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Surface Plasmon Resonances
collective oscillations of electrons on metal / dielectric interface 

Michael Faraday’s gold colloids - origins of nanoscience 1850s

suspension of
gold nanoparticles
absorbs green 
and blue light:

       WE SEE RED



thin silver �lm Arctic melt ponds

optical properties

(Davis, McKenzie, McPhedran, 1991)

nanometers kilometers

composite geometry -- area fraction of phases, connectedness, necks

(Perovich, 2005)

0.4 microns



sea ice is a multiscale composite
Polycrystals

Brine Inclusions 

Arctic Melt Ponds Pack Ice

Gully et al. Proc. R. Soc. A 2015

Golden et al GRL 2007

K. Frey J. Weller
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Addressing the problem of linking scales in Earth’s sea ice system  
                     MULTISCALE HOMOGENIZATION for SEA ICE
   drives advances in theory of Herglotz functions for composites.

A tour of Herglotz functions and how they arise in 
 the study of composites, and sea ice in particular.

Find unexpected Anderson transition in composites along the way!

What is this talk about?

1. Fluid �ow through sea ice, percolation
     
2. Analytic continuation for two phase composites
     remote sensing, inversion, spectral measures

3. Stieltjes representations for advection di�usion, 
     polycrystals, ocean waves in the sea ice pack    

random matrix theory and Anderson transitions



- ocean-ice-air exchanges of heat, CO

evolution of Arctic melt ponds and sea ice albedo

C. Haas

C. KrembsACE CRCK. Golden
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Antarctic surface �ooding 
and snow-ice formation 

nutrient �ux for algal communities

- evolution of salinity pro�les 

�uid �ow through the porous microstructure of sea ice
governs key processes in polar climate and ecosystems 

22%

September
snow-ice
estimates

26%28%

27%

T. Maksym and T. Markus, 2008



�uid permeability of a porous medium

how much water gets 
through the sample 
per unit time?

porous
concrete

mathematics for analyzing e�ective behavior of heterogeneous systems

HOMOGENIZATION

Darcy’s Law

pressure 
gradient

v = k p

for slow viscous flow in a porous medium

averaged 
fluid velocity

k = fluid permeability tensor

viscosity



critical brine volume fraction φc ~~ 5%

Critical behavior of �uid transport in sea ice

c ~~ -5  C, S ~~ 5 ppt
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Golden, Eicken, Heaton, Miner, Pringle, Zhu,   Geophys. Res. Lett.   2007
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p = 1/3 p = 2/3

impermeable permeable

percolation theory
probabilistic theory of connectedness

percolation threshold
  pc = 1/2   for  d = 2 

open    with probability  p
closed  with probability 1-p

smallest p for which there is an infinite open cluster

bond

  open
cluster



10 pp

1

infinite cluster densitycorrelation length

8P (p)(p) ~ ~ξ |          | p − pc
− ν β

characteristic scale 
 of connectedness

p − pc

   probability the origin
belongs to in�nte cluster

(          )
c

8P

order parameters in percolation theory

10 ppc

ξ

10 ppc

effective conductivity
 or fluid permeability

UNIVERSAL critical exponents for lattices -- depend only on dimension

non-universal behavior in continuum

1 < t < 2  (for idealized model), Golden, Phys. Rev. Lett. 1990 ; Comm. Math. Phys. 1992

geometry transport



X-ray tomography for
brine inclusions

micro-scale

controls

macro-scale

processes

Thermal evolution of permeability and microstructure in sea ice
Golden, Eicken, Heaton, Miner, Pringle, Zhu,    Geophysical Research Letters    2007 

percolation theory

hierarchical model
network model

unprecedented look 
at thermal evolution
of brine phase and
its connectivity

con�rms rule of �ves

agree closely
with �eld data

k ( ) = k 2
0

 k   = 3 x 100
-8

m2

 critical
exponent

t
φ φ − 0.05(               )

Pringle, Miner, Eicken, Golden
J. Geophys. Res. 2009

rigorous bounds



Remote sensing of sea ice
Recover sea ice
properties from
electromagnetic
       (EM) data 

 INVERSE PROBLEM

sea ice thickness
ice concentration

brine volume fraction
brine inclusion connectivity

ε*
   e�ective complex permittivity  
(dielectric constant, conductivity)



}
Effective complex permittivity of a two phase composite
           in the quasistatic (long wavelength) limit

, = volume fractions of
    the components

= (    , composite geometry )
Herglotz function



Analytic continuation method for bounding complex 
Bergman (1978), Milton (1979), Golden and Papanicolaou (1983)

Exploit analytic properties of 

complex h-plane
analytic off negative
         real axis

: UHP UHP



Theory of E�ective Electromagnetic Behavior of Composites

Forward Homogenization  Bergman (1978), Milton (1979), Golden and Papanicolaou (1983)
                                                                                                           Theory of Composites, Milton (2002)

Inverse Homogenization  Cherkaev and Golden (1998), Day and Thorpe (1999), Cherkaev (2001)
                                                                       McPhedran, McKenzie, Milton (1982), Theory of Composites, Milton (2002)

recover brine volume fraction, connectivity, etc.  

∗εcomposite geometry
(spectral measure µ)

analytic continuation method

integral representations, rigorous bounds, approximations, etc.

∗ε
composite geometry
(spectral measure µ)

/

complex s-plane

0 1



Stieltjes integral representation

spectral measure of
self adjoint operator
mass = 

higher moments depend 
on n-point correlations

separates geometry from parameters 

Golden and Papanicolaou, Comm. Math. Phys. 1983

characteristic function
of the brine phase

geometry

material parameters

:  microscale         macroscale 

links scales



inverse bounds and 
recovery of brine porosity

forward and inverse bounds on the complex permittivity of sea ice

forward bounds

Gully, Backstrom, Eicken, Golden  
Physica B, 2007

4.75 GHz data
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inverse bounds 

inversion for brine inclusion
separations in sea ice from 
measurements of e�ective
complex permittivity  ε

matrix particle

Orum, Cherkaev, Golden 
Proc. Roy. Soc. A, 2012

*
rigorous inverse bound
         on spectral gap

construct algebraic curves which bound 
        admissible region in (p,q)-space

qmin

Bruno 1991



direct calculation of spectral measure

1. Discretization of composite microstructure gives 
     lattice of 1’s and 0’s (random resistor network).

2. The fundamental operator  χΓχ    becomes a random
     matrix depending only on the composite geometry.

3. Compute the eigenvalues λ  and eigenvectors of χΓχ
     with inner product weights     α

i

µ(λ)  =  Σ α  δ(λ − λ )  

i

i i
i

Dirac point measure (Dirac delta)

Day and Thorpe 1996
Helsing, McPhedran, Milton 2011    earlier studies of spectral measures
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Wigner (1951) and Dyson (1953) �rst used random matrix theory (RMT) 
to describe quantized energy levels of heavy atomic nuclei.

Eigenvalue Statistics of Random Matrix Theory 

[N] ij ~ N(0,1),                   A= (N+N  )/2T Gaussian orthogonal ensemble (GOE)

[N] ij ~ N(0,1)+iN(0,1),    A= (N+ N  )/2† Gaussian unitary ensemble (GUE)

Short range and long range correlations of eigenvalues are measured by various eigenvalue statistics

               RMT used to characterize disorder-driven transitions in 
mesoscopic conductors, neural networks, random graph theory, etc.

Phase transitions  ~ transitions in universal eigenvalue statistics.

Spacing distributions of energy levels for heavy atomic nuclei

Spacing distributions of the �rst billion zeros of 
the Riemann zeta function

GUE
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TRANSITION

Spectral computations for Arctic melt ponds

uncorrelated level repulsion

Ben Murphy
Elena Cherkaev 
Ken Golden
2017

eigenvalue statistics 
for transport tend 
toward the 
UNIVERSAL 
Wigner-Dyson 
distribution 
as the “conducting” 
phase percolates
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Spectral computations for Arctic sea ice pack
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Anderson transition in wave physics: 
quantum, optics, acoustics, water waves, ...

metal / insulator transition

Anderson transition for classical transport in composites
Murphy, Cherkaev, Golden     Phys.  Rev.  Lett.    2017

Anderson  1958
Mott 1949
Shklovshii et al  1993
Evangelou  1992

transition to universal 
eigenvalue statistics (GOE)
extended states, mobility edges

-- but without wave interference or scattering e�ects ! --

we �nd a surprising analog

PERCOLATION
  TRANSITION

localizationhigh
disorder

low
disorder

SPR



Inverse Participation Ratio:

Anderson Model

Completely Localized:

Completely Extended:

Mobility
Edge

“Eigenvalues”

PHYSICAL REVIEW B 90, 060205(R) (2014)

eigenvector localization and mobility edges



Localization properties of eigenvectors
in random resistor networks
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Bounds on the complex permittivity
           of polycrystalline materials 
              by analytic continuation

      Adam Gully, Joyce Lin, 
Elena Cherkaev, Ken Golden

Stieltjes integral representation for
e�ective complex permittivity 

Forward and inverse bounds 

Proc. Roy. Soc. A       8 Feb 2015

Applied to sea ice using 
two-scale homogenization

Inverse bounds give method for 
distinguishing ice types using 
remote sensing techniques

Milton (1981, 2002), Barabash and Stroud (1999), ...

orientation statistics



*
2ε

*
1ε

*
2ε

two scale homogenization for polycrystalline sea ice

numerical homogenization
            for single crystal

analytic continuation
       for polycrystals

bounds

Gully, Lin, Cherkaev, Golden, Proc. Roy. Soc. A (and cover) 2015



Masters, 1989

advection enhanced di�usion

effective diffusivity
sea ice floes diffusing in ocean currents 
diffusion of pollutants in atmosphere  
salt and heat transport in ocean
heat transport in sea ice with convection

homogenize

Drake
Passage

sea ice vortices

Gulf Stream Aghulas Current

           effective diffusivity
Stieltjes integral for         with spectral measure

Avellaneda and Majda, PRL 89, CMP 91

Murphy, Cherkaev, Xin, Zhu, Golden, Ann. Math. Sci. Appl. 2017 
Murphy, Cherkaev, Zhu, Xin, Golden, 2018



[Murphy, Cherkaev, Zhu, Xin & Golden 2018]

[Murphy, Cherkaev, Xin, Zhu & Golden 2017]

κ∗ = κ

(
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dµ(τ)

κ2 + τ2

)
, F (κ

∫ ∞

−∞

dµ(τ)

κ2 + τ2

µ is a positive definite measure corresponding to the
spectral resolution of the self-adjoint operator iΓHΓ

Γ := −∇(−∆)−1∇· , ∆ is the Laplace operator

iΓHΓ is bounded for time independent flows

F (κ) is analytic κ-plane

Stieltjes Integral Representation for Advection Diffusion

H

=)

= stream matrix

off the spectral interval in the

κ = local diffusivity,

separation of material properties and �ow �eld
spectral measure calculations 
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RIGOROUS BOUNDS on convection - enhanced 
thermal conductivity of sea ice 

BC - �ow streamlines

H = B sinx - C siny     B = C

spectral masses

Kraitzman, Hardenbrook, Murphy, Zhu, Cherkaev, Golden  2018

rigorous Pade bounds
from Stieltjes integral
+ analytical calculations
of moments of measure
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Spectral measures and eigenvalue spacings for cat’s eye �ow
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Storm-induced sea-ice breakup and the implications for ice extent
Kohout et al., Nature 2014

ice extent compared with signi�cant wave height

large waves break sea ice much farther from the ice edge than would be 
predicted by the commonly assumed exponential decay

during three large-wave events, signi�cant wave heights did not decay 
exponentially, enabling large waves to persist deep into the pack ice.

Waves have strong in�uence on both the �oe size distribution and ice extent.

growth season

melt season



Bottom

Ice

Ocean

Viscous �uid layer (Keller 1998)
E�ective Viscosity 

Two Layer Models and E�ective Parameters 

Viscoelastic �uid layer (Wang-Shen 2010)
E�ective Complex Viscosity

Viscoelastic thin beam (Mosig et al. 2015)
E�ective Complex Shear Modulus 

z=0

z=-H

z=h

Equations of 
motion:

Equations of 
motion

shear modulus pressure angular frequency velocity �eld

viscosity Poission ratio density gravity

Stieltjes integral representation 
for effective complex viscoelastic 
parameter; bounds

Sampson, Murphy, Cherkaev, Golden 2018 



wave propagation in the marginal ice zone 

             Stieltjes integral representations 
bounds on e�ective viscoelastic parameters

Sampson, Murphy, Cherkaev, Golden 2018

           quasistatic assumption
low frequency, long wavelength
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bounds on the e�ective complex viscoelasticity

Sampson, Murphy, Cherkaev, Golden 2018

complex elementary bounds
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Conclusions

1. Summer Arctic sea ice is melting rapidly, and melt ponds and other
     processes must be accounted for in order to predict melting rates. 

2. Fluid �ow through sea ice mediates melt pond evolution and many 
     processes important to climate change and polar ecosystems.

3. Statistical physics and homogenization help link scales, provide 
     rigorous methods for �nding e�ective behavior, and advance how 
     sea ice is represented in climate models.

4. Random matrix theory and an unexpected Anderson transition arises
     in our studies of percolation in sea ice structures.  

5. Our research will help to improve projections of climate change 
     and the fate of the Earth sea ice packs. 
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