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The use of optical interference to enhance device perfor-
mance is one of the most important tools in modern optics1. 
Important examples include photonic crystals2–4, laser 

action in distributed feedback resonators5,6, anomalous transmis-
sion through perforated metal films with subwavelength aperture 
arrays7, coherent backscattering enhancement8–10, image recon-
struction11 and Anderson localization of light12,13. Overwhelmingly, 
periodic structures are used for applications based on optical 
interference, largely because it has not been widely recognized 
that aperiodic structures, such as quasicrystals, can also provide 
similar functionalities. This is particularly relevant because the 
large variety of aperiodic structures, when compared with their 
periodic counterparts, can add significant flexibility and richness 
when engineering the optical response of devices in ways that have 
yet to be realized. In this Review, we describe the optical interfer-
ence phenomena that occur in quasicrystalline structures.

It has now been shown that in addition to crystalline and amor-
phous materials, there exists a third intermediate class known as 
‘deterministic aperiodic’ structures, which can be generated by a 
substitution rule based on two building blocks that exhibit long-
range order but lack translational symmetry. All these structures 
exhibit properties of self-similarity. This class of structures can be 
further divided into two groups: quasicrystals (group 1) and all 
other deterministic aperiodic structures (group 2); quasicrystals 
therefore represent a special class of deterministic aperiodic struc-
tures. A more precise definition of quasicrystals in group 1 with 
dimensionality nD (n = 1, 2 or 3) is that in addition to their pos-
sible generation by a substitution process, they can also be formed 
from a partial projection of an appropriate periodic structure in a 
higher dimensional space mD, where m > n. In contrast, structures 
that are part of group 2 cannot be constructed in such a manner. In 
one dimension (1D), quasicrystal structures include the Fibonacci 
sequence BABBA… and the generalized Fibonacci sequence, for 
example. Aperiodic structures that differ from quasicrystals and 
belong to group 2 include Thue–Morse14,15, Rudin–Shapiro16 and 
period-doubling sequences17. All structures belonging to groups 1 
and 2 show discrete Fourier components, although structures in 
group 2 exhibit much more complex Fourier properties than those 
in group 118.

The surprising discovery of quasicrystals by Shechtman et al.19 
in 1984, whereby a grown solid showed a sharp X-ray diffraction 
pattern of ten-fold rotational symmetry, took crystallographers 
and theoreticians in symmetry completely by surprise. A brilliant 
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The physics of periodic systems are of fundamental importance and result in various phenomena that govern wave transport 
and interference. However, deviations from periodicity may result in higher complexity and give rise to a number of surprising 
effects. One such deviation can be found in the field of optics in the realization of photonic quasicrystals, a class of structures 
made from building blocks that are arranged using well-designed patterns but lack translational symmetry. Nevertheless, these 
structures, which lie between periodic and disordered structures, still show sharp diffraction patterns that confirm the exist-
ence of wave interference resulting from their long-range order. In this Review, we discuss the beautiful physics unravelled in 
photonic quasicrystals of one, two and three dimensions, and describe how they can influence optical transmission and reflec-
tivity, photoluminescence, light transport, plasmonics and laser action.

theoretical analysis by Levine and Steinhardt20 elevated the scien-
tific discussion of the finding and established the foundation of 
the new field of ‘quasicrystals’, which has revolutionized solid-state 
physics. Consequently, the 2011 Nobel Prize in Chemistry was 
awarded to Shechtman for the discovery of quasicrystals, and the 
2011 Buckley Prize for Physics was given to Levine and Steinhardt 
for their theoretical analysis. The discovery of quasicrystals in con-
densed matter has also initiated a new field of research in photonics. 
The first example of an aperiodic system that possesses long-range 
order in the field of optics was described by Kohmoto et al.21, who 
proposed a 1D quasicrystal structure (or photonic quasicrystal) 
that used dielectric multilayers to form the Fibonacci sequence 
(Fig.  1a). Subsequently, a broad range of photonic quasicrystals 
(group 1) and other deterministic aperiodic structures with long-
range order (group 2) have been engineered and studied by optical 
means17,22. In all of these studies, interference has played a crucial 
role in the optical properties of each structure.

Although aperiodic structures in general lack translational 
symmetry23, X-ray diffraction patterns of quasicrystals can be 
as sharp as those from regular periodic lattices19. The reason for 
this ‘surprising’ diffraction capability is that quasicrystals possess 
long-range order. Because the structure factor F(k) of an object is 
the Fourier transform of its geometrical structure in real space, 
F(k) contains a summation over ‘atomic’ positions Rn, such that:

 
F(k) = lim N −1

N→∞ ∑Rn
exp(ik ⋅ Rn)

 
It thus follows that saying a structure possesses long-range order 

is equivalent to saying that its F(k) contains discrete Fourier com-
ponents F(i), referred to as reciprocal vectors (RVs) in this Review, 
which can be used to describe the optical interference properties 
of the structure. Moreover, periodic and aperiodic structures have 
very different RVs in reciprocal space, which may be controlled by 
modifying the geometrical structure in real space24.

In the following four sections, we restrict the discussion to ape-
riodic deterministic structures that are part of group 1 (that is, 
photonic quasicrystals). We summarize recent advances in demon-
strating and utilizing the optical interference properties of a num-
ber of different photonic quasicrystals in various areas of optics. 
Examples include photoluminescence emission and super-radi-
ance, anomalous transmission through plasmonic structures, wave 
propagation in waveguides and photonic crystals, and laser action. 
The photonic quasicrystals we discuss include 1D quasicrystalline 
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structures such as dielectric multilayers and quantum-well (QW) 
multilayers (having mainly Fibonacci sequence), two-dimensional 
(2D) quasicrystalline structures (Penrose tiles, dodecagonal qua-
sicrystals, quasicrystal approximates and 2D Fibonacci structures) 
and three-dimensional (3D) photonic quasicrystals (Penrose with 
induced deterministic disorder and icosahedral structures)

Optical studies of 1D photonic quasicrystals
To illustrate the importance of the discrete Fourier components, 
or, equivalently the various RVs of the structure factor in k space, 

we analyse the 1D Fibonacci sequence in some detail, and sum-
marize the basic optical properties of 1D quasicrystals that are 
based on it, using two important examples. First, the transmission 
spectra from dielectric multilayer stacks composed of two trans-
parent dielectrics of permittivity εA and εB arranged in a Fibonacci 
sequence. This is commonly referred to as the ‘non-resonant’ 
case21,25,26 (Fig. 1). Second, the reflectivity and photoluminescence 
spectra of semiconductor multilayers composed of GaAs QWs 
embedded between AlGaAs layers of two distinct thicknesses — 
long and short — where the incident optical frequency is in res-
onance with both the 2D exciton frequency and the quasicrystal 
pseudogap27,28. This structure is commonly referred to as the ‘reso-
nant’ case (Fig. 2). 

The two approaches to constructing a Fibonacci series involve 
either substitution23 or a partial projection from a 2D square lattice29,30. 
In fact, many infinite chains obtained by a substitution rule can be 
constructed using the projection method31; hence the Fibonacci 
sequence is just one example of many 1D quasicrystals (group 1). 
The substitution approach to the Fibonacci series starts with a finite 
sequence of two segments, one long (A, with length LA) and the other 
short (B, with length LB), and operates with the iterative rules A → B 
and B → BA for building successive strings of increasing length. If the 
starting two elements in the sequence are B and A, then the infinite 
repetition of the operation gives an infinite sequence of A and B that 
is ordered at long distances. Thus, the structure factor of this series 
exhibits discrete, sharply defined Fourier components (or RVs). For 
example, using the iterative rule described above, the sixth member of 
the Fibonacci series, S6, results in the sequence BABBABABBABBA. If 
the segment length ratio LA/LB = τ is an irrational number, then the 
sequence will have no repetitive distance. Interestingly, the ratio of 
occurrences of A and B in an infinite canonical Fibonacci sequence 
corresponds to τ = 2cos(36°) = (1 + √5)/2 ≈ 1.618034, the so-called 
‘golden ratio’32,33.

The complete approach to the Fourier transform analysis of a 
Fibonacci chain was first presented by Levine and Steinhardt20, and 
later expanded by several other researchers34,35. The Fibonacci struc-
ture factor consists of a set of discrete Fourier components (which 
may produce sharp diffraction Bragg peaks) that densely fill the k 
space. For an infinite Fibonacci set, the discrete Fourier components 
occur at Qhh′, which can be calculated from two independent integers, 
h and h′:

Qhhʹ 
=  h +  ,LB

2π hʹτ2

τ2 + 1 τ
 

   
where LB  (τ2  +  1)/τ2  =  LB  (3  −  τ)  =  d, the ‘mean period’. Here, 
d = (NALA + NBLB)/(NA + NB), where NA and NB are the number of 
segments of A and B, respectively. The Fourier components fhh′ asso-
ciated with Qhh′ can be rigorously calculated23. The largest |fhh′| values 
correspond to the integers h and h′ that are successive Fibonacci 
numbers: that is, (h, h′)  =  (Fj, Fj–1). The Fibonacci numbers Fj are 
given by the recursion rule Fj = Fj–1 + Fj–2, starting with F1 = F2 = 1. 
The largest initial fhh′ are therefore f11 and f21, where both f values are 
~1; f10 and f01 are much smaller (~0.1), and other fhh′ are even smaller 
(~0.01) (Fig. 1c).

Non-resonant Fibonacci quasicrystals. We begin by considering 
the pioneering non-resonant Fibonacci quasicrystals that initiated 
the study of quasicrystalline order in optics. Such structures are con-
structed from two dielectric slabs (or layers) of permittivity εA and εB 
(εA ≠ εB) with thicknesses of LA and LB, respectively (Fig. 1a)25,26,36–38. 
The role of the structure factor in this case is played by the Fourier 
components εG of the dielectric constant ε(z), such that ε(z) = ∑G εG 
exp(iG . z), where G = ±Qhh′. The components εG have been calcu-
lated rigorously and shown to scale with fhh′ (ref. 39). It was shown 

Glass 

SiO2  (nA= 1.45) 

TiO2  (nB= 2.30) 

LBLB LALA

nALA = nBLB =   0/2λ LA =    0/4nSiO2  and LB =   0/4nTiO2λ  λ

25 20 15 10 5 25 20 15 10 5 25 20 15 10 5
Wavenumber (103 cm–1) Wavenumber (103 cm–1) Wavenumber (103 cm–1)

a

b

c

 In
te

ns
ity

 (a
.u

.)

Qhh’ (a.u.)0
0

Periodic
(BABABABA…)

Fibonacci
(BABBABABBA…)

Tr
an

sm
is

si
on

 (%
)

0

50

100
0

50

100

Figure 1 | Non-resonant 1D Fibonacci quasicrystalline structure. a, 
Schematic of a non-resonant multilayer Fibonacci structure composed of 
two dielectric layers (SiO2 and TiO2) of thicknesses LA and LB deposited 
using electron-beam evaporation on a glass substrate. The dielectric stacks 
are sandwiched between 6.5-mm-thick fused silica substrates. b, Optical 
transmission spectra (transmission versus wavenumber) for Fibonacci 
dielectric coating stacks S6 to S8, (where Sn is the nth Fibonacci sequence) 
that show the evolution of the transmission spectrum with the number 
of layers as Sn increases. The top (bottom) spectra show experimental 
(calculated) results. c, Fourier spectrum of a Fibonacci chain calculated 
with 987 inflation steps. Figure reproduced with permission from: b, ref. 25, 
© 1994 APL; c, ref. 23, © 1994 OUP. 
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that the electric field E(z) of light propagating in the multilayered 
structure satisfies the 1D wave equation40

q2 E(z) = 2q exp(iG ⋅ z)PGE(z) , (1)d2

dz2– –
G∑

where q = ωc/√ε, PG = qεG/2ε and ε is the average dielectric con-
stant given by the relation ε =  (εANALA + εBNBLB)/(NALA + NBLB), 
which is equivalent to ε = (εA(τ + 1) + εB)/(τ + 2). Using equation 
(1), it is possible to write the electromagnetic field E(z) in the ape-
riodic structure as a superposition of ‘Bloch-like’ waves, EK(z) = 
∑G exp(i(K–G). z) EK–G, which can be calculated numerically using 
the coefficients εG of the Fibonacci sequence28. Using this method, 
the reflectivity and transmission spectra can be readily calculated 
(Fig. 1b); this was the first optical demonstration of the behaviour 
of quasicrystalline order25. It is apparent that the spectra contain 
many forbidden gaps at photon energies ωhh′ = (c/√ε)G/2; that is, 
at the edges of the ‘quasi-Brillouin zone’ that corresponds to the 
reciprocal vectors k = G/2 (and G = Qhh′), having widths that are 
proportional to PG (which in turn is proportional to the Fourier 
components fhh′).

Another approach for calculating the transmission spectrum 
of a Fibonacci quasicrystal is the beautiful ‘trace map’ method 
introduced by Kohmoto et al. in 198721 and further developed by 
Wang et al. in 200041. These researchers calculated the optical trans-
mission through Fibonacci multilayers using the transfer matrix M, 
based on light propagation through layers A (matrix TA), B (matrix 
TB), and across the interfaces A → B and B → A (matrices TAB and 
TBA, respectively). The transfer matrix of multilayers based on the 
first two Fibonacci elements are M1 = TA and M2 = TABTBTBATA. Mj 
for higher Fibonacci numbers are calculated using the recursion 
relation Mj  =  Mj−2Mj−1. This is the same as the renormalization-
group equation for a quasiperiodic Schrödinger equation and has 
been studied extensively. It can be considered as a dynamical map of 
Mj trace, Xj (hence its name), and was shown to possess a constant 
of motion for Xj. In this approach, the transmission spectrum T is 
calculated using the relation T = 4/(Mj

2 + 2), where Mj
2 is the sum 

of the squares of the four elements of Mj. The transmission spec-
tra based on this approach were shown to fit experimental results 
accurately25. The beauty of this approach is that it establishes a far-
reaching correspondence between 1D optics in quasicrystals and 
dynamical systems theory.

To demonstrate the optical transmission properties of a 1D 
Fibonacci structure, Fig. 1b shows the optical transmission spectra 
of Sn structures that contain finite numbers, F6, F7 and F8 (having 13, 
21 and 34 layers, respectively) stacked films of SiO2 (A; nA = 1.45) 
and TiO2 (B; nB = 2.30), where n is the refractive index, arranged in 
the Fibonacci sequence25. The structures were designed such that 
nALA = nBLB. It is clear that the positions of minima in the trans-
mission spectrum (Fig. 1b, top panels) are well-correlated with the 
optical gaps (or ‘pseudo gaps’) obtained in the nine-wave calcula-
tion (Fig. 1c, bottom panels) using the Bloch-like Fourier compo-
nent method, which opens at k = G/2 and G = Qhh′. In addition, 
the largest pseudo-gaps correspond to the largest fhh′ for hh′ = 1, 1 
(for Fibonacci numbers F0, F1) and 1, 2 (F1, F2), respectively. Note 
also the self-similarity of the transmission spectrum, which is one 
of the most important characteristics of optical spectra based on 
quasicrystals21. In fact, Gellerman et al.25 explicitly showed that the 
four multilayers having the Fibonacci sequences S5 and S6, and S8 
and S9 have similar transmission spectra when the frequency axis 
is multiplied by an appropriate scaling factor. Measurements of the 
phase change of light incident on a Fibonacci structure26 revealed 
that the self-similarity of the Fibonacci optical spectrum domi-
nates the phase change and transmission spectra.

The self-similarity property of quasicrystal transmission 
spectra raises the question of whether the photon wavefunction 
at frequencies inside the pseudo-gaps is localized or extended. 
It turns out that it is neither. In fact, the photon wavefunction 
decays exponentially outside the pseudo-gaps, but shows critical 
behaviour (or critical states) of a multifractal nature inside the 
pseudo-gaps, which does not decay completely even at long dis-
tances42–45. The fascinating properties of the critical states in qua-
sicrystals and their role in transport44–46 are the subject of a myriad 
of research papers (an excellent review can be found in ref. 18). 
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Figure 2 | Resonant 1D Fibonacci quasicrystalline structure. a, Schematic 
of a Fibonacci structure containing GaAs QWs sandwiched between 
the short (A) and long (B) AlGaAs barrier layers. b, Comparison of the 
thickness dependence of the reflectivity of both Fibonacci (i) and periodic 
(ii) multilayers. The spacing of the 21 QWs is a Fibonacci sequence with 
optical thicknesses (at the Bragg condition) of A = 0.36λ0 and B = 0.59λ0 (ii) 
or equidistant at λ0/2 (i). A reflectivity dip is present at the Bragg resonance 
only in (ii), which indicates larger absorption inside the stop band. Each curve 
of larger d/dBragg is shifted up by one unit of reflectivity from the preceding 
one. c, Comparison of photoluminescence intensities from Fibonacci (i) 
and periodic (ii) multilayers. Conditions are the same as in b, with weak 
excitation at 1.59 eV. The photoluminescence from light-hole excitons is weak 
because of their rapid relaxation. The photoluminescence is strong at the 
Bragg condition only in the Fibonacci case (i). Equal vertical shifts separate 
the spectra of different d/dBragg. d, Photoluminescence and reflectivity of QW 
Fibonacci chain. The optical thicknesses (at Bragg condition) are A = 0.36λ0 
and B = 0.59λ0; N = 54. The photoluminescence, heavy-hole (HH) and light-
hole (LH) peaks coincide with the dips in reflectivity. Figure b–d reproduced 
with permission from ref. 27, © 2008 OSA.
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Resonant Fibonacci quasicrystals
To describe resonant quasicrystal optics, we start with regu-
lar photonic crystals. Periodic structures in which the dielectric 
response contains an excitonic resonance at frequency ω0 are 
known as resonant photonic crystals47. Electromagnetic waves at 
frequencies close to the resonance form exciton–polaritons, which 
are hybrid quasi-excitations of photons and excitons48,49. Similarly, 
it is possible to define resonant photonic quasicrystals and other 
aperiodic deterministic sequences. Sivachenko  et  al.49 (theory) 
and Eradat  et  al.50 (experiment) were the first to study exciton–
polaritons in resonance with the stop-band in opal photonic crys-
tals (periodic structures) infiltrated with cyanine dye aggregates, 
which are highly polarizable media with very large Rabi frequen-
cies. They used the angle-dependent tunability of the stop-band 
in opal photonic crystals along the [111] direction to investigate 
the reflectivity at resonance with the dye exciton polaritons50. At 
the resonance condition, they showed that the Bragg stop-band 
decomposes into two reflectivity bands with a semitransparent 
spectral range in between, due to the propagation of ‘Braggoriton’ 
excitations — hybrid quasiparticles of photons and excitons sub-
jected to the Bragg diffraction condition — inside the gap49,50. 

Poddubny et al.32 were the first to advance the idea of resonant 
photonic quasicrystals. They proposed a multi-QW structure, in 
which the exciton frequency ω0 was tuned to the 1D photonic band-
gap of the stack. As noted above, the largest values of the Fourier 
components fhh′ for photonic quasicrystals based on the Fibonacci 

sequence are reached for integer hh′ pairs that are two successive 
Fibonacci numbers, FmFm−1. Under these conditions, the Fibonacci 
structures are resonant and strongly coupled when the exciton at 
frequency ω0 coincides with an energy pseudo-gap at Qhh′, formed 
from hh′ pairs (for example, Q11). In such cases, the photolumi-
nescence of the stack may exhibit ‘super-radiance’ behaviour, 
whereby the emission lifetime is shorter and the emission intensity 
is stronger than that in non-resonant conditions. In addition, the 
wave equation (equation (1)) in such structures contains a resonant 
polarization term due to the exciton–polariton: namely PG = μf*hh′ 
and P−G = μfhh′, where μ = (LB)–1(1/τ2 + 1)F(ω − ω0) and F(ω − ω0) 
is the resonant term28. This leads to the appearance of an allowed 
mini-band inside the forbidden 1D pseudo-gap. Therefore, resonant 
Fibonacci multi-QW stacks show both high photoluminescence 
emission intensity51 and optical modulation features in their reflec-
tivity spectrum, which do not exist in multi-QW stacks based on 
periodic structures (Fig. 2b,c)27.

Experimental verification of this model was performed by 
Hendrickson et al.27 and Werchner et al.28 using canonical (where 
LB/LA = τ, the golden ratio) and non-canonical (LB/LA ≠ τ) Fibonacci 
sequences, respectively. The multi-QW stacks were made of GaAs 
QWs sandwiched between long and short AlGaAs barrier layers, 
arranged in a Fibonacci sequence. The Bragg condition for the 
canonical Fibonacci structure can be presented in the same form 
as for the periodic structure, namely d = dBragg, where d is the ‘mean 
period’ of the structure (d = (3 − τ)LB), dBragg = λ0/2neff for the exci-
ton, and neff is the effective refractive index of the QW. Figure 2b,c 
compares the reflectivity and photoluminescence emission spec-
tra of two multilayer structures having periodic- and Fibonacci-
type order27. In the periodic case, the resonance condition lifts the 
N-fold degeneracy, where N is the number of layers in the stack, 
so that one mode becomes super-radiant whereas the other N−1 
modes are subradiant51. However, the super-radiant mode for per-
pendicular emission has nodes at the QW in each layer that lead 
to inefficient emission intensity. This behaviour can be explained 
by employing a frequency-domain analysis, where the resonant 
emission frequency falls in the stop-band of the underlying 1D 
photonic crystal. This condition, however, does not occur for the 
Fibonacci QW structure, as there is the possibility of photolumi-
nescence emission inside the pseudo-gap due to the strong cou-
pling that occurs in the 1D quasicrystal that leads to the existence 
of states in the forbidden gap. As seen clearly in Fig. 2b, when the 
structure is in resonance, the reflectivity shows typical spectral 
features inside the quasi-gap that do not exist in the gap of the 
periodic structure. In contrast, the photoluminescence emission 
in the Fibonacci structure remains strong compared with that in 
the periodic structure (Fig. 2c).

Photonic quasicrystals in higher dimensions
Higher-dimensional photonic quasicrystals (2D and 3D) offer 
greater flexibility over 1D structures in the design of their geom-
etry and potential applications. For example, several 1D quasicrys-
tals, such as the Fibonacci sequence structure, can be extended to 
2D52–54. However, the design rules become increasingly complex as 
one considers the broader range of deterministic aperiodic struc-
tures. This is demonstrated by the fact that tiling rules for 2D qua-
sicrystals do not exist for geometries that exhibit more than 14-fold 
rotational symmetry17. Along with the increase in geometrical 
complexity, there is a corresponding increase in the complexity of 
the mathematical description of the properties of electromagnetic 
propagation. Even without a detailed analytical description, how-
ever, good physical insight into the propagation properties of light 
can be still obtained in various photonic quasicrystals. 

One of the most common 2D quasicrystals was discovered by 
Roger Penrose. This structure utilizes two different types of tiles to 
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Figure 3 | 3D photonic quasicrystal and its transmission properties. 
a, 3D icosahedral quasicrystal with 1-cm-long rods fabricated by 
stereolithography. b, Triacontahedron, one of several possible effective 
Brillouin zones (related to the pseudo-Jones zone used in describing 
electronic transport in quasicrystals) with icosahedral symmetry. The 
irreducible Brillouin zone is highlighted in yellow. c, Transmission T(f, θ) 
as a function of frequency (f, measured in units of c/d) and angle (θ) for a 
rotation about a two-fold rotation axis of the quasicrystal (corresponding 
to the dotted line in b) using two overlapping frequency bands. The dashed 
line is a 1/cos θ curve characteristic of Bragg scattering from a Brillouin zone 
face. d, T(f, θ) for a rotation about a five-fold rotation axis that corresponds 
to the dashed line in b. Figure a–d reproduced with permission from ref. 63, 
© 2005 NPG.
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fill all of the 2D space: a thin rhomb, with vertex angles of 36° and 
144°, and a fat rhomb, with vertex angles of 72° and 108° (ref. 55). 
The pattern exhibits local five-fold symmetry in real space, 
whereas the structure factor exhibits ten-fold rotational symmetry 
and consists of a series of discrete spots surrounding the central 
‘undiffracted’ spot. In contrast with periodic crystals, for which the 
reciprocal lattice can be defined in terms of a set of primitive RVs, 
the RVs associated with quasicrystals densely fill the reciprocal 
space so that no primitive set of RVs can be defined. Nevertheless, 
a set of relatively intense RVs can be chosen to describe the struc-
ture. In the case of Penrose tiling, a basic set can be defined using 
five RVs, denoted by ±F(i)  =  cos((i  −  1)π/5),  sin((i  −  1)π/5) in 
Cartesian coordinates for i = 1…5 (refs 56,57). The magnitude of 
each F(i) is related to the tile side length d through the relation 
|F(i)|  =  2π/(dcos(π/10)). Analogous to the canonical Fibonacci 
series, the ratios of the different RVs are related to the golden ratio, 
τ = 1.618. Using the Penrose structure among others, we describe 
below examples of light propagation and laser action in which the 
RVs play a major role in determining the optical properties. 

The photon dispersion relations inside periodic photonic 
crystals (having Bravais lattices) are periodic in reciprocal space. 
Therefore, the photonic band structure is essentially defined by 
the dispersion properties in the first Brillouin zone. Quasicrystals, 
however, do not exhibit a strict Brillouin zone. Nevertheless, it is 
still possible to construct an ‘effective Brillouin zone’ by defining a 
decagon in reciprocal space that is formed from the lines bisecting 
the basic set of RVs, F(i), which is referred to as the ‘pseudo-Jones’ 
zone23. The photonic dispersion relations in this region govern the 
basic properties of light propagation. In periodic photonic crys-
tals, a complete photonic bandgap arises when the spectral gaps 
at the Brillouin zone boundaries overlap in all directions. The 
anisotropy of the bandgap is dependent on the symmetry of the 
underlying photonic crystal lattice. In photonic quasicrystals, as 

the rotational symmetry of the pseudo-Jones zone increases, the 
bandgap becomes more circular in 2D (or spherical in 3D), which 
can result in a complete bandgap56–60. The trade-off between the 
weaker scattering that exists in photonic quasicrystals due to 
the small fhh′ compared with that in periodic photonic crystals, 
together with the increased isotropy in photonic quasicrystals, 
was recently discussed by Steinhardt and co-workers61. They con-
cluded that photonic quasicrystals have a better chance of showing 
a complete gap for a low dielectric contrast between the dielec-
tric constituents; however, for high dielectric contrast the result-
ing increase in light scattering overcomes the need for isotropy, 
and thus periodic photonic crystals are better. Also, we note that 
in periodic 2D photonic crystals, the highest level of rotational 
symmetry is six; 2D photonic quasicrystals, in contrast, offer 
the potential for much higher rotational symmetry, where sym-
metries of 10 (Penrose) and 12 (dodecahedron) are common24. 

Fabrication techniques for photonic quasicrystals
It is instructive to discuss the various fabrication techniques that 
have been developed for creating 2D and 3D photonic quasicrys-
tals. The most common approaches involve direct laser writing62–64 
or interference between multiple laser beams46,65–70. These proce-
dures can be accomplished in many material systems, including 
one-63–67 or two-photon68 curing of ultraviolet-sensitive polymers, 
or the use of photorefractive crystals69,70. An alternative to these 
approaches involves direct lithographic reproduction of a quasip-
eriodic pattern71. For example, Zoorob et al.58 fabricated cylindri-
cal air rods in a 12-fold rotationally symmetric pattern to create 
a 260-nm-thick silicon-nitride-based waveguide. The structure 
possessed several characteristics that clearly differentiate it from 
a periodic lattice, the most noteworthy being the ability to create 
a bandgap even when using low-refractive-index materials such 
as glass (n  =  1.45). In contrast with periodic crystals, where the 
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Figure 4 | Disorder-enhanced transport and localization in 2D photonic quasicrystals. a–c, Light incident at the input face of a 2D quasicrystal lattice 
without (a) and with (b,c) disorder. d, For various degrees of disorder, the output intensity pattern is monitored and ensemble-averaged. e, When no 
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the output beam becomes gradually more localized. Figure reproduced with permission from ref. 46, © 2011 AAAS.
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inclusion of a defect produces one fixed set of localized defect 
modes, a single defect in a photonic quasicrystal can produce dif-
ferent localized states that depend on the specific location in the 
pattern, owing to differences in the local dielectric environment 
that result from the lack of translational symmetry59.

Three-dimensional photonic quasicrystals were first exp-
eri ment ally demonstrated by Man  et  al.63, who used stereo-
lithography to create an icosahedral structure via ultraviolet 
photopolymerization (Fig.  3).  The quasicrystal had 12 five-fold, 
15 three-fold and 30 two-fold symmetry axes. Using microwave 
transmission measurements, about a two-fold rotation axis and a 
five-fold rotation axis, they found a relatively well-defined effec-
tive Brillouin zone, despite the increased density of discrete spots 
in reciprocal space. They also found that the effective Brillouin 
zone was nearly spherical, with only a small difference (~17%) in 
the pseudo-gap centre. However, they were unable to find a com-
plete bandgap; in fact, the question of whether a complete pho-
tonic gap may exist in photonic quasicrystals is still unresolved. 

Light propagation in 2D photonic quasicrystals
It is instructive to examine the role of disorder in photon localiza-
tion in two-dimensional quasicrystals. As disorder is introduced 
into a photonic crystal, the nature of light propagation through 
the material changes from ballistic to diffusive. With increasing 

disorder, the interference between individual scattering events 
ultimately causes the light to become spatially localized — an effect 
known as Anderson localization. In contrast with this behaviour, 
it has been suggested that disorder in photonic quasicrystals can 
actually enhance transport prior to localization. To understand 
this seemingly counterintuitive property, Levi et al.46 used a tech-
nique known as optical induction71,72 to prepare a 2D Penrose pat-
tern in a photorefractive crystal. The diffraction pattern created by 
the interfering pump beams yielded a rewritable refractive index 
pattern that allowed for the introduction of disorder by using dif-
fusers in the pump beam path. The resulting quasicrystal pattern 
constrained light only in the x–y plane, thus allowing for free 
propagation along the z axis. It was shown46 that the transverse 
optical properties are governed by the paraxial equation
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дy2
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dz

1
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k
no

i = – + – Δn(x,y) Ψ (2)

 

where Ψ is the slowly varying envelope of the optical field, z is the 
propagation axis, k  =  ωn/c is the propagation constant, n0 is the 
bulk refractive index and Δn is the local change in the refractive 
index. Equation (2) has the form of Schrödinger’s equation if the 
substitutions z  →  t (time) and Δn  →  V (potential) are made. 
Propagation through this type of medium is therefore equivalent to 
observing the temporal variation of the wave packet as it propa-
gates in time. In the absence of any transverse disorder, Levi et al. 
observed an intermittent intensity pattern resembling a broadened 
version of the Penrose geometry at the output plane (Fig. 4). As the 
introduced disorder increased to 10%, the intensity pattern broad-
ened spatially, corresponding to enhanced transport in the x–y 
plane, thus verifying earlier predictions73. However, as the intro-
duced disorder was further increased, light propagation trans-
formed from ballistic to diffusive, followed by inevitable Anderson 
localization. This approach therefore offers a unique means for the 
real-time observation of disorder-enhanced light transport in pho-
tonic quasicrystals in a controllable manner.

Plasmonics in metallic photonic quasicrystals
Whereas most of the optical techniques discussed so far utilize pho-
tonic quasicrystals made from dielectric media (both insulators and 
semiconductors), recently there has been interest in utilizing col-
lective charge oscillations along metal–dielectric interfaces — sur-
face plasmon–polaritons (SPPs) — for the subwavelength control 
and manipulation of light74. By utilizing stationary localized surface 
plasmons in metal nanoparticles, or propagating SPPs along metal–
dielectric interfaces, unprecedented control over light–matter 
interactions has been achieved75–77. Such interactions have led to sig-
nificant advances in the ability to obtain large field enhancements, 
as well as the localization and modification of the local density of 
states. The plasmon mediated in- and out-coupling of incident light, 
which governs both the near- and far-field optical properties of 
these structures, strongly depends on the shape and size of individ-
ual features, as well as the structure factor of the underlying array. In 
the case of periodic arrays with pitch p, the spectral resonances can 
be conveniently described by an underlying Bravais lattice that has 
basic primitive vectors based on G(i) = 2π/p, and studied using well-
established analytical tools that include the Brillouin zone and the 
Bloch theorem. In contrast, even though aperiodic arrays exhibit 
significantly richer optical spectra, light–matter interactions in such 
structures are not as well understood and require the development 
of sophisticated measurement techniques and numerical tools.

As an example, in Fig.  5 we summarize the SPP-mediated 
enhanced optical transmission properties of aperture arrays fab-
ricated in a 2D Penrose-type quasicrystal geometry. Analogous 
to periodic arrays, the coupling of incident light to SPPs in these 
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Figure 5 | Transmission properties of SPP-based quasiperiodic plasmonic 
hole arrays. a, Real-space representation of a 2D Penrose-type quasicrystal 
hole array constructed of fat and thin rhomb tiles on a 75-μm-thick free-
standing stainless-steel film with apertures fabricated at the vertices; 
d3 corresponds to the length of the rhomb side. b, Reciprocal-space 
representation of the 2D aperture array shown in a. The ten-fold rotational 
symmetry is apparent from the reciprocal vectors, given by F(i) in the 
Fourier space representation. c, Electric field transmission spectrum T(ν) 

of a Penrose quasicrystal hole array with d3 = 1.5 mm and aperture diameter 
D = 540 μm. The resonance bands F(i) in the spectrum correspond to the 
RVs in the structure factor representation of the Penrose structure in b. 
The anti-resonance (AR) features are assigned and correspond to dips in 
T(ν) that occur at the high-frequency side of each resonant band. d, Per-
hole transmission (normalized to the single-hole transmission) through 
the Penrose hole array structure at λ = 0.98 mm. Figure reproduced with 
permission from: a,b, ref. 24, © 2007 NPG; a (inset), ref. 122, © 2009 
Elsevier; c, ref. 82, © 2007 OSA; d, ref. 83, © 2007 APS.
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structures can be explained by using a quasi-momentum conser-
vation rule24: k|| + kSPP = F(i), where k|| is the in-plane wave vector of 
the incident light, kSPP is the SPP wave vector and F(i) correspond 
to the discrete Fourier transform vectors in the structure factor 
(RVs). Figure 5b shows the corresponding geometrical structure 
factor associated with the Penrose-type lattice. As noted above, 
|F(i)| can be directly associated with real-space distances di in the 
quasicrystal structure. The RVs were shown to be related to a 
series of Fano-type resonances observed in the transmission spec-
tra, T(ν), through the 2D structure (Fig. 5c), where the resonances 
occur at frequencies νi ≈ c|F(i)|. It was deduced that the resulting 
spectral features in T(ν) are a consequence of Fano-type inter-
ference between discrete transmission lines associated with the 
structure factor, and a transmission continuum that results from 
the optical properties of individual apertures24.

The enhanced transmission studies using Penrose quasicrys-
tal structures shown here in the terahertz frequency range have 
since been extended to other regions of the electromagnetic 
spectrum78–81, as well as to other quasicrystal geometries such as 
octagonal and dodecagonal 2D quasicrystals79,82 and ‘approxi-
mate’ quasicrystal structures designed using an inverse Fourier 
transform algorithm to exhibit arbitrary n-fold rotational symme-
tries24,82. The SPP-mediated Fano resonances in the transmission 
spectrum were explained using an intuitive interference model 
in which SPPs launched by the scattering of incident light from 
individual features accrue a phase shift and interfere construc-
tively or destructively based on the design of the underlying array, 
thereby allowing the spectral shape of the optical response to be 
determined. Sharp spectral peaks can therefore be expected from 
any plasmonic array — periodic or aperiodic — that contains dis-
crete RVs in its structure factor, similar to the existence of sharp 
Bragg diffraction lines in X-ray scattering23. In addition to the rich 
T(ν) spectra, the per-hole transmission and near-field distribution 
(Fig. 5d) in these structures have been theoretically shown to vary 
spatially and exhibit localized hot spots with rotational symme-
tries that are unique to quasiperiodic structures83. Although these 
studies have helped clarify the physics of light–matter interactions 
in plasmonic devices and unravel the underlying mechanism that 
governs the phenomenon of ‘enhanced transmission’, quasicrystal 
structures may also enable interesting exotic effects that are not 
possible with periodic structures. One such example involves the 
recent demonstration of superfocusing, which may be important 
for subwavelength imaging or lithography applications84,85.

Introducing structural aperiodicity in devices that exploit 
localized surface plasmon resonances associated with arrays of 
individual metallic nanoparticles can allow arbitrary engineering 
of the density of spatial frequencies (or, equivalently, the structure 
factor in the Fourier space) over a broad spectral range86,87. As an 
example, Fig. 6 summarizes the optical scattering properties of a 
2D array of nanoparticles arranged in a Fibonacci pattern. The 
structure factor contains two types of prominent RVs: (i) two sets 
of four vectors, G1 and G2, respectively, where G1 = 2π/a(±1:0) and 
2π/a(0:±1), and G2 = 2π/a(±1:±1), which correspond to the under-
lying grid on which the Fibonacci structure is based; and (ii) three 
additional sets of eight vectors, F1 to F3, which belong to the 2D 
Fibonacci quasicrystal structure factor. Figure 6c shows the cor-
responding optical extinction spectra for a 2D Fibonacci array of 
gold nanoparticles of radii r = 100 nm and interparticle separation 
a = 50–500 nm. Similarly, the transmission spectrum through 2D 
aperture arrays patterned in a 2D Fibonacci hole array structure 
on free-standing metal films has recently been used to demon-
strate weak transmission resonances due to shorter SPP correla-
tion lengths compared with periodic arrays88. Using theoretical 
formulations based on the transfer matrix method, the pseudo-
dispersion diagram and photonic density of states of a 1D array of 

metallic nanoparticles arranged in a Fibonacci pattern was origi-
nally calculated by Dal Negro et al. to illustrate the existence of 
plasmonic bandgaps89. Subsequent theoretical and experimental 
works on both 1D and 2D particle arrays have further demon-
strated the ability to control and optimize the local field enhance-
ment and localization (Fig.  6d)90,91, the in-plane optical mode 
symmetry92,93, and long-range radiative coupling and scattering94. 
These studies have also resulted in demonstrations of increased 
sensitivity in biosensing platforms95, as well as remarkable effi-
ciency improvements in surface-enhanced Raman spectroscopy96 
and photoluminescence97. 

Laser action in aperiodic structures
Laser action requires an optical pump, a gain medium and a feed-
back mechanism; it can be divided into two classes according to 
the feedback mechanism involved98. The feedback in the first class 
is provided by mirrors that form a well-defined Fabry–Pérot cav-
ity, whereas the second class is ‘mirrorless’ and does not require 
a well-engineered cavity. Mirrorless lasing can be further divided 
into two categories depending on whether the emission is coher-
ent or incoherent. The first category (coherent emission) includes 
processes such as super-radiance99, superfluorescence100, distrib-
uted feedback lasing101, lasing in photonic crystals102 and ran-
dom lasing103; whereas amplified spontaneous emission, which 
is an incoherent phenomenon, belongs to the second category98. 
Aperiodic structures have made important contributions in laser 
action such as distributed feedback and lasing in photonic qua-
sicrystals, where distributed feedback lasing may be regarded as 
being part of lasing in 1D photonic crystals. Demonstrations of 
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Figure 6 | Optical scattering properties of localized surface plasmon-
based quasicrystal plasmonic structures. a, Real-space representation of 
a generation-7, 2D Fibonacci array, with minimum inter-particle spacing a 
and radii r. Gold nanoparticles are placed at the location of the dots using 
electron-beam lithography and subsequent metal deposition. b, Reciprocal-
space representation of the particle array shown in a. c, Measured optical 
extinction spectra for 2D arrays of gold nanoparticles with r = 100 nm and 
a varying from 50 nm to 500 nm. d, Calculated electric-field distributions 
in the plane of the Fibonacci array of gold nanoparticles of r = 75 nm and 
a = 25 nm under plane-wave illumination at λ = 785 nm with the electric field 
polarization parallel to the x axis. Figure reproduced with permission from: a,b, 
ref. 88, © 2012 OSA; a (inset),c, ref. 94, © 2008 ACS; d, ref. 96, © 2009 OSA.
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lasing in photonic quasicrystals can be divided into two classes — 
localized and delocalized — according to the characteristic prop-
erties of the obtained laser mode.

Lasing in periodic photonic crystals with delocalized laser 
modes was demonstrated around a decade ago102,104–106. The feed-
back mechanism in this type of laser action is thought to arise 
from standing-wave solutions to the Bloch wave equations at the 
photonic band-edges, at points of high symmetry in the Brillouin 
zone. When the first photonic quasicrystals were fabricated107–109, 
researchers realized that photonic ‘quasi-bandgaps’ can be formed 
for values of k in reciprocal space such that k  =  F(i)/2. It was 
also understood that the quasi-bandgap width is proportional 
to the strength of F(i) in reciprocal space. Therefore, the concept 
underlying photonic crystal lasers can be directly transferred to 
photonic quasicrystals.

In the pioneering work of Notomi et al.110, the photonic qua-
sicrystal in which lasing was demonstrated was a 2D Penrose 
structure with ten-fold rotation symmetry in its structure factor 
(Fig. 7a,b). A Penrose-type hole pattern was fabricated on a SiO2 
substrate superimposed by a laser dye (DCM) embedded in an 
organic gain medium (Alq3) (Fig. 7a). If the photonic quasi-band-
gap fell within the optical gain spectrum of the lasing medium, 
then laser action was obtained in the form of a narrow laser 

mode for sufficiently high excitation intensities (Fig.  7c–e). The 
researchers found that the laser mode wavelength scaled with the 
size a of the Penrose pattern (Fig. 7c–e). Surprisingly, the emission 
pattern obtained was in the form of a number of surface emis-
sion laser beams having ten-fold rotational symmetry (Fig. 7f–i). 
This was taken as evidence that the laser modes in the photonic 
quasicrystal are extended over the entire structure of at least 100a, 
thus showing that the quasicrystal structure is capable of support-
ing extended optical modes, similar to regular photonic crystals106. 
This is surprising because electronic excitations in quasicrystal 
materials are thought to be localized, having dispersion relations 
that contain many mini-gaps23. This is apparently not the case 
for electromagnetic radiation close to the photonic quasicrystal 
pseudo-gap.

Mahler  et  al.111 demonstrated lasing in 1D photonic crystals 
by current injection, rather than optical excitation, in a terahertz 
quantum-cascade laser based on a 1D Fibonacci distributed feed-
back sequence. Laser action was obtained in such structures at 
wavelengths corresponding to band edges at k = F(i)/2 in the struc-
ture factor. Unsurprisingly, the mode with the largest Q-factor was 
found to be associated with F(i) = Qhh′ where h = h′ = 1, as it has 
the largest Fourier component in the Fibonacci sequence. It was 
also shown that the laser wavelength scales with the Fibonacci size 
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deep quasiperiodic holes patterned in a 1-µm-thick SiO2 layer on a silicon substrate. The sample was fabricated using electron-beam lithography and 
reactive ion etching, and finally a 300-nm-thick DCM-doped Alq3 layer was co-evaporated on the patterned SiO2. b, Scanning electron micrograph of a 
representative sample, showing the underlying Penrose lattice. c–e, Emission spectra of samples with minimum inter-aperture distances of 560 nm (c), 
580 nm (d) and 600 nm (e), optically pumped using a 0.6 ns pulsed nitrogen laser at 337 nm above the lasing threshold. f,g, Spot images of the out-of-
plane emission measured from samples with quasi-lattice constant a = 260 nm (f) and 420 nm (g) using a CCD camera. The images show the ten-fold 
rotational symmetry that is characteristic of the underlying Penrose structure factor. h,i, Spot images calculated from the RVs in the structure factors for 
samples with ω = 1.23 (h) and 2.09 (i), where ω = nλ/a is the normalized lasing frequency. Figure reproduced with permission from ref. 110, © 2004 APS.
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parameter. Interestingly, lasing action at multiple wavelengths was 
obtained when the gain spectrum was broadened. This phenom-
enon is thought to arise because there are more wave vectors asso-
ciated with discrete RVs (or F(i)) in the Fibonacci sequence than 
in regular periodic systems, which better matches the extended 
gain spectrum.

Laser action based on localized modes in photonic quasicrys-
tals has also been demonstrated112–114; such laser action has been 
referred to as ‘single-cell cavity mode’. In this case, only a few holes 
among the 2D quasicrystal hole array were filled with an optical 
gain medium, thus leading to laser-mode localization. This type 
of laser action can be thought of as based on a defect mode in 
which lasing occurs in the optical gap5,106. Defect laser action with 
a very high Q-factor of around 20,000 was predicted113 for a 2D 
photonic quasicrystal of dodecagonal structure whose structure 
factor has 12-fold rotational symmetry, but in reality a Q-factor of 
only around 1,300 has been achieved so far114.

Summary
The interesting class of photonic quasicrystals discussed here 
exhibit unique optical properties because: (i) they can be designed 
using well-defined algorithms to exhibit controlled interference 
patterns that lie between those resulting from periodic and ran-
dom structures; and (ii) they exhibit unique and rich symmetries 
in Fourier space that are not possible with a periodic lattice. The 
underlying RVs in reciprocal space show that these aperiodic 
structures are capable of supporting wave interference. Despite 
challenges in gaining a fundamental understanding of light–
matter interactions in these complex photonic systems, primar-
ily owing to their complexity and a general theory that requires 
computational models, the initial studies reviewed here have dem-
onstrated that these quasicrystal structures show rich underly-
ing physics and potential technological applications. Because the 
field of optics has applications across a broad range of areas, the 
incorporation of controlled structural aperiodicity would allow 
for unprecedented control over the near- and far-field spectral 
properties of next-generation photonic devices. Finally, we note 
that due to space limitations we have not included in this Review 
several aspects of quasicrystal optics, such as the dynamics of light 
propagation in 1D photonic quasicrystals44, nonlinear optics using 
photonic quasicrystals115,116, the effect of phasons in the optics of 
quasicrystals117,118, and nonlinear light propagation dynamics such 
as solitons in quasicrystals119–121. These interesting subject matters 
deserve a separate Review.
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