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THE INTERACTION OF MICROWAVES WITH SEA ICE
KENNETH M. GOLDEN*

Abstract. The sea ice pack in the polar regions plays a fundamental role in global
climate as the boundary layer separating the ocean and atmosphere in these regions.
Due to its vast extent, the physical properties of the sea ice pack are often studied via
electromagneticremote sensing from satellites and airplanes, in the microwave regime. In
this work we give an overview of ongoing investigations of the interaction of microwaves
with sea ice. This interaction is particularly interesting in the case of sea ice, which is a
composite of pure ice with random brine and air inclusions, whose geometry can depend
dramatically on temperature. These investigations include finding a series of bounds on
the effective complex permittivity e* of sea ice, under constraints on the microgeometry,
such as fixed brine volume, In particular, we describe some rather tight bounds on
¢* which incorporate the geometrical constraint that for temperatures colder than the
percolation threshold, Te & ~59C!, the brine phase is contained in separated inclusions.
These bounds fit actual data on e* at 4.75 GHz quite closely. We also describe how this
series of bounds, which are derived in the quasistatic limit, break down when compared
with data taken in the 26.5 - 40.0 GHz range. Finally, we briefly discuss some preliminary
results of backscatter experiments we conducted at C band (5.3 GHz) on first year sea
ice in the Weddell Sea, Antarctica, during the austral winter of 1994.

Key words. microwaves, complex permittivity, sea ice, matrix-particle composites.

1. Introduction. Sea ice, or frozen sea water, covers 7-10% of the
earth’s ocean surface. In fact, during the winter the sea ice pack surround-
ing Antarctica has greater surface area than the continent itself. As the
boundary layer separating the ocean and atmosphere in the polar regions,
it controls the exchange of heat and momentum between them. In large
scale geophysical fluid models, the state of the sea ice pack determines
the boundary condition which couples these two fluids. For example, the
thickness of the ice helps to determine how well heat is exchanged, and
the surface roughness influences the transfer of momentum from, say, the
winds to the ocean. Due to the influence of the winds and currents on the
motion of the ice, the pack exhibits complex dynamical behavior, which in
turn affects the behavior of the atmosphere and ocean. Characterizing the
physical state and dynamics of the sea ice pack is a formidable problem.
The sheer extent of the pack forces us to turn to remote sensing techniques
for recovering large scale information about the pack. In particular, there
has been much use of Synthetic Aperture Radar (SAR) sensors mounted
on satellites and airplanes, operating in the microwave regime, such as at
C band, with frequency f = 5.3 GHz and a free space wavelength A = 5.7
cm.

The goal of sea ice remote sensing is to use information on the elect
magnetic fields returned or scattered by the sea ice to deduce the physical
properties of the pack. The electromagnetic properties of sea ice have been
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studied for a number of years, see for example [1,2,14,16,22,23,24,26,27].
However, the activity in this area has significantly increased recently due to
an Accelerated Research Initiative on Sea Ice Electromagnetics from 1992-
1997, sponsored by the Office of Naval Research. Over 60 scientists from
more than 20 universities and institutes are participating in this program.
The scientists include geophysicists, glaciologists, electrical engineers, ap-
plied physicists and mathematicians. The program has three major com-
ponents, consisting of theory, experiments, and field work. The goal of the
theoretical work is to develop mathematical models which predict physical
properties of the sea ice from reflection or backscatter data. The exper-
imental work is designed to test the models on artificially grown sea ice
and identify new phenomena for the models. Most of the experiments have
been conducted at the Cold Regions Research and Engineering Laboratory
(CRREL) in Hanover, New Hampshire. Field work in the polar regions Is
being conducted to verify that the theory and experiments correspond to
real sea ice.

The mathematical modelling efforts are focused on reconstructing the
complex permittivity e(z) of the sea ice from data, on the returned or scat-
tered electric and magnetic fields E(x,t) and H(z,t). Variationsin the e(a)
“seen” by the wave are related to the physical properties of sea ice, such as
thickness, age, type, snow depth, salinity, roughness, etc. This problem is
complicated by the microstructure of sea ice, which is a complex polycrys-
talline medium of pure ice with random brine and air inclusions. These
microstructural variations oceur on the millimeter and centimeter scales.
For example, in cold first year ice, brine pocket dimensions typically can
range from 0.3 mm to 1.5 mm. In the microwave regime, one is typically
dealing with free space wavelengths on the order of a few centimeters (al-
though there are windows of higher frequency which exhibit acceptable
atmospheric transmission). Consequently, a typical situation, such as at
C band, is where the wave can resolve variations in e(z) on the scale ~ A
or larger, but the brine and air microstructure on the millimeter scale is
averaged out, or “homogenized.” In this case, the quasistatic approxima-
tion, where the wavelength is much larger than the microstructural scale,
is valid. The behavior of the wave inside the sea ice in this case is governed
by its effective complex permittivity ¢*. In fact, in this regime, the output
of inverse algorithms designed to reconstruct the observed permittivity will
be a profile of this effective complex permittivity e*. Currently, such algo-
rithms employing layer stripping, integral equation and other techniques,
are being developed by M. Cheney and D. Isaacson (RPI), J. Sylvester and
D. Winebrenner (U. of Wash.), and D. Borup, S. Johnson and J. Wiskin
(U. of Utah). Since the details of the sea ice microstructure hold the key
to characterizing its physical state, such as variation in average brine con-
tent, whether it is first year or multiyear ice, its thermal and Auid trans-
port properties, etc., it is important to relate this reconstructed effective
permittivity profile to the sea ice microstructure. This is the main focus
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slush layer on top of the ice, which can significantly affect its microwave
signature.

Another limitation of mixing formulas is that they provide only a pre-
cise prediction of what ¢* should be, given, say, a value for the brine volume,
yet do not provide any information on the range of reasonable values for ¢*.
In typical experiments one obtains a scatter of data, and it would be useful
to compare this spread with a predicted region in the complex ¢* —plane.

Due to the above limitations in the mixing formula approach which
are caused by the wide variety of relevant sea ice microstructures, in recent
work we have introduced [12] another approach to studying the effective
complex permittivity e* of sea ice. In particular, we have begun develop-
ing a series of bounds on the complex permittivity of the sea ice for given
statistical constraints on the hrine phase, by applying an analytic method
for obtaining bounds on the effective properties of composite materials
[4,20,13]. In this method, the sea ice is assumed to be a two-component
random medium consisting of brine of permittivity €, and ice of permit-
tivity €s. The method exploits the properties of €* as an analytic function
of the ratio €, /es. The key step in the method is to obtain an integral
representation for ¢*, which is exploited to obtain the bounds. As in the
case of typical mixing formulas, the bounds are derived In the quasistatic
limit, so that they are valid when the wavelength is long compared to the
scale of the inhomogeneities.

In order to describe the series of bounds we have been developing, let us
briefly review the analytic continuation method for studying the effective
properties of composite materials. For simplicity we consider a random
medium in all of R, Let ¢(z,w) be a (spatially) stationary random field
inz €& R and w e Q, where Q is the set of all realizations of our random

medium. We assume €(z,w) takes the values €; and €o, which are complex
numbers, and write

(2.1) €(®,w) = e1x1 (2, w) + eaya(z, w),
where y; is the characteristic function of
one for all realizations w € Q having m
otherwise. Let E(z,w) and D(z,w)
displacement fields satisfying

medium j = 1,2, which equals
edium j at z, and equals zero
be the stationary random electric and

(2.2) D(z,w) = e(z,w) E(z,w)
(2.3) V- D(z,w) =0
(2.4) V x E(z,w) = 0
(2.5) < E(z,w) >= ¢,
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if only the volume fractions are known, and

(2.12) = P2

d

if the material is statistically isotropic, where d is the dimension of the
system. In general, knowledge of the (n + 1)-point correlation function of
the medium allows calculation of #n (in principle).

Bounds on €*, or F(s), are obtained by fixing s in (2.8), varying over
admissible measures p (or admissible geometries), such as those that satisfy
only (2.11), and finding the corresponding range of values of I'(s) in the
complex plane. Two types of bounds on ¢* are obtained. The first bound
R, assumes only that the relative volume fractions p; and p» = 1 —py
of the brine and ice are known, so that (2.11) is satisfied. In this case,
the admissible set of measures forms a compact, convex set. Since (2.8) is
a linear functional of i, the extreme values of F' are attained by extreme
points of the set of admissible measures, which are the Dirac point measures
of the form p;8,. The values of F must lie inside the circle py /(s—2), —oo <

z £ 00, and the region R; is bounded by circular arcs, one of which is
parametrized in the F-plane by

(2.13)

2]

4 P
Cl(z)zs_z) OSZSPQ'

To display the other are, it is convenient to use the auxiliary function [5]
: €1 1—sF(s)

2.14 E =] == " \7/

(2.14) (s) e s(1-F(s))’

which is a Herglotz function like F(s), analytic off [0,1]. Then in the
E-plane, we can parametrize the other circular boundary of R; by

(215) C'l(z) = P2 0 <z < pr.

In the e*-plane, R; has vertices V; = ¢, /(1 — C4(0)) = (p1/€1 + pafea)™!
and Wy = es(1 — C1(0)) = prey + pocs, and collapses to the interval

(2.16) (pr/er+p2/e2)™! < € < prey + pacy

when ¢; and ¢ are real, which are the classical arithmetic (upper) and
harmonic (lower) mean bounds, also called the elementary bounds. The
complex elementary bounds (2.13) and (2.15) are optimal and can be at-
tained by a composite of uniformly aligned spheroids of material 1 in all
sizes coated with confocal shells of material 2, and vice vers
are traced out as the aspect ratio varies.

If the material is further assumed to be statistic
€r = € i, then (2.12) must be satisfied as well.
including this information is to use the following trar

1 1
(2.17) Fi(s) ;)

a. These arcs

ally isotropic, i.e.,
A convenient way of
1sformation [5,11],
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The function Fi(s) is, again, a Herglotz function which has the represen-

tation

b dpt(2)
(2.18) Fl(S):/O PRl

§—z

estricti 1
The constraint (2.12) on F(s) is then transformed to a restriction of only
the mass, or zeroth moment pf of u', with

(2.19) pg = pa/pid.

n t’he sar y 3 ), W Se bOllnC aries
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) : < (d = 1)/d.
(2.20) Cy(z) = s(—gp_l(—s__'ﬂd—) 0<z<(d-1)/

(We point out that in eq. (25) in [12] and eq. (2.20) 1In [Shl(]; ]E‘,‘ll(:l(;rllse, tﬁé
in the denominator which should be a pa, as above.) In
other arc is parametrized by

pa(s — 2) 0<z<1/d.
(2.21) Caz) = s(s —z—p1(d—1)/d)’ =7

! = ~C5(0)),
In the e*~plane, R» has vertices Vo = €3(1—C5(0)) and Wa = €1/(1-C2(0))
and collapses to the interval

1 Pi
1 P2 * . ._..—--{-————),
(2.22) €2+P1/ (61 . +zl'€"2‘> <e <L €1+P2/ (63—51 dey

when ¢, and ey are real with €3 2 €2, whicl} are tll'le. }Iz}zlll‘l;lv—e?lsletzll.lulif‘iz
B e € e e o the expressions in (2.22), ar
rtices Vo and We (which corresp X . ). =
\;i:i;ed b—y the Hashin-Shtrikman coa.ted sphere georpt?tlsle; Sipcl:ler;ze?lfs v
sizes of material 1 in the volume fraction p; .coa.ted with g crical shells o
material 2 in the volume fraction ps, and vice ve??z;) ,t.an e on e
which bound R;. We remark that lligh(?r—order correla 1??]
be conveniently incorporated by itelzatmg (2.17), a? 1:‘1—[ 1 I.le sounded by
To summarize, Ry is a region n the complex € lp tal,l - , pouncer
circular arcs, in which ¢* for any microgeometry _w1t1 e f;econd et
fractions must lie. In addition to the yol'ume f‘ract%on_s, e secont el
R, assumes that the compgsite is st?tlstléalllgl 520;;:122;;1 1p ar egd (i3] with
o CirCUla_l' afc?» lag dthijflfr\ﬁlc((l)(:lf 1é;l;vlzsned I\C/)IcGrew [2] for artificially grown
ot expemmemindaﬁ)a‘é GHZV G’iven a sample of sea ice at temperature T

sea ice at 4.75
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de i ini
reliiei\elz l()j:ljus zlxnd of sahrpty S parts per thousand (ppt), we estimate the
\ Ine volume p; using the equation of Frankenstein and Garner [10]

(2.23) = 5 (49185
251 1000 7] +0.532)‘

T
The‘z:efg;ja;h frequency, 4.75 and 9.5 GHz, and for a given temperature
, le complex permittivity of the brine ¢; using the calculations

of Stogryn and Desargant [25 i
e g [25], which are based on a Debye-type relaxation

(2.24) Q1= oot T g
2 fT 2meq f

which has : . : :
N 1111;15(20;23; C;Ile lzsona.nce, ignoring a possible spread in relaxation
465 Of the reél E;rts Eftn €co are the hm%tlng static and high frequency val-
o COllducti\I/)i(‘, ofteﬁ, Tis the relaxation time, f is the frequency, ¢ is the
and i = /=T Tgeoi 1€ dlssolveq gal@, €g is the permittivity of free space,
quency. Then‘ ; for%m'c cc?nduct.x\'rlt)f 1s assumed to be independent of fre-
ey paramleters rine in equilibrium with sea ice is determined by the
perature, and wers ffoo ,dfs,T an.d o, each of which depends only on tem-
verticaII;J e oun expemmgntally. Also, in the experiments, anly
to be clongated in Z‘v}’la‘/es ‘W.ere cc?n81d.ered. While the brine inclusions tend
srnchure e le vgltlcal direction, they form a statistically isotropic
terent diomi dle"lorlzontal planfe (except when there is a well defined
[14]). We aré s ;‘11.115 gl‘(_)wth,' which can cause marked anisotropy in €*
because of the g:;fnzte Justified in employing bounds based on (2.12), and
[12] we have tonnd 5 rzfl we take d = 2.' Finally, in work done subsequent to
iF one acomio T tl] 1?.‘t .the theorepcal bounds fit the data more closely
the e e ~ the air in the sea ice. In particular, we slightly adjust
plex permitiivity ez of the ice by treating it as a composite xlvit,h

a Slllall VOluIne ilacthIl 0:[ alr calc [1 eﬂe t p n]ltlt‘IVIt €2
¥ alld l
uld Ilg ltlS ctive er y “

(2.25) € = €400 [1 —

dpair(fice - fair)
fice(d - 1) + €air + pair(fice - fair) '

where €;,. = (3.1884 4 0.00 .
volume ﬁ‘e 00091 T) +4 0.00005 [19], €4ir = 1, and Dair, the

acti Ir, 1 ;
depend o t}llznd(;ia"li’ 1sfca1culated accor.dlng to the equations in [9], which
e o a.s o sity o the 'of th.e sea ice sample, 7' and S. In (2.,25) we
iSOﬁropicall;r djstri(‘:) ezlr 1mclus.lon's in the actual sea ice are uniformly and
to the bring). We r: nfc iﬁ(hr}oughout the ice in three dimensions (as opposed
the effectiv . ‘remark that (.225) should give a quite good estimate of
e permittivity of the ice, as pq;, is small, and more importantly
1

C r q lte sma cO Pa] 150N to
the ontr ast between €; e a.nd € 18 qu
c )az 1]. (at least in m
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In general, we have obtained excellent agreement in comparing the
bounds with the data, particularly now that we have included the effect
of the air. However, in the next section we will describe an even tighter
set of bounds which again correlate very well with the data, and it is in
that section where will display a figure showing the full series of bounds
compared with a representative data set.

3. Improved bounds on the complex permittivity of sea ice as

a matrix-particle composite. In [12], a striking feature of the figures

illustrating the comparison of the experimental data with the bounds R

and R is that the data consistently lie in the lower portion of the hounds,

i.e., where Re(¢*) and I'm(e*) are small in comparison to the whole regions.

This observation suggests that the ice phase is dominating the behavior,
which veflects the microstructural feature that the brine is contained in
inclusions, and does not form a connected matrix, or percolate. Tor “cold”

sea ice, this is certainly a reasonable assumption about the geometry. How-
ever, when the temperature of the sea ice is near the critical temperature
T, ~ —5°C, this assumption breaks down. In order to try and capture the
data in [2] more closely, we have incorporated the non-percolation assump-
tion about the brine phase into our series of bounds, by turning to the work
of Bruno [6]. In this seminal paper, Bruno has found restrictions on the sup-
port of i in the integral representation (2.8) which arise from imposing the
geometrical condition that one phase is contained in separated inclusions
embedded in a matrix of the other material. The further the separation,
the tighter the restriction on the support. Based on this support restric-
tion, Bruno has derived bounds on the effective conductivity, in the case
of real component conductivities, of some matrix-particle composites. In
[21], Sawicz and Golden have extended these bounds to the complex case,
and applied them to the sea ice data considered in [12]. Unfortunately,
we must alert the reader that there are some errors in the figures and in
one of the equations in [21] (as well as some typographical errors), which
this author has only recently discovered, and which are corrected here,
One of the reasons for developing bounds based on the matrix-particle as-
sumption is that more general bounds begin to break down, and become
trivial in the high contrast limit. For example, as € — oo in (2.22), the
upper Hashin-Shtrikman bound diverges. For composites made of highly
contrasting components, such as the ice and brine of sea ice, such hounds
which do not become trivial are clearly of significant use.

To describe the new complex bounds, we must first briefly review [6,7]
the main ideas of Bruno’s work on how the matrix-particle assumption re-
stricts the support of the measure p. While the general, stationary random
formulation of the effective permittivity problem given in the previous sec-
tion is still valid, it is perhaps more useful at this point, given that we are
considering a specific class of possible geometries, to focus on this spatial

dependence.
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Let us consider a material occupying a cubic (or square) box A in
Réwith 0 < z; < 1, 1 <1 < d. We assume that the material consists
of a matrix of permittivity e» containing a finite, arbitrarily large number
of non-touching grains of permittivity ¢;. The region of A occupied by ey
will be referred to as the outside region, denoted by A°*!  and the inside
region containing ¢; is denoted by A, We assume that A is very large
compared to the microstructural scale, which is determined by the size
and spacing of the inclusions. The local permittivity e(x) is still given by
(2.1). For simplicity, the inclusions are assumed to be connected regions
with smooth boundaries. However, all results hold for grain shapes with
boundaries of Lipschitz type as well, which include those with certain types
of singularities, such as polygons and polyhedra with corners and edges. If
the upper and lower faces of A are kept at constant potentials (xy = 1) =1
and ®(zq = 0) = 0, the electric potential ® inside the box A satisfies

(3.1) V- (eV®) = 0,

with the boundary condition % = 0 along the vertical walls, as well as
the equipotential condition on the top and bottom faces. The effective
permittivity is then defined by

0d
3.2 "= —d
(3.2) € A € 92s v,
or equivalently by

(3.3) € :/clV(I)lzclV.
A

Correspondence with the previous section is obtained by taking the limit
as the microstructural scale — 0, or as the volume becomes infinite, with
appropriate normalization in (3.2) and (3.3). See [13], for example. Again
it will be important to consider the functions

*

(3.4) mhy=5,  p=%
€9 €a
and
(3.5) F(s) =1-=m(h), 5= Iﬁ-l——h-

Recall that general arguments alone yield only that m(h) is analytic off
(~00,0] in the h—plane, while F(s) is analytic off [0,1] in the s—plane.
Note that ¢ is harmonic in A% and A" je.,

(3.6) AP = AP = ¢,

Across the boundary v separating A°“! and A" & must be continuous,
and yield continuity of the normal component of D = ¢E.

] I
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Now, the physical observation which und.erlie.s the 1'es§1'1ctlon o'f thz
spectral measure is that in high contrast media with 1nclus1gns, e'nelgy 1s
concentrated where the inclusions begin to touch. If .these s‘1tuatlons .clan‘
be avoided, then the energy can be controlled. In particular, if we consider
a class of media defined in terms of control on the energy, ther} one“can
obtain the estimates necessary to get convergence of a series w_hlch.a, ows
further analytic continuation of m(h) or F(s) be'yond the domalnsbglvterlllllé
the previous section. Thus we make the following qssumptlons abou the
maltrix-particle array under consid?ration.. For each 1gclu5}011 1, we aﬁ o
that there is a connected region I' containing I, again with a ?‘IKO(? 1UCh
Lipschitz) boundary, and such that I—1I isa connected subset of 11’ ins :
a way that for certain positive constants A and B we have the following:

1. For any inclusion I, the region I' is contained in A ) t

9. If I and J are two different inclusions, then I' and J do no
intersect. ’ ' ‘

3. ;:1)1 each inclusion I and for any function u € HY(I —I) there
exists a function w € H}(I' — I) satisfying

(3.7) u(x) = v (z), zel -1
and

2
(3.8) /|vu|~’dV§A/ v | dV.
I I'-

4. For each inclusion I and for any funcltion w e H(I) there exists af
function v € HY(I —I) such that u vanishes on the boundzuyfo
I, its boundary values at the boundary of I differ from those of u

by a constant, and one has
(3.9) / |Vu' |dV < B / | Vu P dV.
I'—1 I

A material which satisfies all of these assumptions is refer_red to asdaIllna;
terial of type Ca . It can be shown that for any two 1'eg10nsc,lf a41t1 boje
above, there always exist constants 4 and B guch that (3) and ( ) at. :
are satisfied. We remark that the idea o_f using extensions of ’poten 1;111 s
which preserve energy estimates was ﬁ.rst 1nt1'oc1:1c.ed by. Ta}'talx\'/[ niepr]i:zrs ng
homogenization for certain systems with “hz.u‘d inclusions. Ma

type C'4 p enjoy the following global properties: . .
Property C4 : For every function u"“f €H 1(A'O“t), ‘t;l}‘ltere eczlust; i}lf:.:ltfst;‘iz
u € H'(A) which coincides with w9t in the region A°¥*, and which sa

the inequality

(3.10) / |Vul*dV < A/ |[Tut|* dv.

Aout
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Property Cg : For every function u'” HY(A™), there exists a function
w € H1(A%) such that, its restriction to the boundary of any grain differs
by a constant from the restriction of wi" to the boundary of that grain (the

constants may differ from grain to grain), it vanishes outside the union of
all I's, and such that

(3.11) / IVt dV < B/ IVuin|? v,
Aont Amn

For materials satisfying the above
main results [6].

THEOREM 3.1. For a material satisfying property Ca, the polential

@(x,h) and the (normalized) effective permittivity m(h) can be analyticelly
continued to the disk |h| < 1.

THEOREM 3.2. For a material satisfying property Cg, the potenlial
V(z,w) = ®(z,1/h) and the (normalized) effective permittivity m(w),w =
+ can be analyticelly continued to the disk lw| < &.

THEOREM 3.3. For a material satisfying properties Cy and Cpg, the

(normalized) effective permittivity m(h) is analytic off the interval
[~B,—~%] in the h—plane.

properties, we have the following

We remark that the main idea used in establishing, say, Theorem 3.1,
is to obtain convergence of the expansion

(3.12) ®(z,h) = i@i(m) A,
i=Q

The key tool is to use Property C'4 to obtain the estimate

(3.13) / 1B;]* dV < c.'AQf/ [V®o|* dV,
A A

so that the mean square norm of ®; is b
which leads to the result.

As a consequence of Theorem 3.3, the support of the me
integral representation ( 2.8) for F(s)

(3.14)

ounded by a constant times A,

asure p in the
is contained in the interval

sm £ 8 < sy,
{3771731\*[] C [0, 1], where

(3.15) 1 A

Sm =

Then (2.8) takes the form

(3.16) F(s) = /SM d#(z’) _
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To obtain complex bounds on € which incgrporate ih‘e iﬁ;ti:;li::;:;?
assumption for type Ca.B materials, we exploit the 'rfsdrgsccribe presente
tion (3.16), for given values of 8m andlsM. 'V‘Ve‘w1 e et
these values are chosen for relevant sea ice mlcloge‘on:fe o O'f o e
in (2.11), if one assumes that the relative volllme frac 13 e R er
stituents are known, then the mass po 0'.f " satxsﬁes _Ffo —'_-ptilen 12) aleo
assumes that the microgeometry is statlsltlcally isotropic, e e
holds. For C4 p materials these _constramts must be' cr?tnway o,
support restriction on p reﬂect.ed in (3.16). 'f;conve:‘t: e efiond
rating the support restriction is to first consider a n

by
(3.17) s = (sar = sm)l+ sm.

1] in the
Then the interval [sm,,sa) in the s—plane gets mapped to [0,1]
t—plane, and the function
(3.18) H(t) = F(s) = F((sm — sm)t + Sm)

there is
is analytic off [0, 1] in the complex ¢—plane. It can be shown that the
a positive Borel measure v on [0, 1] such that

Udv(z)
(3.19) H(t) _/0 o
Letting
(320) A= Sy — Sm
i t

be the spectral width, it can be shown using (2.11) and (2.12) tha

_n
{3.21) vo =5

if only the volume fractions are known, and
(2,

(322) = Az d

if the material is statistically isotropic.

1 i ame
Now let us assume only that (3.21) is satisfied, andlwe apfpg ‘lciheeii:ide
extremal procedure described above to see that the values o

the circle

. P /’\ _ z < .
(3.23) SIOES e

In the F—plane this translates via (3.17) and (3.18) into the circle

n Pi —00 £z < 00,
(3.24) K(z) = 5— (A2 +8m)
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which happens to coincide with the circle C(z), —co < 7 < 0, 50 that the
matrix-particle assumption in this case provides no improvemen; over the

standard complex elementary bound. Now we consider the analog G(t) of
E(s) defined by

, 1—tH(t)
(3.25) G(l) = m

Then (i(¢) has an integral representation

Ydp(z
(3.26) G(1) :/ dolz).
p t—=z
where the mass of p is
(3.27) po=1- % .

We then obtain a circle in the G~plane analogous to C(z) in (2.15),

(3.28) Fi(z) = 12/

t—z

) - < z < oo.
In the F—plane this becomes via (3.25) and (3.18)

Pi(s = 5m) — A2z
(s=sm)(pr— A +5~s5,)— A2z

which is an improvement over (2.15). Back in the ¢*—plane, the intersection

of the two circles (3.24) and (3.29) yields a region RT™ which has vertices
V™ = e5(1 — R;(0)) and W™ = es(1 — K,(0)). When ¢, and €9 are real

and positive, RY" collapses to the interval with endpoints V| and W™,

(3.29) K, (z)= o<z <o

. €2 — Spr(ea —¢;)
3.30 €a
(3.40) €2 = (sar — p1)(ea — ;)

These bounds are tighter than ¢
bounds and reduce to them for
an incorrect version of (3.29)
[21] is incorrect as well.)

Finally, we consider the case where the m
be statistically isotropic. Let

< e* <6252_(5m +p1)(€2—51).
265 €2 — sm(€a —€q)

he classical arithmetic and harmonic mean
$m =0 and sy = 1. (BEq. (3.34) in [21] is
, and the corresponding region in Figure 2 in

aterial is further assumed to

1 1 A 1
3 =— " -
(3.31) Hy(t) v T = 5 TR

Then H, isa Herglotz function which is analytic off

[0,1] and has an integral
representation in terms of a measure y!

» which can be shown to have mass

(3.32) 1 Yy P?ig_ Sm .

f
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. . . . 1
hen the allowed values of H1(t) are contained inside the circle vg/(t — ),
T;zn< 7 < oo, which becomes in the H—plane

Vit — z)

(3.33) KE) = = —m)

or in the F—plane,

p1(8 — sm — 2A)

K _ , -0 < z L 00.
(3.34) Ky(z) = (5 — 5m)(s — pafd — 22

F 0 and sy = 1 (A = 1) the above circle is identical with the full
or Sm = SMo=

. ontaining the arc (2.20). o ' ion o GO
Clrd’(}oc obtcain the other circle, we apply a similar transformation to G(t)

obtaining a function
1 1A 1.
(335) il = oo tH(E)  A—p tH(D)

. C e 11 et esenting
which, again, is a Herglotz function analytic off [0,1] with representing
measure p' of mass

vo(l — o) — 11

(3.36) = )

i insi circle
Then in the Gy—plane, the allowed values are contallned inside the
ph/(t = z), —o0 < z < oo, which becomnes in the G—plane

(1 —w)(t — ) . —00< z< 00
)= t(t — 2z~ vo + v1/{1l - 10))

(3.37) Ko

183

7) (i mon plare)
The intersection of the two circlis (3134) zlu;csl 531:312235(111/1,”’3 C_:I?q(l._i’;(o))
ields a regi P which in the ¢*— plane h f 2(1-FK(0))
yields a region Ry w - : e e egion
ich i 1 X { the ¢*— plane.
7P which is the image of [{3(0) in . ion fia
?sn:nvz;provement over the complex Hashin-Shtrikman bounds u

mat x-p VV e re a d )()S.lt ‘lVe With
T l { article assumption . hen €1 and €9 ar - r a]. 1 ,,
€ > € 2 Rr,l ? CO]].a.pseS to the interval W lth en(lpolnts ['r) alld ”’ 9

’ P = <

. 1—v§
p € g 5T <1+——-—’—>-
(3.38) 1—9—:-;2% <o S 3T - w)t+u

. . on
i i P Hashin-Shtrikman expression,
Note that the left endpoint V57 is the lower I express o

so that it coincides with the same vertex from thienrteiftnt{f;t o, (3.4
the sequence of inequalities is reversed. (We }pO.e e a typographice]
and (3.47) in [21], which correspond to (3.38) 161“:1 e tegions RI? of
T ared in [6]. Furthermqre, e T e note
?iuor th‘?t :;5504 a111)113([32'11] have been plotted incorrectly.) Finally,
gures 3 a ave
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p N . I l] l
that Llle Osll lVlty Of the ITlOIIleIltS Of the measures a]ld p an b‘ a t |5
)

(3.39)
Sm S p2/d, sy > po/d+p; .
In the previ i i
e for givenpse;flic::t;s section .1t was described how we obtain D1, €
B with o boundssar;ples 1 order to compare the permittivith dltal}d
b compas o the. oxt' our twc.> dimensional sea ice geometryyin aoflm'
bring i sontaind zlila rllx-pdartlcle bounds, we further assume, that Elfl
' : rcular discs, whicl .
calonlaiie , which allows us t ; ict
oula ml;:ellril I[6‘] of the constants 4 and B. as well Zsustlhzae Llhe N
- a g : : !
ot ho:ttg?l'l is as follows. Discs of brine of radiusmrb E;ljf:;m? o
by  “sorome i l:ﬁt’; }111 such a way that each disc of brine is sul."roundmzJ
brine inelvetons & 2(,7,' 1 \ c;utser rhadlus 7;. Then the minimal separationeof
ne e — 7). Such a medium i I
P ) um is called a g— C
/7i. For such a geometry, Bruno has calculated [651 meterial, where

(3.40) =la-g

Sm = 5(1=g%), sy = %(1 +4°).
Smaller ¢ values indicate well se
Peratures), and ¢ = 1 correspon
and Ry reduce to R, and ?i
brm'e microstructure in the sea? .ic
Fhe ice 1s quite cold, and wel] a

C}}):rte:)ted brine (and presumably cold tem-
. $m = 0,8y = 1, in which case R
Xamination of photomicrographs of the

}f samples of [2] indicates that even when
ove 1ts percolation threshold, the brine

values of g, Instead, for e’tgiventd]:tzeryt ditﬁ[icult eren o EPPrOptnte
set at a particular tem
perature, we

Choose a, al O i(: ‘ y
value q Wl] h beS
1 . " Captures the data, and it iS a;l ways qu't'e
( p 1 Ily ﬁnd that because Of the hig]] (ol IlLl l.
close to 1 COIH utat ona we O ‘aSt m

the components ' y Vv
, the bounds g™ i
: a P ar 1ti
. o : oy ler nd Ry are extremely sensitive to small

over a wide range of temperatur
value does indeed approach 1 a
percolation threshold. In fact

creases, i.e. as the percolatio’n
across from one side of the regio

sei,h;zv: have found that the appropriate g
. emperature progresses through the

ave found that as the temperature in-
threshold is approached, the data sweeps

as the brine volume increases) nfﬁlgoi?i e oo (il Rz becomes fareer
) ng an arc of R9?. Once th
9 . e tem-

pel‘a.tule 1S above T the da.t t (I = lle Illat] 13 —pElItIC]e
i ) a I‘equlre th
c S a l, and t i
p g r 1d, Tl Se ﬁndlngs i“ be detai] d 1 ) .
assum thIl 1S no 1011 (3] Val d 1 € w eda e Sewhele }\

typical example of t}
- e comparison of ; .
Ba, B and B3 is shown in Fig. 1 he data in [2] with the bounds i,
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0.7
Ime*)

0.6

F1G. 1. Comparison of experimenial data (circles) on e* with bounds Ry (ouler, dolted),

Ry (inner, dotted), RY"P (outer, solid), and RY? (inner, solid). Ri aessumes only
knowledge of the brine volume and R assumes statistical isotropy as well. RT” and
RP fyrther assume that the sea ice is o mairiz-particle composite with g = 0.97. For
ihe data, the frequency f = 4.756 GHz, salinity S = 3.8 ppt, temperature T = —14°C,
and the brine volume py = 0.015. The complex permittivities of the brine and ice are
€1 = 38.26 4 i143.99 and ¢z = 3.06 (with o 0.041 wolume fraction of air in the ice).

Our theoretical bounds on ¢* for sea ice have been compared with the
experimental data taken by Arcone, Gow and McGrew [2] for artificially
grown sea ice at 4.8 and 9.5 GHz, where the quasistatic approximation is
certainly valid, and excellent agreement was obtained. Recently, though,
S. Ackley and V. I. Lytle have made measurements of € on cores cut from
“gen jce” which was artificially grown in the cement pond at CRREL. By
measuring the travel time and attenuation of a pulse as it travels down
through the axis of a vertically drilled, cylindrical core, they can find the
real and imaginary parts of ¢*. What is particularly interesting about their
measurements is that they were done using microwave pulses at Ka band,
with a bandwidth of 26.5 - 40.0 GHz, where the validity of the quasi-static
n is uncertain. In fact, at these frequencies, the wavelength
in the medium is on the order of 4 mm, while the typical brine pocket
dimension in the direction perpendicular to the propagation is on the order
of 1 or 2 mm, so that the wavelength is larger, but certainly on the same
order as the microstructural scale. In further experiments, cores have been
cut horizontally through the ice so that the electric field can sample the
long, vertical dimension of the brine pockets.

We have compared some of the data with the fixed brine volume
bounds, and found that the data often lie significantly outside the region
R;. Apparently in this frequency range we are beginning to see scattering

approximatio
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effects with the breakdown of the quasistatic approximation. Currently we
are looking at extrapolations of this data to lower frequencies using the
strong fluctuation theory of T. Grenfell and 5. Nghiem in order to compare
this new data with our bounds.

In addition to the above comparison of theoretical and laboratory work,
Ackley, Lytle and Golden have collaborated on sea ice field experiments as
members of a cruise aboard the NSF Research Vessel N.B. Palmer to the
Weddell Sea, Antarctica, during July and August of 1994. The cruise
formed a core component of the Antarctic Zone Flux (ANZFLUX) Pro-
gram, which was designed to measure vertical fluxes of heat, salt, and
momentum in the eastern Weddell Gyre. Part of the motivation for the
program was a lack of unclerstanding of vertical oceanic heat fluxes, or
upwelling, in this area, believed responsible for the so-called “Weddell

polynya,” or large “hole” in the sea ice pacl

k which persisted during a series
of winter seasons in the early 1970°s. An essential component of the cruise

was to characterize the physical properties of the sea ice pack associated
with observed atmospheric and oceanic conditions and events.

In conjunction with this work, Lytle and Golden conducted microwave
backscatter experiments on the primarily first year sea ice present in the
region [18]. We used a C band, transmitting and receiving racdar appara-
tus, with a center frequency of 5.3 Ghz, and a 500 MHz bandwidth. The
radar employs a Frequency Modulated Continuous Wave (FMCW), which
Is transmitted by a parabolic dish and is received by one of two microwave
horns, depending on desired polarization, all of which is mounted on one
platform, so that the radar operates in a mono-static, or backscatter mode.
The radar was mounted on the bridge of the ship.

We are interested in correlating measured backscatter coefficients with
structural features of the floes under consideration. For example, principal
features of the ice which determine the backscatter are the degree of surface
roughness at the snow/ice (or air/ice interface in the absence of a snow
layer), and the effective complex permittivity of the ice near its top surface.
However, other features can significantly affect the return [17], such as a
slush layer at the snow /ice interface, which can arise from flooding of the ice
surface due to the weight of a snow layer, which depresses the ice surface
below sea level. We saw evidence that this flooding of the surface was
sometimes due to the coalescing of the brine pockets,
sea ice porous, so that sea water can
percolation threshold of the ice w
storm, or a warm upwelling even
air inclusions within the se
its influence is minimal ¢
incidence angles (

which makes the
percolate up through the ice. This
as reached under the influence of a “warm”
t. While volume scattering from brine and
a ice or from the snow layer can affect the return,
ompared with surface scattering, except at high

close to grazing). The influence of volume scattering from
Inside the sea ice in the current situation is further reduced,

we were dealing primarily with first year, higl
to penetrate due to high attenuation.

though, since
\ly saline ice which is difficult
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We have only begun the analysis, yet can alreac}y se‘: ti}‘lfhzrgfl?;len;ii
effect of warming events on the bac}{scatter. A centra' %)zu »e?qo‘e O ek
to set up drift camps, where the ship was moored to'd far‘f,unate n e pe
and allowed to simply drift with the pack. We Wele.‘OI‘ e o O et
five day time series of backscatter me_asurement‘s, durmlg, T e dogrocs
warming events occurred. At low incidence angles, sug h ?Scamer e
from vertical, we see a good correlation betwefan the backs e o s
and the temperature near the surface of thg ice. One e>«;ptlc1 O e ases,
is that as the temperature increases, the brine volgme a e e na the
which in turn increases the permittlylty of the }‘ci, t'lu e et
backscatter. Other findings support this type of correlation.

Litati analyze the
are devoted to developing backscatter models to quantitatively analyz

i rature profiles
time evolution of the data, and its relation to observed temperature p

of the ice.
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ELECTRON IN TWO-DIMENSIONAL SYSTEM WITH
POINT SCATTERERS AND MAGNETIC FIELD

SERGEY GREDESKUL*, MASHA ZUSMAN', YSHAI AVISHAIY, AND
MARK YA. AZBELS

Abstract. This paper is a survey of the electron spectral properties (eigenener-

gies and wave functions) in a two dimensional system containing point scatterers and
subject to a perpendicular magnetic field. Point potentials scatter only s-waves and
do not influence waves with higher orbital momentum. Therefore they lift the infinite
degeneracy of the Landan levels only partially. As a result the spectrum can be divided
into two parts: the set of discrete Landau levels and the set of intervals between these
levels. The states on the Landau levels exist in a strong enough magnetic field (the flux
per a scatterer has to be larger than a flux quantum). They are regular functions of
the spatial coordinates and vanish at the sites where the point scatterers are located. A
new approach, based on the theory of entire functions, is proposed for studying of these
states, and some of them are explicitly constructed.
States outside the Landau levels exist for an arbitrary magnetic field and have loga-
rithmic singularities at all points where the scatterers are placed. In the ordered case
(identical scatterers, placed on the sites of a square lattice) and for some rational values
of a magnetic field, dispersion laws are numerically calculated and the Hofstadter-type
butterfly is constructed. It is shown that the dispersive subbands in a square lattice of
identical point scatterers in the strong field limit are described by the Harper equation.
The problem of electron localization in such a system with one dimensjonal disorder
reduces in the strong field limit to the random Harper equation. An explicit formula
describing the fractal structure of the localization length is obtained. This structure is
influenced by the amplitudes of the Bloch states in the corresponding ordered system.

1. Introduction. Three decades ago low-dimensional conducting sys-
tems were often considered as some exotic and in a sense academic subjects
of investigations. But recent interest in these systems from a purely scien-
tific point of view, as well as from its application aspects, mainly modern
microelectronics, — stimulated a significant progress in their fabrication
[56], [68] which in its turn led to the discovery of a variety of remarkable
new properties of such systems.

Two-dimensional (2D) conducting systems can be realized as both nat-
ural and artificial objects. Indeed, thin films, surfaces or intersurfaces can
be often considered as 2D systems. But the most popular realization of
9D conducting system is an inversion layer, which can be created near
the interface between semiconductor and dielectric (for example, between
semiconductor Si and dielectric SiOz), or near the interface between two
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