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Abstract

The recent precipitous losses of summer Arctic sea ice have outpaced the projections of most climate models. A
number of efforts to improve these models have focused in part on a more accurate accounting of sea ice albedo or
reflectance. In late spring and summer, the albedo of the ice pack is determined primarily by melt ponds that form
on the sea ice surface. The transition of pond configurations from isolated structures to interconnected networks is
critical in allowing the lateral flow of melt water toward drainage features such as large brine channels, fractures, and
seal holes, which can alter the albedo by removing the melt water. Moreover, highly connected ponds can influence the
formation of fractures and leads during ice break up. Here we develop algorithmic techniques for mapping photographic
images of melt ponds onto discrete conductance networks which represent the geometry and connectedness of pond
configurations. The effective conductivity of the networks is computed to approximate the ease of lateral flow. We
implement an image processing algorithm with mathematical morphology operations to produce a conductance matrix
representation of the melt ponds. Basic clustering and edge elimination, using undirected graphs, are then used to
map the melt pond connections and reduce the conductance matrix to include only direct connections. The results for
images taken during different times of the year are visually inspected and the number of mislabels is used to evaluate
performance.
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1. Introduction ample, during the melt season the Arctic sea ice
cover becomes a complex evolving mosaic of ice, melt

Sea ice is a critical component of Earth’s climate 15 ponds on the sea ice surface, and open water. While

system and a sensitive indicator of climate change. white snow and ice reflect most incident sqnlight,
The dramatic losses of summer Arctic sea ice ob- melt ponds and the ocean absorb. most of it. The
served in the past few decades have a substantial im- overall reflectance or albedo of sea ice floes — the ra-
pact on Earth’s climate system, yet most global cli- tio of reflected to incident sunlight — is determined

mate models have significantly underestimated the 20 by the evolution of melt. p0.nd coverage and geom-
rate of decline [36,2,32]. One of the fundamental etry [24,31,27]. As melting increases, the albedo is

challenges of climate science is to develop more rig- lowered, whic.h increases solar al?sorption, 1ead}ng
orous representations of sea ice in climate models FO more Ipeltlng, and so on. This key mechanism
and to incorporate important small scale processes is called ice-albedo feedback [6], and has played a

and structures into these large scale models. For ex- 25 significant role in the decline of the summer Arc-
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tic ice pack [25,26]. Sea ice albedo is a significant
source of uncertainty in climate projections and one
of the most important parameters in climate mod-
eling [8,31,22,27].

While melt ponds form a key component of the
Arctic marine environment, comprehensive observa-
tions or theories of their formation, coverage, and
evolution remain relatively sparse. Available obser-
vations of melt ponds show that their areal cover-
age is highly variable. This is particularly true for
first year ice early in the melt season, with rates of
change as high as 35% per day [30,27]. Such vari-
ability, as well as the influence of many competing
factors controlling melt pond and ice floe evolution,
makes the incorporation of realistic treatments of
albedo into climate models quite challenging [27].
Small and medium scale models of melt ponds which
include some of these mechanisms have been de-
veloped [7,33,31], and melt pond parameterizations
are being incorporated into global climate models
[17,9,8,18,22].

As melting progresses during the season, the evo-
lution of melt ponds from small isolated structures
into large interconnected networks is responsible for
a number of processes that help control the rate at
which the ice pack melts. It is believed [16] that this
evolution of connectedness is an example of a per-
colation transition [34,5]. Such a transition occurs
when one phase in the microstructure of a composite
material, for example, becomes connected on macro-
scopic scales as a controlling parameter exceeds a
critical value called the percolation threshold [3,34,5].
In the case of melt ponds the controlling parameter
which gives rise to critical behavior is thought to be
the fraction of the area of the sea ice surface covered
by melt ponds.

An important example of critical behavior related
to percolation theory as applied to sea ice, and im-
portant for melt pond drainage, comes from the
study of fluid flow through the porous microstruc-
ture of sea ice. Specifically, the brine microstructure
displays a percolation threshold at a critical brine
volume fraction of around 5% in columnar sea ice
[12,13,28], which corresponds to a critical tempera-
ture T, ~ —5°C for a typical bulk salinity of 5 ppt.
Below this threshold the brine phase of the sea ice
consists primarily of isolated, disconnected pockets.
It is only above the threshold where the brine phase
becomes connected over large scales. This thresh-
old acts as an on-off switch for fluid flow through
sea ice, and is known as the rule of fives. It leads to
critical behavior of fluid flow, where sea ice is effec-

80

85

90

95

tively impermeable to fluid transport for brine vol-
ume fractions below 5% and increasingly permeable
for volume fractions above 5%.

In addition to identifying the critical behavior of
fluid transport in sea ice, the percolation theory of
fluid and electrical transport through lattices [34,5]
was used produce models of the fluid permeability
of sea ice as a function of brine volume fraction [13].
In this work X-ray computed tomography images of
the brine microstructure of sea ice was analyzed and
mapped onto random graphs of nodes and edges,
in order to establish the percolative behavior of the
system [13,28], and the rule of fives in particular.

Other types of network models have also been
used to describe both fluid and electrical transport
in the brine phase of sea ice. For example, in the
random pipe model, the diameters of random pipes,
which represent brine channels in the ice, are cho-
sen from lognormal probability distributions that
describe the cross-sectional areas of the brine inclu-
sions in sea ice and then assigned to the edges in
a square lattice [39]. The fluid permeability of the
model is then computed by using a random resis-
tor network representation of the system and em-
ploying a fast multigrid method to find its effec-
tive conductivity which can then be related to the
permeability. This same approach can also be used
to directly model the electrical conductivity of the
ice, an important parameter in remote sensing of
sea ice thickness, fluid transport properties, and mi-
crostructural transitions [10,1,37,4,29,19]. Network
models have been used extensively in analyzing the
transport properties of composite materials [21,38].

It has been suggested that percolative behavior
occurs for melt ponds on the sea ice surface, As
they cover more of the surface, disconnected, iso-
lated ponds begin to evolve into large connected
structures with complex boundaries, presumably
achieving large scale connectivity above a critical
area fraction [16].

Increased connectivity of melt ponds promotes
further melting through increased heat transport,
contributes to the break-up of ice floes, and allows
increased horizontal transport of meltwater toward
drainage avenues such as large vertical brine chan-
nels, cracks, leads, and seal holes [30,27]. Other melt
pond models including both vertical and horizontal
transport of melt water, such as a type of cellular
automata, have been developed elsewhere, as in [31].

In this work we begin to develop techniques for
network modeling of melt ponds, their connectiv-
ity, and horizontal flow characteristics. Some of the
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groundwork for this type of modeling was laid in [16].
Images of melting Arctic sea ice collected during
two Arctic expeditions — the 2005 Healy-Oden Trans
Arctic Expedition (HOTRAX) [23] and the 1998
Surface Heat Budget of the Arctic Ocean (SHEBA)
expedition [24] — were analyzed for area—perimeter
data on thousands of individual melt ponds. Algo-
rithmic methods of distinguishing melt ponds from
the ocean in leads between the sea ice floes were de-
veloped. This data was used to discover that pond
fractal dimension transitions from 1 to 2 around a
critical length scale of 100 square meters in area
[16]. Pond complexity was found to increase rapidly
through the transition as smaller ponds coalesce
to form large connected regions, reaching a maxi-
mum for ponds larger than about 1000 square me-
ters whose boundaries resemble space filling curves.

In earlier work on melt ponds and sea ice albedo,
image processing has been used to measure the area
fractions of melt ponds and leads from aerial and
satellite images. In [24] these area fractions from
June to October, using SHEBA images taken in 1998
[24], show how the area fraction of melt ponds in-
creases as summer progresses, and starts decreas-
ing again at the end of summer as new ice forms.
A probability distribution for the size of melt ponds
is also derived from the data, which depends on the
progress of the melt season.

In the work reported here, the connectivity of
these melt pond networks is determined using aerial
images of Arctic sea ice from the SHEBA and
HOTRAX databases. We develop an algorithmic
method of mapping a configuration of melt ponds
onto a graph of nodes and edges. These melt pond
configurations may be disconnected individual com-
ponents, or partially or completely connected across
an image. The edges are assigned values which in-
dicate the width of “bottlenecks” separating larger
pools of melt water, which are identified with the
nodes of the graph.

The horizontal flow of water between melt ponds
depends on the narrowest bottlenecks between them
and the width of these bottlenecks is inversely pro-
portional to the fluid conductance between them.
Mathematical morphology based image processing
techniques [15] are used with a clustering algorithm
and graph theory to find a conductance graph as-
sociated with each melt pond configuration studied.
Further work will explore the relationship of these
graphs and associated conductance networks with
the actual flow of fluid in the pond network, and the
effect on sea ice albedo.
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2. Method

The images of melt ponds from the SHEBA and
HOTRAX expeditions are in color. The intensity
and color of each pixel in the image is encoded using
the intensities of the Red, Green and Blue colors
that make up each pixel. The image is represented
as a matrix of pixels, with each pixel being a vector
of three variables - red, green and blue color values.
These are called, respectively, the red, green and
blue channels of the image.

These images are converted to gray-scale to re-
duce each pixel to only one intensity and lessen the
number of computations required. The gray scale
image is derived using the red channel as we see the
largest difference between ice and water there. A
simple thresholding operation, as described in the
Appendix, is sufficient to segment the melt pond
water from ice and produce a binary image. Otsu’s
method [15] is used to determine this threshold in-
dividually for each image, which is then segmented
based on this threshold. Figure 1 shows a histogram
of the intensity levels of a gray-scale aerial image
with Otsu’s threshold. After having segmented wa-
ter from ice, it is also possible to use the blue color
intensity in the images to distinguish between the
ocean water leads and melt pond water. However,
in this paper, we have selected images that do not
contain any ocean water leads.

The images used are cropped from those in the
SHEBA and HOTRAX databases, which have di-
mensions around 865 x 770 pixels. The size of the
images does not affect the algorithm as long as the
resolution remains the same. Only the processing
time varies with image size. In this paper we calcu-
late the sizes of ponds and bottlenecks only in terms
of pixels. The number of pixels could be converted
to a physical scale by knowing the helicopter alti-
tude, camera characteristics, and so on, or if there
were an object of known size, such as a ship, in the
image. This information can be different for each
image used, thus our focus here on pixel size. How-
ever, in Figure 1 the horizontal scale of the image is
about 80 m.

2.1. Preprocessing the image

The binary image produced by Otsu’s method can
have small pieces of ice floating in the melt ponds,
melt ponds that are too small to provide much infor-
mation, and other small artifacts due to noise. These
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Fig. 1. An aerial grayscale image of melt ponds from HOTRAX is shown on the left, with horizontal scale of about 80 meters.
A histogram of red channel intensities of the image is shown on the right. The bi-modal distribution is evident and Otsu’s
threshold, marked on the histogram, can be used to separate melt ponds and ice.

can clutter up the final connectivity graph with un-
necessary data. Basic mathematical morphology op-
erations involving erosion and dilation, as described
in [15] and the Appendix are used to clean up the
image.

A predetermined mask or structuring element of
fixed size is centered at each pixel of the image and
only those pixels, at which the structuring element
fits inside the original image, are set to one. So, if a
3 x 3 structuring element is used, it will remove the
outermost layer of pixels from the foreground, a 5x5
structuring element would remove two layers and so
on. Morphological dilation is a complementary pro-
cess where all those pixels, at which the intersection
between the structuring element and the image is
non-zero, are set as one. Dilation by a 3 x 3 struc-
turing element would cause the foreground to grow
another layer of pixels. Opening involves erosion
followed by dilation with the same structuring ele-
ment and is used to remove smaller structures from
the foreground like protrusions, narrow connections,
etc. Closing on the other hand is dilation followed by
erosion and it fills in small gaps in the foreground.
Geodesic opening or closing involves finding the in-
tersection of the result of opening or closing with the
original image to preserve the shape of the image.
The image is first cleaned up using geodesic opening
of melt ponds to remove inconsequential melt ponds
and geodesic closing to remove floating ice. Circular
masks, as shown in Figure 14, are used for these pro-
cesses to maintain the curvy shapes of ponds. The
mask size can be adjusted as desired. Here a 3 x 3
mask, like the first image in Figure 14, is used. Note
that care should be taken to ensure that the mask
size is at least smaller than the narrowest bottleneck
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in the image, otherwise this connection will be lost.

2.2. Isolating melt ponds

The previous step results in large interconnected
melt pond networks. The next step is to find in-
dividual melt ponds. First, connected components
described in the Appendix are used to find all the
separate unconnected melt pond networks and la-
bel each uniquely as X; where 1 <17 < Np,q,.. Here,
Ninaz 18 the number of unconnected melt pond net-
works in the image.

Each of these networks is then eroded progres-
sively with a 3 x 3 circular mask. Every erosion itera-
tion scrapes away the outermost layer of pixels from
the melt pond network image and the connections
between the melt ponds gets narrower and some
connections may break. In other words, at each ero-
sion, some ponds might break away from the main
network. These can be identified from an increase
in the number of unconnected regions in the image,
which are found using connected components. The
j*" region that breaks away from the network X is
labeled as X;;. This can be an individual melt pond
or a smaller network of melt ponds. The connection
strength of the separated region Xj;, to its parent
network X, is proportional to the number of erosion
iterations after which it breaks away. Each of these
smaller melt pond networks X;; is further eroded in
a similar manner. The aim is to continue this until
all the networks have broken down into their indi-
vidual components, i.e., to separate out all the indi-
vidual melt ponds.

Depending on the season in which the pho-
tographs are taken and the resolution of the pho-
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tographs, we can find the expected largest bot-
tlenecks in the melt pond network empirically by
performing the above erosion steps repeatedly until
all the connections between melt ponds are broken.
This was done for a sample image in each image set
in Table 1. Knowing that a 3 x 3 circular mask erodes
two layers of pixels from the bottleneck - one from
each side, we can calculate the number of erosion
iterations that are needed to break the network into
individual ponds. For example, if the widest bottle-
neck is 60 pixels across, 30 erosions are required. So
the repeated erosions defined above are performed
until this maximum bottleneck size is reached. Af-
ter this maximum bottleneck size is reached in the
above connected components process, it is assumed
that all the remaining melt ponds are individual
ponds and not networks of smaller melt ponds.

Consider the image in Figure 2. Here, the red lines
indicate bottleneck regions and should be eroded
away eventually as they are connections between
melt ponds. The green line indicates a region that
is slightly constricted, but cannot be considered as
a bottleneck as it is large relative to the pond sur-
rounding it. Simply performing erosions as described
above would eventually break all of these connec-
tions. To prevent this, we consider a so-called con-
striction ratio, C R, defined as

CR pond area

~ bottleneck size

It was empirically found that a constriction ratio
of CRyin = 20 worked well with the images used
in this paper. During any erosion step, if a network
under consideration has a constriction ratio CR such
that CR < CRyn, then this is probably a melt
pond and should not be broken down any further.
Another example of this is shown in Figure 3. The
image on the left shows the melt pond network that
is obtained without using the constriction ratio. It
can be seen that the ponds that are labeled 8 and 9
in this image are just a part of the long channel that
connects ponds 7 and 10. The image on the right
uses the constriction ratio and correctly labels the
ponds.

2.3. Connections between melt ponds

The last part of the problem is finding the con-
ductances between the individual melt ponds. As al-
ready described in the previous section, this is done
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while the interconnected melt ponds are being sepa-
rated into smaller melt pond networks. To re-iterate,
each erosion with a 3 x 3 mask removes the outer-
most pixel layer. Thus two layers of pixels, one from
each side of the bottleneck, are removed. If a region
separates from the main network at the k** erosion
iteration, then the bottleneck joining this region to
the network is 2 x 4 pixels wide.

Until this point, the method has concentrated on
grouping the melt ponds that are connected to each
other and finding the sizes of bottlenecks between
a melt pond and the network to which it belongs.
The next step in the algorithm is to find out exactly
which melt ponds are connected to each other and
represent them using undirected graphs.

The problem also requires that we find only direct
connections between ponds. To understand what
this means, let each individual melt pond be a node
in an undirected graph. Consider the 3rd image in
Figure 4 which labels each pond as a node. The node
56 is connected to all the nodes from 47 to 55 in this
image. However, it is immediately or directly con-
nected only to node 52. We can characterize the con-
nection between nodes 56 and 48 by instead using
the connection between modes 56 and 52 followed
by connection between nodes 52 and 48.

At each erosion iteration, the interconnected melt
pond network splits into a number of smaller ponds
in the same erosion step. We have to find out which
ponds are directly connected to each other as de-
scribed above. Two simple methods of doing this
would involve the following operations:

(i) morphological dilation [15],

(ii) a simple clustering approach [15] followed by

a graph theory method [35].

In the first method, at each iteration, the eroded
image is subtracted from the original image to get
only the bottlenecks that were eroded away. This
resulting image is then dilated and a simple over-
lapping operation (using the logical OR function) is
performed to check which ponds form a direct con-
nection with each other. This is illustrated in Fig-
ure 5. A major problem with this approach is that
sometimes the dilation is not sufficient to cause an
overlap with the expected ponds and this leads to
incorrect or missing connections.

In the second method, the center of each melt
pond pixel-cluster is located using the mean of the
cluster with Euclidean distances. One may try to
use k-means clustering on the initial image to sepa-
rate the ponds, but as this only uses Euclidean dis-
tances between pixels and needs a fixed estimate
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Fig. 2. The red lines indicate constricted regions that should be marked as a boundary between two different melt ponds.
The green line indcates a region that is simply a part of one large melt pond but might be treated as a divider between two

different melt ponds because it is slightly constricted.

Fig. 3. The connection between melt ponds is incorrectly labeled in the image on the left. Ponds 7 and 10 are connected by a
long channel but the image shows the presence of two additional melt ponds due to the constrictions present in the channel.
The image on the right uses the constriction ratio to determine that these constrictions are too wide in comparison to the
surrounding area to be labeled as separate melt ponds. Hence, it correctly labels two separate melt ponds - 9 and 10.

of the number of clusters at the output, it will as-
sign more than one cluster center to larger ponds
and may ignore the smaller ponds. The geodesic dis-
tances between these cluster centers are calculated.
The distance between unconnected ponds is set to
infinity because the strength of the connection be-
tween two ponds decreases with increasing distance
and an infinite distance corresponds to the absence
of any connection between ponds. These distances
are then used along with the conductance strengths
calculated below to construct a graph of the melt
pond network.

The nodes of the graph are the cluster centers
found above, and all the nodes belonging to con-
nected melt ponds are connected to each other with
graph edges. Note that the conductance strength
here only refers to the width of the channel connect-
ing different ponds and gives a basis for relative com-
parison of ease of flow of fluid between these chan-

nels. Let the conductance strength between nodes 4
and j be denoted by o0;; and the geodesic distance
between them be d;;. Each edge between two nodes
i and j is assigned a weight w;; given by,

wy =52 1)
The above equation is analogous to conductance in
an electrical circuit, which is directly proportional to
conductivity of the wire and inversely proportional
to the length of the wire. Between each pair of con-
nected nodes, the direct path and all paths involv-
ing only one intermediate connection are considered.
For any node, there are (n — 1) possible paths to
another node, or (n — 2) indirect paths with one in-
termediate node and one direct path. The weight of
the kth indirect path connecting two nodes is calcu-
lated as,

(k) _ ik | Okj Vk £ i i 2
wf) = (G4 32) wris @)
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Fig. 4. The first figure on the top left is the input image used. The second figure on top-right shows geodesic distances between
melt pond nodes, this figure is a binary version of the first figure - blue is ice, green is water and maroon shows the smallest
geodesic paths between nodes. The third figure on the bottom shows the final connections obtained after edge elimination.

Here g—: is the weight of the edge from node i to

node k. The weight of the edge which directly con-
nects nodes ¢ and j is w;; = Z2£. Only the path

corresponding to the maximum weight between two

nodes is retained and all the edges corresponding to 420

other paths are removed. This favors paths which
are either very short or have large conductances. At
each step, one pair of nodes in the graph is consid-

ered. For the next pair, the previously updated con-
nection graph is used so that the edges that no longer
exist are not reconsidered. The final step of the al-
gorithm is for node deletion, where the algorithm
searches for very small nodes that lie between two or
more much larger nodes, and eliminates these small
nodes based on a predetermined ratio. This step is
performed because, if a really small melt pond lies
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Fig. 5. Here we show how the connecting components between the separated (after erosion) melt ponds are generated after
subtracting the eroded image from the original image, to obtain the layer that was peeled away, followed by erosion to isolate
just the connecting components between the melt ponds. These conecting components can then be used to determine how well

the individual ponds were connected to each other.

between two much larger melt ponds, it is probably
just a part of the channel connecting the two large
melt ponds and should not be labeled as an indi-
vidual melt pond. For the results presented in this
paper, this ratio is empirically set to 20.

The second graph method performs much better
for mapping connections than the dilation method.
Figure 6 shows the results obtained using the two
different approaches. Consider nodes 5 and 6 at the
bottom right corner in the first figure. The connec-
tion between the two nodes is not detected because
dilation of the connection shown in Figure 5 is not
sufficient to overlap with ponds 5 and 6. Thus, pond
6 is shown connected directly to pond 1. This issue
is solved in the second figure by using the clustering
and graph method.

2.4. Conductivity factor calculations

To calculate the horizontal fluid “conductivity”,
first two battery nodes are added to the left and
right of the image. This is analogous to an electrical
circuit, where the conductivity between two points
can be calculated and the flow of current through
the circuit depends on the potential drop across the
battery nodes as well as the connectedness and lo-
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cal conductances of the graph representing the cir-
cuit. The left battery node is connected to all the
ponds touching the left edge of the image with a con-
ductance value of 1 for each connection. The right
battery node is similarly connected. The purpose
of the battery nodes is to simulate the computa-
tion of the effective or equivalent conductivity of a
conductor network, which must be subjected to a
potential difference, most easily visualized by con-
necting a battery. The effective conductivity of the
network, between these battery nodes, is then mea-
sured. The conductivity of very large networks can
be calculated approximately by considering smaller
sections and then replacing these subsections with
their equivalent conductivities in a hierarchical fash-
ion similar to renormalization group techniques [14].
The conductivity of each section could be calculated
to create a new, simpler graph model.

To calculate the conductivity between battery
nodes, and thus the effective conductivity of the
graph with given bond conductivities, let c;; be the
conductivity of the edge between nodes ¢ and j, and
consider the formulation of the problem of finding
the effective conductivity of a graph as found in
[11]. Here, each ¢;; is the normalized edge weight,
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Result with Morphological Dilation

Result using Graph Method

Fig. 6. The image on the left results from using morphological dilation for mapping pond connections. The image on the right
uses the clustering and graph method approach. It can be seen that without trying to determine the strongest connection using
edge weights in undirected graphs, the connections between melt ponds do not connect the nearest neighbors with each other.

Wi j ..
= ————— Vi, j. 3
€ij maxi7j(w¢j) bJ ( )
Let M be the total number of nodes in the graph,
including the two battery nodes. We define the M x

M matrix A such that

Aij:_cij; i,j=1...M,i#}j, (4)
Vj:j#i

The matrix A’ isthe (M —1)x (M —1) array obtained
by removing the first row and column of A, which
corresponds to the left battery node. Removing the
last row and column of matrix A’, corresponding to
right battery node, gives the (M — 2)(M — 2) ma-
trix A”. The conductivity factor of the image repre-
sented by matrix A, between the battery nodes, is
given by [20,11]

_det(A)

~det(A")’ ()
It should be noted that the conductivity factor ob-
tained is then related to the fluid permeability of
the network, but not equal to the effective conduc-
tivity of the network, due to the length scale in-
volved. As noted in the Introduction, further work
will explore the relationship of this computed net-
work conductivity to the horizontal fluid flow prop-
erties of melt pond configurations. Our goal here is
to establish a viable method of transforming images
of arrays of melt ponds and map them onto random,
labeled graphs. The connectivity and local conduc-
tance characteristics of these graphs provide ideal-
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ized, mathematical models of melt pond connectiv-
ity and effective, horizontal flow properties.

A brief summary of the method discussed in this
section is presented in the form of a flowchart in
Figure 7.

3. Results

The above method is used to generate conduc-
tance graphs for different sets of images as described
in Table 1. MATLAB is used to implement the
method summarized above for each of these images.

This method was found to be most useful for im-
ages obtained in mid-summer, i.e. July, as the melt
ponds are large and interconnected. The average
time taken for different sets of images was calculated
and is shown in Table 2. The SHEBA images taken
in July were processed the quickest, because the im-
ages consist of larger and fewer melt ponds. Conse-
quently, the operations involving connected compo-
nents and the calculation of geodesic distances, do
not occupy the processor for too long. When these
times are compared to the August melt pond images
from SHEBA, which have many more melt ponds
per image, the computations take much longer. Only
about 10% of the computation time is spent in the
calculation of geodesic distances and using graph
methods to eliminate all but the direct connections
between melt ponds. A major part of the computa-
tion time is spent in iteratively eroding the image,
finding all the connected components and updating
the bottleneck widths at each iteration. This can
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Fig. 7. Flowchart representation of the method.
‘Sct‘Month ‘Numbcr of imagos‘Databaso ‘
1 |June |5 SHEBA
2 |July |10 SHEBA
3 |August|10 HOTRAX]
Table 1
List of images considered
be sped up by using parallel processing for differ- that have no other connections. However, this choice
ent connected components. Another step in reduc- would be application specific, as even the isolated
s10 ing the time latency would be to ignore all ponds ponds may be used to study the evolution of net-
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works with time, because they might, at some point
further in time join larger interconnected networks.
Table 3 gives a list of the parameters used for differ-
ent sets of images.

In image processing, ground truth refers to data
from images that have already been processed and
are known to be correct. Ground truth data are of-
ten used to evaluate the performance of an algo-
rithm as they provide a desired solution to the prob-
lem under consideration. Due to lack of any ground
truth for these images, they are visually inspected to
ascertain the performance of the method used. We
manually count the number of mislabels and missed
connections in each image. A mislabel occurs when
a large channel is labeled as a pond or a large pond
with a complex morphology may be labeled as 2 or
more connected ponds. We find that less then 10%
of labels are obvious mislabels. In terms of calculat-
ing the conductance, whether or not a large channel
is considered a pond, or one large pond is consid-
ered two connected ponds, is less important. It is
the connectedness that matters most for this calcu-
lation. Missed connections occur when the connec-
tion is very small or appears broken in the image.
We find that at most 1 in 10 of connections in our
images are missed and typically are oly missed when
pond size is much larger then channel size.

The processed images from July, August and June
are shown in Figures 9, 10, 11, 12 and 8 respectively.
Figure 13 shows the conductance graph obtained for
the 3rd image in Figure 11. The conductivity fac-
tors for these figures are shown in Tables 4, 5 and
6. Note that in the images shown in Figures 9, 10,
11 and 12, the melt ponds that are not part of the
network which connects the battery nodes, have not
been labeled to prevent excess clutter in the figures
(these melt ponds do not contribute to the horizon-
tal conductivity calculations). The images shown in
Figure 8 do not have any complete connections that
go across the image from left to right. For this rea-
son, unlike the above mentioned figures, the images
are shown without removing the melt pond labels
which are unconnected to the battery nodes. The
conductivity factor values for all these images are
Z€ero.

4. Conclusions

Melt ponds play a critical role in determining the
albedo of the sea ice pack. Understanding their role
in climate processes and incorporating their impact
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in climate models is a fundamental challenge in cli-
mate science. In particular, quantifying key char-
acteristics of melt pond geometry and connectivity
are critical to quantifying and modeling melt pond
growth, decay, and evolution. We have developed
here a method of extracting the essential connectiv-
ity and scale characteristics of complex melt pond
configurations and representing them in a discrete
model. We have used image processing techniques in
order to map melt ponds onto graphs whose edges
represent horizontal flow pathways through the con-
figuration. By computing the effective conductivity
of these graphs, we obtain an idealized way of es-
timating the ease of horizontal flow of meltwater,
which is important in melt pond evolution.

After visual inspection, it can be concluded that
the algorithm we have developed does a very good
job of identifying individual melt ponds, labeling
their connections and creating the conductance ma-
trix. More work can be done to improve its speed and
remove the few mislabeling errors. The edge elimi-
nation method used assigns weights to the edges be-
tween nodes (melt pond centers) based on geodesic
distance and widths of the connections. The func-
tion assigning weights to the edges can be modified
and the weights of the nodes (areas of melt ponds)
can also be used.

The work done here can be used to aid in under-
standing both the horizontal water and heat flow
between melt ponds. These are important parame-
ters to consider when modeling melt pond evolution
and drainage, major controlling factors of ice albedo
during the melt season. The conductivity factors cal-
culated can be used to represent effective behavior
of the ice-pond composite, in turn this can be used
to develop simpler models of the complex processes
which govern melt pond evolution, ultimately to in-
clude them in climate models.
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‘Sot‘Month ‘Databaso ‘Numbor of iterations|Average Time(minutes)

1 [June |[SHEBA |8 31.66
2 |July |SHEBA (20 9.06
3 |August HOTRAX|20 18.04

Table 2
Average time to process each image

‘Sot‘Constriction Ratio[Number of erosion steps

1 (20 8
2 |20 18
3 |20 20

Table 3
List of parameters used for different image sets

‘Imagol ‘Imago2‘Imago3‘lmago4‘lmago5‘

bbb

b b |

Table 4
Conductivities for image set 1.

‘Imagol‘Imago2‘Imago3‘lmago4‘lmago5 ‘

0 0 0

0 0

Image6|{Image7(Image8|Image9(Imagel0

‘0 ‘0.0546 ‘0.0283 ‘0.0443 ‘0.2062 ‘

Table 5
Conductivities for image set 2.

‘Imagol‘Imago2‘Imago3‘lmago4‘lmago5 ‘

0 0.0542

0.1353

0.1216 (0.0563

Image6|{Image7(Image8|Image9(Imagel0

‘0.1778 ‘0.1003 ‘0.1078 ‘0.0718 ‘0.1127 ‘

Table 6
Conductivities for image set 3.
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Materials:
Springer-

5. Appendix

Here we explain in more detail some of the con-
cepts and techniques of image processing and anal-
ysis used in the body of the paper.

(i) Thresholding: Consider an image in which the
value of each pixel is denoted by f(x,y) where
2 and y are the 2-dimensional coordinates of
the pixel. If the image is bimodal, i.e., most
pixel values fall in two major groups, then this
image can be converted to a binary image by
performing the following threshold operation:

0 if flz,y)>T,

9@y =1 flx,y) <T.
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(iii)

(vii)

In the resulting image g(x, y), all unity-valued
pixels are considered to be the foreground and
the zero-valued pixels are the background.
Mathematical Morphology: This uses set the-
ory and is commonly applied in image pro-
cessing solutions as it applies well to the
analysis of geometric shapes and structures.
For example, in a binary image, the set of all
zero-valued pixels can be considered to rep-
resent the background, and the unity-valued
pixels, the foreground. When applied in image
processing, mathematical morphology usu-
ally employs structuring elements or masks
which are used to perform various operations
on the images of interest. Some examples of
structuring elements are shown in Figure 14.
Translation: A 2-D image can be represented
by a 2-D integer space Z2. Each pixel in the
image has a value and is associated with a fixed
location z = (z,y). Translation of a set B, by
z = (21, z2) is given by,

(B), ={clc=b+ 2V be B}.

Translation shifts every point in B, (z,y), to
(x 4+ 21,y + 22) to result in (B),.
Reflection: Reflection of a set B is given by

B ={clc=—-bYbe B}

Reflection is the mirror image of B such
that every point in B, (x,y), is reflected to
(—x, —y), resulting in B. If B is symmetric
then B = B.

Erosion: The erosion of A by B is defined as

AS B={z|(B). C A} where A, B € Z*.

Erosion of A by B results in a set of points
z so that all the elements of B translated by
z, fit completely inside A. Erosion usually re-
sults in removal of the outermost layers of the
foreground.

Dilation: The dilation of A by B is defined as

A®B={z|(B).NAC A} where A, B € Z>.

Dilation of A by B results in a set of points z
so that at least one element of B translated by
z overlaps with A. Dilation results in addition
of layers to the foreground in an image.

Geodesic opening: Opening of A by B is erosion
of A by B followed by dilation of the result by
B

3

AoB=(A©B)® B. (7)

790
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(viii)

This results in smoothing of the image by re-
moval of small protrusions and breakage of
narrow connections.

Geodesic closing: Closing of A by B is dilation
of A by B followed by erosion of the result by
B.

AeB=(A®B)oSB (8)

This results in smoothing of the image by fill-
ing in of small gaps and fusing of narrowly sep-
arated components.

Geodesic distance: The geodesic distance be-
tween two points in a binary image is the
distance length of the path between the two
points in pixels, such that the entire path lies
in the same set as the two points. For exam-
ple, in the foreground (unity-valued pixels),
the distance between two pixels is measured
along paths in which all pixels are unity.
Connected components: This is a technique for
finding all the elements in a binary image that
are connected to each other. Let A be the im-
age in which we are trying to find connected
components and B be a 3 x 3 structuring ele-
ment. Xy is an image with same size as A, but
containing one unity-valued pixel at the same
location as the component of interest in A.
This is called the seed. To find all the pixels in
A connected to the seed, following operation
is performed recursively until Xy = Xj_1,

Xy =(Xk1®@B)NAwithk=12,.... (9)



June1 June?2

June3 June4

Fig. 8. Melt ponds in June from SHEBA early in the melt season. Here there are no complete connections that go across the
entire image, so that the conductivity factors are zero.
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July1 July2

July3 July4

Fig. 9. Melt ponds in July from SHEBA. Here the white nodes are battery nodes. Conductivity factor values are calculated
across these battery notes and give an indication of the horizontal fluid conductance from the left to right edge of the image.
The white lines represent direct connections to the battery nodes while the blue lines are simply connections between ponds.
For the conductivity to be nonzero there must be at least one full connection from left to right. Ponds which do not connect
to battery nodes or which do not connect across the image are unlabeled to reduce clutter in the image.
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July9 July10

Fig. 10. Continued from Figure 9, melt ponds in July from SHEBA. Here the white nodes are battery nodes. Conductivity
factor values are calculated across these battery nodes and give an indication of the horizontal fluid conductance from the left
to right edge of the image. The white lines represent direct connections to the battery nodes while the blue lines are simply
connections between ponds. For the conductivity to be nonzdrp there must be at least one full connection from left to right.
Ponds which do not connect to battery nodes or which do not connect across the image are unlabeled to reduce clutter in the

image.



Augusti | August2

August4

Fig. 11. Melt ponds in August from HOTRAX. It can be seen that there are more parallel paths that exist between the battery
nodes compared to both June and July images as the melting has progressed much further, evolving into large interconnected

networks. This is also reflected in the data of tables 4,5,and 6.
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Augusts A 7 August6

Fig. 12. Continued from Figure 11, melt ponds in August from HOTRAX. It can be seen that there are more parallel paths
that exist between the battery nodes compared to both June and July images as the melting has progressed much further
evolving into large interconnected networks. This is also reflected in a the data of tables 4,5,and 6.
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Fig. 13. Conductance values for August (HOTRAX 3rd photograph). The first column on the left and the first row on top

represent ponds that are connected to the battery node on the left. The last column on the right and the last row represent
the battery node on the right. Each nonzero value on the graph represents the conductance between two melt ponds.

3x3 square structuring element

9x9 circular structuring element

3x3 circular structuring element

Fig. 14. Structuring elements of different sizes.
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