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Abstract

The recent precipitous losses of summer Arctic sea ice have outpaced the projections of

most climate models. Efforts to improve these models have focused in part on a more

accurate accounting of sea ice albedo or reflectance. In late spring and summer, the albedo

of the ice pack is determined primarily by melt ponds that form on the sea ice surface.

The transition of pond configurations from isolated structures to interconnected networks

is critical in allowing the lateral flow of melt water toward drainage features such as large

brine channels, fractures, and seal holes, which can significantly alter the albedo. Moreover,

pond connectivity can also influence their effectiveness in breaking up an ice floe as the

melt season progresses. Here we develop algorithmic techniques for mapping photographic

images of melt ponds onto discrete conductance networks which represent the geometry

of pond configurations and approximate the ease of lateral flow. We implement an image

processing algorithm with mathematical morphology operations to produce a conductance

matrix representation of the melt ponds. Basic clustering and edge elimination using graph

theory is then used to reduce the conductance matrix to include only direct connections.

The results for images taken during different times of the year are visually inspected and

the number of mislabels is used to evaluate performance.
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1. Introduction

Sea ice is a critical component of Earth’s

climate system, and a sensitive indicator

of climate change. The dramatic losses of

summer Arctic sea ice observed in the past5

few decades have a substantial impact on

Earth’s climate system, yet most global cli-

mate models have significantly underesti-

mated the rate of decline [1, 2, 3]. One of

the fundamental challenges of climate sci-10

ence is to develop more rigorous representa-

tions of sea ice in climate models, and incor-

porate important small scale processes and

structures into these large scale models. For

example, during the melt season the Arctic15

sea ice cover becomes a complex, evolving

mosaic of ice, melt ponds on the sea ice sur-

face, and open water. While white snow

and ice reflect most incident sunlight, melt

ponds and ocean absorb most of it. The20

overall reflectance or albedo of sea ice floes

– the ratio of reflected to incident sunlight –

is determined by the evolution of melt pond

coverage and geometry [4, 5, 6]. As melt-

ing increases, the albedo is lowered, which25

increases solar absorption, leading to more

∗Corresponding author, email:

tolga@sci.utah.edu, Ph:1-801-581-3539

melting, and so on. This critical mecha-

nism is called ice–albedo feedback [7], and

has played a significant role in the decline

of the summer Arctic ice pack [8]. Sea ice30

albedo is a significant source of uncertainty

in climate projections and one of the most

important parameters in climate modeling

[9, 5, 10, 6].

While melt ponds form a key component35

of the Arctic marine environment, compre-

hensive observations or theories of their for-

mation, coverage, and evolution remain rel-

atively sparse. Available observations of

melt ponds show that their areal coverage40

is highly variable, particularly for first year

ice early in the melt season, with rates of

change as high as 35% per day [11, 6].

Such variability, as well as the influence

of many competing factors controlling melt45

pond and ice floe evolution, makes the in-

corporation of realistic treatments of albedo

into climate models quite challenging [6].

Small and medium scale models of melt

ponds which include some of these mech-50

anisms have been developed [12, 13, 5],

and melt pond parameterizations are be-

ing incorporated into global climate models

[9, 14, 10].

As melting progresses during the season,55
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the evolution of melt ponds from small iso-

lated structures into large interconnected

networks is responsible for a number of pro-

cesses that help control the rate at which

the ice pack melts. It is believed [15] that60

this evolution of connectedness is an ex-

ample of a percolation transition [16, 17].

Such a transition occurs when one phase in

the microstructure of a composite material,

for example, becomes connected on macro-65

scopic scales as some parameter exceeds a

critical value, called the percolation thresh-

old [16, 17]. Percolation theory was initi-

ated in 1957 by Broadbent and Hammer-

sly [18] with the introduction of a simple70

lattice network model to study the flow of

air through permeable sandstones used in

miner’s gas masks. In subsequent decades,

this theory has been used to successfully

model a broad array of disordered materials75

and processes. In the case of melt ponds,

the critical threshold is thought to be re-

lated to the area fraction of sea ice surface

covered by the ponds.

An important example of this percola-80

tion phenomenon in the microphysics of sea

ice, which itself is fundamental to the pro-

cess of melt pond drainage and changes in

sea ice albedo, is the percolation transi-

tion exhibited by the brine phase in sea85

ice, known as the rule of fives [19, 20, 21].

When the brine volume fraction of colum-

nar sea ice is below about 5%, it is effec-

tively impermeable to fluid flow. However,

for brine volume fractions above 5%, the90

brine phase becomes macroscopically con-

nected so that fluid pathways enable flow

through the porous microstructure of the

ice. For a typical bulk sea ice salinity of

5 parts per thousand, the 5% volume frac-95

tion corresponds to a critical temperature of

about −5◦C; hence the term “rule of fives.”

Similarly, even casual inspection of aerial

photos shows that the melt pond phase of

the sea ice surface undergoes a percolation100

transition where disconnected ponds evolve

into much larger scale connected structures

with complex boundaries [15]. Connectivity

of melt ponds promotes further melting and

break-up of floes, as well as horizontal trans-105

port of meltwater and drainage through

large vertical brine channels, cracks, leads,

and seal holes [11, 6].

Establishing that the brine phase in sea

ice actually exhibits a percolation tran-110

sition, attended by critical behavior of

the vertical fluid permeability, was accom-

plished through the development of X-ray
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computed tomography for sea ice, and sub-

sequent mapping of the data onto random115

graphs of nodes and edges [20, 21]. The con-

nectivity of these graphs was analyzed as

a function of temperature and sample size,

and found to display a percolation threshold

in the vertical direction around the 5% crit-120

ical value conjectured in [19]. Furthermore,

the theory of fluid and electrical transport

through lattice percolation models [16, 17]

was used to predict the dependence of the

vertical component of the fluid permeabil-125

ity of sea ice as a function of brine volume

fraction [20].

Other types of network models have been

used to quantitatively describe the behavior

of fluid flow through the porous sea ice mi-130

crostructure. For example, in the random

pipe model, the diameters of the pipes (as-

signed to the edges in a square lattice) are

chosen from lognormal probability distribu-

tions that describe the cross-sectional areas135

of the brine inclusions in sea ice [22]. The

fluid permeability of the model is computed

by using a random resistor network repre-

sentation of the system and employing a fast

multigrid method to find its effective con-140

ductivity. This approach has also been used

to directly model the electrical conductivity

of sea ice [23], an important parameter in re-

mote sensing of sea ice thickness, transport

properties, and microstructural transitions145

[24, 25, 26, 27, 28, 29].

Here we begin to develop techniques for

network modeling of melt ponds, their con-

nectivity, and horizontal flow characteris-

tics. Some of the groundwork for this type150

of modeling was laid in [15]. Images of

melting Arctic sea ice collected during two

Arctic expeditions – the 2005 Healy-Oden

TRans Arctic EXpedition (HOTRAX) [30]

and the 1998 Surface Heat Budget of the155

Arctic Ocean (SHEBA) expedition [4] –

were analyzed for area–perimeter data on

thousands of individual melt ponds. Al-

gorithmic methods of distinguishing melt

ponds from the ocean in leads between the160

sea ice floes were developed. This data was

used to discover that pond fractal dimen-

sion transitions from 1 to 2 around a crit-

ical length scale of 100 square meters in

area [15]. Pond complexity was found to165

increase rapidly through the transition as

smaller ponds coalesce to form large con-

nected regions, reaching a maximum for

ponds larger than about 1000 square me-

ters whose boundaries resemble space filling170

curves.
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In earlier work on melt ponds and sea ice

albedo, image processing has been used to

measure the area fractions of melt ponds

and leads from aerial and satellite images.175

In [4] these area fractions from June to Oc-

tober, using SHEBA images taken in 1998

[4], show how the area fraction of melt

ponds increases as summer progresses, and

starts decreasing again at the end of sum-180

mer as new ice forms. A probability dis-

tribution for the size of melt ponds is also

derived from the data, which depends on

the progress of the melt season.

In the work reported here, the connec-185

tivity of these melt pond networks is deter-

mined using aerial images of Arctic sea ice

from the HOTRAX database. We develop

an algorithmic method of mapping a config-

uration of melt ponds onto a graph of nodes190

and edges. These configurations may be

disconnected into individual components, or

partially or completely connected across an

image. The edges are assigned values which

indicate the width of the “bottlenecks” sep-195

arating larger pools of melt water, which are

identified with the nodes of the graph.

The volume of water in a melt pond

results from the net balance of melt wa-

ter accumulation, water in-flux from and200

out-flux to neighboring ponds, drainage

due to ice porosity, fluid permeability, and

larger cracks in the pack ice. Some melt

ponds may have large sink holes with high

drainage rate. The flow of water between205

melt ponds depends on the narrowest bot-

tlenecks between them and the width of

these bottlenecks is inversely proportional

to the fluid conductance between them. A

conductance graph of the melt pond net-210

works can help model the evolution of the

melt pond configurations. Mathematical

morphology based image processing tech-

niques [31] are used with a clustering al-

gorithm and graph theory to find a con-215

ductance graph associated with each melt

pond configuration studied. Further work

will explore the relationship of these graphs

and associated conductance networks with

the actual flow of fluid in the pond network,220

and the effect on sea ice albedo.

2. Method

The images provided by the SHEBA and

HOTRAX expeditions are in color. The in-

tensity and color of each pixel in the im-225

age is encoded using the intensities of the

Red, Green and Blue colors that make up

the pixel. The image is a matrix of pix-
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Figure 1: An aerial image of melt ponds from HOTRAX is shown on the left. A histogram of the

image is shown on the right

els, with each pixel being a vector of three

variables - red, green and blue color values.230

These are respectively called the red, green

and blue channels of the image.

These images are converted to gray-scale

because it reduces each pixel to only one

intensity and hence fewer computations are235

required. This is done by using only the red

channel as it shows the most clear cut dif-

ference between ice and water intensities. A

simple thresholding operation is sufficient to

segment the melt pond water from ice and240

get a binary image. Otsu’s method [31] is

used to determine this threshold individu-

ally for each image, which is then segmented

based on this threshold. Figure 1 shows a

histogram of the intensity levels of a gray-245

scale aerial image with Otsu’s threshold.

The images used are cropped from those

in the SHEBA and HOTRAX databases,

which have dimensions around 865 × 770

pixels. The size of the images does not af-250

fect the algorithm as long as the resolution,

i.e., the number of pixels per unit physical

area covered, remains the same. Only the

processing time varies with image size.

2.1. Preprocessing the image255

The binary image produced by Otsu’s

method has small pieces of ice floating in

the melt ponds, melt ponds that are too

small to provide much information, and

other small artifacts due to noise. These260

can clutter up the final connectivity graph

with unnecessary data. Basic mathemati-

cal morphology operations involving erosion

and dilation, as described in [31] are used to

6



clean up the image. A predetermined mask265

or structuring element of fixed size is cen-

tered at each pixel of the image and only

those pixels, at which the structuring ele-

ment fits inside the original image, are set

to one. So, if a 3× 3 structuring element is270

used, it will remove the outermost layer of

pixels from the foreground, a 5×5 structur-

ing element would remove two layers and so

on. Morphological dilation is a complemen-

tary process where all those pixels, at which275

the intersection between the structuring el-

ement and the image is non-zero, are set as

one. Dilation by a 3×3 structuring element

would cause the foreground to grow another

layer of pixels. Opening involves erosion fol-280

lowed by dilation with the same structuring

element and is used to remove smaller struc-

tures from the foreground like protrusions,

narrow connections, etc. Closing on the

other hand is dilation followed by erosion285

and it fills in small gaps in the foreground.

Geodesic opening or closing involves finding

the intersection of the result of opening or

closing with the original image to preserve

the shape of the image. The image is first290

cleaned up using geodesic opening of melt

ponds to remove inconsequential melt ponds

and geodesic closing to remove floating ice.

Circular masks are used for these processes

to maintain the curvy shapes of ponds. The295

mask size can be adjusted as desired. Here

a 3× 3 mask is used. Note that care should

be taken to ensure that the mask size is at

least smaller than the narrowest bottleneck

in the image, otherwise this connection will300

be lost.

2.2. Isolating melt ponds

The next step is to find individual melt

ponds. The previous step results in large

interconnected melt pond networks. First,305

connected components are used to find all

the separate unconnected melt pond net-

works and label them. Each of these net-

works is then eroded progressively with a

3 × 3 circular mask. At each erosion, some310

ponds might break away from the main net-

work. These can be identified from an in-

crease in the number of unconnected re-

gions in the image, which are found us-

ing connected components. The connection315

strength of the separated melt pond, to the

full network is proportional to the number

of iterations at which it breaks away. If a

region is split into multiple regions, the sep-

arated regions will form smaller networks320

of melt ponds, which will all be connected
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to each other. This step is repeated until

a pre-defined maximum bottleneck size is

reached.

Also, a minimum pond size is set and if a325

region reaches this size, it is no longer split

into smaller regions. This minimum pond

size is increased with increasing erosion it-

erations. The minimum pond size is scaled

to maintain a minimum ratio pond area
bottleneck size

.330

This is done to avoid labeling connections

between ponds as melt ponds themselves.

An example of this is shown in Figure 2.

2.3. Connections between melt ponds

The last part of the problem is finding the335

conductances between the individual melt

ponds. This is done in parallel as the inter-

connected melt ponds are being separated

into smaller melt pond networks. Each ero-

sion with a 3 × 3 mask removes the out-340

ermost pixel layer (perimeter-wise). Thus

two layers of pixels, one from each side of

the bottleneck, are removed. Hence at each

step, when a region splits into multiple re-

gions, the conductance between these re-345

gions will be 2 × i. Here i is the iteration

number. The problem also requires that we

find only direct connections between ponds.

This means that if each pond is a node,

we must ignore connections that contain in-350

termediate nodes in their paths. Consider

the images in Figure 3. The interconnected

pond splits into a number of smaller ponds

in the same erosion step. The next step is to

find out which ponds are directly connected355

to each other. Two simple methods of doing

this would involve the following operations

1. morphological dilation,

2. a simple clustering approach followed

by a graph theory method.360

In the first method, at each iteration, the

eroded image is subtracted from the original

image to get only the bottlenecks that were

eroded away. This resulting image is then

dilated and a simple overlapping operation365

(using the logical OR function) is performed

to check which ponds form a direct connec-

tion with each other. This is illustrated in

Figure 4. A major problem with this ap-

proach is that sometimes the dilation is not370

sufficient to cause an overlap with the ex-

pected ponds and this leads to incorrect or

missing connections.

In the second method, the center of each

melt pond pixel-cluster is located using the

mean of the cluster with Euclidean dis-

tances. One may try to use k-means clus-
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Figure 2: The connection between melt ponds is incorrectly labeled in the image on the left. Image

on the right uses pond area scaling to correctly label melt ponds.

tering on the initial image to separate the

ponds, but as this only uses euclidean dis-

tances between pixels and needs a fixed es-

timate of the number of clusters at the out-

put, it will assign more than one cluster

center to larger ponds and may ignore the

smaller ponds. The geodesic distances be-

tween these cluster centers are calculated.

The distance between unconnected ponds is

considered to be an arbitrarily large num-

ber, which is larger than the maximum dis-

tance between two ponds. These distances

are then used along with the conductance

strengths calculated in section 2.2 to con-

struct a graph of the melt pond network.

Initially, the nodes of the graph are the

cluster centers found above, and the all the

nodes belonging to connected melt ponds

are connected to each other with edges.

Note that the conductance strength here

only refers to the width of the channel con-

necting different ponds and gives a basis for

relative comparison of ease of flow of fluid

between these channels. Let this conduc-

tance strength be denoted by σij and the

geodesic distance be dij. The weight of each

edge is the ratio
σij
dij

. Between two nodes, the

direct path and all paths involving only one

intermediate connection are considered. For

any node, there are (n − 1) possible paths

to another node, or (n − 2) indirect paths

with one intermediate node and one direct

path. The weight of the kth indirect path
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Figure 3: The figure on right at the top shows geodesic distances between melt pond nodes. The

figure at the bottom shows the final connections obtained after edge elimination.

connecting two nodes is calculated as,

w
(k)
ij =

(
σik
dik

+
σkj
dkj

)
, ∀k 6= i, j. (1)

Here σik
dik

is the weight of the edge from node

i to node k. The weight of the edge which
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Figure 4: Mapping connections using morphological dilation.

directly connects nodes i and j is

wij =
σij
dij

. (2)

Only the path corresponding to the maxi-

mum weight between two nodes is retained375

and all the edges corresponding to other

paths are dissolved. This favors paths which

are either very short or have large conduc-

tances. At each step, one pair of nodes in

the graph is considered. For the next pair,380

the previously updated connection graph is

used so that the edges that no longer exist

are not reconsidered. The final step of the

algorithm is for node deletion, where the al-

gorithm searches for very small nodes that385

lie between two or more much larger nodes,

and eliminates these small nodes based on

a predetermined ratio. For the results pre-

sented later, this ratio is set to 20.

The latter graph method performs much390

better for mapping connections than the di-

lation method. Figure 5 shows the results

obtained using the two different approaches.

Consider the nodes 5 and 6 at the bottom

right corner in the first figure. The con-395

nection between the two nodes is not de-

tected because dilation of the connection

shown in Figure 4 is not sufficient to over-

lap with ponds 5 and 6. Thus, pond 6 is

shown connected directly to pond 1. This400
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issue is solved in the second figure by using

the clustering and graph method.

2.4. Conductivity factor calculations

To calculate the horizontal fluid “conduc-

tivity,” first two battery nodes are added405

to the left and right of the image. The

left battery node is connected to all the

ponds touching the left edge of the image

with a conductance value of 1 for each con-

nection. The right battery node is simi-410

larly connected. The purpose of the battery

nodes is to simulate the computation of the

effective or equivalent conductivity of a con-

ductor network, which must be subjected to

a potential difference, most easily visualized415

by connecting a battery. The conductivity

across the network, between these battery

nodes, is then measured. The conductiv-

ity of very large networks can be calculated

approximately by considering smaller sec-420

tions and then replacing these subsections

with their equivalent conductivities. The

conductivity of each section could be calcu-

lated to create a new, simpler graph model.

All the melt pond nodes which are not

directly connected to a battery node in the

graph are removed as they do not contribute

to conductivity. To calculate the conductiv-

ity between battery nodes, let cij be the con-

ductivity of the edge between nodes i and j.

Here, each cij is the normalized edge weight,

wij, as described in the equation below.

cij =
wij

maxi,j(wij)
∀i, j (3)

Let the M be the total number of nodes in

the graph, including the two battery nodes.

We define the M ×M matrix A such that

Aij = −cij i, j = 1 . . .M, i 6= j (4)

Aii =
∑
∀j:j 6=i

cij i = 1 . . .M (5)

The matrix A′ is the (M − 1)× (M − 1) ar-

ray obtained by removing the first row and

column of A, which corresponds to the left

battery node. Removing the last row and

column of matrix A′, corresponding to right

battery node, gives the (M−2)(M−2) ma-

trix A′′. The conductivity factor of the im-

age represented by matrix A, between the

battery nodes, is given by

σ(A) =
det(A′)

det(A′′)
. (6)

It should be noted that the conductivity425

factor obtained is then related to the fluid

permeability of the network, but not equal

to the effective conductivity of the network,

due to the length scale involved. As noted
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Figure 5: The image on the left results from using morphological dilation for mapping pond con-

nections. The image on the right uses the clustering and graph method approach.

in the Introduction, further work will ex-430

plore the relationship of this computed net-

work conductivity to the horizontal fluid

flow properties of melt pond configurations.

3. Results

The above method is used to generate the435

conductance graphs for different sets of im-

ages as described in Table 1. MATLAB is

used to implement the method summarized

above for each of these images.

This method was found to be most use-440

ful for images obtained in mid-summer, i.e.

July, as the melt ponds are large and in-

terconnected. The average time taken for

different sets of images was calculated and

is shown in table 2. The SHEBA images445

taken in July were processed the quickest,

because the images consist of larger and

fewer melt ponds. Consequently, the oper-

ations involving connected components and

the calculation of geodesic distances, do not450

occupy the processor for too long. When

these times are compared to the August

melt pond images from SHEBA, which have

many more melt ponds per image, the com-

putations take much longer. This can be455

easily rectified by selecting a smaller area of

the image to give a faster and more accurate

result. When images have a large number

of melt ponds, the resolution of the calcu-

lated conductance values is reduced. Only460

about 10% of the computation time is spent

in the calculation of geodesic distances and
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Set Month Number Database

1 June 5 SHEBA

2 July 10 SHEBA

3 August 10 HOTRAX

Table 1: List of images considered

using graph methods to eliminate all but

the direct connections between melt ponds.

A major part of the computation time is465

spent in iteratively eroding the image, find-

ing all the connected components and up-

dating the bottleneck widths at each itera-

tion. This can be sped up by using paral-

lel processing for different connected com-470

ponents. Another step in reducing the time

latency would be to ignore all ponds that

have no other connections. However, this

choice would be application specific, as even

the isolated ponds may be used to study the475

evolution of networks with time.

Due to lack of any ground truth for these

images, they are visually inspected to ascer-

tain the performance of the method used.

The processed images from July, August480

and June are shown in Figures 6, 7, 8, 9

and 10 respectively. Figure 11 shows the

conductance graph obtained for the 3rd im-

age in Figure 8. The conductivity factors

for these figures are shown in Tables 3, 4485

and 5. The images shown in Figure 10 do

not have any complete connections that go

across the image from left to right. For this

reason, the images are shown without re-

moving nodes which are unconnected to the490

battery nodes. The conductivity factor val-

ues for all these images are zero.

4. Conclusion

After visual inspection, it can be con-

cluded that the algorithm does a very good495

job of identifying melt ponds, labeling their

connections and creating the conductance

matrix. More work can be done to improve

the speed of algorithm and remove the few

mislabeling errors. The edge elimination500

method used assigns weights to the edges

between nodes (melt pond centers) based

on geodesic distance and widths of the con-

nections. The function assigning weights to

the edges can be modified and the weights505
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Set Month Database Number of iterations Average Time(minutes)

1 June SHEBA 8 31.66

2 July SHEBA 20 9.06

3 August HOTRAX 20 18.04

Table 2: Average time to process each image

Image1 Image2 Image3 Image4 Image5

0 0 0 0 0

Table 3: Conductivities for image set 1

Image1 Image2 Image3 Image4 Image5

0 0 0 0 0

Image6 Image7 Image8 Image9 Image10

0 0.0546 0.0283 0.0443 0.2062

Table 4: Conductivities for image set 2

Image1 Image2 Image3 Image4 Image5

0 0.0542 0.1353 0.1216 0.0563

Image6 Image7 Image8 Image9 Image10

0.1778 0.1003 0.1078 0.0718 0.1127

Table 5: Conductivities for image set 3
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Figure 6: Melt ponds in July from SHEBA, continued on next page...

of the nodes (areas of melt ponds) can also

be used in this function.

The conductivity factors calculated can

help to determine the rate at which melt

water might drain from ponds to a sink510

node, which might be a sink hole in the

ice pack. This water drainage influences ice

pack albedo, and hence a calculation of the

rate of drainage could prove to be an im-

portant factor in climate models.515
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Figure 7: ...continued, Melt ponds in July from SHEBA
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Figure 8: Melt ponds in August from HOTRAX, continued on next page...
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