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Abstract

This work focuses to study soil structure as a complex system characterizing it

through their multiscaling behaviour. The soil performs important functions as a

medium for plant growth, water storage, modifier of the atmosphere and it is a

habitat for organisms. Soil structure can be modelled as the spatial arrangement of

soil particles, aggregates and pores. Fractal geometry has been increasingly applied

to quantify soil structure, using fractal generalized dimensions for explaining the

complexity of its structure.

Thanks to the X-ray Computed Tomography (CT-Scan) soil samples can be

analysed in high resolution. CT-Scan is a relatively recent non-destructive testing

method which offers an attractive opportunity for the three-dimensional insight of

the inner structure of objects and materials. The ultimate product of the tomog-

raphy process is the slice, which represents a virtual thin-section of the sample,

whose thickness is strictly related to the achievable X-ray computed tomography

spatial resolution. A grayscale value is assigned to each voxel of the reconstructed

slice, proportionally to the local X-ray attenuation map. Once a set of consecutive

slices is reconstructed, it is possible to create a three-dimensional digital data set

of the sample just combining the slices into a stack.

For studying the image stacks we have developed a JAVA plug-in for the im-

age analysis software, ImageJ. After a review of the multifractal theory we have

selected the gliding and box counting methods for multifractal and monofractal

analysis and implemented in the program. We have satisfactorily tested it with

the theoretical and real data, and full documented writing a User manual.

Then we have studied several planes in the main directions of a soil aggregate

comparing them. Although the study has shown interesting results, the main

conclusion is that two-dimensional analysis is not enough for explaining the overall

complexity of the structure. Finally, three soil samples ploughed with different

tillage tools has been characterized with the multifractal methods applying a full

three-dimensional analysis. Comparison of computing times and the goodness of

the results are showed.
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Chapter 1

Introduction

In this dissertation we pretend to understand the complexity of the soil’s structure

characterizing them through multiscale analysis. For this purpose we have made a

complete review about the multifractal methods for applying to two-dimensional

and three-dimensional images of soils. The most suitable methods for this task

has been selected.

In Chapter 2 is explained the relevance of the soil for the ecosystem and human

life as well as its composition and structure. In Chapter 3 there is a review of

fractal and multifractal methods employed along this research.

For analysing the images we have developed a software written in JAVA which

is able to analyse 2D and 3D in black and white or gray images. The material

and methods employed are explained in Chapter 4 while the user manual and

documentation of the software can be found in Appendix D. The software has

been validated with real and published data getting excellent results.

In Chapter 5 we have analysed some real soil samples in 2D and 3D, comparing

them and obtained significant conclusions summarized in Chapter 6
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Chapter 2

Soil’s relevance

Soil is a major component of the Earth’s ecosystem. From ozone depletion and

global warming to rain forest destruction and water pollution, the world’s ecosys-

tems are impacted in far-reaching ways by the processes out in the soil. Soil is

the largest superficial carbon and global carbon reservoir on Earth, and it is po-

tentially one of the most reactive to human disturbance and climate change. As

the planet warms, soils will add additional dioxide into the atmosphere due to its

biological activity increment. Thus, soil carbon losses likely have a huge feedback

response to global warming. [1]

Soil acts as an engineering medium, a habitat for soil organisms, a recycling

system for nutrients and organic wastes, a regulator of water quality, a modifier

of atmospheric composition, and a medium for plant growth. Since soil has a

tremendous range of available niches and habitats, it contains most of the earth’s

genetic diversity. A handful of soil can contain billions of organisms, belonging to

thousands of species. [2]

The soil performs very important functions: it is a medium for plant growth,

it is a water storage, it is a modifier of the atmosphere and it is an habitat for

organism. In the soil we grove the plants we eat and the plants we feed the animals

we eat. We walk and we build our homes there. Without a proper soil the life we

know, would not be the same.

To understand and manage the natural systems it is necessary to study soil

physical properties. The range of scale of the study is very wide: from microbial

habitats to regional weather modelling. The soil data usually are obtained from
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small soil samples and cores, yet the goal is to reconstruct soil physical properties

across the fields.

Soil is a mixture of minerals, organic matter, gases, liquids and organism that

can support plan life, see Figure 2.1. Soils supply plants with mineral nutrients

held in place by the clay and humus content of the soil. For optimum plant growth,

the generalized content of soil components by volume should be roughly 50% solids

(45% mineral and 5% organic matter), and 50% voids of which half is occupied by

water and half by gas. The percent soil mineral and organic content is typically

treated as a constant, while the percent soil water and gas content is considered

highly variable whereby a rise in one is simultaneously balanced by a reduction in

the other.

Figure 2.1: The illustration shows a typical distribution of solids and pores inside

a soil sample

Soil structure can be modelled as the spatial arrangement of soil particles,

aggregates and pores. The geometry of each one of these elements, as well as

their spatial arrangement, has a great influence on the transport of fluids and

solutes through there [3].The pore space allows for the infiltration and movement

of air and water, both of which are critical for life in soil. Compaction, a common

problem with soils, reduces this space, preventing air and water from reaching the
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plant roots and soil organisms.

Fractal geometry has been increasingly applied to quantify soil structure, us-

ing fractal generalized dimensions for explaining the complexity of the structure.

Scaling effects have been observed for a long time in soil physics, for example, soil

bulk density with the sample size, specific surface areas varying as a function of

observation scale, or an increasing number of small voids revealed with increased

resolution. Fractal theory suggests that these scaling phenomena may be more

the rule than the exception and can be explained by an underlying multiscale

structure. The value of fractal parameters can be obtained directly through image

analysis of a soil sample. [4]

One of the most direct methods of characterizing soil structure is the analysis

of the spatial arrangement of pore and solid spaces on images of sections of resin-

impregnated soil. Recent technological advances in digital imagery and computers

have greatly facilitated the application of image analysis techniques in soil science.

Thick sections are analysed by reflected light, and thin sections are analysed by

transmitted light to obtain images from which pores and solid spaces can be sep-

arated using image analyses techniques. Direct measurements on images together

with applications of set theory are used to quantify connectivity, size and shape of

pores. However, the image resolution and the threshold value used to discriminate

between pore and solid space can introduce errors in the method.

Scaling of pore systems could be characterized with fractal and multifractal

techniques. The fractal approach assumes a hierarchical distribution of mass in

space such that at any resolution the fractal structure is seen as the union of

subjects similar to the whole. In this instance a single fractal dimension server to

characterize the mass distribution.
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Chapter 3

Fractals and multifractals

methods

In this section it is introduced the methods used for calculating fractal and mul-

tifractal measures. From the most simple box counting fractal method to multi-

fractal gliding method.

An object has its topological measure which is one of the several ways of

defining the dimension of the space. For example, the topological dimension of a

line is one,the dimension of surface is two, and the dimension of a 3D object is

3. However there are some natural and mathematical objects that exceeds their

topological dimension. A geometrical fractal is a mathematical object which can

exceeds its topological dimension and typically displays self-similar patterns, e.g.,

the borders of a country [5], the Koch snowflake [6] or Sierpinski triangle.

But often, the fractal measure is not enough for explaining the complexity

in the different scales of an object, so the multifractal analysis is needed. Mul-

tifractals could be seen as an extension of fractals. Multifractal analysis initially

appeared with multiplicatives cascades models of Mandelbrot for the study of en-

ergy dissipation in the context of the fully developed turbulence [7]. After that it

has been implemented for several different natural systems.

There are several methods for compute the fractal dimension of an image,

each one has its own theoretic basis. Here, we are going to use two of them: Box

Counting and Gliding, which is an improved (but more computationally demand-

ing) method for the low density areas of the image.
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3.1 Box Counting method

This methodology defined by [8] is a classical in this field. It breaks the spatially

extended dataset into smaller and smaller pieces (boxes) and analyse them at

each smaller scale. One method of understanding this method is as zooming in

observing how details change with scale. In the algorithm implemented the boxes

are scaled in power of two sizes on. Therefore it is necessary processing the image

that its size in pixels is a power of 2. So if the image is not in a properly size, it

will be cut or resized.

3.1.1 Monofractal analysis

Let a LxL grid of ε x ε boxes, N(ε) be the number of boxes required to cover the

black area in the image for each size. The fractal dimension of an image can be

defined as the relationship between the number of non-empty boxes and the its

size with the next expression [6]:

D = lim
ε→0

logN(ε)

log 1
ε

(3.1)

so the fractal dimension D, can be estimated numerically as the slope of the

line:

logN = D log
1

ε
+ cte (3.2)

3.1.2 Multifractal analysis

In the multifractal method, a distorting factor is applied to datasets extracted

from the image for giving more or less importance to the high or low mass density

areas of the picture.

Meshing the picture with boxes of size ε and define Pi(ε) as the probability

of this mass at i relative to the total mass of the picture for a box size ε, then

the generalized dimensions Dq which corresponds to scaling exponents for the qth

moments of the measure are defined as [9]:

Dq =
1

q − 1
lim
ε→0

log
∑
i P

q
i (ε)

log ε
=

1

q − 1
lim
ε→0

logX(q, ε)

log ε
(3.3)
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for q 6= 1 and being X(q, ε) the partition function. For q = 1, D1 is defined by

taking the limit when q approaches 1 and by using L’Hoplital’s Rule [10]:

D1 = lim
ε→0

∑
i Pi(ε) logPi(ε)

log ε
(3.4)

This measure Dq is related with the mass exponent τ(q) as follows:

τq = (q − 1)Dq (3.5)

for q 6= 1 and in the case of conservative measure τ1 = 0.

Another interesting measure in multifractal analysis is the relationship between

a Hausdorrf dimension f and an average singularity strength α as implicit functions

of the parameter q. Those are defined as follows:

f(α) = qα− τ (3.6)

α =
dτ

dq
(3.7)

An easily used definition of the singularity spectrum which is the one that have

been implemented in this ImageJ plug-in is: [11]

f(q) = lim
ε→0

∑
i µi(q, ε) log µi(q, ε)

log ε
(3.8)

α(q) = lim
ε→0

∑
i µi(q, ε) logPi(q, ε)

log ε
(3.9)

where µi(q, ε) is how the distorted mass probability at a box compares to the

distorted sum over all boxes at this box size:

µi(q, ε) =
(Pj(ε))

q∑
j(Pj(ε))q

(3.10)

3.2 Gliding method

The problem of the Box Counting method is that for negative q values the errors

are high. Gliding method has been developed for improving this handicap.
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The gliding box method was originally used in lacunarity analysis and later

modified by Cheng in [12] for application to multifractal analysis and then used

in soil analysis [13]. This method constructs samples by gliding a box of certain

dimensionless size ε over the grid map in all possible directions. An up-scaling

partitioning process begins with a minimum line size smaller than 1. This method

first estimates the mass exponent function τ(q):

τ(q) +D = lim
ε→0

log( 1
N∗(ε)

∑N∗(ε)
i=1 µqi (ε))

log ε
(3.11)

where ε is the dimensionless box size, N∗(ε) represents total number of gliding

boxes of size ε with measure µ(ε) 6= 0 and D is the topological dimension of

the object analysed (D = 2 for two-dimensional objects and D = 3 for three-

dimensional objects)

The functions α and f(α) are estimated numerically by the Legendre trans-

formation as

α(q) =
dτ(q)

dq
, f(α) = α(q)q − τ(q) (3.12)

Here we suppose that the uncertainties of α are:

∆α =
∆τ

|τ |
α (3.13)

The advantage of gliding box method is that the larger sample size it pro-

vides better statistical results. The disadvantage is that it is more computationed

demand because of the great number of operations.
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Chapter 4

Materials and methods

4.1 CT-scan

The soil samples have been analysed with high-resolution X-ray Computed Tomog-

raphy (CT-Scan). CT-Scan is a relatively recent non-destructive testing method

which offers an attractive opportunity for the three-dimensional insight of the in-

ner structure of objects and materials. Nowadays, due to the great technological

advances and the computational power of modern calculators, CT systems are

massively employed for a wide range of purposes in the scientific and industrial

sectors, e.g. flaw detection, failure analysis, metrology and reverse engineering.

The basic components forming a CT system are the X-ray source, characterised

by a micrometric or sub-micrometric focal spot size, the detection system, to collect

the transmitted radiation emerging from the sample, and the sample positioning

stages. The CT-Scan is done recording on the detector, which is placed behind

the sample, a set of planar projections while the sample rotates inside the incident

beam over approximately the angular range between 0 and 180/360 degrees. A

sufficient number of those angular views should be acquired at regular or known

steps, in order to efficiently reconstruct a set of horizontal cross sections (the

slices) of the object by mean of a well-established mathematical procedure known

as the filtered back-projection (FBP) algorithm. Its worth mentioning that the

rotation of the sample is a relative movement: in medical-like scanner the patient

is stationary and the source-detector block rotates, while in tabletop facilities

typically the sample is moved. Figure 4.1 illustrates the main components needed
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for CT-Scan. [14]

Figure 4.1: Main components of CT-Scan [14]

The ultimate product of the tomography process is the slice, which represents

a virtual thin-section of the sample, whose thickness is strictly related to the

achievable X-ray computed tomography spatial resolution. A grayscale value is

assigned to each voxel 1 of the reconstructed slice, proportionally to the local X-ray

attenuation map. Once a set of consecutive slices is reconstructed, it is possible to

create a three-dimensional digital data set of the sample just combining the slices

into a stack. [14]

4.2 Software development

Analyse the structure of 2D and 3D image samples is not a trivial task. For

this purpose there are different methods and techniques. We have developed a

specific software based in ImageJ plug-in. ImageJ is a public domain Java software

specialized and optimized in image processing. It works with modules called plug

ins.
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Figure 4.2: ImageJ is a software specialized in image computing

We have developed 6 independent modules for multifractal analyse of images:

2D Box Counting Monofractal method, 2D Box Counting Multifractal method,

2D Gliding method, 3D Box Counting Monofractal method, 3D Box Counting

Multifractal method and 3D Gliding method. All those plugins let the user choose

between different options e.g. the min and max size of the boxes for the method and

the values of q in multifractal method. It calculates the most important measures

with their errors in multifractal analysis: X(q, ε), τ(q), fractal and multifractal

generalized dimension Dq and multifractal spectrum α and f(α)

The software has been tested successfully with theoretical, real and published

data. We have also written a detallied user manual of the program which can

be found as the Appendix D on this document. In that Appendix, there are

instructions about its operation and some examples with their results.
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Chapter 5

Results

For this task we have analysed 4 real soil samples. One of them is from a soil ag-

gregates sample from a field of Scotland, while the other three have been extracted

from the same experimental farm in Cordoba (Spain) but plowed with different

tillage tools.

5.1 Soil aggregates sample

For this analysis, an arable sandy loam soil from a field of Scotland was packed

into polypropylene cylinders of 6 cm diameter and 5 cm high at 1.2 Mgm-3 bulk

density being air-filled pore volume 0.17. The soil samples were imaged using an

mSIMCT at 155keV and 25 mA. To minimize beam hardening an aluminium filter

(0.25 mm) was applied, and reconstruction process also implied several corrections.

The image stacks of 260x260x256 with voxel-thick slices were generated from the

3D volumes by using VGStudioMax v.1.2.1.

We have reconstructed the 3 Dimensional model joining the slices with ImageJ.

The 3D image can be seen in Figure 5.1 where the darker areas means porous zones.

15



Figure 5.1: 3 Dimensional model reconstructed from soil aggregates sample.

5.1.1 Two-dimensional analysis

In order to have a first estimation of the structure with a low computing cost, we

have studied different 2 dimensional slices. We have selected 3 slices uniformly dis-

tributed along each 3 main direction of the space. They can be seen in Figure 5.2.

Figure 5.2: Model reconstructed wich 3 slices of each main direction.
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The computing time in 2 dimensional models is very low, so it can give a first

measure about the multifractal structure of the samples. Here we have slices of

260x260 px and 260x256 px so for the box counting method they have been resized

to 256x256 px. In the Gliding method the original size of the images have been

used. Then the results for the XY, YZ and XZ planes are shown.

First we compute τ(q) for each slice in the plane XY (Figure 5.3), then Dq

(Figure 5.4) and derived the α(q) (Figure 5.5).

For each of the planes XY, XZ, YZ we will follow this order. Therefore, plane

XZ analysis is from Figure 5.7 till Figure 5.10, and plane YZ is from Figure 5.11

till Figure 5.14

(a) Box Counting method (b) Gliding method

Figure 5.3: τ(q) for some slices of plane XY.

Comparing Box Counting method and Gliding method the errors in τ(q) dis-

minished in the negative q values as it is relevant in slice 192. On the other hand,

slice 64 and 128 present similar structure meanwhile 192 is significantly different.

The curvature of τ(q) is smoother in the Gliding method. However the differences

are retained.

17



(a) Box Counting method (b) Gliding method

Figure 5.4: Dq for some slices of plane XY.

Dq shows the same results as τ(q) it is derivative from there. For negative q

values the differences are more clear between slice 128 and slice 64.

(a) Box Counting method (b) Gliding method

Figure 5.5: α(q) for some slices of plane XY.

The same conclusions are achieved observing α(q) behaviour.
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(a) Box Counting method (b) Gliding method

Figure 5.6: Multifractal spectrum f(α) for some slices of plane XY.

Ther multifractal spectrum gives us a complete information in the hierachical

soil structure. Slice 64 shows a week multifractal character in concordance with

previous results. Slice 128 presents an strong sclaing in the low values, being

stronger in slice 192.

(a) Box Counting method (b) Gliding method

Figure 5.7: τ(q) for some slices of plane XZ.
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At the XZ plane, slices 64 and 192 presents similar structure with more mul-

tifractal behaviour than slice 128.

(a) Box Counting method (b) Gliding method

Figure 5.8: Dq for some slices of plane XZ.

In the Dq measures the values of slices 64 and 192 are very similar. They can

not be differentiated as the error bars overlap themselves.

(a) Box Counting method (b) Gliding method

Figure 5.9: α(q) for some slices of plane XZ.
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As in the previous Figures slices 64 and 192 can not be differenciated and slice

128 presents a weak multifractal behaviour.

(a) Box Counting method (b) Gliding method

Figure 5.10: Multifractal sepectrum f(α) for some slices of plane XZ.

Slice 128 shows a mild multifractal spectrum in the concordance with previous

results.

Basically, the results in the slices at YZ are the same than in the slices at XY

plane. However in this case the slice 64 is the one that is differentiated from the

other ones.
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(a) Box Counting method (b) Gliding method

Figure 5.11: τ(q) for some slices of plane YZ.

(a) Box Counting method (b) Gliding method

Figure 5.12: Dq for some slices of plane YZ.
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(a) Box Counting method (b) Gliding method

Figure 5.13: α(q) for some slices of plane YZ.

(a) Box Counting method (b) Gliding method

Figure 5.14: Multifractal spectrum f(α) for some slices of plane YZ.

Multifractal spectrum gives again a better inside information pointing out the

hierachical strength among the slices. The scaling behaviour is smother in the

negative q values in the case of Gliding mtehod.
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As seen in the previous Figures there are differences between the slices results

from the same and different planes, specially between the slices of plane XY along

Z direction. This implies that the greatest changes in the structure of the soil

occurred in the gravity normal direction to the surface. In this direction take

place the main natural processes such as sedimentation, filtration among others.

Consequently trying to understand the soil complexity only studying it as a bidi-

mensional structure does not reflect all of it. For reaching all the complexity it

must be studied as a whole 3-dimensional system. This is what has been done in

the following section.

Note that for the positive q values Gliding and Box Counting method gives

very similar results while for the negative oens are very different. One reason is

because the box counting method has great errors in the low density areas. Beside

this, at Box Counting method the slices has been resized coarsing the structure.

5.1.2 Three-dimensional analysis

In this section we have computed the full 3 dimensional model of the soil. Due to

the high computation time required in the study of 3 dimensional structure we have

resized several times the model for comparing the time required and the validity

of the results. They are also employed the box counting and gliding methods. We

do not have computed the 256x256x256 voxel through gliding method because of

the high computing time required estimated in one month.
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(a) Box Counting method (b) Gliding method

Figure 5.15: τ(q) for 3D model.

(a) Box Counting method (b) Gliding method

Figure 5.16: Dq for 3D model.

General results follows the same comments given in the earlier section. We can

point out that for negative q values are highly sensitive to an upscaling size. From

256x256x256 voxel till 128x128x128 the results for τ(q), Dq, α(q) and f(α) in the

25



Box Counting method are similars. In the 64x64x64 size a tendency to reduce a

multifractal behaviour is shown. This is clear in 32x32x32 case.

(a) Box Counting method (b) Gliding method

Figure 5.17: α(q) for 3D model.

(a) Box Counting method (b) Gliding method

Figure 5.18: Multifractal spectrum f(α) for 3D model.

In the Gliding method the significant differences are found between 128x128x128

and 64x64x64 sizes compared to 32x32x32.
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The high errors in negative q values are mainly because because we have used

all X(q) for getting Dq, α and f(α). In most of cases they could have been reduced

by adjusting with more accuracy X(q) shown in Appendix A

Figure 5.19: Computing times for the different sizes and methods of 3D images.

The trend line shows the expected computing time where L is the characteristic

dimension, e.g. 256, 128.

As seen in Figure 5.19 the computing time get higher very quickly with the

size of the slices (note that the y-axis is shown in logarithmic scale). After 15

days of calculations the 256x256x256 voxel in gliding method was in the middle of

the calculus, so it is estimated that it would cost up to 30 days to finalize. The

computing time of 32x32x32 voxel with box counting method is so low that can

not be appreciated properly in the picture. It seems that the computing time and

the size of the sample are related with a power law funtion. This means that a

small increment of the size to be analysed increments higly the computing time.

5.2 Tillage treatments

The trials were conducted at the Alameda del Obispo experimental farm (38N, 5W,

altitude 110m), Cordoba, Spain (see Figure 5.20). The climate is Mediterranean

with a mean annual rainfall of 595mm. Summer in Cordoba is dry and hot while

autumn and winter are mild and rainy [15]. The soil is a loamy alluvial with
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particle-size distribution in the upper (0-15 cm) soil layer: sand, 350 g
kg

; silt, 443 g
kg

;

and clay 207 g
kg

[16].

Soil samples for each of the tillage treatment were packed into polypropylene

cylinders of 8 cm diameter and 10 cm high. These were imaged using an mSIMCT

at 155keV and 25 mA. An aluminium filter (0.25 mm) was applied to reduce beam

hardening and later several corrections where applied during reconstruction. All

3D volumes were converted using VGStudioMax v.1.2.1 into image stacks with

voxel-thick slices.

Figure 5.20: Soil samples were extracted from different areas plowed with three

different tools: moldboard(vertedera) in yellow, chissel in green and roller in blue.

As in the previous section we have already seen that the 2 dimensional analysis

is not enough for showing the complexity of the soil, here we have analyzed directly

the 3 dimensional model. For this purpose we have selected a 256x256x256 voxel

piece from the full sample. Taking into account a reasonable computing time and

good precision of the calculus with the available computer we have analysed that

piece with box counting method and then, resizing it to 128x128x128 voxel for the

analysis both with gliding and box counting method. Then results are shown for

each type of plowing technique.

28



5.2.1 Moldboard

In Figure 5.21 shows the original 3-Dimensional model reconstructed from the slices

obtained with CT-scan. Due to the big size of the sample (more than 700x800x256

voxel) it would not be possible to compute it in a reasonable time with a stan-

dard computer. Therefore, we have selected a 256x256x256 voxel subsample for

the analysis. First the full size with the box counting method, and then scaling

it to 128x128x128 voxel and analysing both with box counting and gliding meth-

ods. These procedure is the same for the chissel (Figure 5.26) and roller samples

(Figure 5.31).

Figure 5.21: Original 3D model from moldboard sample.

In Figures 5.22, 5.23, 5.24, 5.25 are shown the results of the multifractal anal-

ysis.
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Figure 5.22: τ(q) of 3D moldboard sample.

Figure 5.23: Dq of 3D moldboard sample.

As seen in Figures 5.22 and 5.23 there are not differences between teh sizes

and methods used. The sample shows a weak multifractal behaviour as Dq values
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are very similar for each q. Besides the errors are so low that can not be appreciated

in the Figures.

Figure 5.24: α(q) of 3D moldboard sample.

Figure 5.25: f(α) of 3D moldboard sample.
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Finally as be expected the multifractal spectrum is very similar for each size

and method, although there are some differences for the Gliding method. In this

case there would not be any advantage for using big samples or Gliding method

which would demand more computing time.

5.2.2 Chissel

In Figure 5.26 can be appreciated structure differences in comparison with Fig-

ure 5.21

Figure 5.26: Original 3D model from chissel sample.

Then in Figures 5.27, 5.28, 5.29, 5.30 are shown the results from the multi-

fractal analysis of the Chisel soil sample.

32



Figure 5.27: τ(q) of 3D chissel sample.

Figure 5.28: Dq of 3D chissel sample.

In this case there difference between 128 and 256 sizes. At 128 size there is no

difference between Gliding and Box Counting method.
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Figure 5.29: α(q) of 3D chissel sample

Figure 5.30: f(α) of 3D chissel sample.

In Chissel case it shows that using smaller samples would not show properly

the multifractal generalized dimensions.
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5.2.3 Roller

Finally in Figure 5.31 is shown the full piece of soil plowed with roller tillage. As in

the previous cases, a 256x256x256 voxel three-dimensional view is extracted from

the full sample for the analysis.

Figure 5.31: Original 3D model from roller sample.

Roller soil sample is analyzed and the results shown in Figures 5.32, 5.33,

5.34, 5.35.
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Figure 5.32: τ(q) of 3D roller sample.

Figure 5.33: Dq of 3D roller sample.

In this case the values obtained through 256x256x256 voxel and 128x128x128

voxel can not be differentiated because their errors includes themselves. Meanwhile

Gliding method shows smoother curve that Box Counting method.
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Figure 5.34: α(q) of 3D roller sample.

Figure 5.35: Multifractal spectrum f(α) of 3D roller sample.

Although in Figures 5.32, 5.33, 5.34 there are several differences between

Box Counting and Gliding method, those are reduced in the multifractal spectrum

of Figure 5.35
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5.2.4 Multifractal comparison

Finally we have selected the results from 256x256x256 voxel in Box Counting from

the three tillage methods and compared them in Figure 5.36

Figure 5.36: Multifractal spectrum of Moldboard, Roller and Chissel tillage for

Box Counting method and 256x256x256 voxel samples.

The comparation of multifractal spectrum shows that Chissel and Roller tillage

scales similarly. Moldboard tillage scales for positive q values while Chissel and

Roller do for negative q values. The several differences for q positive values are

detallied in table 5.1.

Method Box Counting Gliding

Resolution 256 128 128

Sample M R C M R C M R C

αmin 2.983 2.996 2.996 2.983 2.997 2.998 2.984 2.998 2.999

f(αmin) 2.909 2.984 2.982 2.910 2.989 2.995 2.903 2.988 2.997

Table 5.1: f(αmin) and αmin values for each method and size.

Respect to the role of each tillage tool in the hierachy of soil’s structure,
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Moldboard creates a higher complexity in the soil aggregates as physically removes

the soil. Chissel and Roller tends to destruct the aggregates reducing the soil

rugosity.
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Chapter 6

Conclusions

3-Dimensional images were obtained from four different soil samples. In order to

describe and characterize the porosity structure we have studied their generalized

fractal and multifractal dimension through gliding and box counting methods.

Gliding method gives results which trends soft functions and few errors, while the

box counting method gives results faster but with more errors. The computing time

in 3-D images is related with a power law function of the characteristic dimension

of the piece. This is very critical in Gliding method where with a i-7 processor

would need one month for calculating the multifractal spectrum of a 256x256x256

voxel sample.

Slices from the 3 main directions of the 3D sample were extracted and analysed.

The great variations were found between parallel planes trough the surface normal

direction. This has sense because in this direction take place the main natural

processes, e.g. sedimentation, filtration which change the porosity structure of

the soil. However studying the soil structure using two dimensional planes is not

enough for showing the complexity it has, a 3-D analysis is needed.

Reducing the images for analyse their structure saving computing time yields

good resuls when doing this one or two times, e.g: from 256x256x256 voxel to

128x128x128 voxel or even to 64x64x64 voxel. But reducing further the samples

alters too much the original structure.

Finally soil samples plowed with different techniques were analyzed. The mul-

tifractal spectrum comparison shown several differences between one of them and

the other two ones. Moldboard tillage shows a high complexity for positive q val-

41



ues as physically it removes the soil. Meanwhile the other two tillages are very

similar and shows less complexity for positive q values as they physically tends to

destruct the aggregates reducing the soil rugosity.
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Appendix A

X(q, ε) list of 2D slices of soil

aggregates sample calculated with

different methods

Then there are the values of X(q, ε) from which are obtained the values of τ . α

and f(α). The values are for each 3 slices selected of each main direction of the 3

dimensional model.
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Figure A.1: X(q, ε) of the slice 64 from XY plane obtained through Box Counting

method

Figure A.2: X(q, ε) of the slice 64 from XY plane obtained through Gliding method
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Figure A.3: X(q, ε) of the slice 128 from XY plane obtained through Box Counting

method

Figure A.4: X(q, ε) of the slice 128 from XY plane obtained through Gliding

method
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Figure A.5: X(q, ε) of the slice 192 from XY plane obtained through Box Counting

method

Figure A.6: X(q, ε) of the slice 192 from XY plane obtained through Gliding

method
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Figure A.7: X(q, ε) of the slice 64 from XZ plane obtained through Box Counting

method

Figure A.8: X(q, ε) of the slice 64 from XZ plane obtained through Gliding method
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Figure A.9: X(q, ε) of the slice 128 from XZ plane obtained through Box Counting

method

Figure A.10: X(q, ε) of the slice 128 from XZ plane obtained through Gliding

method
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Figure A.11: X(q, ε) of the slice 192 from XZ plane obtained through Box Counting

method

Figure A.12: X(q, ε) of the slice 192 from XZ plane obtained through Gliding

method
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Figure A.13: X(q, ε) of the slice 64 from YZ plane obtained through Box Counting

method

Figure A.14: X(q, ε) of the slice 64 from YZ plane obtained through Gliding

method
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Figure A.15: X(q, ε) of the slice 128 from YZ plane obtained through Box Counting

method

Figure A.16: X(q, ε) of the slice 128 from YZ plane obtained through Gliding

method
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Figure A.17: X(q, ε) of the slice 192 from YZ plane obtained through Box Counting

method

Figure A.18: X(q, ε) of the slice 192 from YZ plane obtained through Gliding

method
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Appendix B

X(q, ε) list of 3D soil aggregates

sample analysed with different

methods and sizes

Figure B.1: X(q, ε) from the 256x256x256 voxel 3D model obtained through Box

Counting method
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Figure B.2: X(q, ε) from the 128x128x128 voxel 3D model obtained through Glid-

ing method

Figure B.3: X(q, ε) from the 128x128x128 voxel 3D model obtained through Box

Counting method
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Figure B.4: X(q, ε) from the 64x64x64 voxel 3D model obtained through Gliding

method

Figure B.5: X(q, ε) from the 64x64x64 voxel 3D model obtained through Box

Counting method
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Figure B.6: X(q, ε) from the 32x32x32 voxel 3D model obtained through Gliding

method

Figure B.7: X(q, ε) from the 32x32x32 voxel 3D model obtained through Box

Counting method

60



Appendix C

X(q, ε) list of 3D tillage

treatments soil samples analysed

Figure C.1: X(q, ε) from the 256x256x256 voxel Vertedera 3D model obtained

through Box Counting method
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Figure C.2: X(q, ε) from the 128x128x128 voxel Vertedera 3D model obtained

through Gliding method

Figure C.3: X(q, ε) from the 128x128x128 voxel Vertedera 3D model obtained

through Box Counting method
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Figure C.4: X(q, ε) from the 256x256x256 voxel Chisell 3D model obtained through

Box Counting method

Figure C.5: X(q, ε) from the 128x128x128 voxel Vertedera 3D model obtained

through Gliding method
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Figure C.6: X(q, ε) from the 128x128x128 voxel Chissel 3D model obtained

through Box Counting method

Figure C.7: X(q, ε) from the 256x256x256 voxel Roller 3D model obtained through

Box Counting method
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Figure C.8: X(q, ε) from the 128x128x128 voxel Vertedera 3D model obtained

through Gliding method

Figure C.9: X(q, ε) from the 128x128x128 voxel Roller 3D model obtained through

Box Counting method
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Appendix D

User manual and documentation

of the plug-in implemented in

ImageJ for multifractal analysis
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1 Introduction

This document intends to be a basic user and an advanced programmers man-

ual. It provides the formulas, algorithms and implementation methods that have

been used in the plugin developed for ImageJ. This plugin analyse images through

di�erent multifractals methods.

ImageJ is a public domain Java image processing program. It runs, either as an

online applet or as a downloadable application in Windows, Linux and Mac OS.

ImageJ is optimized for processing 8-bit, 16-bit and 32-bit images. It supports

standard stacks, a series of images that share a single window (3D images). It is

multi-threaded, so time-consuming operations such as image �le reading can be

performed in parallel with other operations [1].

1.1 Structure and �rst steps

The plugin has implemented the Box Counting and the Gliding multifractal analy-

sis in 2D and 3D images. For the Box Counting method it also perform monofractal

analysis of Black and White images. Each method runs independent of others.

Before starting ImageJ, the folder which contains all Java methods must be

copied to �plugin� sub-folder in ImageJ installation directory. Then start ImageJ

and open a 2D or stack image. Finally going to �Plugin/Multifractal soil analysis�

choose a proper multifractal analysis of the ones developed in this plugin as seen

in Figure 1.
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Figure 1: Di�erent type of multifractal analysis from the plugin developed in

ImageJ

1.2 Internal structure

The program is developed in Java using the methods implemented in ImageJ.

Those methods are suitable and optimized for processing images. The plugin has

been developed in a modular way and the internal structure is shown schematically

in Figure 2.
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Figure 2: Internal structure of the Java class and methods developed for the plugin

1.3 Some numerical details

1.3.1 Inverting images

Although the program can be applied to any type of image, it is meant for calcu-

lating the pore structure of soils. So when it does a fractal or multifractal analysis

it gives the more importance to the dark holes of the image which means to be the

pores. The algorithm of the method is based on the density of the pixels, but a

black hole has value of 0 while a white pixel has the maximum value (255 in case

of 8-bit images for example). So for applying the algorithm correctly the image is

inverted before the calculations and then again re-inverted for showing the original

image. For inverting the image the program will do the next operation:

pixelinverted = |(2bit − 1)− originalpixel| (1)

Where bit refers to the depth of the image (8-bit, 16-bit...)

1.3.2 Resize image

In Box Counting Method sometimes the user can select to resize the image to a

properly size (see below). The algorithm implemented for doing this is bilinear
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interpolation. The key idea is to perform linear interpolation �rst in one direction,

and then again in the other direction. Although each step is linear in the sampled

values and in the position, the interpolation as a whole is not linear but rather

quadratic in the sample location. Bilinear interpolation considers the closest 2x2

neighbourhood of known pixel values surrounding the unknown pixel's computed

location. It then takes a weighted average of these 4 pixels to arrive at its �nal,

interpolated value. The weight on each of the 4 pixel values is based on the

computed pixel's distance (in 2D space) from each of the known points.

1.3.3 Calculation precision

All the calculates done in the program uses double precision. Although sometimes

it only shows 4 or 5 decimals, it will always retain all the decimals.

Double-precision �oating-point format is a computer number format that oc-

cupies 8 bytes (64 bits) in computer memory and represents a wide dynamic range

of values by using �oating point. This gives from 15�17 signi�cant decimal digits

precision.
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2 Box Counting method

Box counting is a method of gathering data for analysing complex patterns by

breaking an image into a smaller and smaller pieces. The intend of box counting

is to quantify fractal scaling. In the algorithm implemented the boxes are scaled

in power of two sizes on. Therefore it is necessary for processing the image that

its size in pixels is a power of 2. So, if the user does not have its image in the

properly size the program will ask her to cut or resize it.

2.1 Monofractal analysis

Fractal dimension is the most important parameter of monofractal theory. In box

counting method it counts the number of square grids required to entirely cover

an object surface. Let ε be the adimensional side length of the grid (size length

of the grid divided by total size length) , N(ε) be the number of grids required to

cover the black area in the image for each size. The fractal dimension of an image

can be de�ned as the relationship between the number of grids and the its size

with the next expression [2]:

D = lim
ε→0

logN(ε)

log 1
ε

(2)

so the fractal dimension D, can be estimated numerically as the slope of the

line:

logN = D log
1

ε
+ cte (3)

2.1.1 Program: operation and results

The method works also with Black and White and Gray 2D images or 3D images

saved as stacks. So after opening the �le go to sub-menu �plugin/Multifractal soil

analysis/2D Box Counting Monofractal� for 2D images or �plugin/Multifractal soil

analysis/3D Box Counting Monofractal� for 3D images. If the image size in pixels

of the image is not a power of 2, then it will appear a dialogue asking to resize or

cut the image (Figure 3). The image will be reduced to the largest size power of

2 smaller than itself.
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Figure 3: Cut or resize the image

After scaling the image, if the image is not in black and white colours it will

be automatic converted. Then will appear a dialogue (Figure 4) where the user

can choose to analyze the actual image or the inversed one.

Figure 4: Choose between the actual image or the inverted one

Then the user can select the minimum and maximum size of the boxes (in

pixels) that will be used along analysis. In Figure 5 the numbers shows are the

limits that can be choosen. If the value that introduces the user is not power of 2,

then it will be rounded.

Figure 5: Choose the maximum and minimum size of the boxes for the analysis
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Now the program realizes the box counting calculations and �nally shows the

results. In the next section the method is validated calculating the fractal dimen-

sion of the sierpinsky carpet.

2.1.2 Example 1: Sierpinsky carpet

In this example we are going to evaluate the method calculating the fractal dimen-

sion of the Sierpinsky carpet(Figure 6).

Figure 6: Sierpinsky Carpet

For this example we have resize the image and used all rage of box sizes possible

for the sample.

After realizing the calculations, the Figure 7 shows for each adimensional size

of the box ε, the total number of boxes and the number of boxes with at least one

black pixel.
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Figure 7: For each adimensional size ε of the box counting method,total number

of boxes, and number of boxes with at leas one black pixel.

The program also plots the the results in a new window. In Figure 8 compares

in log-log the number of boxes with at least one black pixel as a function of the size

ε. It realizes the linear �t of the points showing its parameters and the goodness

of the �t R2. The slope of the line will be the fractal dimension of the picture.

Figure 8: Comparison in log-log between the number of boxes with at least one

black pixel and the size ε

Pushing the widow 'List', the two �rst columns (X0,Y0) are the values used for
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plotting the linear regresion, and the two second columns (X1,Y1) are the values

obtained from the anlyzed image.

Finally the last �gure (Figure 9) shows the fractal dimension of the picture we

have analysed with the error of the linear �t of the slope. It shows the goodness

of the calculations because the calculated fractal dimension is 1.898 versus 1.892

which is the theoretical fractal dimension of the sierpinsky carpet.

Figure 9: Fractal dimension of the picture

2.2 Multifractal analysis

A multifractal system is a generalization of the fractal analysis in which a single

exponent, the fractal dimension, is not enough to describe its dynamics; instead,

a continuous spectrum of exponents is needed. In essence, multifractal analysis

applies a distorting factor to datasets extracted from patterns, to compare how

the data behave at each distortion sometimes giving more or less importance to

the high or low mass density areas of the picture. This is done using graphs known

as multifractal spectra that illustrate how the distortions a�ect the data.

So if we cover the picture with boxes of size ε and de�ne Pi(ε) as the probability

of this mass at i relative to the total mass of the picture for a box size ε, then

the generalized dimensions Dq which corresponds to scaling exponents for the qth

moments of the measure are de�ned as [3]:

Dq =
1

q − 1
lim
ε→0

log
∑
i P

q
i (ε)

log ε
=

1

q − 1
lim
ε→0

logX(ε)

log ε
(4)

for q 6= 1. For q = 1, D1 is de�ned by taking the limit when q approaches 1

and by using L'Hoplital's Rule [4]:
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D1 = lim
ε→0

∑
i Pi(ε) logPi(ε)

log ε
(5)

This measure is correlated with the mass exponent τ(q) as follows:

τq = (q − 1)Dq (6)

for q 6= 1 and τ(1) = 0.

Another interesting measure in multifractal analysis is the relationship between

a Hausdorrf dimension f and an average singularity strength α as implicit functions

of the parameter q. Those are de�ned as follows:

f(α) = qα− τ (7)

α =
dτ

dq
(8)

An easily used de�nition of the singularity spectrum which is the one that have

been implemented in this ImageJ plugin is:

f(q) = lim
ε→0

∑
i µi(q, ε) log µi(q, ε)

logL
(9)

α(q) = lim
ε→0

∑
i µi(q, ε) logPi(q, ε)

logL
(10)

where µi(q, ε) is how the distorted mass probability at a box compares to the

distorted sum over all boxes at this box size:

µi(q, ε) =
(Pj(ε))

q∑
j(Pj(ε))q

(11)

2.2.1 Program: operation and results

This module is also implemented for 3D and 2D images. First the user has to open

the image (or stack image in 3D) and then click the module in �plugin/Multifractal

soil analysis/2D Box Counting Multifractal� for 2D images or �plugin/Multifractal

soil analysis/3D Box Counting Multifractal� for 3D images. After that will be

appear a box where the user will de�ne the range of the multifractal exponents q,

giving its minimum, maximum value and the interval.(Figure 10)
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Figure 10: Dialogue about q exponents

Then, if the image size in pixels is not a power of 2, then it will appear a

dialogue asking to resize or cut the image (Figure 11). The image will be reduced

to the largest size power of 2 smaller than itself.

Figure 11: Cut or resize the image

Then will appear a dialogue (Figure 12) where the user can choose to analyze

the actual image or the inversed one.

Figure 12: Choose between the actual image or the inverted one

Then the user can select the minimum size of the boxes (in pixels) that will
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be used along analysis. In Figure 13 the numbers shows are the limits that can

be choosen. If the value that introduces the user is not power of 2, then it will be

rounded.

Figure 13: Choose the minimum size of the boxes for the analysis

Finally the program realizes the multifractal box counting analysis and shows

the results. The plots and the tables that are shown by the program are fully

explained with one example in the next section of this manual.

2.2.2 Example 2: Multifractal Sierpinski Carpet

Now we are going to applicant the method to a real example. For this porpouse we

are going to analyse a multifractal sierpinski carpet in Gray colour. The Sierpinski

carpet is generated with a probabilist method explained in [5] with a p = 8/9 and

5 iterations (Figure 14). We have resize the image, used all rage of box sizes

possible for the sample and a range of q from -20 to 20.

Figure 14: Multifractal Sierpinski Carpet with p = 8/9 and �ve iterations
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After realizing the calculations the programme will show plots with the results.

The Figure 15 shows X(ε) for each value of q. This will be used for calculating the

slope and then get the Dq and more coe�cients. We can run again the program

and choose another value for epsilonmax for getting a proper and uniformly slope.

.

Figure 15: X(q) vs ε

Pushing 'List' it shows the numeric values of the plot.

Then the programme get the slope τ of each line and plot versus the q values.

(see Figure 16)
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Figure 16: τ(q) vs q. The vertical lines shows the error associated with the calcu-

lation of τ

Pushing 'List' it shows the numeric values of the plot which it errors.

Then we get the values of Dq vs q associated to the analysed image (Figure

17). This shows the goodness of the method because the values are similar to the

ones in [5]. The theoretical results are Dqq→−∞ = 2.96 and Dqq→+∞ = 1.87, very

similar to the ones we have obtained given that the size of the image is limited

and with only �ve iterations. The error bars in q negative are typically from the

box counting method, because of the lack of statistic in areas with low density.

Figure 17: Dq vs q. The vertical lines shows the error associated with the measure
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Pushing 'List' it shows the numeric values of the plot which it errors.

Finally it shows the plot of the multifractal spectrum (ordinate axis) versus

its singularity strength α (abscissa axis). Horizontal and vertical bars are the

multifractal spectrum and singularity strength errors

Figure 18: α vs f(α). The vertical and horizontal lines shows the error associated

with the measure

Here the numeric values are not shown in 'List' button. The α and f(α) values

with their errors for each q are shown in the table that the program shows.
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3 Gliding Box method

Although the algorithm of the box counting method is very fast, it has the problem

that for negative values of q the error of measures are very high. The gliding

method will improve this area.

The gliding box method was originally used in lacunarity analysis and later

modi�ed by Cheng [6] for application to multifractal analysis and then used in

soil analysis [7]. This method constructs samples by gliding a box of certain

adimensional size ε over the grid map in all possible directions. An up-scaling

partitioning process begins with a minimum line size smaller than 1. This method

�rst estimates the mass exponent function τ(q):

τ(q) +D = lim
ε→0

log( 1
N∗(ε)

∑N∗(ε)
i=1 µqi (ε))

logε
(12)

where ε is the adimensional box size, N∗(ε) represents total number of gliding

boxes of that size and measure µ(ε) 6= 0 and D is the topological dimension of the

object analysed (D = 2 for bi-dimensional objects andD = 3 for three-dimensional

objects)

The functions α and f(α) are estimated numerically by the Legendre transfor-

mation as

α(q) =
dτ(q)

dq
, f(α) = α(q)q − τ(q) (13)

One advantage of gliding box method is that the larger sample size it pro-

vides usually yields better statistical results. The disadvantage is that needs more

calculation time because of the great number of operations.

3.1 Program: operation and results

Operation of this module is quite similar to the previous ones, even simpler. It is

implemented for 3D and 2D images. First the user has to open the image (or stack

image in 3D) and then open the module in �plugin/Multifractal soil analysis/2D

Gliding Multifractal� for 2D images or �plugin/Multifractal soil analysis/3D Glid-

ing Multifractal� for 3D images. Then a dialogue (Figure 19) will be appear
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where the user has to de�ne the range of the multifractal exponents q, giving its

minimum, maximum value and one interval.

Figure 19: Dialogue about q exponents

The gliding box method accept all size of images. Finally and before show

the plots and tables, a dialogue (Figure 20) will be appear with a countdown to

estimate the time it would cost to make all the calculations.

Figure 20: Countdown

Then will appear a dialogue (Figure 21) where the user can choose to analyze

the actual image or the inversed one.
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Figure 21: Choose between the actual image or the inverted one

Then the user can select the minimum and maximum size of the boxes (in

pixels) that will be used along analysis. In Figure 22 the numbers shows are the

limits that can be choosen.

Figure 22: Choose the maximum and minimum size of the boxes for the analysis

3.2 Example 3: Landsat TM imagery

For this example we are going to analyse a Landsat TM imagery (see Figure 23),

captured on 7 September, 1985 covering about 350 km2 in the Michell-Sulphirets

mineral district, northwester BC, Canada [8]. For applying multifractal analysis

to this image we are going to select a minimum size of box size of 1 pixel and a

maximum size of box equal to the width of the image.
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Figure 23: Landsat TM band 5 from 7 September, 1985. Copied directly from a

pdf �le in [8]

While the program is doing the calculations a windows similar to Figure 20

will show a countdown which give us an idea about how much time it will cost to

getting the results. Then the �rst plot (Figure 24) shows X(q) vs ε for each value

of q. If the line get saturated or have di�erent slopes along ε we can run again

the program for choosing more properly the minimum and maximum size of the

boxes.

Figure 24: X(q, ε) vs ε for each q based on multifractal Gliding Method
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Pushing 'List' it shows the numeric values of the plot.

Then, τ is calculated for each q as the slope of X(q, ε) and shown in Figure

25. The numerical values and the errors can be get pushing in the 'list' window.

Here we compared them with the ones in [6]. The numerical values are virtually

identical.

Figure 25: τ vs q. It is also plotting the errors of τ but in this case they are too

small for being appreciated.

Pushing 'List' it shows the numeric values of τ for each q and its error.

Dq is easily calculated as Dq = τ
q−1 and shown in Figure 26.

Figure 26: Dq vs q. Errors of Dq very small for being appreciated in the plot.
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Pushing 'List' it shows the numeric values of Dq for each q and its error.

For the Gliding Method the calculate of α has been done through numerical

derivation of τ . They are estimated by means of the central di�erence method

from τ(q) and a step h = 0.01. Figure 27 shows α vs q.

Figure 27: α vs q based on multifractal Gliding Method

Pushing 'List' it shows the numeric values of α for each q and its error.

Finally f(α) is calculated as f(α) = qα− τ and shown in Figure 28

Figure 28: Multifractal spectrum f(α) vs α using Gliding Method

Here the numeric values are not shown in 'List' button. The α and f(α) values

with their errors for each q are shown in a table that the program shows.
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