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Abstract

Monitoring the thickness of sea ice is an important tool in assessing the impact of global warming on Earth’s polar

regions, and most methods of measuring ice thickness depend on detailed knowledge of its electrical properties. We

develop a network model for the electrical conductivity of sea ice, which incorporates statistical measurements of

the brine microstructure. The numerical simulations are in close agreement with direct measurements we made in

Antarctica on the vertical conductivity of first year sea ice.
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1. Introduction

Sea ice is a critical component of Earth’s climate
system as well as a sensitive indicator of climate
change. Determining the thickness distribution of
the polar sea ice packs is a central problem in moni-
toring the impact of global warming. However, there
is significant uncertainty in our knowledge of the ice
thickness distribution and how it is changing. Not
only does this uncertainty affect assessments of how
the changing climate is impacting the polar regions,
but it also affects predictions of global climate mod-
els, where accurate knowledge of sea ice initial con-
ditions is essential for long term simulations.

Most methods of measuring sea ice thickness, and
interpretation of the data obtained, depend on de-
tailed knowledge of the electrical properties of the
ice. Since sea ice is a composite of pure ice with brine
inclusions [21,3], whose volume fraction and geome-
try depend strongly on temperature, understanding
its electrical properties is a challenging problem in
the theory of inhomogeneous materials. While the
electrical conductivity of pure ice is negligible for
most purposes, the electrical conductivity of brine
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can be substantial. Here we develop a network model
for the electrical conductivity of sea ice, and compare
the results with direct measurements of the verti-
cal conductivity of first year sea ice we made during
the 2007 Sea Ice Physics and Ecosystem eXperiment
(SIPEX) expedition off the coast of East Antarctica,
from the Australian icebreaker Aurora Australis.

Early DC resistivity measurements on sea ice were
aimed at determining ice thickness [5,19,20]. Initially
all these studies employed surface soundings using
4 electrodes in either the Wenner or Schlumberger
configurations, although Timco [20] later used ver-
tically arranged electrodes in the side of an ice pit.
Later measurements in the Antarctic were also re-
ported [2]. The anisotropic nature of the resistiv-
ity of sea ice, due to the preferential vertical align-
ment and connectivity of brine pores, leads to such
measurements significantly underestimating the ice
thickness.

More promising determinations of sea ice thick-
ness have been achieved using low frequency elec-
tromagnetic (EM) techniques [14,11,13,22,17]. The
technique relies on a time varying primary magnetic
field (generated by a transmitter coil) inducing eddy
currents in the seawater beneath the comparatively
resistive ice. The secondary magnetic field produced
is sensed by a receiver coil, determining an apparent
conductivity which results essentially from an inte-
gration over the vertical distance between the instru-
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ment and induced currents. The thickness is found
using empirical relationships [12], with good results
for smooth ice and underestimates near ridges [12].
The technique is adaptable to continuous measure-
ments being made either from a helicopter or ship
[11].

Previous measurements of the conductivity of sea
ice relied almost exclusively on indirect methods
which mix the horizontal and vertical components.
Moreover, these indirect means make it difficult to
accurately recover the dependence of the conduc-
tivity on the properties of the brine microstructure,
namely, its brine volume fraction φ, which depends
on the temperature T and salinity S of the ice
[4,21,3]. During the 2007 Australian SIPEX expedi-
tion, Golden and Gully extracted cylindrical cores
of sea ice and made vertical conductivity measure-
ments along these cores using metal probes attached
to a Yew Earth Resistance Tester, as described
in [9]. We also measured salinity and temperature
along each core in order to relate the electrical mea-
surements to microstructural data [15,7,8,16], such
as the brine volume fraction.

Part of our motivation for focusing on the verti-
cal component of the electrical conductivity is that
it is closely related to the vertical component of
the fluid permeability of sea ice. Fluid transport in
sea ice mediates a broad range of processes such
as the growth and decay of seasonal ice, the evolu-
tion of melt ponds which determine ice pack albedo,
and bio-mass build-up [8,6]. Our work here will help
lay the foundation for electrically monitoring fluid
transport in sea ice. In fact, the random resistor net-
work model we develop here is based on the random
pipe network we used previously to model the fluid
permeability of sea ice [23]. Statistical information
about the brine microstructure [15,7,8,16] is used to
determine the statistical distributions of the resis-
tors in the electrical network.

2. The Network Model for the Effective

Conductivity of Sea Ice

In this model, we consider a piece of sea ice with
brine inclusions specified by a brine volume fraction
φ and other statistical assumptions, and focus on
the effect of the brine structure on electrical con-
duction in the material. More specifically, we study
the behavior of the effective vertical conductivity
and its dependence on the brine inclusions. Let Φ be
the electric potential, and σ the local conductivity
tensor, which depends on the brine volume fraction.
Since the current density J is related to the electric
potential through J = − σ∇Φ, and assuming the

material is free of electric charge, the equation for
electrical conduction is

∇ ·σ ∇Φ = 0. (1)

This is similar to the incompressible fluid permeabil-
ity equation for the pressure from Darcy’s law,

∇ · k ∇p = 0, (2)

where p is the incompressible fluid pressure and k is
the permeability tensor.

Here we define the effective conductivity σ∗

v of the
sea ice structure in the vertical direction through

Jz = − σ∗

v

∆Φ

∆z
, (3)

for the current density Jz in z direction, and the
potential difference ∆Φ over a thickness ∆z.

To simulate the electric field through the conduct-
ing microstructure of sea ice, consider an ice sheet of
depth D, similar to the structure used in [23]. Take
a thin vertical slice of horizontal thickness h and
length span L. We model this ice sheet by a two di-
mensional lattice of nodes connected by conducting
tubes, as shown in Figure 1. The slice has a rectan-
gular L × D vertical cross section, which is divided
into a grid with m equally spaced sections in the
horizontal direction and n equally spaced sections in
the vertical direction, so that L/m = D/n = h, for
some large integers m and n. The model parameter
h can be viewed as the dimension of a cell in which
a typical brine inclusion is contained. In this net-
work model, h will be chosen according to the sea ice
we simulate, its brine volume fraction, and our com-
puting capacities. The tubes are assumed to have
circular shapes with different radii, and the current
through the medium is induced by an electric poten-
tial drop ∆Φ = Φt − Φb, where Φb and Φt are the
potentials at the bottom (liquid) and the top (air)
of the sea ice, with the assumption that Φb > Φt

so there is an upward current flow in the medium.
The cross sectional areas of the tubes chosen below
generate fluid pores comparable to the brine inclu-
sions found in young sea ice. The lattice nodes are
the vertices (i, j), 0 ≤ i ≤ m, 0 ≤ j ≤ n, of a rect-
angular grid, as in Figure 1 (a). Nearest neighbors
are connected by vertical and horizontal tubes, with
a potential Φi,j defined at each node (i, j). To each
node (i, j) with 0 ≤ i ≤ m − 1, 0 ≤ j ≤ n − 1,
the horizontal tube to the right of (i, j) has radius
R = Rh

i,j, and the vertical tube on top of (i, j) has
radius R = Rv

i,j, as shown in Figure 1 (b).
Since the brine conductivity is substantially

higher than the conductivity of the surrounding ice
(on an order of 108), we can assume that electrical
conduction takes place mostly through the brine
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Fig. 1. (a) Random resistor network. (b) Close-up of a node and adjoining conducting elements.

tubes. The effect of negligible conduction through
pure ice will be modeled by adding a simple con-
ducting component to the system. Unlike the per-
meability model, where the fluid flux depends only
on the brine geometry, electrical conduction in the
microstructure includes a temperature dependent
local conductivity. For each tube of radius R con-
necting two nodes with an uniform conductivity
σtube, the electric current through the tube can be
established based on the voltage drop and the cross
sectional area A as follows,

I = σtube A E = − σtube πR2 ∇Φ, (4)

where Φ is the electric potential and R is the radius
of the tube. For each tube connecting two neighbor-
ing nodes, the potential gradient can be well approx-
imated by the potential drop divided by the spac-
ing h. Given the potentials at neighboring nodes,
different currents converging to the node (i, j) can
be easily computed, and they must balance due to
Kirkoff’s law. Let σh

i,j and σv
i,j denote the brine con-

ductivity for the tubes to the right and on the top of
node (i, j), respectively. This leads to the following
equations,

σv
i,j(R

v
i,j)

2(Φi,j+1 − Φi,j) +

σv
i,j−1(R

v
i,j−1)

2(Φi,j−1 − Φi,j) +

σh
i,j(R

h
i,j)

2(Φi+1,j − Φi,j) +

σh
i−1,j(R

h
i−1,j)

2(Φi−1,j − Φi,j) = 0, (5)

for i = 1, . . . , m − 1, and j = 1, . . . , n − 1, with
appropriate modifications on the edges of the lattice.
Notice that this equation is similar to the equation
derived for the fluid permeability model [23]:

(Rv
i,j)

4(pi,j+1 − pi,j) +

(Rv
i,j−1)

4(pi,j−1 − pi,j) +

(Rh
i,j)

4(pi+1,j − pi,j) +

(Rh
i−1,j)

4(pi−1,j − pi,j) = 0, (6)

here pi,j is the pressure at node (i, j). We remark
that in the conductivity model the coefficients de-
pend on the radius (∼ R2) not as strongly as in the
permeability case (∼ R4). On the other hand, here
the local brine conductivity depends on temperature
and salinity, and it could have spatial variations once
we allow the temperature and salinity to be nonuni-
form.

The boundary conditions for Φ are prescribed so
that Φ is periodic in the horizontal direction with
period L, and it satisfies Dirichlet conditions at the
top and bottom of the region as

Φi,n = Φt, Φi,0 = Φb. (7)

Let Ii,j be the current through the vertical duct on
top of the (i, j) node. The total current through the
brine network system can be obtained by adding cur-
rents through all the branches at the top layer,

Ibrine = π

m
∑

i=0

σv
i,n−1(R

v
i,n−1)

2 Φi,n−1 − Φt

h
. (8)

The small effect of additional conduction through
pure ice can be modeled as a current flow through
another medium in parallel to the brine network,

Ipure ice = σice Lh(1 − β)
Φb − Φt

D
. (9)
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Here we introduce a coefficient β that models the
loss of ice surface/volume for conduction due to the
brine inclusions. It should be pointed out that due
to the small ratio σice/σb and the fact that σice has
a non-negligible temperature dependence, modifica-
tions due to β can be ignored in our study of the
effective vertical conductivity.

With the introduction of the effective vertical con-
ductivity for this composite in Eq. (3), and the re-
lation between the current and current density,

Jz = σ∗

v

Φb − Φt

D
=

Ibrine + Ipure ice

Lh
, (10)

we have the effective conductivity

σ∗

v =
πD

Lh2

m
∑

i=0

σv
i,n−1(R

v
i,n−1)

2 Φi,n−1 − Φt

Φb − Φt

+ (1 − β)σice . (11)

The effect of β is ignored in this study.
The multigrid algorithm to solve the system Eq.

(6) can be modified to solve the system Eq. (5), and
the numerical convergence is faster due to the coef-
ficient dependence change from R4 to R2.

3. Sea Ice Microstructure and Numerical

Results

In this work, the microstructure of the sea ice slice
is described as a collection of tubes with cross sec-
tional areas sampled from a log-normal distribution
that subsequently lead to a specified average brine
volume fraction φ, with parameters based on mea-
surements of brine inclusions in first year sea ice
[15,1]. Specifically, we sample the radius R so that
log A = log(πR2) is normally distributed with mean
µ and variance α2. We also assume that all the ran-
dom radii are independent from each other. Given a
particular sample of the tube radii, the volume frac-
tion φ of the slice can be readily computed by

φ =
π

LD





m−1,n
∑

i=0,j=0

(Rh
i,j)

2 +

m,n−1
∑

i=0,j=0

(Rv
i,j)

2



 . (12)

The brine conductivity for each tube is determined
by the temperature and the salinity of the sample
under consideration, and it is assumed to remain the
same value σb for all tubes in the sample for this
model. The goal of this study is to investigate the
dependence of the effective vertical conductivity σ∗

v ,
and the form factor σ∗

v/σb, on the porosity φ, which
is connected to the microstructure through Eq. (12).
For consistency, it is necessary to choose the param-
eters µ and α such that the desired volume fraction
is obtained, and that the statistical properties of the

Table 1

Numerical Parameters Used in Simulation

φ 2.5% 5.0% 7.5% 10.0% 12.5%

Pdisconnect 0.9 0.7 0.5 0.25 0

T (◦C) −16.18 −7.44 −4.83 −3.58 −2.84

σb (Ohm−1
· m−1) 6.596 6.519 5.319 4.395 3.722

actual sea ice are reasonably matched. To this end,
we first notice that given our assumption about the
distribution of log A, the expected value of the cross
sectional area

E[A] = eµ+ 1

2
α2

. (13)

This should be matched to an interpolation of mea-
sured averages for the cross sectional area A as a
function of brine volume fraction φ [10],

〈A〉 = θ(φ) = π(7×10−5+1.6×10−4φ)2 m2. (14)

This function approximates the dependence of the
mean cross sectional area on the brine volume frac-
tion φ observed by Perovich and Gow (1996) [15] in
horizontal thin sections of young, primarily colum-
nar sea ice. It is also observed that α = 1 gives a
good fit for the range of volume fractions covered
here, and consequently we use this value for all the
numerical calculations in this work. Once α is de-
termined, the other parameter µ is solved by the
matching condition E[A] = 〈A〉 as above.

Also as observed in [7,8,16], brine inclusions in
columnar sea ice become connected on macroscopic
scales only when the brine volume fraction exceeds
around 5%. To reflect this behavior, we allow some
randomly selected tubes to be disconnected from the
system in an effort to simulate the disconnection of
brine inclusions. Since the dominant conduction di-
rection is the vertical direction, we introduce a prob-
ability of disconnection for vertical tubes only, con-
sistent with the x-ray tomographic data and pore
structure analysis in [8,16], and this constitutes an
additional input to the model.

We proceed to perform numerical simulations for
σ∗

v with several situations described by the brine vol-
ume fraction, and the corresponding microstructure
summarized from our data. For each value of φ, we
choose an appropriate probability of disconnection
to differentiate the microstructure from the others.
The brine conductivity σb in fact depends on the
temperature and the salinity of the sea ice, which
characterize the state of the sea ice at the particular
level of brine volume fraction. For this study, in order
to focus on the effects of the brine volume fraction,
we assume a fixed value for the salinity S = 7 ppt.
We then invert the Frankenstein-Garner relation [4]
to obtain
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Fig. 2. (a) Data on the vertical conductivity of first year Antarctic sea ice is compared with the results of numerical simulations.

(b) Data on the form factor is compared with numerical results from the network model, and displayed on a logarithmic scale.

T = −
49.185

1000φ
S

− 0.532
, (15)

which is then substituted in the Stogryn-Desargant
relation [18]

σb = −T · e0.5193+0.08755 T , T ≥ −22.9 ◦C (16)

to determine the brine conductivity for the sea ice at
a particular brine volume fraction φ. The values of
temperature and brine conductivity, as well as the
probabilities of disconnection that describe one im-
portant aspect of the microstructure, are listed in
Table 1 for selected values of the brine volume frac-
tion for which we perform numerical simulations in
this work. We also use an average pure ice conduc-
tivity value of σice = 1.1 × 10−8 at a temperature
T = −10 ◦C. Here all the conductivity quantities
have the unit Ohm−1 · m−1.

In Figure 2, we plot the values of the effective ver-
tical conductivity σ∗

v and form factor σ∗

v/σb from our
measured data sets and compare with the results of
the network model. First we note that our assump-
tion σv

i,j = σh
i,j = σb simplifies Eq. (5) such that

the solution Φ is independent of σb. This allows us
to separate the effects of decreasing σb and increas-
ing σ∗

v as φ increases. As we see from the graphs,
in both the effective vertical conductivity and the
form factor, our results have shown excellent agree-
ment with the measurements. In Figure 2 (a), the
connected numerical simulation points exhibit the
type of curvature indicating critical behavior with
finite volume effects. For the form factor comparison
in Figure 2 (b), we choose a log-log scale to detect
any linear behavior, that would suggest an Archie’s
law behavior for the form factor. As demonstrated

in this graph, the log-log graph suggests that such
a power law from this network model could also be
developed. These results are consistent with the be-
havior found for the fluid permeability in [8].

4. Conclusions

We have developed a network model for the effec-
tive vertical conductivity of sea ice. The model incor-
porates statistical information about the brine mi-
crostructure, through a lognormal distribution de-
scribing the temperature dependence of the inclu-
sion sizes, and connectivity information obtained
from X-ray CT data. The model yields excellent
agreement with data taken on first year sea ice in
Antarctica. Our work will aid in measurements of
sea ice thickness which depend on knowledge of its
electrical properties.
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