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Abstract

During the 2007 SIPEX expedition in pack ice off the coast of East Antarctica, we measured the electrical conductivity
of sea ice via surface impedance tomography. Resistance data from classical four−probe Wenner arrays on the surfaces
of ice floes were used to indirectly reconstruct the conductivity profiles with depth, involving both the horizontal and
vertical components. A common problem with these reconstructions is the lack of uniqueness of the inversions, which
worsens as the number of layers in the model increases. In the past, three layer inversions have been used to help avoid
non-uniqueness. However, this approach assumes that the conductivity profile of sea ice does not change very much
with depth. In order to investigate the conductivity profiles one needs to use more layers in the reconstruction. A
reasonable starting model is a useful tool that can be used to regularize the inverse problem, allowing a reconstruction
that not only matches the Wenner impedance data but the actual profile. Using measurements of brine volume fraction
for 10 cm sections of ice cores taken at the Wenner array site, and various models relating brine volume fraction
to conductivity, we compare the predicted conductivity profiles based on the models to the reconstructions from the
tomographic measurements. We note the close agreement with the actual data for some models and the inadequacy of
others. Such models could be useful in finding a reasonable starting point for regularizing inversions, and using n-layer
models to reconstruct accurate conductivity profiles. Our results help to provide a rigorous basis for electromagnetic
methods of obtaining sea ice thickness data, a key gauge of the impact of climate change in the polar regions.
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1. Introduction

The polar sea ice packs play a fundamental role in
Earth’s climate system, and are leading indicators of
climate change (Thomas and Dieckmann, 2003; Serreze
et al., 2007). They also host extensive algal and bacte-
rial communities which sustain life in the polar oceans
(Thomas and Dieckmann, 2003; Fritsen et al., 1994). Re-
fining predictions of climate change and the future trajec-
tory of the polar ice packs depends on accurate knowledge
of their thickness distribution. Not only is this knowledge
important in comparing model predictions to observed be-
havior, but in specifying the initial conditions necessary
to study the time evolution of these nonlinear systems.
Determining the thickness distribution, however, remains
an elusive problem. Due to the vast extent of the po-
lar sea ice packs, it is impractical of course to drill the
millions of holes or more that would be needed to accu-
rately assess the thickness distribution over a particular
region or time period. Thus, other methods have been
and are being developed, many of which use electromag-

netic techniques, such as electromagnetic induction (EMI)
devices (Haas et al., 1997; Haas, 1998, 2004; Worby et al.,
1999; Reid et al., 2006) mounted on ships, planes or he-
licopters. Electromagnetic techniques, in general, rely on
some knowledge of the effective electrical properties of sea
ice and how they vary with depth, temperature, salinity,
ice type, etc., in the analysis of the data to obtain thick-
ness information.

The electrical conductivity of sea ice is also closely re-
lated to its fluid transport properties. Fluid flow through
sea ice mediates a broad range of processes which are im-
portant in climatological and biological studies. These
include the evolution of melt ponds in the Arctic, sur-
face flooding and snow-ice formation in the Antarctic, the
evolution of salinity profiles, convection-enhanced thermal
transport, CO2 fluxes, and nutrient replenishment for mi-
crobial communities. In (Golden et al., 2010) we found
the electrical signature of the rule of fives (Golden et al.,
1998a, 2007; Pringle et al., 2009), where columnar sea
ice is effectively impermeable for brine volume fractions
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below about 5% and increasingly permeable above this
threshold. Relating fluid and electrical transport proper-
ties in this way lays the foundation for electromagnetic
monitoring of the above processes.

Early DC resistivity measurements of sea ice were
aimed at determining ice thickness (Fujino and Suzuki,
1963; Thyssen et al., 1974; Timco, 1979). These stud-
ies employed surface soundings using 4 electrodes in ei-
ther the Wenner or Schlumberger configurations. Thyssen
et al. (1974) also made in situ measurements of sea ice re-
sistivity using electrodes inserted into the vertical face of
a pit that was dug in the unrafted ice near one of their
sites. The apparent resistivity was measured perpendicu-
lar and parallel to the ice surface, and this data was ana-
lyzed further by Timco (1979). He attempted to interpret
sounding results in terms of the sea ice microstructure,
and it was also possible to see changes in the resistivity
structure during spring warming. Nevertheless, such mea-
surements have been somewhat unfruitful as a means of
investigating either ice thickness or microstructural detail.
Later measurements in the Antarctic were also reported
(Buckley et al., 1986). The anisotropic nature of the re-
sistivity of sea ice leads to measurements significantly un-
derestimating the ice thickness (Reid et al., 2006) by a
factor

√

ρ∗v/ρ∗h , where ρ∗v and ρ∗h are, respectively, the
vertical and horizontal components of the bulk resistiv-
ity (Bhattacharya and Patra, 1968), with σ∗

v = 1/ρ∗v and
σ∗

h = 1/ρ∗h, the vertical and horizontal components of the
bulk conductivity. Surface measurements also lead only
to an estimate of the geometric mean resistivity

√

ρ∗v ρ∗h .

More promising determinations of sea ice thickness have
been achieved using low frequency electromagnetic induc-
tion (EMI) techniques (Haas et al., 1997; Haas, 1998,
2004; Worby et al., 1999; Reid et al., 2006). The technique
relies on a time varying primary magnetic field generated
by a transmitter coil. The measured secondary magnetic
fields are due to the currents induced within a volume
of the subsurface (i.e., the footprint) by the EMI sys-
tem. The measured secondary fields at the receiver are
a weighted average of the response due to all the cur-
rents within the footprint. The thickness has been found
using empirical relationships (Haas, 2003), with good re-
sults for smooth ice and underestimates near ridges (Haas,
2003). However, theoretical approaches (Kovacs and Hol-
laday, 1990; Prinsenberg et al., 2002) have also been used,
where the measured secondary fields are inverted for sea
ice thickness (and hopefully, the sea water conductivity
and horizontal sea ice conductivity). The inversion ap-
proach assumes very accurate calibration of the EMI sys-
tem. The EMI technique is adaptable to continuous mea-
surements being made either from a helicopter or ship
(Haas, 1998; Reid et al., 2006; Kovacs and Holladay, 1990;
Prinsenberg et al., 2002). Theoretical modeling of elec-
tromagnetic measurements suggests a sea ice resistivity

of some 10’s of Ω m (Haas et al., 1997; Reid et al., 2006) –
in broad agreement with DC resistivity determinations of
√

ρ∗v ρ∗h , although electromagnetic measurements as yet
have been unable to provide any microstructural informa-
tion. Moreover, theoretical results which accurately relate
effective electrical properties of sea ice to key parameters
characterizing the brine phase have been lacking.

As a step toward providing a deeper understanding of
the electrical properties of sea ice, and in particular how
they depend on the brine microstructure and vary with
depth, we made measurements of these properties in the
Antarctic. During September and October of 2007, two
of us (K. M. G. and A. G.) measured the electrical con-
ductivity of first year Antarctic pack ice as participants
in the Australian Sea Ice Physics and Ecosystem Exper-
iment (SIPEX), aboard the icebreaker Aurora Australis.
The study area was located off the coast of East Antarc-
tica, between 115◦ E and 130◦ E, and 64◦ S and 66◦ S. At
12 of the 15 ice stations along the cruise track of the Au-

rora, we conducted electrical soundings using a Wenner
array with probes inserted into the surface of the ice over
a range of spacings. The separation of the probes ranged
from 5 centimeters to 5 meters. We also extracted full ice
cores at each site and took temperature and salinity pro-
files for each core in order to obtain a brine volume profile
for the ice where we measured electrical properties. Using
an inversion scheme, we reconstructed information about
the conductivity profile with depth. In (Golden et al.,
2010) we reported on direct measurements of the vertical
conductivity of the ice, and theoretical models relating
sea ice electrical properties to the characteristics of the
brine microstructure. We use the theoretical results here
to help constrain the inversion scheme.

2. The bulk conductivity of sea ice

Sea ice is a complex, high contrast composite material
of pure ice with brine and air inclusions. What determines
the response of an ice floe in a Wenner sounding is the
effective or bulk conductivity of the sea ice and its varia-
tion with depth. Predicting the effective electromagnetic
properties of sea ice, such as its electrical conductivity,
is a challenging theoretical problem. While pure ice and
air are essentially electrical insulators, the brine phase
is highly conducting. The relative volume fraction φ of
brine, the geometry of the inclusions, and in particular
their connectivity, are all highly dependent on tempera-
ture (Perovich and Gow, 1996; Golden et al., 1998a, 2007;
Pringle et al., 2009). The brine inclusions in general dis-
play a preferred elongation in the vertical direction, as
does the brine connectivity (Golden et al., 2007; Pringle
et al., 2009). The conductivity tensor of sea ice is thus
anisotropic.
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Let us briefly formulate the problem of finding the ef-
fective or bulk conductivity of a two phase composite
material (Golden and Papanicolaou, 1983; Golden et al.,
1998b; Gully et al., 2007). For these considerations we
ignore the air phase in sea ice. Let the local conductivity
σ(x) be a spatially stationary random field in x ∈ R

3,
for an appropriate probability space representing the set
of realizations of the random medium. While sea ice may
exhibit significant variations in microstructural properties
over its entire depth, relatively thin layers such as 5 or 10
centimeters often display only small variations in these
properties. It is then reasonable to assume that in typi-
cal sample sizes on this scale, the statistics describing the
brine microstructure in such a region are represented by
a stationary random function throughout all of R

3. We
assume σ(x) takes the value σ1 = σb in the brine phase,
which depends on temperature T via (Stogryn and De-
sargant, 1985)

σb = −T exp(0.5193 + 0.08755T ) Ω−1 m−1, (1)

T ≥ −22.9◦C.

In the ice phase, σ(x) takes the value σ2 = σi = 1.1 ×
10−8 Ω−1 m−1, which is the value at T = −10◦ C (Hobbs,
1974). The value in ice is effectively 0 compared to the
values of σb in brine, which lie between about 3 and 7
Ω−1 m−1. We write σ = σ1χ+σ2(1−χ), where χ(x) is the
characteristic function of the brine phase, with χ(x) = 1
for x in the brine and χ(x) = 0 for x in the ice. The brine
volume fraction φ is given by φ = 〈χ〉, where 〈·〉 means
an ensemble average or spatial average over all of R

3, and
depends on temperature T (◦C) and salinity S parts per
thousand (ppt) through the Frankenstein-Garner relation
(Frankenstein and Garner, 1967),

φ =
S

1000

(

49.185

|T |
+ 0.532

)

. (2)

Let E(x) and J(x) be the stationary random electric
and current fields satisfying the constitutive law J(x) =
σ(x)E(x) and the equations

∇× E(x) = 0, ∇ · J(x) = 0, (3)

with 〈E(x)〉 = ek, where ek is a unit vector in the kth

direction for some k = 1, 2, 3. The effective conductivity
tensor σ

∗ is defined by (Golden and Papanicolaou, 1983)

〈J〉 = σ
∗〈E〉. (4)

For convenience, we focus on one diagonal coefficient
σ∗ = σ∗

kk. Due to the homogeneity of effective param-
eters, σ∗(λσ1, λσ2) = λσ∗(σ1, σ2), where λ is any scalar,
σ∗ depends only on the ratio h = σ1/σ2, and we define
m(h) = σ∗/σ2 . The two main properties of m(h) are that
it is analytic off (−∞, 0] in the h–plane, and that it maps

the upper half plane to the upper half plane, so that it is
an example of a Herglotz, or Stieltjes function.

An integral representation (Bergman, 1978; Milton,
1980; Golden and Papanicolaou, 1983; Golden, 1986; Mil-
ton and Golden, 1990) for m(h) which provides an im-
portant relationship between microstructural information
and the effective conductivity is

F(s) = 1 − m(h) =

∫ 1

0

dµ(z)

s − z
, (5)

s = 1/(1 − h), s /∈ [0, 1] ,

where F(s) is analytic off [0, 1], and µ is a positive mea-
sure on [0, 1]. Formula (5) separates the parameter s
from information about the mixture geometry contained
in µ, which is a spectral measure of the operator Γχ,
where Γ = ∇(−∆)−1∇·. Statistical assumptions about
the random medium (via the correlation functions) are
incorporated through the moments µn of µ. For example,

µ0 =
∫ 1

0
dµ(z) = 〈χ〉 = φ, the porosity. Rigorous bounds

on σ∗ can be obtained from (5) (Bergman, 1978; Mil-
ton, 1980; Golden and Papanicolaou, 1983; Golden, 1986).
Comparisons of conductivity data with these bounds will
be presented elsewhere.

Archie’s law (Archie, 1942) is an empirical equation re-
lating the bulk conductivity σ∗ of a porous medium to its
porosity and the conductivity σf of the fluid occupying
the pore space,

σ∗ = aσfφm . (6)

In this relation, φ is the relative volume fraction of the
fluid, or porosity, and a is an empirical scaling parameter
often taken to be 1, which yields the correct limiting be-
havior as φ → 1. In sea ice where we expect somewhat dif-
ferent behavior in different volume fraction regimes, there
is no particular reason for a to be taken to be 1. The ex-
ponent m depends on the geometry of the solid phase of
the porous medium, such as the shapes of the grains in
porous rock or sand.

The conductivity σb of brine depends on its tempera-
ture through equation (1). In studying how the vertical
conductivity σ∗

v depends on brine volume fraction φ, we
note that the brine conductivity σb changes as a func-
tion of temperature, as does brine volume fraction via
equation (2). It is then useful to consider the vertical
formation factor

F =
σ∗

v

σb

, (7)

which removes the dependence of the effective parame-
ter on the changing conductivity of the brine itself, and
depends only on the pore volume fraction and geometry.
This parameter is commonly used in the analysis of other
porous media such as brine-filled rocks and marine sands
(Sahimi, 1995; Sen et al., 1981; Jackson et al., 1978), al-
though the more standard definition is in terms of resis-
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tivity, ρ∗v/ρb. Archie’s law in (6) for the vertical formation
factor is then

F (φ) = aφm . (8)

In (Golden et al., 2010) we used percolation theory to
closely capture vertical conductivity data for Antarctic
sea ice, with a critical threshold of about 5%. From a
rigorous standpoint, the two approaches are inconsistent,
in that Archie’s law can be viewed as describing systems
with connectivity all the way down to φ = 0. It is nev-
ertheless still useful to analyze the conductivity of sea ice
using Archie’s law, particularly to compare our findings
with previous works (Thyssen et al., 1974; Reid et al.,
2006; Ingham et al., 2008), as well as with previous work
on fluid permeability (Golden et al., 2007). Moreover,
Archie’s law provides a formula for the conductivity below
the threshold brine volume fraction, whereas percolation
theory predicts a value of zero in this regime. By combin-
ing critical path analysis, relations between the electrical
conductivity and fluid permeability, and statistical best
fits, in (Golden et al., 2010) we found the following model
for the formation factor, which also closely captures ver-
tical conductivity data,

F (φ) = 8.6φ2.75. (9)

We will use this formula here in our inversion analysis of
the Wenner array data. For comparison, we will also use
F (φ) = φ1.9, where a is forced to be 1, and the exponent
comes from a statistical best fit, although it is close to the
value of 2 arising from theoretical considerations. This
second model underestimates the conductivity above the
threshold more than (9), which provides a better approx-
imation to percolation theory, and is discussed elsewhere.

3. Surface impedance tomography

3.1. Formulation of the method for the Wenner array

In addition to the direct measurements of the vertical
conductivity, Wenner soundings were conducted at 12 of
the ice stations during SIPEX. A Wenner array consists of
4 electrodes spaced evenly apart, which are inserted into
the surface of the sea ice. Current flows between the two
outer electrodes C1 and C2 in Figure 2, and a potential
difference is measured between the two inner electrodes
P1 and P2. Resistance measurements for the Wenner elec-
trode array were taken with a Yokogawa Electric Works
(YEW) Specific Earth Resistance Tester operating at 38
Hz.

From the measured potential difference we can obtain
an estimate for the apparent resistivity ρ∗a via the follow-
ing equation, where a is the seperation distance (Parasnis,
1986),

ρ∗a = 2πa
∆V

I
= 2πaR (10)

The basic features of the Wenner soundings are as fol-
lows: (1) As the separation distance a is increased, the
current penetrates deeper into the ice. (2) The apparent
resistivity ρ∗a changes for each measurment. (3) A curve
of the apparent ice resistivities can be constructed from
the measurements. (4) The sounding curve data can then
be inverted to obtain a layered model of resistivities.

It can be shown (Bhattacharya and Patra, 1968) that
for a given Wenner array spacing a, the apparent resistiv-
ity measured at the surface is:

ρ∗a = ρ∗1 (1 + 4G(a) − 4G(2a)) , (11)

where

G(x) = 1 + 2x

∫

∞

0

K(λ)J0(λx) dλ, (12)

J0 is the Bessel function of order zero and K(λ) is a func-
tion depending on the resistivities and thicknesses of all
the layers. An example of K(λ) comes from a two layered
earth model,

K(λ) =
−k1e

−2λh1

1 + k1e−2λh1

, k1 =
ρ∗1 − ρ∗2
ρ∗
1

+ ρ∗
2

, (13)

where ρ∗
1

and ρ∗
2

are the apparent resistivities of the first
and second layer, respectively, h1 is the depth of the first
layer, and the second layer is a homogeneous half-space.

For our measurements the spacing value a ranged ini-
tially from .05 m to 20 m with the midpoint of the array
at a fixed position. Above a 5 m spacing, however, the
instrument could no longer give a reading. The lack of
a reading at large a is probably because the potential
difference between the receiver electrodes becomes very
small over conductive sea water, and the voltage resolu-
tion limit of the meter has been reached. This behavior
was observed at each ice station. The data from 5 ice
stations are presented in Table 1.

We analyze our Wenner data in two ways. First, we
do preliminary three layer inversions following closely the
method used by Reid et al. (2006). This allows us to get
an idea of the factor of anisotropy. Second, we compare
the Wenner data to the conductivity models discussed
above namely, Archie’s law with a = 1, m = 1.9 and with
a = 8.6, m = 2.75 (which is closer to percolation theory)
by building an n-layer model yielding a theoretical sound-
ing curve. We compare this to the measured curve. This
comparison is useful, because we will see that for different
ranges of φ the differences between percolation theory vs.

Archie’s Law are reflected in the Wenner analysis as well.

3.2. Preliminary three layer inversions

We now present the results of simple three layer in-
versions of the Wenner array data obtained during the
SIPEX 2007 expedition. These 3-layer models will be-
come important in the following sections and shed light
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Figure 1: A Wenner electrode array along the surface of Antarctic sea ice, with the Aurora Australis in the background. A current I is injected
through the outer electrodes C1 and C2. The potential difference ∆V resulting from the current flow is measured at the inner electrodes P1
and P2.

a (m) ρ∗a (ohm m)

Station 5 Station 6 Station 8 Station 13 Station 14

0.05 62.83 7.85 4.62 5.91 5.03
0.08 60.32 9.30 5.83 7.29 6.03
0.125 113.88 11.78 8.01 10.45 6.52
0.2 113.1 15.71 10.3 11.81 8.29
0.32 114.1 20.11 12.87 11.26 10.05
0.5 71 20.42 13.19 8.64 10.68
0.8 25.13 16.08 8.65 4.12 9.7
1.25 5.5 8.64 6.28 1.34 5.97
2.0 0.94 2.58 1.52 0.53 2.34
3.2 0.2 0.8 0.2 0.42 0.92
5.0 0 0 0 0 0

Table 1: Five sets of Wenner array data.
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Figure 2: A Wenner array with four evenly spaced electrodes, probing a sea ice floe of thickness 0.8 m, on top of sea water. The color scale
indicates the value of the vertical conductivity of the sea ice in (Ωm)−1, calculated from a brine volume profile we measured in Antarctica,
using F (φ) = 8.6φ2.75. The horizontal conductivity is assumed to be 1/4 the value in the vertical direction. Comsol 3.5a was used to calculate
the electric current streamlines. The conductivity of the sea water is 4.8 (Ωm)−1.

on the anisotropic nature of sea ice through an estimation
of the factor of anisotropy. These results will allow us to
relate our models for the vertical conductivity to the type
of data obtained through Wenner arrays, where vertical
and horizontal components of the electrical properties are
mixed.

Since sea ice is horizontally isotropic when there is no
preferred long term current direction (Golden and Ack-
ley, 1981), as was the case during SIPEX, and the verti-
cal conductivity is higher than the horizontal component,
it is “transversely isotropic.” In fact, at ice station 5 we
made Wenner array measurements in two orthogonal di-
rections, and found no evidence of anisotropy in the hori-
zontal plane. Maillet (1947) has shown that a transversely
isotropic layer of actual thickness tact with conductivities
σ∗

h and σ∗

v yields an identical DC sounding response to an
isotropic layer of thickness

t =

√

σ∗

h

σ∗

v

tact (14)

and conductivity σ∗

m =
√

σ∗

h σ∗

v , the geometric mean of
σ∗

h and σ∗

v. When we consider these relations, if we have a
direct thickness measurement tact, say from drilling, then
we could use a sounding curve obtained from the Wenner
data and invert for the thickness of the ice. Using the

actual thickness tact and the inverted thickness t we can
calculate the factor of anisotropy f =

√

σ∗

h/σ∗

v for the ice
using

f =
t

tact

. (15)

The model we use to make the above calculation is a
simple 3-layer model consisting of a thin, fairly conductive
top layer, a thicker, less conductive middle layer and a
semi-infinite, very conductive bottom layer representing
the sea water.

Reid et al. (2006) have shown that typically the inver-
sions yield a top layer which is just a few centimeters
thick, which holds up under analysis of equivalent mod-
els. In this way the inverted thickness of the ice can be
taken as the thickness of the second layer. The benefit of
this is that the top layer is often granular and tends to be
more isotropic, as the anisotropy arises from the preferred
vertical orientation of the brine inclusions in columnar
ice, whereas in granular ice any anisotropy is generally
not so pronounced. Thus, from the model thickness of
the second layer and the actual thickness obtained from
drilling the ice, we can find the factor of anisotropy using
f = t/ta. We carried out the inversions using the software
IP2WIN, which is used for 1-D Vertical Electrical Sound-
ing (VES) interpretation and inversion, from the website
http://geophys.geol.msu.ru/ipi2win.htm, V. A. Shevnin
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Figure 3: A typical 3-layer inversion, where the black curve connects the measured data points, the step function represents the 3-layer model,
and the gray curve is the predicted sounding curve from the 3-layer model, which matches the black curve very closely. The vertical axis
represents the apparent mean resistivity ρ∗a =
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ρ∗v ρ∗
h

while the horizontal axis represents the electrode spacing for the black and gray curves
and depth for the step profile. Here the RMS error is 2.94%

and I. N. Modin, Geological Faculty, Department of Geo-
physics, Moscow State University.

A typical 3-layer inversion is illustrated in Figure 3,
while some values for the inverted thickness and factor
of anisotropy are presented in Table 2. We typically find
that the factor of anisotropy f is reasonably close to 0.5,
which can vary with equivalent models used. Table 2
represents some of the extreme values away from f = 0.5.
A result of f = 0.5 agrees with results found by Buckley
et al. (1986) for undeformed first year Antarctic sea ice.

3.3. Comparison of Wenner data to conductivity models

For our analysis, four sets of Wenner array measure-
ments are paired up with brine volume fraction mea-
surements to predict a sounding curve from our models.
Other stations yield good sounding curves, but do not
have corresponding brine volume fraction measurements
with depth. Some stations were left out of the analysis
due to a large shift in the thickness of the ice over the
length of the array, which renders the Wenner technique
inaccurate, as uniform thickness is needed. Our general
approach is outlined here:

• First we plot the measured apparent resistivity ρ∗a vs.

the spacing a.

• We then perform a simple 3-layer inversion to obtain
the factor of anisotropy f and estimate the thickness
and resistivity of the first layer.

• Using the factor of anisotropy we relate our models
for vertical conductivity as a function of brine vol-
ume fraction φ to the mean resistivity of the sea ice

ρ∗m. We also relate the thickness of directly measured
layers to the thicknesses of layers which would yield
an identical sounding curve (t = fta) using the mean
resistivity.

• Using our estimate of the thickness and resistivity
of the first layer from the 3-layer inversion, and the
thicknesses of all subsequent layers calculated from
our models and f , we build an n-layer model of the
resistivity of sea ice with depth (step function).

• We then compare the predicted (gray) sounding
curves from these models to the measured (black)
curves which connect the data points.

Given that our theoretical models reasonably represent
the conductivity of sea ice, if we have measurements of
the brine volume fraction φ and the conductivity of the
brine σb for different depths of the ice, we should be able
to predict an n-layer model which fits a measured Wenner
sounding curve. However, we must take the anisotropy of
the ice into account. Here we present a general method
for making this kind of prediction using our Archie’s law
analysis. Here n is the number of sections of an ice core for
which we have measurements. Most inversion schemes for
Wenner sounding data take resistivity as an input, thus
we can obtain a model using ρ∗v = (σ∗

v)−1 = (aσbφ
m)−1.

Since Wenner arrays do not resolve anisotropy, we must
account for this to predict an accurate sounding curve. As
mentioned before we can relate the horizontal and verti-
cal conductivities to an equivalent isotropic conductivity
through their geometric mean, σ∗

m =
√

σ∗

h σ∗

v and the fac-

tor of anisotropy f =
√

σ∗

h/σ∗

v . Also, as stated before, sea
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Ice Station t (cm) tact (cm) f = t/ta h1 (cm)

5 27.7 69 0.40 2.8
6 25.4 37 0.69 9
13 17.6 41 0.43 5.1
14 48.7 86 0.57 10

Table 2: The inverted thickness (t), actual thickness (tact), factor of anisotropy f , and height of the first layer h1 for the Wenner measurements
at four different ice stations.

ice is usually transversely isotropic. In this case (Maillet,
1947) a transversely isotropic layer with thickness tact and
conductivities σ∗

h and σ∗

v yields an identical DC sounding
response to an isotropic layer of thickness t =

√

σ∗

h/σ∗

v ta
and conductivity σm =

√

σ∗

hσ∗

v . We mention that a much
more detailed analysis of anisotropy and its effect on re-
sistance measurements in sea ice has been done by Jones
et al. (2010).

If values for a and m are determined for the vertical
conductivity in Archie’s law, we can then find the equiva-
lent isotropic resistivity ρ∗m using the factor of anisotropy
since f ρ∗m = f 1

σ∗
m

= 1

σ∗
v

= ρ∗v. Thus,

ρ∗m =
ρ∗v
f

=
1

fσ∗

v

=
1

faσbφm
. (16)

If we have measurements for φ, σb, and f for a given
layer, we can find the mean resistivity that would fit the
Wenner sounding curve, and then we can build an n-layer
model. However, finding a factor of anisotropy for each
measured section is difficult. Instead we find a factor of
anisotropy for the entire sea ice sheet using a simple 3-
layered model inversion and the relation f = tact/t, where
t is the inverted thickness from the model.

From here we can build a profile of the mean resistivities
at different depths given the brine volume fraction using
(16). We can also calculate the apparent thickness of the
layer at that depth using the known measured thickness
of a layer for a given brine volume fraction and the factor
of anisotropy with t = ftact. It is important to note
that the first layer of the inversion comes from granular
ice. We allow the 3-layer inversion to predict its resistivity
and thickness because it should be correct for an isotropic
medium. If one does not do this, the resistivity is typically
overestimated.

An overview of the n-layer inversion scheme is as fol-
lows:

1. Run a 3-layer inversion to find f and estimate the
thickness and resistivity of the first layer.

2. Compute ρ∗m for the subsequent layers using (16).

3. Compute the thickness the Wenner array “sees” for
each layer with t = ftact.

4. Compare the predicted sounding curve with the ob-
served data.

Table 3 shows the results of these calculations for one
of the measured sites, while Figure 4 illustrates the cal-
culated model.

We present three separate soundings, each from dif-
ferent ice stations, as well as predicted sounding curves
from Archie’s law with a = 1 and m = 1.9, and with
a = 8.6 and m = 2.75. In the first case we see a similar
departure from Archie’s law as mentioned in the previ-
ous section. That is, when we have higher brine volume
fractions (φ > 8%), Archie’s law with a = 1 tends to un-
derestimate the conductivity and thus overestimate the
resistivity. For lower brine volume fractions we see the
predicted curve significantly underestimate the measured
sounding curve. When using a = 8.6, however, we see a
predicted curve which tends to be much closer to the ac-
tual sounding curve determined from the measurements
in both cases.

In Figure 4, we show the results from station 13 where
the brine volume fraction ranged from φ = 0.09 to 0.22, all
above the possible percolation threshold. In this case we
would expect that when a = 1 and m = 1.9, we should un-
derestimate the conductivity since we are above the per-
colation threshold, or overestimate the resistivity. This
case is shown on the left where we do in fact see overes-
timation. When we apply Archie’s law with a = 8.6 and
m = 2.75, we do not see the same overestimation and the
overall shape of the predicted curve matches more closely
that of the data, implying that a percolation approach
may better represent the actual vertical conductivity.

In Figure 5, we show the results from station 5 where
the brine volume fraction ranged from φ = 0.04 to 0.07,
all below the possible percolation threshold. In this case,
we should expect that when a = 1 and m = 1.9 we would
see an overestimation of the conductivity and thus an un-
derestimation of the resistivity. In fact, in this case we do
see an underestimation of the resistivity as shown on the
left in Figure 5. When we apply Archie’s law with a = 8.6
and m = 2.75 we see a much better fit.

In Figure 6, we show the results from station 6 where
the brine volume fraction ranged from φ = 0.07 to 0.22.
For this we would expect much the same behavior as for
station 13 with a = 1 and m = 1.9 with overestimation of
the resistivity due to the range of brine volume fractions.
However, we see a large underestimation. This can be
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Core Section (m) φ l (m) f · l (m) ρ∗m (Ωm)

0-0.05 0.14 0.05 * 4.53
0.05-0.1 0.14 0.05 0.0215 13.2
0.1-0.2 0.09 0.1 0.43 49
0.2-0.3 0.11 0.1 0.43 32
0.3-0.41 0.19 0.1 0.47 9.2

Table 3: A six layer model, with the 6th layer being the ocean, where ice resistivity and layer thickness are calculated from brine volume
fraction measurements using the model F (φ) = 8.6φ2.75 to calculate the mean resistivities as discussed in this section with f = 0.43. These
measurements come from station 13 and are shown in the left of Figure 4. * The thickness of the first layer is determined by the preliminary
three layer inversion.
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Figure 4: Ice station 13. Left: predicted curve with a = 1 and m = 1.9 and actual measured curve showing overestimation in the higher brine
volume fraction range. Right: predicted curve with a = 8.6 and m = 2.75 showing close agreement with a slight underestimation.
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Figure 5: Ice station 5. Left: predicted curve with a = 1 and m = 1.9 and actual measured curve showing underestimation in the lower brine
volume fraction range. Right: predicted curve with a = 8.6 and m = 2.75, showing closer agreement with the measured curve.
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Figure 6: Ice station 6. Left: predicted curve with a = 1 and m = 1.9 and actual measured curve showing large underestimation in resistivities
probably due to the microstructure of the ice. Right: predicted curve with a = 8.6 and m = 2.75 showing slightly closer agreement. The
underestimation may be a result of granular ice.

understood since the conductivity values for this station
are some of the highest values of the conductivity for given
brine volume fractions. Thus, the associated resistivities
are the lowest, which would give a large underestimation
of the sounding curve. When a = 8.6 and m = 2.75, we
do obtain sightly higher values which put us closer to the
actual curve. However, we still have an underestimation,
which may be the result of granular ice where anisotropy
is not as pronounced.

This method for predicting a sounding curve works
well provided that the appropriate value of m is used in
Archie’s Law. The best results are obtained when the
value of m used correlates most closely with percolation
theory. The above comparison is useful as it allows us to
compare our models from our direct measurements to a
different data set. The fact that we see the same behavior
as in the previous sections reinforces our conclusions.

In the previous sections we have used various models
derived from direct measurements of vertical conductiv-
ity (Golden et al., 2010) and brine volume fraction to
construct a prediction of what a Wenner sounding curve
should look like at a given site. The close agreement of
the predicted curves with actual soundings suggests that
these theoretical curves could serve as a regularization
model to aid in the construction of an n-layer resistivity
profile of sea ice that represents the actual conditions.

Using the predicted model given by F = 8.56φ2.75 to
regularize the inversion problem, by least squares meth-
ods, we have constructed a 6-layer vertical resistivity pro-
file for Ice Station 13. In the figure the 6th layer is the
ocean which is not depicted. In this particular case we
fix the total thickness of the ice as it is known from a

core sample. In a case where the actual thickness was
not known an estimate can be made using the factor of
anisotropy and the thickness given from the 3-layer inver-
sion as discussed in the previous sections. Upon comple-
tion of the inversion, the vertical resistivity of each layer
can be recovered by multiplying its apparent resistivity ρa

by the factor of anisotropy f . The correct thickness of the
layer can be obtained by dividing the inverted height (h)
by f . Once this is done the actual values can be plotted.

We compare the predicted model with the inverted
model in Figure 7. It is apparent from the figure that
the predicted and inverted profiles have similar structure
suggesting a good estimate by the model. The main differ-
ence between the predicted (dashed) and inverted (solid)
profiles is higher resistivity given by the inversion. This
can be related back to Figure 4, as the model shown on
the left slightly underestimates ρa for Station 13.

The 6-layer inversion in Figure 7 illustrates the sub-
tle changes in resistivity of ice which go unnoticed in
standard 3-layer models. Understanding how the resis-
tivity changes with depth at a higher resolution may lead
to more accurate models in mounted EM sounding tech-
niques such as shipborne or airborne EM devices which
currently model sea ice using only 3-layers.

It should be noted that we had available a detailed brine
volume and temperature profile to use with our model.
However, in principle one could use a temperature profile
to estimate both brine volume fraction and brine conduc-
tivity with depth which can then be used to generate a
regularization model. To illustrate the usefulness of even
a less acurate, but still reasonable, regularization model
in producing a realistic inverted profile, we introduce a
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Figure 7: The the predicted (dashed) and inverted (solid) vertical resistivity profile for a 6-layer inversion of station 13 with depth. The
x-axis is the resistivity while the y-axis is positively directed downward showing depth. The similar structure between the two suggests the
predicted model is a good estimate

10 percent random error into the predicted model and re-
peat our inversion scheme using this less accurate model
for regularization then compare this to the inversion re-
sult from the orignal predicted model in Figure 8. It can
be seen from Figure 8 that the result, while not exactly
the same, is not very different from that using a more ac-
curate regularization model and shares the same overall
distribution of resistivities. This is in contrast to the re-
sult obtained when not using a reasonable regularization
model, i.e., a model not based on the actual properties
of the ice, which we illustrate in Figure 9. The result in
Figure 9 was obtained by dividing the middle layer from a
simple 3-layer inversion into 4 equal pieces in both depth
and resistivity while leaving the top layer and bottom
layer alone, creating a hap-hazard 6-layer model to be
used for regularization. We then invert using this model
and compare the result to that when using the best pre-
dicted model. As can be seen in Figure 9 the results of
the two inversions are completely different, yet both will
produce a forward model which fits the Wenner sounding
curve well. In this way it can be seen how important it is
to have a reasonable regularization model to prevent ex-
traneous solutions which do not accurately represent the
sea ice.

4. Conclusions

We have made indirect measurements of the electrical
conductivity of Antarctic sea ice. We used Wenner ar-
ray soundings to measure the apparent conductivity as

a function of separation, yielding information about the
conductivity profile with depth. We developed an n-layer
inversion scheme to reconstruct the profiles from the Wen-
ner array data, which relies on a regularization technique
based on conductivity models for sea ice. Our work helps
to provide a rigorous basis for the interpretation of thick-
ness soundings, but also yields information about the con-
ductivity of sea ice with depth. Such information, when
combined with other work relating fluid and electrical
transport properties, helps lay the groundwork for mon-
itoring fluid processes in sea ice which are important in
climate studies.
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Figure 8: Inverted vertical resistivity profiles from the predicted model with (dashed) and without (solid) an introduced 10 percent random
error in the regularization model. From this figure the use of a regularization model in preserving the shape of a profile is illustated.
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Figure 9: Inverted vertical resistivity profiles with regularization (solid) and without (dashed). It can be seen that while both profiles produce
sounding curves which match the sounding data their overall structure is quite different.
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