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Percolation Models for Porous Media

Kenneth M. Golden!

Recent progress in understanding the effective transport properties of percolation
models for porous and conducting random media is reviewed. Both lattice and
continuum models are studied. First, we consider the random flow network in
7V, where the pipes of the network are open with probability p and closed with
probability 1 — p. Near the percolation threshold pc, the effective permeability
x*(p) exhibits the scaling behavior «*(p) ~ (p — pe), p — pf, where e is
the permeability critical exponent. In the limit of low Reynolds number flow,
this model is equivalent to a corresponding random resistor network. Here we
discuss recent results for the resistor network problem which yield the inequalities
l<e<2,N=23and2 <e <3 N2 4, assuming a hierarchical node-
Jink-blob (NLB) structure for the backbone near p.. The upper bound ¢ = 2 in
N = 3 virtually coincides with a number of recent numerical estimates. Secondly,
we consider problems of transport in porous and conducting media with broad
distribution in the local properties, which are often encountered. Here we discuss
a continuum percolation model for such media, which is exactly solvable for the
effective transport properties in the high disorder limit. The model represents such
systems as fluid flowing through consolidated granular media and fractured rocks,
as well as electrical conduction in matrix-particle composites near critical volume
fractions. Moreover, the results for the model rigorously establish the widely used
Ambegaokar, Halperin, and Langer critical path analysis [AHL71].
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2.1 Fundamentals of Percolation Theory

Porous media represent an interesting class of materials which exhibit a wide range
of microstructures. For a given microstructure, the central problem of single-phase
flow through the medium is to find its effective permeability «* [Sah95, Dul92,
Dag89, Mat67, BB93, Has59, Pra61, BM8S5, JKS86, AT91]. The microstructure
can be characterized in many ways, the simplest being the pore volume fraction,
or porosity ¢. In general, however, the macroscopic transport properties of porous
media depend in a complex way on the details of the pore structure, not simply its
volume fraction. Due to the wide range of relevant microstructures, there have been
many approaches to estimating the effective permeability «* of porous media. One
widespread approach is to treat the porous medium as a network of open pores
of varying size and “throats” of varying cross section which connect the pores
{Kop82, Fat56, Sah95, Dul92, BB93]. In the limit of low Reynolds number flow,
this “pipe” network becomes equivalent to a linear electrical network. In each pipe,
the fluid flux is linearly related to the pressure drop across the pipe, which is a
local version of Darcy’s law. For electrical conduction, the current in Ohm’s law
is proportional to the potential drop across the resistor. In this case, the problem of
finding the effective permeability «* of the network is mathematically equivalent
to finding the effective conductivity o* of the corresponding resistor network.

The simplest network model which, nevertheless, exhibits complex MAcroscopic
behavior is where the pipes form the standard bond lattice in ZV and they are either
open or closed with probabilities p or 1 — p, respectively. This network is based on
the classical percolation model of Broadbent and Hammersly [BH57], one of the
original inspirations for which was the flow of gas through the porous substance
inside a miner’s gas mask. In this model, we assign a local permeability, or fluid
conductance « (x), to the bonds, where k (x) = 1 or & = 0 with probabilitities p or
1= p.When ¢ = 0, the effective permeability «*(p) = Ofor p < p., yet«*(p) > 0
for p > p., where p. is the percolation threshold, which equals 1/2 for N = 2.
Furthermore, it is generally believed (though not rigorously proven), that «*(p)
exhibits critical scaling behavior near the percolation threshold [FHS87, BB93,
Sah95],

*(p) ~ (p — po)’, p— (1.1)
where e is the permeablity critical exponent. Due to the above equivalence between
the fluid and electrical conduction problems, we can just as well consider the
random resistor network [Kir71, SA92, GK84, Gri89, Kes82, CC86], where the
electrical conductivity o (x) of the bonds is defined similarly to «(x) above. Then,
the effective conductivity o*(p) is believed to behave as

o*(p) ~ (p — pcY, p — pi, (1.2)

where 1 is the conductivity critical exponent. At the percolation threshold, the
system undergoes a phase transition from an insulator to a conductor. Analogously,
the fluid sytem undergoes a phase transition from a medium, through which no
fluid can pass, to a porous or permeable medium. Furthermore, for such network
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models, the critical exponents for permeability and electrical conductivity are the
same: [FHS87, BB93]

e=t (1.3)

(although this relation is not generally true for continuum systems [FHS87]). These
network models have been used extensively to study problems in porous media
[Sah95] and electrical transport [SA92).

In the first part of this chapter, we will review recent progress in understanding
the behavior of «*(p) or o*(p) near the percolation threshold [Gol90, Gol92]. In
particular, assuming a hierarchical, node-link-blob (NLB) structure [Sta77, Con82,
BB93] for the conducting backbone of the percolation cluster near p, (and certain
technical assumptions}, we have rigorously shown that the permeability exponent
e or the conductivity exponent ¢ satisfies the following inequalities:

1 <ex<x?2, N=2,3, (1.4)
2<ex3, N > 4.

Our approach was motivated by the simple observation that, in numerical sim-
ulations [Kir71, NvVE86, WL74], the graph of o*(p) for bond or site models
in N > 2 is always convex near p.. We, then, analyze the asymptotic behavior
of ";—;’} near the percolation threshold p, and investigate the consequences for
the critical exponent # or e under the above mentioned assumptions. In partic-
ular, in the key assumption about backbone structure, our NLB model contains
both singly and multiply connected bonds, has “loops” on arbitrarily many length
scales in a self-similar fashion, and incorporates the few features rigorously known
[Con82, CC86] about the backbone on a macroscopic scale.

Our results for N = 3 are particularly intriguing. First, the inequality ¢ < 2
excludes roughly one fourth of published numerical estimates of ¢ for N = 3,
which have ranged from 1.5 to 2.36. Furthermore, this inequality is based on an
exact calculation of ¢ = 2 for one particular member of our class of hierarchical
NLB backbones, which provides an upper bound on ¢ for the full class. In view
of this result, it is quite striking that Gingold and Lobb [GL90] have obtained the
estimate ¢ = 2.003 == 0.047 for N = 3 from simulation on lattices up to (80)* and
Adler et al. [AMA™90] have obtained ¢ = 2.02 2= 0.05 from a 13th order series
expansion. Moreover, in [BB93] by Monte Carlo simulation, it is found that the
permeability exponent ¢ has a “universal” value of 2.0 under certain conditions
of the distribution of local conductances. In addition, our inequality is compatible
with the results of an ¢ = 6 — N expansion [HKL84] and the general view that
“roughly ¢t = 2" [SA92]. The recent numerical results, in conjunction with our
work, suggest the possibility that t = ¢ = 2 is an exact result for N = 3. To
our knowledge, the results in [Gol90, Gol92] are the only ones which relate ¢ or
e directly and naturally to the number 2, rather than to other (unknown) critical
exponents of percolation theory.

Before discussing the second part of this chapter, we will mention other recent
results in homogenization that may be of interest to researchers in porous media.
In [Gol89] we began investigating the behavior of o*(p) in the complex p—plane
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and were able to establish rigorously that, for ¢ > 0, o*(p) is analytic in p in
some open neighborhood containing {0, 1]. Investigating how this analyticity is
lost and how singular behavior develops at criticality, as &€ — 0 or in the infinite
volume limit, has led to a number of works, including [Gol91] and [BG90]. The
investigation culminated in [Gol95b], where this question has been addressed in
detail, by finding a direct correspondence between the random resistor network
(or continuum analogs) and the Ising model for a ferromagnet, where there is
a well-developed Lee~Yang theory [YLS2, LY52, Gri72] for understanding the
onset of critical behavior. The correspondence is established by introducing a
partition function and free energy for conduction problems, which have equivalent
representations to those for the Ising ferromagnet. Through this correspondence,
the percolation threshold p, for fransport in the random flow or resistor network
is characterized as an accumulation point of zeros of the partition function in the
complex p-plane,

On a more practical note, we also mention that the author has been involved
in studying the electromagnetic properties of sea ice, which is a composite of
pure ice containing random brine and air inclusions. It is very interesting to note
that sea ice exhibits a percolation threshold at a critical temperature T, = —3
°C, above which the brine inclusions coalesce and the sea ice becomes porous,
allowing transport of sea water and brine through the ice. The implications of this
transition on homogenized electrical transport coefficients is discussed in [Gol95a]
and [Gol94a). Furthermore, we report briefly in [LG] on observations we made
of transport and percolation processes in sea ice and their effect on microwave
backscatter from sea ice in the Weddell Sea, Antarctica durin g July and August of
1994,

In the second part of this chapter, we will continue to review recent results
in homogenization for percolation models which impact on the study of porous
media. The work we now describe began in discussions with Serguei Kozlov
in Moscow in 1991 and slowly evolved into [GK]. In many problems of tech-
nological importance, one meets systems which display wide distribution in the
local properties characterizing the system. For example, in porous media, there
is often a wide range of pore and neck sizes through which the fluid must flow
[Sah95, Dul92, Fat56, Kop82, FHS87, Dag89, Mat67]. In associated network mod-
els, one must consider a broad distribution in the local fluid conductances in the
bonds. As another example, in resistor network models of hoppping conduction in
amorphous semiconductors, the bonds of the network are assigned a wide range
of conductivities [AHL71, Sha77, Kir83]. A powerful idea which has been widely
used [Sah95] to estimate the effective properties of such systems is the critical path
analysis, first introduced by Ambegaokar, Halperin and Langer (AHL) [AHL71].
They proposed that transport in a medium with a broad range of local conduc-
tances g is dominated by a critical value g, which is the smallest conductance
such that the set {g | g > g.} percolates or forms a connected cluster which spans
the sample. This cluster is called the critical path. Then, the problem of estimating
transport in a highly disordered medium with a wide range of local conductances
is reduced to a percolation problem with threshold value g.. The critical path anal-
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ysis was further developed in the context of amorphous semiconductors in [Sha77]
and [Kir83], and its accuracy was numerically confirmed for various conductance
distributions in [BOJG86]. The AHL idea has also been used to model the perme-
ability and electrical conductivity of porous media, such as sandstones, obtained
through mercury injection [KT86, KT87, BJ87, Dou&9], and fractured rocks with
a broad distribution of fracture apertures [CGR87]. Recently, it has been applied
to porous media saturated with a non-Newtonian fluid [Sah93].

Although the AHL. idea has been used with substantial success, there has been
little analysis of their fundamental observation that the critical conductance g,
dominates the effective behavior. In [GK], we introduce a continuum percolation
model of conducting and porous random media which is exactly solvable in the high
disorder limit, and the result we obtain for the effective conductivity or permeability
rigorously establishes the AHL principle for this model. Furthermore, our model
closely represents an important class of porous materials, including consolidated
granular media and some fractured rocks, where the easiest flow paths or channels
exhibit complex random topology, similar to a Voronoi network (see Fig. 2.2)
[Sah95, Ker83, RS85, JHSD84, FHS871.

We obtain our model as a “long-range” generalization of the random checker-
board in R* [Dyk71, SK82, Kel87, Mol91, Koz89, BG94, Gol94b], where the
squares are assigned conductivities 1 with probability p and & > 0 with probabil-
ity 1 — p. The random checkerboard has been used to model conducting materials
which exhibit critical behavior toorich to be accurately handled by random resistor
networks, such as graphite (conducting) particles embedded in a polymeric (in-
sulating) matrix. For example, the presence of both corner and edge connections
between squares produces two percolation thresholds with distinct asymptotic be-
havior of the effective conductivity as ¢ — 0 (or ¢ — o©0) in the different
regimes of p separated by these thresholds [SK82, Mol91, Koz89, BG94]. In our
model, we allow arbitrarily long-range connections between squares, which leads
to infinitely many thresholds, and rather complex asymptotic behavior, which we
can, nevertheless, obtain exactly. Qur analysis is based on the variational formu-
lation of effective properties, which allows us to obtain bounds required for the
asymptotics by constructing trial fields which exploit relevant percolation struc-
tures [Koz89, BG94, Gol94b]. A key component of our percolation analysis is to
connect our model to a Poisson distribution of discs in the plane.

Whereas the standard checkerboard model allows for only two types of con-
nections between conducting particles (squares), our generalization allows for
arbitrarily many. This leads us to expect that our model will serve as a good repre-
sentation for high contrast matrix-particle composites, particularly in the regime
where the conducting particles “percolate,” yet are of low enough volume fraction
so that the conducting phase is only “partially connected” [Gol94b] where there is
a broad distribution of connection types between the conducting particles. In such
regimes, the effective conductivity has been observed to vary over many orders of
magnitude [MBNO90] over small volume fraction ranges, as does our model. More
precisely, in the high disorder limit, the paths of easiest current flow in our model
form a (continuum) Voronoi network with a broad distribution of “bond” con-
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ductivities. This network can be identified with the one obtained from joining the
centers of “touching” conducting particles. The quality of the connection between
the particles determines the conductivity of the path joining them. Our model can
be modified to handle such problems, and our variational analysis, which is quite
general, can be suitably applied to this and other related problems.

2.2 Exponent Inequalities for Random Flow and
Resistor Networks

The principal results of our investigation and the assumptions under which they are
obtained are as follows. We will formulate the problem for the effective conduc-
tivity o*(p), but, of course, everything carries over to the effective permeabitlity
«*(p). This connection will be examined in more detail below. First, the most
serious assumption is that the conducting backbone near p. has a hierarchical,
self-similar node-link-blob (NLB) structure, as described in the Introduction. We
further make some technical assumptions about o *(p): it obeys the above scaling
law(l .2) near p,, has at least three derivatives for all p > p,, and £ " T -4 dp > Oat

= 1, which we have verified numerically. Under these assumptlons we prove ex-
act asymptotlcs for i%— as p — p}.The proof employs a novel technique whereby

-d—y, for the NLB model with £ = 0 and p near p,, is computed using perturbation
theory for o*(p) (for two-and three-component resistor lattices) around p = 1,
with a sequence of &'s converging to 1 as one goes deeper in the hierarchy. Our
asymptotics yield not only convexity near p,, which implies ¢ > 1, but delineate in

which dimensions £ — 0, +00, or a positive constant as p — p*. Combinin
A P p P

this information with the scaling law 4 71‘:7 (p — p.)'"? yields the inequalities
I<t<2forN=2,3and2 <¢ < 3forN > 4 The inequality t <3 for N > 4
is obtained by applying a similar analysis to ~ for the simpler node-link model,

and can be viewed as a mean field bound, because it is believed that t = 3 for
N = 6. We stress that the convexity and inequalities are not rigorous for the actual
backbone near p. for the original lattice, but are rigorous for the NLB model of
the backbone, under the above technical assumptions.

Before we begin, we refer the reader to [Gol92]. In addition to containing the
mathematical details of the results discussed here, we obtain, there, numerical and
rigorous results concerning the regimes in & and p of convexity of o *(p) for bond
and site models, the principal rigorous results being that, for the N = 2 bond
problem, although o*{p) cannot be convex for all p, when ¢ = 0, it is convex for
every e > O near p, = 1/2.

We now formulate the bond conductivity problem for ZN  where, for simplicity,
we begin with N = 2, Take an L x L sample G of the bond lattice with M(~ NL")
bonds. Assigned to G, are M independent random variables ¢;, 1 <i < M, the
bond conductivities, which take the values 1 with probability p and ¢ > 0 with
probability 1— p. We attach perfectly conducting bus bars to two opposite edges and
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let o, (p) be the effective conductance of this network, averaged over realizations
of the bond conductivities. This conductance is just the total current that flows
through the network when there is a unit average potential difference between the
bus bars. The potential at any lattice site in Z" is determined by Kirchoff’s laws.
For N = 1, the bulk conductivity of the lattice is defined as

o*(p) = Jlim_ L* Yo (p). 2.1)

For e > 0, the infinite volume limit in (2.1) has been shown to exist [Koz78, PV82,
GP83, Kiin83], and for & = 0 the existence of o* has been proven in the continuum
[Zhi89].

At this point, it is useful to investigate the relationship between the conductivity
and flow problems, particularly, in view of the fact [CC86] that, for effective
permeability, we must replace (2.1) with

K*(p) = Lli_)rréoLl"NKz.(P), (2.2)

where i, (p) replaces o (p), and is the total fluid current in the network, which we
now discuss. To elucidate the connection, we consider the following simple model
[Dul92] in N = 3 of a cube of side L filled with n parallel cylindrical capillary
tubes of length L and radius R, evenly spaced throughout the cube. Then in the
Darcy regime, the total flow rate is given by

TR* (AP
Q =Hn “87 (T) y (23)

where n is the fluid viscosity and A P is the pressure drop across the cube (or across
each capilllary). If we identify k& = "Tm as the permeability of each capillary, then,
because n = L2, we can rewrite (2.3) as

k (AP
—Q-— = | — 1}, (2.4)
L n \ L
where the left-hand side is the fluid current density, Now, we can associate this

problem with the effective conductance of » parallel “networks” of L conductances
in series, each with conductance

(2.5)

which is just the effective conductance of L bonds in series, each of conductance
%. This relation accounts for the different scalings in (2.1) and (2.2).

Now, the calculation of %‘—;— requires the following definition. For any graph B
with bonds b; of unit conductivity, define

8*0(B) = Z [a,-j(l, 1) +03;(0, 0) — 0y;(1, 0) — o3 (0, 1)], (2.6)
bi#b,
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(b)

FIGURE 2.1. Node~link-biob model of the conducting backbone near p,. In (a), the nodes
are a correlation length £ apart and are connected by necklaces of beads (blobs) and strings
(links) with r; bonds connecting two beads. The beads have a self-similar structure, as
shown in (b), with n, bonds connecting two beads.

where, in (2.6), g;;(1, 1) = o'(B), the conductivity of B measured between the two
bus bars, 0;;(0, 0) is the conductivity of B with b; and b ; removed, and so on.
This expression represents the discrete second derivative of o with respect to p, as
follows. Let G be the lattice in ¥ > 2 with bond conductivities 1 and 0 and bulk

conductivity function o*(p). If B = B(p) is a realization of occupied bonds of G
at probability p, then [Gol92]

2 %
pz‘g"z = 820*(B(p)), @7
P
where §%c* is the scaled infinite volume limit of (2.6), and the right-hand side
in (2.7) is appropriately averaged. (We are assuming here that o*(p) is twice
differentiable for p > p, when & = 0.) In (2.6), note that dangling bonds do not
contribute, so that one may think of B(p) as a realization of the backbone at bond
fraction p. For clarity, note that, at p = 1, B(p) = G. We remark that analysis
of simple graphs, typically, shows that positive contributions to (2.6) arise from
series pairs, whereas negative contributions arise from pairs in parallel.
The idea now is to replace an actual backbone graph B(p) for p near p. by
a node-link-blob (NLB) graph A, which is based on the work of Stanley [Sta77]
and Coniglio [Con82]. This graph is a “super-lattice,” constructed by replacing
the bonds of the hypercubic lattice G in N > 2 by first-order necklaces composed
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of strings (links) and first-order beads (blobs), and separating the nodes of G by
a correlation length £, as in Fig. 2.1a. The beads themselves have a hierarchical
structure, as shown in Fig. 2.1b, consisting of two second-order necklaces in par-
allel, and so on, in a self-similar fashion to order J, for an arbitrary, large integer
J. We assume that any kth order necklace has § — 1 beads on it, for an arbitrary,
large integer B, and that each pair of beads is joined by a string of n; bonds, so that
there are a total of Sn string bonds on each necklace. The Sn, string bonds on any
first-order necklace are called singly connected — because removal of one of them
breaks the connection between nodes separated by §. All the rest of the bonds in the
NLB graph are multiply connected, and among these it is useful to identify the Brn,
string bonds on a 2"" -order necklace as doubly connected, because it is possible to
remove two of them (in parallel) and break a connection between nodes. Based on
a result of Coniglio’s [Con82] implying, in our context, that the number of singly
and doubly connected bonds between the nodes both diverge with exponent 1 as
p — py, we assume that n| = 28n,. Due to self-similarity, we assume that

n,—~1=2,8nj . j=2,...,J. (28)

Eq. (2.8) can be used to solve for the n;, j > 1, interms of ny, with ny = n,/28,
ns =ny/ 4;32, and so on, and we refer to the NLB graph as A(n;). In this model,
the percolation limit p —> p¥ is characterized by the limits ny, 8, J, & — o0, s0
that the lengths of all orders of necklaces and the numbers and sizes of all orders
of blobs, diverge as p — py.

Before we give the asymptotics of 820 *(A(n;)), we must discuss the condi-
tions under which they are proven. Consider o*(g1, g7) for the bond lattice in Z"
with three conductivities 1, g, and &5 in proporstions p, ¢;, and g, in addition to
our standard two-component conductivity o *(p). We require that o*(q, q2) has
second-order partials at g; = g2 = 1 for all 1, g; > 0, and that o*(p) has two
derivatives at p = 1, for all ¢ > 0. For ¢, ¢, and &; > 0, these conditions are
satisfied by our general results [Gol92] that o*(p) is analytic for all p € [0, 1] and
o*(q1, q2) is analytic for all (g1, g2) € [0, 1] x [0, 1]. The ¢ = &, = 0 requirements
will be assumed, although Kozlov [Koz89] has proven the existence of %,"7:- |p=1
for a class of continuum analogs.

The second main condition is that, given the hypercubic base lattice G for A(n)),

do*
dp

Inany N > 2, % | = N/(N ~ 1) [Kir71], whereas 4% | _, if negative,
is quite small, e.g., & —0.21 in N = 2 [NVVES86, Gol92], indicating that a*(p)
is quite straight near p = 1, so that (2.9) is satisfied. Condition (2.9) amounts
to a consequence of the long-held view that effective medium theory (giving a
straight-line solution) provides an accurate description of ¢*(p) near p = 1, which
also holds for general lattices. In fact, the asymptotics below can be proven for a
variety of periodic base lattices G which satisfy (2.9) and, presumably, hold even
for random lattices.

d*c*

K(G)= o

2.9)

p=1
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We may now state our principal result. Under the above assumptions, for fixed,
large ny, B, and J,

8% (A(n)) =, K (G)pn + Z “’"‘ b (2.10)
where (a)”! = ;J=o(711)I and the series in (2.10) converges, so that
820*(A(ny)) ~ “’Iz#'ﬂ >0, n,B,J,E— co. (2.11)
The idea of the proof of (2.10) is first to write
Fo(Am)) =) 8, (2.12)

k>j

where 84 is the sum of all contributions to 820 (A(n,)) in (2.6) arising from pairs
with one bond in a jth order string and the other in a kth order string, which is in
either the same or a different first-order necklace. Now let z; be the conductivity
of a single first-order necklace with one bond removed from a kth order string,
with zg = @y /8n; for no bond removed, z; =0, and

-1
zk-zo(1+ﬁk Y RELY (2.13)

where y; — O ask —> oo geometrically fast. There are analogous formulas for the
various forms of z;; with two bonds removed, say, in series or in parallel. Then,
through representations like (2.6) and (2.7), we obtain formulas for the & j; in terms
of derivatives of o*(p) and 0*(q;, g2) at p = 1, such as

do* d2 *
dn = o i — D= (p = L)+ BmP (=1 m)] @14

and

%o

512—20[(5711 = L)+ (Bm)*

(p= Lhuhy)|,  @15)
24

where =1, hy), e.g., is for G with bond conductivities 1 and h; = 0, with

zA/zO Ask — 00, by — 1, and, as 8 — 0o, by — 1forall k > 2, and
sxmllarly for h ji = 2 /z0. The necessary control of the § j; is, then, obtained either
from (2.9) or from perturbation theory around a homogeneous medium (g = 1 or
€1 = & = 1), which establishes (2.10).

We wish to make the following remarks concerning the above result. First, a
result similar to (2.11) holds if we replace (2.8) by n; j-1=1;B;n;, where the blobs
of order j — 1 are made of n; necklaces in parallel, with reasonable assumptions
aboutn; and ;. Even if the blobs have a more complicated “super-lattice” structure
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themselves, an analog of (2.11), presumably, holds. Also, as noted above, (2.11)
can be proven for a variety of base lattices G. Finally, although the principal
assumption of the NLB graph replacing the actual backbone is quite serious, our
proof of (2.10) shows that the dominant contribution to (2.11) comes from &y,
which comes from macroscopic contributions in the NLB graph, where the model
reflects the actual structure well. A similar result will hold for any reasonable
assumption about microscopic backbone structure.

Now, we proceed to the implications of (2.11). First, its positivity establishes
convexity of o*(p) for the NLB model, which implies (under our assumptions,
including scaling and the existence of three derivatives of o*(p) for all p > p,
when ¢ = Q) that7 > 1, forany N > 2. Now, let A(n;) be the length of a first-order

J .
necklace, so that A(ny) = Bny + B%na+ ...+ B ny = 6;Bn,,0; = >.27". By
i=0
(2.11), then

pii(n)

52‘7*('4("1)) ~ —ST_T ,

ny, ﬁv J,E‘—) o0, (216)

where p; = a; K(G)/6;, so that p; = 2/3 for large J in N = 2. Because all the
parameters ny, 8, J and § are diverging as p — p;, we can define a whole class
of NLB models by how fast A(rn;) scales to oo relative to §. By the structure of the
model, clearly, A(n,) > &, and, typically, A/& — oo. Thus, as a consequence of
(2.16),in N = 2 and 3,

820*(A(m)) = +0 , ny, B, J,E — oo, (2.17)
exceptin N =3 when A(n;) = C§, C = 1, in which case,
82a*(A(ny)) = pC > 0, (2.18)

where p = Jlim ps.In N > 4, if A and £ are scaled so that A(n;)/§V 2 — 0%,
00
then,
8%c*(A(ny)) — 0%, (2.19)

. . . 2ot _ .
Und;:r our assumptions, in particular, that "7[)‘—’7— ~ (p — p.)' "2, then, collecting our
results,

l<t<2, N=23 (2.20)

In (2.20), the last inequality t+ < 3 for N = 4 is obtained by a result that
§o*(A(ny)) ~ C’'A%(n,)/&Y 2 for a simpler node-link graph A’(n), which is
believed to be adequate in higher dimensions [Har83]. For models in N = 4,5

which satisfy A%(n))/6V %2 — oo,
83a*(A(n))) — 00,

so that %r ~ (p — p) ™2 — oo, which gives the inequality.
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FIGURE 2.2. Two-dimensional Voronoi tessellation. The boundaries of the polygonal grains
are formed from points which are equidistant from the dots in two neighboring grains. These

boundaries form the channels of easiest flow in consolidated granular media and fractured
rocks.

2.3 Critical Path Analysis in Highly Disordered Porous
and Conducting Media

We now present a continuum percolation model which closely represents fluid
flow in some fractured rocks and consolidated granular media, as well as electrical
conduction in some matrix-particle composites [GK]. For simplicity, we first give
the formulation for electrical conductivity in N = 2, but the model and result can
be carried over to N = 3 and to fluid flow in a porous medium obeying Darcy’s
law. Consider the checkerboard of unit white squares in R2, with centers of the
squares being the points of the lattice Z2. Randomly color the squares red with
probability p, where the probability of coloring one square is independent from
any other. Then for x € B2, let S(x) be the distance from x to the boundary of the
nearest red square, with S(x) = 0 if x is inside a red square. Then define the local
conductivity o(x) as

o(x) = "5, (3.1)

It is useful to think of the red squares as insulating particles, as we will be consider-
ing asymptotics as A — 400 (although we could just as easily consider . — —0Q),
The medium defined by (3.1) can be thought of as being divided into grains asso-
ciated with each red square, where each grain is the set of all points for which the
distance to its red square is smaller than the distance to any other red square. The
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(c) ' (d)
FIGURE 2.3. Computer simulation of the consolidation of spherical grains, showing de-
creasing porosity ¢, with (a) ¢ = 0.364, (b) ¢ = 0.200, (c) ¢ = 0.100, and (d) ¢ = 0.030.

boundaries between these grains, where the distance to a red square is maximal,
form the “channels” through which current (or fluid) passing through the medium
will tend to flow. For small p, the set of boundaries forms a Voronoi network, as
shown in Fig. 2.2 (from [Sah95]). The points in the figure represent the red squares.

Our goal is to find the A — +o0 asymptotics of the effective conductivity o*(p)
of the medium in (3.1), which is defined as follows (e.g., [Koz78, GP831]). Let
E(x) and J(x) be the stationary random electric and current fields in the medium
satisfying J(x) = c(x)E(x),V - J =0,V x E =0, and (E(x)) = e, where ¢;
is a unit vector in the kth direction, and (-) denotes ensemble or infinite volume
average. Then, the effective conductivity o* is defined via

(J) =c*(E). (3.2)

For fluid flow (with unit viscosity) in porous media [Sah95] obeying Darcy’s
law, v = —«(x)V P, where « (x) is the local permeability corresponding to (3.1), v
is the fluid velocity satisfying V - v = 0, and P is the pressure (including gravity),
one is interested in the effective permeability «*, defined analogously to (3.2),

(v) = ~*(VP) (3.3)

As briefly mentioned earlier, if «(x) has the form (3.1), then, for large A, it is a
close model for flow through consolidated granular media, where the grains them-
selves are permeable, with decreasing permeability as one approaches a hard core.
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The degree of penetration into the grains decreases as A increases. Fig. 2.3 (from
[RS85]) shows a computer simulation of a grain consolidation process [RS85].
The sequence (a) - (d) shows increasing consolidation and, correspondingly, de-
creasing porosity. As A — o0, the network of easiest flow paths in our model
closely resembles the configuration in (d), which itself is similar to many types of
sedimentary rocks, including Devonian sandstone [RS85].

To state the results for the asymptotics and to more fully describe our model,
we first consider standard, nearest neighbor-site percolation on Z? [SA92, Kes82,
Gri89], which is equivalent to the percolation of nearest neighbor red squares (con-
nected along an edge), with percolation threshold p! ~ 0.59. Now, we relax the
nearest neighbor restriction for connectedness and consider a generalized definition
of percolation of the red squares. We say that two red squares £ and §, with centers
x and y in Z?, are r-connected if there is a sequence £q, 21, -+ - , %u, %o = £, £y = 9
of red squares connecting them, so that dist {£;, %1} < r, where dist {%;, %11}
means the shortest distance between the boundaries of %; and %;.,. With 6,(p)
the infinite cluster density of r-connected red squares, we define p.(r) as the per-
colation threshold for 6,(p). We shall be concerned with a particular sequence
rjy J = 1, defined by squares which are increasingly distant from 0, the square
centered at the origin, with r;y = 0, rp = 1, r3 = /2, r4 = 2, rs = /5, rg =
+/8, .- Note that it suffices to consider squares with centers (m, n) € Z2 with
n=m> 0, n > 0. For simplicity, we denote pe(r;) as p.(j), and we also re-
place the term r;-connected by j- connected. Note that the j = 1 (r; = 0) case
includes both the nearest neighbor case above and the next nearest neighbor (di-
agonal) case (because the distance between connected squares is 0 in both cases),
so that p.(1) =1 — p} =~ 1 — 0.59 = 0.41 [Koz89, BG94, Gol94b]. Furthermore
pc(j+1) < pe(j), which can be obtained from [AG91]. From analysis of a Poisson
distribution of discs in the plane (see below), one can also find that

b3 (4 .
pe(j) ~ ;‘ j— 00, (3.4)

where 4. is the critical percolation intensity for unit discs [Gri89].

The last ingredient needed to state the results is the notion of critical values of
S(x), which are associated with the p.(j). These values S,(;) are defined by the
observation that, for p > p.(j), the set R; = {x € R?: S(x) < S.(j)} percolates
in R2, where, for J associated with (m, n) € Z?2 as above,

S/ =r3/2 = T = Spo)m = 1P + (a — 17 2, (3.5)

where 8,9 is the Kroneker delta. By percolating in R?, we mean that R ; contains
an infinite polygonal line joining vertices of the red squares in R;. Note that R, is
just the set of red squares, which percolates in the above sense when p > p(1).
Now, in terms of the S.(j), define a step function S.(p) via

Selpy = S8:(i)y, pe(N<p<p(G—1), j=1, (3.6)
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where p.(0) = 1. These critical distances S.(;j) in our model correspond, via (3.1),
to the critical conductances g, in the AHL theory.

The principal results of our investigation are now stated as follows. For the
effective conductivity o*(p) of the medium o (x) = e**%, for p#p.(j),

1
T loga*(p) ~ S(p), A — 00, 3.7

which establishes the validity of the AHL critical path analysis in the high disorder

limit for our model. Furthermore, we have the following p — 0 asymptotic for
the exponents:

Se(p) ~ f‘; p—0, (3.8)

where p is the density of red squares (i.e., with units of inverse square length).
Via (3.7) and (3.8), we see that o*(p) for our long range checkerboard model
exhibits infinitely many thresholds p.(j) — 0, as j — oo with an infinite set of
asymptotics, as A — oo. If, instead of A — o0, we wish to set A = 1, so that
o (x) = 5™ and consider the asymptotics of o*(p) as p — 0, we also find that

Jploga™(p) ~ it p—>0. (3.9)

Now, we give the analysis which leads to these results. The idea is to exploit
the variational definition of o* equivalent to (3.2) and its dual to obtain upper and
lower bounds on ¢*. Let Ay = [0, L] x [0, L] € RZ. Then the variational form of
(3.2) is given by

1
o*=L1er;° 73 3271; [A,. o(x) |Vul*dx , (3.10)

where P = {continuous potentials u on Ay : u(0, x2) =0, u(L,xy) = L,Vx; €
[0, L]}. We obtain bounds by inserting trial u in (3.10). To describe the construc-
tion, we recall certain properties of standard-site percolation. It has been shown
[GK&4, CC86] that, for p > pl, the number ¢, of disjoint crossings of A, by
nearest neighbor sites satisfies (roughly speaking) ¢y = O(L) as L — o0. In our
generalized model, recall that, for p > p.(j), R; = {x € R? : Sx) < S.(j)
percolates in R2. In this case, the number oy () of disjoint crossings of A, by
j-connected red squares also satisfies e (j) = O(L) as L. — oo. We call the asso-
ciated disjoint subsets of R; that cross A pink “j-chains” (we say “pink” because
such sets contain both red squares and parts of white ones). For our purposes, it
will be necessary to consider only those chains which cross vertically. Now the
trial u is constructed roughly as follows. In the regions between the j-chains, u is
flat, so that Vu = 0. However, on the j-chains, # increases linearly across the chain,
so that the total contribution to (3.10) of | Vu|? on the pink j-chains is O(L?2). (Con-
structing u in the neighborhood of points where the j-chains have zero thickness
is handled with asymptotic expansions, which are patched continuously to the rest
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of i, as in [Koz89] for the so-called Laplace-Dirichlet integral.) For such u, then,
the integrand in (3.10) is zero off the j-chains, and, for x in the pink j-chains,

o(x) < 50, (3.11)

which leads to the inequality,

a*(p) < et P> plj), (3.12)

for some C > 0 (depending on p), with Jj=>1

To get the lower bound, we first note that the dual to (3.10) is obtained by
replacing o* and o (x) by (c*)~! and o ~!(x), respectively. The key observation
in the analysis, now, is that, for p < p,(j — 1), j > 1 (with p.(0) = 1), W, =
{x e R*: S(x) > S.(j)} percolates in R?, which can be seen as follows. When
p < pc(j — 1), Rj—y cannot percolate, j > 2. In this case, easy geometrical
reasoning shows that infinite chains of white cells must exist, so that the minimal
thickness r; of these white chains (meaning that discs of radius r;/2 percolate in
these chains) is 25.(j). Then, Wj = {x € R? : Sx) = r;/2 = §.(j)}, which
contains this set of white chains, percolates in R? . Now, constructing u similar to
that above, one obtains

¥ (P! < Cae™?5W) | p<pG—1), (3.13)

for some C; > 0 (depending on p) , with J = 1. Combining (3.12) and (3.13)
yields (3.7).

To obtain the asymptotic behavior of the thresholds in (3.4) and the exponents in
(3.8), we connect our work to the analogous problem for a Poisson distribution of
discs in R?, Let {xe}32, be aset of Poisson-distributed red points in the plane, with
intensity 1. First, we define, analogously to (3.1), §,.(x) = dist {x, nearest x;}
and o, (x) = &%), Let S, be the smallest # for which {x € R? : §,(x) < h}
percolates. Then, S}, coincides with ry,, the minimum radius so that the discs of
radius r;, centered at the x;, percolate. For the effective conductivity a,j‘ in this
case, the above arguments used for the long-range checkerboard yield

1 .
n logal‘f ~ S, = rﬁ s A — 00. (3.14)

We remark that, via the scaling properties of the Poisson model, we can replace
AS, (x)by ﬁ S1(x), so that we may set A = 1 and consider asymptotics, as . —> 0,
with a result analogous to (3.14).

It is useful to note that the above Poisson model can be obtained by rescaling
our checkerboard model, where the red squares of our model correspond to the
xi of the Poisson model, as follows. On the scaled lattice hZ2, h > 0, let the
density of red squares be p/h% = . As p — 0, with 4 = VPl = 0 as
well, S(x, p) = h S(x/h, p) = S,(x). Then, the critical values also converge,
8:(p) — ¢ as p — 0. Then, with 8, = AS, and h = /p/m, setting = 1
yields ./pS.(p) ~ r{ as p — 0, which is equivalent to (3.8), because p, = (riH2.
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Furthermore, the critical density of red points on the rescaled lattice is p.(j)/ 2.
so that w, = lim;j e ”‘,‘f{ ) Note that p.(j) is the critical p for which disks of
radius r; percolate. So, if we rescale the lattice with b ~ 1/rj, as j — o0, then,

unit discs percolate, so that

pe=lim pe()ry - (3.15)
joreo

To relate r; to j, we note that there are O(j) integer points inside the disc of radius
rj,as j -—> 00, 50 that
j~mrt, j oo, (3.16)

which, combined with (3.15), yields (3.4).

In closing, we wish to make a few remarks. Presumably, an effective medium
approach as in [SK82] could account for the behavior of our model for small
j. However, as j grows, the number of configurations of squares that must be
considered grows extremely rapidly, and numerical calulations become intractable.

An interesting question is the transition between different exponents for large
A, as p crosses the threshold p.(j) . We remark that, for example, the constant C;
in estimate (3.12) diverges like £(p), as p — p.(j)*, where §(p) is the correlation
length for j—percolation.
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