the bounds in Refs. 7, 9 and 11 [38]. This generalizes
the work of Bergman [4], who established that the Wiener [25] and
Hashin-Shtrikman [26] bounds follow form the analvtic properties of
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o EZ}; a conclusion reached in the above analysis.

15
Reran [31] first raised the question of whether the bounds
converge as § + ©, The answer is yes, provided A1/xp is not zero,
infinite, or real and negative. Indeed, as Baker establishes in

his monograph [13], the moment problem is determinate for a

Stieltjes series with a non-zero radius of convergence. McPhedran
and Milton [18) calculate series expansions for the conductivity

of regular arrays of mearly touching spheres of conductivity Ay An

a matrix having conductivity Ag., They find the bounds on Ap con-—
verge rapidly as j increases for conductivity ratics Aifhe up to
10,000. 1In faet, the width of these bounds is negligible when

3 > 7. In this sense, the normalization constants ny and the welghts

Wi, 3 characterize Ag{Aii, 22). To calculate them is in general a
redious and difficult task, requiring knowledge of high-order corre-
iation functions which are not usually availgble. Two exceptions

are worth noting. ¥First, for symmetric materials we have

Ao(A1, Az) = Ap{dz, A1). This implies wi 3 = w2, 4 = % for all j.
Second, Keller's identity [39],

X (/A 1) = 175,05 2, @7

which holds for any two-dimensional (isotropic) composite implies

n: = 1 for all j. When d > 2, (27} takes the form of an inequality,
derived by Schulgasser [40}, and the normalization constants n; for
j > 1 all depend on the structure of the composite. The effective
medium approximation [1,2] for an aggregate of spheres corresponds
to a choice of parameters ng = {d - 1)1 and w1 < £y for all 31417,

The above analysis extends to anisotropic composites. For
these composites, the effective thermal conductivity is represented
by a d-dimensional symmetric matrix»ﬁe with non-negative eigenvalues
gk K= 1, 2, ..., d. TFor simplicity, let us suppose the structure
of 'the composite remains unchanged under spatial reflection, which
ensures that the eigenvectors (or principal axes) of Ap do not
rotate as the ratio Aq/Ay varies. Then any eigenvalue, as a
funetion of Ay and X, is expressible in the familiar form [4,6,10],

Ao hys Ap) = gy hy by Ry T Ay (720 (28)

where the positive constants ag i and bg,x have sum at most 1

and g4 1 {z) is a Stieltjes function. Furthermore Ay ¢ {Ay, A;) has
a serieés expansion in gy and 3., of the form (4) with new coef-
ficients ym’k{m,= 1, 2, «.. ®}. The leading coefficients are cor-
related through the identity [6]

d

W Y1,k T 7 fifoe (29
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in conjunciien with the representation (28) this identity implies
bounds on Ag that are precisely equivalent to the omes gbtained by
Tartar and Murat [29) and Lurie and Cherkaev [30], To see this it
is necessary to inmtroduce functions A1,x (21, A2) each related to
Ag, kA1, A2) through an equation analogous to {(2Z).

One would hope that similar considerations apply tfo the ef-
fective thermal conductivity of multicomponent composites and
polyerystalline materials. Despite significant progress [4,7,111,
this remains an outstanding problem deserving more attention.
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