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The concepts of entropy and dimension as applied to dynamical systems are reviewed from a 

physical point of view. The information dimension, which measures the rate at which the in-
formation contained in a probability density scales with resolution, fills a logical gap in the 
classification of attractors in terms of metric entropy, fractal dimension, and topological entropy. 
Several examples are presented of chaotic attractors that have a selfsimilar, geometrically scaling 
structure in their probability distribution; for these attractors the information dimension and 
fractal dimension are different. Just as the metric (Kolmogorov-Sinai) entropy places an upper 
bound on the information gained in a sequence of measurements, the information dimension can 
be used to estimate the information obtained in an isolated measurement. The metric entropy 
can be expressed in terms of the information dimension of a probability distribution constructed 
from a sequence of measurements. An algorithm is presented that allows the experimental de-
termination of the information dimension and metric entropy. 

Introduction 

Let us start out with a quotation from Abbot's 
"Fiatland" [1]: 

"Dimension implies direction, implies measurement, 
implies the more and the less." 

"As one of your Spaceland poets has said, we are all 
liable to the same errors, all alike the Slaves of our re-
spective Dimensional prejudices." 

A Square 

There is no unique notion of dimension. In the 
familiar territory of Euclidean space, we may all 
be slaves to a different aspect of dimension and yet 
arrive at the same conclusions. But, if we venture 
into the realm of the bizarre, distinct notions of 
dimension diverge. In the domain of chaos, deter-
ministic structure amplifies the uncertainty inher-
ent in measurement, until only probabilistic infor-
mation remains. To comprehend the strange objects 
that inhabit this world, we must expand our con-
cept of dimension to encompass chance as well as 
certainty. 

When dealing with a dissipative dynamical sys-
tem we may begin with a Euclidean phase space 
of initial conditions of large or even infinite dimen-
sion; after some time passes, the transients relax, 
some modes may damp out, and the point in phase 
space that describes the state of the system ap-
proaches an attractor. The number of degrees of 
freedom is thereby reduced. Dimension provides 
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the natural vehicle to make the notion of "degrees 
of freedom" more precise. 

Following A Square [1], we will distinguish three 
distinct intuitive notions of dimension: 

(1) Direction: Euclidean 3-space is naturally de-
scribed by 3-tuples, and is not homeomorphic to 
Euclidean 2-space. Following Poincare, Brouwer, 
Menger, and Urysohn, this notion naturally leads 
to the modern definition of topological dimension [2]. 

(2) Capacity (the more and the less): The volume 
of a cube varies as the third power of its side, where-
as the "volume" of a square varies as the second. 
Following Hausdorff and Besicovitch, we are led 
to the fractal dimension, beautifully described in 
the book by Mandelbrot [3]. 

(3) Measurement: Here we come unstuck from 
pure geometry. Measurement leads to probability, 
and probability leads to entropy, or to take the 
positive aspect, information. The scaling rate as the 
length of resolution varies defines the information 
dimension. This little known quantity was originally 
defined by Balatoni and Renyi [4]. Exploring its 
properties and arguing for the utility of this concept 
are the central goals of this paper. 

For simple, predictable attractors such as fixed 
points, limit cycles, or 2-tori, the separate notions 
of dimension converge; by any reasonable definition 
these attractors are of dimension 0, 1, or 2 re-
spectively. Chaotic (strange) attractors, however, 
pose a more difficult problem. At any fixed level 
of precision, most information about initial condi-
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tions is lost in a finite time r. For times greater 
than r, knowledge of the future is limited to the 
information contained in the probability distribu-
tion of points on the attractor [6]. By assigning a 
dimension to a probability distribution, the in-
formation dimension provides a probabilistic notion 
of dimension. As we shall see, chaotic attractors 
can have a S3lf similar structure in their probability 
distributions that causes their information dimen-
sion to differ from their fractal dimension. Just as 
Mandelbrot [3] calls a set a fractal if the fractal 
dimension exceeds the topological dimension, we 
will call a probability distribution a fractal measure 
if the fractal dimension exceeds the information 
dimension. 

The direct physical relevance of the information 
dimension is in measurement. Knowledge of the 
information dimension of an attractor allows an 
observer to estimate the information gained when a 
measure m >nt is made at a given level of precision. 
This is to be contrasted with the new information 
gained in a series of measurements that are not 
isolated. In this case there are typically causal 
relationships between the measured values so that 
the average information is less than that gained 
in an isolated measurement. The metric entropy 
is by definition the upper bound on the information 
acquisition rate. The metric entropy also estimates 
the rate at which the accuracy of a prediction of 
the future decays as the time for prediction in-
creases. We will take positive metric entropy as the 
definition of chaos. Information dimension and 
metric entropy are related concepts. Information 
dimension deals with isolated measurements, and 
metric entropy with sequences of measurements, 
so it is natural to discuss them together. 

This paper is a synthesis of old and new results. 
By presenting new results integrated into the back-
ground of previous results, I hope that the context 
of the new results will be clear, and also that logical 
gaps in previous results will be filled so that they 
form a coherent whole. Most of the new results are 
contained in the first section, which develops the 
concept of information dimension as applied to 
chaotic attractors. New results include the applica-
tion of information dimension to dynamical sys-
tems, invention of "Cantor's Densit}^", computa-
tions on the Henon map, calculations of the in-
formation dimension of an asymmetric Cantor set, 
and computations of the information dimension of 

the asymptotic probability distribution of the 
logistic equation. The second section is primarily 
a review of the metric entropy, exceptions being 
the development of an algorithm for information 
dimension and metric entropy, and the expression 
of the metric entropy in terms of the information 
dimension. 

Part I: Isolated Measurements 

Background: Partitions, Measures, and Measurement 
To begin the discussion, consider a measuring 

instrument with a uniform minimum scale of 
resolution e. For a ruler, for example, E is the 
distance between adjacent graduations. If a mea-
suring instrument is assigned to each of the N real 
variables of a dynamical system, the graduations 
of these instruments induce a 'partition of the phase 
space. (A partition ß= {Bi} of a set S is a collection 
of nonempty, nonintersecting measurable sets Bi 
that cover S, see Figure 1). Thus, there is an element 
of the partition corresponding to every possible 
outcome of a measurement. 

Note: A measuring instrument will typically induce a par-
tition only on a region of the phase space, which we will 
assume to contain the attractors of interest. Also, although 
measurements of classical quantities can be made continu-
ously they are limited by observational noise, i.e. random 
perturbations that occur as a measurement is being made. 
Although continuous, these observations are inevitably re-
corded as rational numbers with a finite number of digits. 
In the following discussion assume that the number of 
digits recorded is commensurate with the quality of an 
instrument, so that the induced partition forms a good 
model for the measurement process. 

In the limit of perfect resolution the values of 
the N variables of the dynamical sĵ stem at any 
given time may be represented by a point in the 
phase space. We will refer to this hypothetical 
point as the state of the system. Throughout this 
paper, assume that the motion in phase space is 
bounded, and that a sufficient time has passed 
without a perturbation of the system so that the 
state is close to an attractor. This means that the 
probability to find the state in an element of the 
partition not containing part of the attractor is 
negligibly small. 

^ U — -r Fig; 1. A schematic drawing of a uniform 
§§§ _ 5 two dimensional partition, e is the mini-

mum scale of resolution, and Bi is an 
element of the partition, corresponding 

__J to the outcome of a measurement. 
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By making repeated measurements at random 
time intervals, a histogram can be made to estimate 
the frequency of occurrence Pi of the ith element 
of the partition. The set of probabilities {Pi} is 
called the coarse grained asymtotic 'probability 
distribution. Take the limit as the scale of resolution 
goes to zero, and the number of samples goes to 
infinity. Assume that for any fixed set C on the 
attractor, the sum of Pi over elements of the parti-
tion covering C approaches a number Ji(C). This 
defines a measure Jl on the attractor, with a cor-
responding probability density P(x). 

Ji{C) = jP{x) dx. (1) 
c 

Thus, for any partition ß= {Bi}, Pi = Ji(Bi). For 
convenience, assume that within the basin of 
attraction, almost every initial condition produces 
the same measure Jl. (Numerical experiments in-
dicate that in many cases these are good assump-
tions.) Let the phase space flow cp be defined as 
x(t) = <ptx(0), where x(t) and #(0) are the states 
at time t and time 0. (p_t is the inverse of cpBy 
construction the measure Ji is invariant under the 
action of the flow, i.e. 

•fi{C) = tt[Vr*C) (2) 
for any set C and time t. Equation (2) is nothing 
more than a statement that the flow must con-
serve probability, i.e., the total probability as-
sociated with a given set must be equal to the 
probability of the sets that are mapped into it by 
the flow. 

Lebesgue measure is simply the N dimensional 
volume on the phase space, constructed by letting 
P(x) = 1. Equation (2) can be made into a recursive 
equation in order to provide a possible means of 
constructing an invariant measure. Picking a fixed 
time interval t = 1, 

iH+i{C) = m{<r*{C)). (3) 
Letting /uo be Lebesgue measure, in many cases (3) 
is known to approach an invariant measure equal 
to the measure JL of time averages [6]. This will be 
assumed throughout. Rewritten in terms of the 
probability density, equation (3) is called the 
Frobenius-Perron equation. 

p^y)= 2 w x = <p~1y ^ I 
where is the Jacobian determinant of cplx. 
(For a continuous flow, rp has a unique inverse and 

the sum in (4) is unnecessary, but for discrete 
mappings the inverse may not be unique.) 

Information Dimension 

The amount of information gained in making a 
measurement depends on the a priori knowledge 
of the observer making the measurement, i.e. in-
formation depends on its context [7], The context 
that we shall concentrate on here is that of an 
observer who has a knowledge of the equations of 
motion, and all the information that can (in prin-
ciple) be extracted from them. This observer is 
therefore capable of computing a coarse grained 
asymptotic probability distribution Pi, and can 
obtain a good approximate knowledge of the mea-
sure JL. 

Suppose that this observer makes an isolated 
measurement of the state of the system. "Isolated 
measurement" means that no measurements have 
been made recently, so that the observer has no 
ability to predict the state of the system other than 
the knowledge gained by knowing that it is near 
a given attractor. The information she gains upon 
making a measurement is [7] 

n(e) 
J(£) = - 2 ^ 1 o g A , (5) 

i = 1 
where n(e) is the number of cells with nonzero 
probability. The information is written 1(e) to 
emphasize its dependence on the scale of resolution. 
All the statements in this paper concerning infor-
mation could equivalently be couched in terms of the 
entropy H(e) = — 7(e)-

As the scale of resolution decreases, how much 
does 1(e) increase? In the limit of small e, the 
slope Di of the graph of 1(e) versus | log e | is called 
the information dimension 

D\ = lim {I(e)/\log e|} . (6) 
e — 0 

This definition assumes a special set of mea-
suring instruments with uniform resolution e. In 
general this is not the case; the resolution may be 
nonuniform, or some variables may be measured 
more precisely than others. Furthermore, there is 
nothing in the definition that need be specific to 
attractors of dynamical systems; the information 
dimension is a property of any random variable 
with a probability measure defined on it. The 
following, more technical definition seeks to gener-
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ally define D\ in an unambiguous manner: 
The diameter d(C) of a set C is d(C) = sup d(x, y), 

x,y 
where d (x, y) is the distance between any two points 
x and y in C. The diameter d of a partition ß = {£$} 
is d(ß) = sup d(Bi). A partition of diameter e is 

Bi 
labeled ß{e). The information of ß with respect to 
a measure /j, is 

/(/?) = l o g (7) 

Let M be a manifold with metric d, and let a; be a 
random variable with measure /x. Define 1(e) as 
the minimum information possible for a partition 
of diameter e, i.e. 1(e) = inf I(ß(e)). The informa-

ß(e) 
tion dimension of (M, d, /u) is 

DI = \im{I(e)l\\oge\}. (8) 
£ —>0 

The information dimension of an attractor is 
computed by imposing a metric on the dynamical 
system and using the invariant measure defined by 
(1). The dependence on the metric is clear from the 
presence of e in the definition; nevertheless, we 
conjecture that the information dimension remains 
invariant under smooth coordinate transformations, 
providing that the measure induced by the co-
ordinate transformation is used to compute the 
information dimension of the transformed attractor. 

The information dimension was defined by Bala-
toni and Renyi [4] in 1956. They refer to it as 
simply "the dimension of a probability distribu-
tion". 

Once the information dimension of an attractor 
is known, without taking the trouble to accumulate 
or calculate an asymptotic probability distribu-
tion, a rough estimate can be made of the quantity 
of information gained in making a measurement. 
The accuracy of an experimental instrument is 
usually given in terms of the signal to noise ratio S. 
Taking the simplest case in which the extent L 
of the attractor is roughly the same in every direc-
tion, and adjusting the units of measurement so 
that L = 1, the number of bits of experimental 
resolution is log S = | log g| (logs to base 2). From 
(6), the new information gained in a measurement 
is the order of D\ log S. 

/ ~ i>i log S. (9) 
Note: The definition of information dimension, (6) or (8), 

takes advantage of the fact that, since the limit is taken 
as e -> 0, the partition need not cover the attractor ef-

ficiently at finite levels of resolution. The definition of in-
formation dimension depends on a ratio of 1(e) to | logs |, 
and is independent of the units used to measure e. Thus, 
there is no loss of generality in taking L = 1. 

A clear distinction should be made between ob-
servational noise and external noise. Observational 
noise, which determines the signal to noise ratio S, 
occurs only during the measurement process, and 
at least in the classical limit, does not affect the 
operation of the dynamical system. External noise 
is caused by random perturbations that do affect 
the dynamical system. If the level of external noise 
exceeds the level of observational noise, then at 
fine resolution the observer will no longer be mea-
suring properties of the dynamical system; the 
extra information gained will be information about 
the perturbations, and will not scale according to 
D\. As Shaw has pointed out [6], fractal structure 
is effectively truncated by the presence of external 
noise. 

Relation to Fractal Dimension 
This definition of information dimension is re-

miniscent of the notion of capacity, or fractal di-
mension [3], defined for an attractor as follows: 
Let n(e) be the minimum number of balls of dia-
meter e needed to cover an attractor. The fractal 
dimension DF is: 

DF = lim {log n (e)/| log e |}. 
£ —> 0 

(10) 

Note: This does not depend on a measure. Nonetheless, 
the similarity is clear: If all of the n(e) elements of a par-
tition are equally probable, 1(e) = log »(e) . Furthermore, 
given a cover of balls that minimizes n(e), a partition cover-
ing the attractor of diameter ^ e can be formed by sys-
tematically removing the regions where the balls intersect. 
Logra(e) ^ 1(e), which implies that DF ^ D\. The fractal 
dimension is an upper bound on the information dimension. 

The fractal dimension provides a means of 
estimating the information gained in a measure-
ment when the asymptotic probability distribution 
is assumed to be uniform, i.e. using Lebesgue mea-
sure. To an observer who knows the number of 
cells to cover the attractor, but does not know their 
relative probability, the amount of new information 
gained in a measurement is I = log n (e) ~ DF log S. 

Note: The fractal dimension is a property of a set, rather 
than a measure, so properly speaking it always refers to the 
support of the measure, which roughly speaking is the set 
of points x that have P (x) =t= 0, where P (x) is an associated 
probability density. More precisely, the support of a mea-
sure fx is the set of points x such that every open set C 
containing x has /J, (C) > 0. 
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Q, 

B I N A R Y C A N T O R D E N S I T Y 

Fig. 2. "Cantor's density" has an information dimension 
Di = log 2/log 3, but the fractal dimension of its support 
is 1 (see Eq. (12)). (a) Ql (x) = 3p0 ^ 0.3406 on (0,1/3) 
and (2/3,1), and Qi (x) = 3pm 2.3187 on (1/3,2/3). 
Using a uniform three piece partition, the information 
7(1/3) is one bit. (b) To form Q2, the probabilities are re-
distributed among 9 pieces (see Eq. (7), i = 2). Using the 
32 element partition, 1 = 2 bits, (c) i = 3, 1 = 3 bits, 
(d) i = 6. Because of the finite linewidth of the plotter, 
this is indistinguishable from the limiting case except for 
the vertical scale (in the limit the spikes become infinite). 

Fig. 3. The binary Cantor density. This is similar to Fig. 2, 
but the interval is partitioned into 2n rather than 371 pieces. 
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Some Examples 

(1) Continuous Dens i ty 
Renyi has proven [8] that a D dimensional 

random variable with a continuous probability 
density has an information dimension equal to D. 
("D dimensional" here means that the variable 
is a D-tuple, or more generally, that it is defined 
over a D dimensional manifold.) This result can be 
intuitively understood as follows: To compute the 
information contained in a probability density at 
finer and finer resolution, it must be broken up 
into smaller and smaller pieces. Continuity requires 
that if a very small piece is blown up, it will look 
approximately uniform. Once a sufficiently fine 
level of resolution is reached, when the resolution 
is doubled, each partition element is divided into 
2D new elements of uniform probability. Thus for 
a continuous density, the information dimension 
and the fractal dimension are both integers whose 
dimension is equal to D. 

(2) "Cantor 's Dens i ty " 
Since the fractal dimension is an upper bound for 

the information dimension, any probability density 
whose support has a noninteger fractal dimension 
may also have a noninteger information dimension. 
For example, take Cantor's classic set and treat 
it as a probability density. Begin with a uniform 
density on the interval [0, 1], and set the probability 
of the middle third to zero. Then set the probability 
of the middle third of each remaining piece to zero, 
etc. The fractal dimension and the information 
dimension are both equal to log 2/log 3. 

By modifying this construction slightly, however, 
it is easy to make a probability density whose in-
formation dimension and fractal dimension are 
different. As mentioned in the introduction, we will 
refer to such objects as fractal measures. To 
construct an example, rather than deleting the 
middle third of the interval, make it more (or less) 
probable. Let the probability of each of the two 
outer pieces be po > and the probability of the piece 
in the middle be pm. The first approximation to 
"Cantor's density" is Qi (x) = (3p0, 3p m , 3p0)- (The 

l 
factor of 3 appears to make J Qi (x) da; = 1, which 

o 
also implies that po = (1 — pm)/2.) Form Qz(x) by 
dividing each piece again into thirds, and redistri-
buting the probability within each of these nine 

pieces so that the ratios within each third are the 
same as those of Qi (see Figure 2). Alternatively, 
Qi can be defined as follows: Round the value of x 
down to the nearest i digit base 3 number, i.e. 
a?=.<si<s2 ••• St, where s = 1, or 2. Let j be the 
number of these digits that are 1. Select a value 
for pm, and let 

Qi(x) = 3ipia((l-Pm)l2)i-j- (12) 
The limiting density is Qoo(x) = lim Qt(x). The sup-

i-*oo 
port of this density is the entire interval, and has a 
fractal dimension of one, but Qoo(x) has an informa-
tion dimension 

Di 

1 1 
Pm log + 2 po log 

Pm p0 
log 3 (13) 

There are two possible values of pm that give an 
information dimension of log 2/log 3. A little algebra 
shows that these correspond to the fixed points 
of the binary entropy function 

H{p) = p\ogi- + (1 - p ) l o g /H (14) 
V (1 - v ) 

The unstable fixed point, p = 0, corresponds to the 
classic Cantor set; the stable fixed point p^ .7716 
gives the probability density plotted in Figure 2. 
Since within any interval points can be found that 
have any number of ones in their base three ex-
pansion, Cantor's density (12) is discontinuous 
everywhere, and has singularities that are dense 
in the interval. 

In a similar manner, a binary Cantor density 
can be formed by assigning unequal probabilities 
to subdivisions of the interval into 2n rather than 
3W parts. The result is plotted in Figure 3. The 
information dimension of this density is H(p), where 
p is the probability of one side, and H is the binary 
entropy function, Equation (14). The binary Cantor 
density, or reshuffled forms of it, will appear later 
in several applications. 

(3) An A s y m m e t r i c , Diss ipat ive Baker's 
T r a n s f o r m a t i o n : Yorke 's Map 

Although the Cantor density presented in the 
previous section may seem bizarre, and at a first 
glance unlikely to be physically relevant, these 
Cantor-like probability densities are typical of 
chaotic attractors of dynamical systems. The follow-
ing example of a dissipative Baker's transforma-
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tion was introduced by Yorke [9] in order to 
illustrate this point: 

Define F (x, y) on the unit square 0 x sS 1, 
0 < y ^ 1 by: 

Xi+i = (3 — Xi)/3, 
yt+i = ytl0- — q)\ 
%i+i = (1/3) (1 — Xi), 
yt+1 = (Vi - ?)/(! - q), 

where 0 < ^ < l / 2 . This mapping divides the unit 
square into two horizontal strips of unequal heights 
p>q, as shown in Figure 4. It compresses the 
square horizontally by a factor of 3, and stretches 

for 0 f^yi^Lq: 

for q yi ^ 1: 
(15) 

a) 

PCx.y) P(x) 

\ \ / 

/ s \ \ 
\ / \ / 
/ s \ \ > / \ / > \ \ 
\ / \ / 

/ \ \ 

b) 
Fig. 4. (a) A geometric illustration of Yorke's Map. (b) Suc-
cessive iterations of the map act on an initially uniform 
probability density as shown. The attractor is the Cartesian 
product of the classic Cantor set and the interval. The in-
formation dimension is given by (16). 

each piece vertically until each piece has a height 1 
and a width 1/3. Then it slices the two pieces apart 
along their boundary, flips both of them about 
their vertical midlines, and places them as shown 
in Figure 4. 

Start with Lebesgue measure, i.e. uniform prob-
ability density, and use (3) to compute an invariant 
measure by iterating the map. After one iteration, 
the probability of the two pieces is different, since 
the thinner bottom strip, 0 <.y<q, is stretched 
more than the thicker top strip. Letting p = 1 — q, 
the normalized total probability of the left piece 
is p, and that of the right piece is q. When the 
mapping is repeated, four thin strips are left with 
nonzero probability; from left to right, their values 
are pq, p2, q2 ,and pq, as shown in Figure 4. When 
this process is continued indefinitely, the resulting 
attractor is the Cartesian product of the classic 
Cantor set and the interval (0, 1), and has a fractal 
dimension of 1 + log 2/log 3. The invariant measure 
on this attractor is extremely nonuniform, how-
ever, as can be imagined by extrapolating Figure 4. 
(If the "holes" are removed, and the order of the 
probability appropriately reshuffled, the probability 
density projected onto the x axis is the binary 
Cantor density of Figure 3.) The information di-
mension can be computed by dividing the square 
into 32ra uniform pieces for n = 1, 2, ... . For any 
value of n, the ratio 

/(e)/1 log e | = /((l/3)2w)/log 32re is 
l + (plog(l/p) + glog(i/g))/log3. 

Remembering that p = 1 — q, the information di-
mension D\ can be written as 

Di = 1 -{- H {q)/\og 3 , (16) 

where H(q) is the binary entropy function (see (14)). 
The essential feature that causes the difference 

between the information dimension and fractal 
dimension of this attractor is that the Jacobian 
determinant is not a constant. At a coarse level of 
resolution, each iteration of the mapping results 
in different probabilities for the "leaves" of the 
fractal set. Successive iterations move these leaves 
closer together, so that the resulting probability 
density has self similar structure on all scales. 
Since vector fields with constant Jacobians form 
a set of measure zero in the space of all possible 
vector fields, chaotic attractors with self similar 
structure typically have fractal measures. (Self 
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similar structure is not a necessary condition, how-
ever; there may be chaotic attractors that do not 
have an exact self similar structure that nonethe-
less have fractal measures.) 

(4) Henon's Map 

A nonconstant Jacobian determinant is not, how-
ever, a necessary condition for a chaotic attractor 
to have a fractal measure. For example, consider 
the Henon [10] mapping, 

= 1 + Vi — axi2, Vi+\ = bxi (17) 

with a = 1.4 and b = 0.3. A picture of the attractor 
is shown in Fig. 5, together with the two blowups 
as shown by Henon in [10]. The number of observ-
able leaves of this fractal set depends on the quality 
of this reproduction and the keenness of your eye-
sight. Figure 5(d) shows a probability distribution 

made by resolving the blowup of Fig. 5 (c) into 6 
distinct leaves, and binning the total number of 
points that visit each leaf into a histogram. As can 
be seen in the figure, the probabilities of the 
discernable leaves are quite different. 

This is true even though Henon's map is in-
vertible and has a constant Jacobian determinant. 
Taken together these two properties imply that 
the probability density on the attractor is uniform. 
What is not uniform is the spacing of the leaves 
of the fractal set that make up the attractor. To 
see this, begin with a set C, and assign it a con-
stant probability density. Iterate the map several 
times (see Figure 6). The set will be stretched and 
folded until it begins to resemble the attractor, but 
according to (4), the probability density on the 
iterated set Fl(C) remains uniform. The spacing 
between the folds of Fi(C) is not equal, however, 
and at a fixed level of resolution the visible leaves 

Fig. 5. The Henon attractor, see Equation (17). Figures 5(b) and 5(c) show successive blowups of the regions inside 
the box of the previous figure. Resolving the fractal structure of Fig. 5(c) into six "leaves", the relative probabilities 
of these leaves are plotted in Figure 5(d). The width of each bar is roughly the width of the corresponding leaf. This 
unequal distribution of probabilities persists on all scales, making the Henon attractor a "measure fractal". 
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Fig. 6. Successive iterates by the Henon map of the line segment shown in Figure 6 a. The spacing between the folds 
that form after several iterations is not constant; when evaluated at a finite level of resolution unequal numbers of 
them appear to merge, yielding the probability structure seen in Figure 5(d). 

may contain different numbers of folds of FL(C). 
The total probability of each resolvable leaf appears 
different. The fact that this structure persists on 
such a microscopic level suggests the Henon attrac-
tor has a fractal measure. 

(5) An Asymmetric Cantor Set 
If the intersection is taken of the Henon attrac-

tor and a curve cutting transversally through it, the 
result is an asymmetric Cantor set. Construction of 
an example gives an understanding of the manner 
in which asymmetries in the spacing of the elements 
of a set can create a fractal measure. Begin as usual 
with the interval [0, 1], and delete the segment 
from 1/2 to 3/4, i.e. delete the third fourth, as 
shown in Figure 7 (a). Then delete the third fourth 
of each remaining piece, and so on. The limit is an 
asymmetric Cantor set, of fractal dimension T)p = 
log 3/log 4. 

Assign a uniform probability density to the 
points of this set. To compute the information 
dimension, partition the interval (0, 1) successively 

into 2n equal bins, as shown in Figure 7(b). Each 
time the resolution is cut in half, the asymmetry 
causes neighboring bins to acquire different prob-
abilities. This inequality persists on all scales. The 
information dimension is computed in Appendix I, 
and shown to be 

This example illustrates that the information 
dimension depends on the metric properties of a set 
(spatial distribution of the elements of the set) as 
well as the distribution of probability within the 
set. Asymmetries in either of these properties can 
cause a chaotic attractor to have a fractal measure. 

(6) The Logistic Equation 

One of the properties that is necessary for a 
measure to be a fractal measure is structure on all 
scales. As the following example shows, this is not 
a sufficient condition; fractal measures must have 
"geometrically multiplying" small scale structure. 
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a) 

llog P(x) 

b) 
Fig. 7. (a) Successive approximations to an asymmetric 
Cantor set, formed by deleting the third fourth of each 
continuous piece, (b) Assuming the initial probability den-
sity of points on the interval is uniform, the coarse grained 
probability distribution is evaluated at successively finer 
scales of resolution e = 2 _ i , i = 1, 2 , . . . , 5. 

Consider a mapping of the interval with a single 
quadratic maximum, for example, the logistic 
equation 

xi+r = rXi{\ — xi), (19) 

where 0 < r < 4 , and Assume that r is 
set to a parameter value for which this mapping 
has a chaotic attractor. An invariant measure can 
be computed either using the Frobenius-Perron 
equation (4) or alternatively by picking an initial 
condition at random, iterating many times, and 

binning the result into a histogram. The result of the 
latter procedure at r = 3.7 is shown in Figure 8. 
Although this probability density has structure on 
all scales of resolution, a direct calculation with a 
uniform partition shows that the entropy scales 
linearly with | log £ | (see Figure 9). An investiga-
tion into the nature of P{x) makes this result 
reasonable: 

Using an initial condition Po (a?) = 1, suppose the 
Frobenius-Perron equation (4) is used to construct 
P{x). Providing the iterates of the critical point 
are not asymptotically periodic, at every iteration 
the fact that F (x) — 0 at the critical point x = zo 
causes a new singularity to be added to Pj(x). 
The resulting asymptotic density P(x) is not conti-
nuous, and contains an infinite number of singu-
larities at Zi = Fi(zo). Nevertheless, since each 
singularity falls off on one side roughly as x~l<2, 
the singularities are integrable (see Appendix II). 
Thus a coarse grained probability distribution {Pi} 
computed in this manner will converge in root-
mean-square to the probability density P(x); the 
resulting measure is absolutely continuous with 
respect to Lebesgue measure. When ordered accord-
ing to iteration from the critical point, the ampli-
tude of the singularities decreases roughly exponen-
tially at a rate given by the Lyapunov exponent, 

log, P(X) 

Fig. 8. The asymptotic probability distribution {P i } for 
the logistic equation Xi+i = 3.1 Xi (1 — Xi), obtained by iter-
ating 108 times and binning the result into 1000 bins. The 
corresponding density P (x) contains an infinite number of 
integrable discontinuities, labeled in the figure according 
to the iterate from the critical point. Their amplitude de-
creases roughly exponentially. The information dimension 
Di = l. 
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Fig. 9. The information 7 as a function of the logarithm of 
the scale of resolution. The interval is evenly divided into n 
equal pieces, and P (x) for the distribution shown in Fig. 8 
is averaged over each piece. The dots are measured values 
of 1(e), where e — l/n. The line is a plot of l o g » , shown 
for reference, and is the information contained in a uniform 
P( x). 

as demonstrated in Appendix II. The following 
approximate form may add insight into the be-
havior of P(x) (see Figure 10). 

( 2 0 ) 
t=i \zi\' 

where zi = [Ft(x)]/x=:Zl, and X{ = (x — zt) multiplied 
by the sign of zi. 6(x) is the step function, i.e. 
0 (z) = 0 for a;< 0, and 6 (x) = 1 for x ^ 0 . 

In the limit of large i, the size of a singularity 
relative to its background goes to zero. If a blowup 
is made of a small segment of P(x), unless it 

log2 P(x) 
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happens to contain one of the early iterates of the 
critical point, it looks relatively flat. When the 
segment is split in half to go to a finer level of reso-
lution, the probability of the segment will divide 
evenly between the two new pieces. Asymptotically 
(when viewed at fine resolution), this density be-
haves like a uniform density almost everywhere. 
At a coarse level of resolution, the information is 
less than that of a uniform density, but at fine 
resolution the information increases linearly, and 
the information dimension is one, as shown in 
Figure 9. 

This example illustrates the manner in which 
small scale structure must occur to make a fractal 
measure. For the logistic equation, the size of the 
visible spikes decreases exponentially, but the 
number of spikes in a given logarithmic size range 
is fixed, independent of scale. Compare this with 
Fig. 2(d) or Figure 2(e). The size of the spikes 
decreases exponentially, but the number of spikes 
visible at finer scales also increases exponentially. 
When a blowup is made of a small piece, structure 
on the scale of that piece is visible almost every-
where. 

Part II: Sequential Measurements 

Metric Entropy as Information Acquisition Rate 

The discussion so far has concerned the amount 
of information gained by an observer in making 
a single, isolated measurement, i.e., the information 
gained in taking a "snapshot" of a dynamical 
system. We might alternatively ask how much new 
information is obtained per unit time by an ob-
server who is, say, watching a movie of a dynamical 
system. In other words, what is the information 
acquisition rate of an experimenter who makes a 
series of measurements to monitor the behavior 
of a dynamical system ? For a predictable dynam-
ical system eventually new measurements provide 
no further information. But, if the dynamical sys-
tem is chaotic, new measurements are constantly 
required to update the knowledge of the observer. 

The metric, or Kolmogorov-Sinai entropy pro-
vides an upper bound on the information acquisition 
rate. Although in a context unrelated to dynamical 
systems, the metric entropy wras originally defined 
by Shannon [11]. This quantity was later applied 
to dynamical systems, and shown to be a topological 
invariant by Kolmogorov [12] and Sinai [13]. To 
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simplify the discussion, we will follow the historical 
course by first defining the metric entropy of a 
Markov process, and then discussing it in the 
context of dynamical systems (see also Refs. 
[14-18]). 

A Markov process may be thought of as an in-
formation source that randomly generates one of 
n symbols at discrete timesteps [19]. The text of 
this paper, for example, can be considered to con-
stitute a Markov process. These symbols can be 
thought of as the outcome of sequential measure-
ments. For convenience, assume that the n possible 
symbols are the integers from 0 to n — 1. If the 
occurrence of a given symbol s depends on m — 1 
preceding symbols, then the Markov process is of 
mth order. Assume throughout that the Markov 
process is ergodic, so that time averages are inde-
pendent of starting time, and are equal to ensemble 
averages. For an mth order process whose current 
symbol is <sm the sequence including the previous 
m — 1 symbols, (si, s2, . . . , sm)> can be represented 
as the m digit base n fraction .s\ s% ... s^, abbrevi-
ated Sm. This number defines the state of the 
source. (This should not be confused with the state 
of a dynamical system.) The probability that a 
given state Sm will occur is 

P(si,s2,...,%) = P(Sm). 

Given that the source is in state Sm, the conditional 
probability that the m + 1 symbol will be sm+i is 
P{8 m | %+i)> and the amount of new information 
obtained on learning that this particular transition 
has occurred is I——log P(Sm | sm+i)- Averaging 
over all possible transitions from Sm to sm+i, and 
over all possible states Sm, the average amount of 
new information gained per symbol, AI m , is 

1—n~m n — 1 
AIm=~ 2 P(8m) 2 

Sm = 0 Sm+1 = 0 

• P(Sm\sm+1)\og P(Sm\sm+i). 

Making use of the facts that 

P (Sm, 8m+1) = P (Sm) P (Sm | Sm+l) 

is the joint probability for Sm and sm+i to occur in 
succession, and that probability is conserved when 
the system makes a transition to a new state, i.e. 

"z P(Sm,sm+1) = P(Sm) (22) 
Sm+1 = 0 

1315 

and defining 

/in = - 1 P(Sm) log P(Sm), (23) 
Sm — 0 

the average amount of new information gained per 
symbol emitted by the source can be rewritten 

AIm=Im+1-Im. (24) 

For an ergodic source, AI m should be independent 
of m when m is greater than the order of the source. 
If the source, is not ergodic, however, AIm may 
oscillate for large m. This problem may be avoided 
by taking the limit as m goes to infinity, and de-
fining the information rate All At as 

Alf At = lim {I m/m At}, (25) 
OT-> oo 

where zl̂  is the time interval between symbols. 
Shannon calls this simply the entropy of the source; 
however, we will call it the information rate to 
avoid confusion with other entropies. To an ob-
server with a knowledge of the past history of the 
source, A If At is a measure of the unpredictability 
of the sequences it generates. 

Metric Entropy and Refinement of Initial Conditions 

A sequence of numbers obtained by making a 
series of measurements may be thought of as the 
symbols emitted by a Markov source. A distinct 
symbol is assigned to each of the n elements of the 
partition induced by the measuring instrument. 
A measurement at time t = 0 determines that the 
state of the dynamical system is located somewhere 
inside a given element of the partition. A finite 
time At later, another measurement may give a 
different outcome, indicating that the state is in a 
different partition element. Thus, a series of mea-
surements generates a sequence of symbols. The 
information rate per unit time for this symbol 
sequence may be calculated by taking the limit 
as m->oo of AImlmAt = AljAt. Following Sinai 
[13], the metric entropy can be defined as the maxi-
mum information rate when the partition and 
sampling rate are varied. 

hn = sup lim {ImjmAt}. (26) 
ß,At m-+ oo 

To an observer with optimal measuring instruments 
taking samples at the optimal rate, the metric 
entropy is the average amount of new information 
gained per sample. 
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/-i Fig. 11. A schematic illustration of 
' the manner in which initial condi-

h „ - - 1 tions are refined by a sequence of 
measurements. 

Bin Bj '0 'l 

A sequence of several measurements allows an 
initial condition to be isolated more precisely than 
does any one of the measurements taken alone. 
Suppose, for example, that a sequence of measure-
ments taken at times 0, 1, . . . , m show that the 
state of the system was successively in the partition 
elements Bio, Bü, .... Bim. The sets Bt evolve 
deterministically under the action of the flow cp. 
Thus, for example, if at time t = 1 the state is some-
where inside B{l, at time £ = 0 it must have been 
somewhere inside (p~l(Bil). When the two measure-
ments at time t = 0 and t = 1 are taken together, 
at time t — 0 we know that the original initial condi-
tion at £ = 0 must have been somewhere inside of 

n Bio (see Figure 11). After m measure-
ments, it is located somewhere inside of m such 
intersections. In this manner a sequence of mea-
surements can be used to refine knowledge of an 
initial condition. 

To obtain the average rate of refinement, it is 
necessary to average over all possible initial condi-
tions. This can be done by examining simulta-
neously the intersection of all the elements of a 
partition with their own inverse images. Let the 
intersection of two partitions a and ß be the parti-
tion formed by taking all possible intersections of 
their elements. 

a A ß={AinBj} (27) 
for all Ai e a and all Bj e ß. The intersection of a 
partition ß with the partition formed out of its 
inverse images is called a refinement of the parti-
tion. If this is done m times the resulting partition, 
ßm, is called the mth refinement of ß with respect 
to (p. 

ßm = ß A <p~Atß A (p~2Alß A - " A <p~mAtß. (28) 
(For convenience the dependence of ßm on At is not 
explicitly written.) The information I{ßm) con-
tained in ßm is exactly the information I m con-
tained in the corresponding sequence of m symbols. 
This motivates the standard form of the definition 
of metric entropy [20, 21] 

hß = sup lim {I{ßm)lmAt}. (29) 
ß, At vi-*oo 

Thus, the metric entropy may alternatively be 
thought of as measuring the extra amount of 
knowledge gained about an initial condition with 
each new measurement. For a predictable system, 
the trajectories on the average diverge at a linear 
or polynomial rate, and asymptotically a new mea-
surement ceases to provide better definition of the 
initial condition. For chaotic systems, on the 
average trajectories diverge locally at an exponen-
tial rate, and each successive measurement pro-
vides new information. 

The definition of metric entropy requires a mea-
sure (Ironically, it does not require a metric). To 
define the metric entropy of an attractor it is 
necessary to choose a measure on the attractor. 
The physically relevant choice is the measure for 
time averages, defined in (3). Again, we will assume 
that this is the same for almost every initial condi-
tion (with respect to Lebesgue measure) in a given 
basin. By definition a chaotic attractor has positive 
metric entropy. 

Topological Entropy 

The topological entropy is the upper bound on 
the information acquisition rate for an observer 
who knows what symbol sequences occur, but does 
not know their relative probability. In this case, 
the information contained in a refined partition 
ßm is log Nm, where Nm is the total number of 
elements of ßm • For a partition consisting of n sym-
bols (n elements), N m is the number of distinct 
symbol sequences that actually occur, in contrast 
to the nm symbol sequences that might occur. The 
topological entropy can be defined as 

ht = sup lim {log Nm/mAt} . (30) 
ß. At m - » oo 

This is only one of several equivalent methods of 
defining the topological entropy. The topological 
entropy is a topological invariant, and can be de-
fined, for example, as the exponent of the rate of 
increase of the number of periodic orbits (not neces-
sarily stable) as the allowed period increases. It 
requires neither a metric nor a measure for its 
definition. A more thorough discussion of topo-
logical entropy can be found in [22] —[24]. 

Metric Entropy as Information Dimension of Poo 

By constructing a probability density for symbol 
sequences on the interval (0, 1), the relationship 
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of the metric entropy to the information dimension 
(and the topological entropy to the fractal dimen-
sion) becomes clear. For an n symbol partition 
(n possible outcomes of a measurement), the set 
of probabilities P(Sm) of the nm possible symbol 
sequences of length m can be visually represented 
in the following manner: 

Divide the interval (0, 1) uniformly into nm bins. 
Since each of the nm possibly symbol sequences Sm 

can be represented as a unique number .S1S2 • sm, 
each symbol can be assigned to the bin at the posi-
tion corresponding to this number. Construct a 
probability density function Pm (x) by plotting the 
probability P(Sm) of each sequence over its bin. 

1 

Normalizing so that J Pm (%) da; = 1, 
0 

Pm(x) = P(Sm)nm, 

Sm^.x<Sm + n~m, 
where Sm = 0, n'm, ..., 1 —n~m. In the limit as 
ra-> 00, define Poo = lim Pm. Although Poo may be 

m—<-oo 

a very nasty probability density, the normalization 
condition insures that it induces a well defined 
measure [too (see Equation (1)). 

Turning this construction around, P{Sm) can be 
viewed as the result of smearing the limiting 
distribution Poo over each of nm bins 

p {Sm) = J Poo (x) dx = jXoo (iSm) 
Sm 

(32) 

for Sm = 0 to 1 — n~m, with iSm the interval from Sm 

to Sm + n~m. Studying symbol sequences of length m 
is equivalent to examining the symbol sequence 
probability density Poo at a scale of resolution of 
e — n~m. This mapping of the set of probabilities 
P(S m) onto the unit interval allows the metric 
entropy to be rewTitten in terms of the information 
dimension of Poo . Since | log e \ — m log ft, the 
metric entropy hß can be written: 

h ß = lim {/m/?ftlogft} log w, 

hß - Di (Poo) log ft, (33) 
where Di(Poo) is the information dimension of Poo. 
Log ft is the amount of information per symbol 
if the symbols are of equal probability and do not 
depend on the previous symbols. Di(Poo) measures 
the nonuniformity of the probability of symbol 
sequences. 

In a manner similar to the metric entropy, the 
topological entropy can be expressed as 

ht = DF(Poo)logft, (34) 

where Dp(Poo) is the fractal dimension of the sup-
port of Poo (see also [27]). 

Examples: 
For numerical computations of the information 

rate the reader may wish to see Shimada [25] 
(Lorenz equations), Kaufman et al. [26] (Chirikov's 
map), Crutchfield and Packard [27] (logistic equa-
tion), and Curry [28] (Henon map). The principal 
purpose of the following examples is to make clear 
the nature of the metric entropy and its relationship 
to the information dimension. 

(1) The Binary Shift 
Take a number between 0 and 1, multiply it by 

twro, and truncate it so that it is still between 0 
and 1. Written in terms of a base two representa-
tion: 

.101100111->.01100111 ? (35) 

Alternatively, this can be thought of as the one 
dimensional map shown in Figure 12. If the digit 
that is shifted past the decimal point on a given 
iteration is 1, we can say that this Markov source 
has generated a 1; if it is 0, it has generated a zero. 
Equivalently, the interval can be partitioned into 
two equal pieces, and the elements of the partition 
assigned the symbols 0 and 1. This source emits 
one bit of information per iteration. The refine-
ments of this partition, found by computing the 
inverse images of .5, divide the interval into 
2, 4, 8, ... equal pieces of equal probability for 
m — 0, 1, 2, ... . The information contained in the 
mth refinement is log 2m = m. Since possible symbol 
sequences are equally likely, the symbol sequence 
density Poo is a constant, and has an information 
dimension of one. Thus, using any of the formula-
tions that have been discussed here, the information 
rate is one bit per iteration (see [6] and [21]). 

Fig. 12. The binary shift map (see 
Equation (35)). 
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This map with the partition above is a model 
of a fair coin flip. If the interval is partitioned into 
two pieces of unequal length p and 1 —p, however, 
the coin is not fair. In this case the density Poo is 
not uniform; heads is weighted differently than 
tails, so that in passing from sequences of length m 
to sequences of length m -j-1, the probability in 
each bin of width is split unequally between 
two bins of width 2_wl_1. The resulting density Poo 
is the binary Cantor density, shown in Figure 3. 
The information production rate is the information 
dimension of P multiplied by log 2; the information 
rate is therefore H(p), where H{p) is the binary 
entropy function (see Eqs. (14) and (15)). The equal 
partition p= 1/2 gives the maximum value 
H( 1/2) = 1, corresponding to the metric entropy 
of the map. 

(2) The Logistic Equation Revisited 

In a similar manner it is possible to compute the 
information production rate of the logistic equa-
tion, (19). For r = 4, the logistic equation is sym-
metric and two onto one. The invariant probability 
density P(x)= 1/tt(x(1 —a;))-1/2 is also symmetric. 
As pointed out by Shaw [6], assuming also that 
there are no stable periodic orbits, these facts imply 
that the metric entropy with respect to P (x) is one 
bit per iteration, since in order to reconstruct a tra-
jectory going backwards in time a binary decision 
must be made at each iteration. For r = 4 = 4 , the in-
formation rate can be computed numerically by 
making a partition of the map and iterating many 
times. A histogram can be made of the relative 
frequency of occurrence of the symbol sequences, 
to approximate Poo, as shown in Figure 13. This 
figure shows the characteristic behavior of a fractal 
measure as the scale of resolution is varied; com-
pare to Fig. 7(b), for example. As demonstrated 
numerically by Crutchfield and Packard [27], the 
information rate is maximized for a two element 
partition when the division is made at the critical 
point x = 1/2. 

Equivalently, the symbol sequence probability 
distribution P{Sm) can be demonstrated by com-
puting the measure P (x) of points on the interval 
(Fig. 8) via any convenient method, computing the 
inverse iterates of the critical point to get a refined 
partition, and summing P{x) over each of the ele-
ments of the refined partition to calculate the prob-

1 2 
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Fig. 13. Poo for the logistic equation (19) with r = 3.7, taken 
from [27]. The interval is partitioned into two equal parts, 
which are assigned the symbols 0 and 1. Symbol sequences 
Sm = .«i «2 • • • sm are generated by iterating the map, and 
binned to approximate P(Sm). Successive approximations 
to Poo are shown in the figure. The metric entropy is the 
information dimension of Poo, and the topological entropy 
is the fractal dimension (using log2). 

abilities P(Sm) of the corresponding symbol se-
quences. If the elements of the refined partition ßm 

are Bmt, the probabilities of the symbol sequences 
Sm are 

P(Sm) = SP(x)dx = JKBm). (36) 
ßm 

(3) Yorke's Map Revisited 
Let us reconsider Yorke's map (15) in the con-

text of sequential measurements. Partition the 
square into two pieces by dividing it along the line 
y = q, as shown in Figure 14. The preimages of this 
partition are horizontal strips whose widths are 
distributed according to a binomial distribution, 
and are shown on the left side of Figure 14. Now, 
consider a sequence of measurements at successive 

Fig. 14. Iterates of the par-
tition of Yorke's uiap shown 
in the upper left corner (re-
fer to Eq. (15) and Figure 4). 
The preimages of the parti-
tion are shown on the left 
side, and the images on the 
right side. When a combina-
tion of images and preimages 
is used, an initial condition 
can be determined arbitrar. 
ily well. 
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iterations of the map made at times 
— m, — m + 1, . . . ,0, ...,m — 1, m. 

If the map is used to compare all the preimages 
of this sequence of measurements at the same 
past time — m, the y value at t = — m can be deter-
mined to arbitrary precision as m increases. From 
the example of part 1, Fig. 4, we know that the 
measure [x is uniform vertically, so the measure 
of the preimages is just proportional to their areas. 
Except for a reshufflhng of their order, this distri-
bution of probabilities is exactly the binary Cantor 
density (Figure 3). Thus the information rate is 
H(q), the binary entropy function of q 
(Equation 14). 

Now, consider the images of this partition. These 
are the uniform vertical bars shown on the left side 
of Fig. 14, and are exactly the successive approxi-
mations to the attractor shown in Figure 4. If the 
images of each measurement are compared at the 
same future time m, the horizontal position, and 
hence the "leaf" of the Cantor set that the state 
occupies at time m can be determined to arbitrary 
precision. Although the areas of the images are 
the same, their probability is not; the relative 
probabilities are the same as those plotted on the 
attractor in Figure 4. 

The agreement between these probability distri-
butions is not a coincidence. Since Yorke's map is 
invertible, either preimages or images of the parti-
tion can be used to make refinements. Conservation 
of probability requires that the measure of each 
element of the partition remain the same under the 
action of the map. If both images and preimages 
are used to evaluate all the measurements at the 
same time t = 0, both the horizontal and the verti-
cal position can be determined arbitrarily well as 
m grows large. A partition such as this one with the 
property that every point on the attractor can be 
represented arbitrarily well is called a generator. 
From Sinai's theorem [21], the information rate 
computed using a generator is equal to the metric 
entropy. 

This example illustrates the ambiguities that are 
possible in constructing Poo. On one hand, using 
the two symbol partition shown on the left of 
Fig. 13, Poo is exactly the binary Cantor density. 
If, on the other hand, the three symbol partition 
shown on the right of Fig. 13 is used, then Poo is 
just the same as the density P(x) on the attractor 

projected onto the x axis, as shown in Figure 4. 
Although these two versions of Poo have different 
information dimensions, the rule given by eq. (33) 
gives the same metric entropy. 

Predicting the Future 

Taken together the metric entropy and informa-
tion dimension can be used to estimate the length 
of time that a physical prediction remains valid. 
The information dimension allows an estimate to 
be made of the information contained in an initial 
measurement, and the metric entropy estimates the 
rate at which this information decays. 

As we have already seen, the metric entropy is an 
upper bound on the information gained in each 
measurement of a series of measurements. But, if 
each measurement is made with the same precision, 
the information gained must equal the information 
that would have been lost had the measurement not 
been made. Thus, the metric entropy also quanti-
fies the initial rate at which knowledge of the state 
of the system is lost after a measurement. 

Now, to make the notion of "information con-
tained in a prediction" more precise: Let ß = {Pf} 
be a partition. For convenience, refer to Bi, the 
elements of the partition, as simply outcomes. Let 

probability that a measure-
ment at time t has outcome Bj 

Vi] w — jf a measurement at time 0 had ^ 
outcome Bi. 

Pij(0) must satisfy 

Pi}{0) = 1 if i = j; 

Put0) = 0 if i ^ j . ( 3 8 ) 

If Bi is known, the information gained on learning 
of outcome Bj is —log Pij(t). With no initial in-
formation, the information gained from the mea-
surement is determined solely by the asymptotic 
measure fx, and is —log Ji(Bj). The extra informa-
tion gained using a prediction from the initial data 
is the difference of the two, or 

/rel = log { P i j m m . (39) 

This must be averaged over all possible measure-
ments Bj at time t, and all possible initial measure-
ments Bi. The measurements Bj are weighted by 
their probability of occurrence Pij[t), and the initial 
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measurements are weighted by Ji(Bi). This gives 
i(t) = 2V'(Bi) 

i 

• 2 f t / ( 0 log (40) 
i 

I(t) is the average amount of information con-
tained in a prediction made a time t into the future. 

Using the invariant measure /Z, pa(t) can be ex-
pressed in more geometrical terms: At time t the 
initial measurement Bi evolves into cp1 Bi) the 
probability of outcome Bj at time t is therefore 
Ji^Bi n Bj) (see Figure 15). Dividing by Jl(Bi) 
to make py(0) = 1, pij(t) can be written in the 
alternate form 

pij(t) = Ji{cptB inBj)jji(Bi). (41) 

Combining (40) and (41) get 
I(t)=Zji(<ptBinBj) (42) 

•log {jx^Bi n Bj)lfi(Bi) fj,(Bj)}. 

At time t — 0, cp1 Bi n Bj = Bi if i = j, and equals 
zero otherwise. Thus 1(0) is exactly the information 
contained in an initial condition, given by (7) or (5). 

An attractor is mixing [19] if 
lim {cptBnA) = jl{A)iü{B) (43) 

I —> CO 

for any sets A and B on the attractor. Intuitively, 
this just means that B is "smeared" throughout 
the attractor by the flow, so that the probability 
of finding a point originating in B inside of A is just 
the original probability of B, weighted by the prob-
ability of A. For an attractor that is mixing, 
substituing (43) into (42) implies that / (oo) = 0. 

(a) (b) 

Fig. 15. (a) Assume that an initial measurement finds that 
the state is contained in partition element Bi. (b) Given 
outcome Bi at time 0, a time t later the state must be 
somewhere inside «p'-B*; the probability that a measure-
ment at time t will have outcome Bj is ~jx(Bj n cp1 Bi), 
where fi is the invariant measure (which gives the proper 
a priori weight to each outcome). 

I 

Fig. 16. The typical behavior of I(t), the information con-
tained in a prediction, for a chaotic attractor. Initially I (t) 
decreases at a linear rate given by the metric entropy. 

On a chaotic attractor, adjacent trajectories on 
the average diverge exponentially, and I(t) initially 
decreases at a linear rate, as shown in Figure 16. 
Goldstein [29] has shown that this initial rate is 
equal to the metric entropy for flows with a conti-
nuous invariant measure. As demonstrated in 
Ref. [30], the metric entropy quantifies the rate 
of transverse mixing. In contrast, the longitudinal 
rate of mixing does not generally depend on the 
metric entropy. The longitudinal mixing rate deter-
mines the long time decay of I(t), and many of the 
properties of power spectra [31]. 

Since the information decays initially at a linear 
rate, at a given level of precision the metric entropy 
and information dimension can be used to estimate 
I(t) for short times. For initial measurements made 
with a signal to noise ratio S, 

I(t) = 1(0)- hßt = Di log S — hßt (44) 

(see Equation (9)). The initial data becomes useless 
after a characteristic r = (Dijhß) log S. 

Experimental Applications: Infinite Dimensions, 
Limited Knoviedge 

Thus far we have assumed a dynamical system 
of finite dimension N. In contrast, many important 
physical systems, for example fluid flow, are de-
scribed by partial differential equations, which have 
an infinite dimensional phase space. In this case, 
to determine a completely arbitrary initial condi-
tion, an infinite number of real variables must be 
measured, corresponding to the infinite degrees of 
freedom possible in choosing an initial function. 
When the state of the system is close to an attractor, 
however, the number of degrees of freedom may 
be reduced. Throughout the following discussion 
wre will assume that the attractors considered can be 
contained in a smooth manifold of dimension m^. 
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When this assumption holds the number of mea-
surements required to determine an initial condi-
tion at a given level of precision is + 
("Number of measurements" can refer to simulta-
neous measurements of M real variables, or as 
discussed below, a single variable can be measured 
M successive times.) Assume that the attractor can 
be embedded in M dimensions. If M is substituted 
for the phase space dimension N in the previous 
discussions, all of the quantities that refer to at-
tractors, such as information dimension and metric 
entropy, are well defined for infinite dimensional 
systems (see Refs. [31] and [32]). 

In addressing the experimental determination of 
the dimension of a strange attractor, Takens [32] 
has expressed the fractal dimension and topological 
entropy in a manner that illustrates their conjugate 
relationship. As shown below, the information di-
mension and the metric entropy can be expressed 
in an analogous form. This form provides an al-
gorithm that (in principle) can be used for the ex-
perimental determination of the information di-
mension and metric entropy of a dynamical system. 

In experiments it is often the case that only a few 
variables, corresponding to only a few of the dimen-
sions in the phase space of the system, can be mea-
sured. The experimenters are then faced with re-
constructing qualitative properties of the attractor 
from a projection onto only a few dimensions. 
Fortunately, as demonstrated in Refs. [33], [34] 
and [35], a valid representation of an attractor can 
be constructed from a projection of a trajectory 
onto a single dimension. For example, if Vx(TQ, t) is 
a single component of the velocity of a fluid at a 
fixed point ro in space, a set of phase variables 
(V\,V2, . . . , vk) can be constructed. 

v\ (t) = vx(r0,t), 
V2 (t) = vx(r0,t + Ti), 
vs(t) = vx[r0,t + r2), 

VK (t) = vx {r0 ,t -f tk—l), (45) 

where n , . . . , TK-I are suitably chosen delay times 
(see Ref. [35]). We will refer to coordinates con-
structed by taking delayed values of a projection 
onto a single dimension as delay coordinates. If M 
of these coordinates are taken, then, as shown in 

[32], any given state can be represented in terms of 
delay coordinates. 

The representation of an attractor in terms of 
delay coordinates can be viewed as an attractor of a 
dynamical system that is related to other represen-
tations by a coordinate transformation. Providing 
this coordinate transformation is smooth, the 
attractors should have the same metric entropy. 
This relies on the invariance of the metric entropy; 
if the measure, the partition, and the flow are all 
transformed, the metric entropy remains the same 
[21]. The invariance properties of the information 
dimension are not currently known, but for the 
purpose of the following discussion we will assume 
that the information dimension is also invariant 
under smooth coordinate transformations. 

Let Pm>n be the probability distribution of se-
quences of length m for an n symbol partition of a 
single variable, and let I(Pm,n) be the information 
contained in Pm<n. Assume the sampled values 
used to construct Pm, n are taken at time intervals 
At. If the delay times n are picked so that n = iAt, 
then a sequence of m symbols may be thought of as 
a set of measured values of an m dimensional repre-
sentation in terms of delay coordinates. To deter-
mine the information dimension of the attractor, 
the limit of I (Pm>n)l\\og e| must be taken as the 
scale of resolution goes to zero, which requires that 
the number n of elements in the partition go to in-
finity. Furthermore, the number of samples m must 
be large enough so that the delay representation 
is of sufficient dimension to faithfully represent 
states on the attractor. Although the embedding 
dimension M is in general unknown, a faithful 
representation can be accomplished by letting m 
get arbitrarily large. Once m ^ M , adding further 
samples is redundant, and the limit should converge. 

To calculate the metric entropy the limit as 
m - » oo must be taken for a partition and sampling 
rate that maximize the information rate. Intui-
tively, this rate should be approached by an ob-
server with accurate instruments that induce a 
uniformly fine partition of the phase space contain-
ing the attractor. With this assumption, the in-
formation dimension and metric entropy of an 
attractor can be written in the following form: 

D\ — lim lim { / ( P m , «)/log n ) , (46a) 
m—*oo n —• oo 

hß = lim lim {I(Pm,n)lm}. (46b) 
tt-*00 7/1 —> OO 
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Unfortunately, neither this algorithm, nor other 
algorithms previously presented in the literature, 
are practical to implement in experiments (a pos-
sible exception is the algorithm given in [35]). For 
attractors of dimension greater than three, the 
amount of data that needs to be gathered to achieve 
a reasonable level of resolution is prohibitive [35]. 
Future applications to physical experiments await 
more efficient algorithms, if they exist. 

If the equations of motion are known, the infor-
mation dimension is much easier to compute than 
the fractal dimension. Kaplan and Yorke define a 
quantity they call the Lyapunov dimension [36, 37] 
which can be expressed in terms of the spectrum 
of Lyapunov exponents (see Ref. [32], for example, 
for a definition of Lyapunov exponents). They have 
recently conjectured that the Lyapunov dimension 
is generally equal to the information dimension [9]. 
For any dynamical system that can be simulated 
efficiently it is feasible to compute the relevant part 
of the spectrum of Lyapunov exponents. The com-
putational time and memory requirements increase 
linearly with the dimension of the attractor, rather 
than as the power of the dimension, as they do for 
a direct computation of the fractal dimension. In 
addition, the algorithms are relatively independent 
of resolution. Assuming that the Kaplan-Yorke 
conjecture is true, Ref. [33] contains examples of 
computations of the information dimension using 
this technique, for an infinite dimensional dynamical 
system with attractors of dimension as great as 
twenty (see also the comparisons of the Lyapunov 
dimension and the fractal dimension made in [38]). 

Conclusions 

Four distinct dimensions have been discussed in 
this paper. The topological dimension and fractal 
dimension are discussed in detail elsewhere [2, 3], 
and not much is said about them here. The em-
bedding dimension is the minimum dimension for 
an embedding into Euclidean space; for an attrac-
tor, roughly speaking it is the minimum number of 
independent real numbers needed to smoothly 
label points everywhere on the attractor. The em-
bedding dimension is important because it gives 
the minimum number of modes that are needed 
for a physical description. For the topological, 
fractal, and embedding dimensions it is sufficient 
to consider the attractor as a set (for the second 

Table 1. Dynamical quantities. 

(Need 
measure) 

Relevant 
Probability 
Density 

Dimensions Df Di 

(Need 
metric) 

Fractal 
Dimension 

lim l o % n 

e - 0 1 log £ I 

Information 
Dimension 

I- 1(e) lim v ' 
£ - » 0 | log £ | 

Asymptotic 
Probability 
Density 
P(x) 

Entropies hj 

Topological 
Entropy 

DF(P<X>) l o g n 

hß 

Metric 
Entropy 

D i (Pec) l o g « 

Symbol 
Sequence 
Distribution 
Poo 

two a metric is also needed); a notion of relative 
probability is not necessary. 

The information dimension requires both a metric 
and a probability measure for its definition, and 
provides a geometrical way to understand the 
amount of information gained in sampling a random 
variable. It can thus be used to discuss some of the 
probabilistic properties of attractors. Knowledge 
of the information dimension of an attractor of a 
dynamical system allows an estimate to be made 
of the information gained in a measurement of an 
initial condition. For a continuous probability 
density defined on a smooth manifold, the informa-
tion dimension is an integer, but for probability 
densities with structure that multiplies geomet-
rically as the scale of resolution decreases, it is 
usually not an integer. 

The information dimension fills a logical gap in 
the classification of chaotic attractors in terms of 
metric entropy, fractal dimension, and topological 
dimension. As summarized in Table 1, the informa-
tion dimension plays the same role relative to the 
metric entropy that the fractal dimension does 
relative to the topological entropy. Information 
dimension and metric entropy are probabilistic 
notions, and require a measure for their definition. 
Topological dimension and fractal dimension do not 
require a measure. Both of the dimensions require 
a concept of distance (metric), whereas the en-
tropies do not. Dimensions relate to isolated mea-
surements (snapshots), whereas entropies relate to 
sequences of measurements (movies). The entropies 
can both be expressed in terms of the corresponding 
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dimension of the symbol sequence distribution 
mapped onto the interval. 

Because it weights the probabilistic aspects in-
herent in any physical system, the information 
dimension has a more direct physical interpretation 
than the fractal dimension. This is similarly true 
for the metric entropy relative to the topological 
entropy. Another advantage of the information 
dimension is that when the equations of motion are 
known it is more feasible to compute than the 
fractal dimension. 

Outstanding mathematical questions: Is the in-
formation dimension an invariant under smooth 
coordinate transformations (assuming the metric 
and measure are also transformed appropriately) ? 
Does a uniform partition always provide the correct 
value of the information dimension in the limit 
where the elements of the partition are all very 
fine ? If not, is there an algorithm to find partitions 
of a given diameter that minimize the information ? 
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Appendix I 
Information Dimension of an Asymmetric Cantor Set 

This appendix contains a computation of the in-
formation dimension of the asymmetric Cantor set 
made by deleting third fourths, shown in Figure 7. 
As described in Example (5) of Part I, begin the 
construction of the Cantor measure with a uniform 
probability density on the interval [0, 1]. 

Assume that the dimension can be computed 
using a uniform partition consisting of 2i elements, 
where i = 0, 1, 2, . . . . With i = 1, a two element 

partition, the total measure on the left side is 
\ • | • f . . . ; the total measure on the right is 
J • f • f . . . ; their ratio is 2:1. Letting Pj l be the 
measure of the jth element of the i t h partition, we 
get the following sequence of coarse grained prob-
ability distributions. Let m be the number of non-
empty elements in the i t h partition. 

Ui 

= 1 
{P , i } = l /3 [2 , 1], 2 
{P,2} = 1 / 9 [ 4 j 2 ,3 ] , 3 
{P i3} = l / 2 7 [ 8 , 4 , 6 , 6 , 3 ] , 5 
{ P f } = i /8l [16, 8, 12, 12, 6, 12, 6, 9]. 8 

Table A l . 
Note that the rn are the Fibonacci numbers, satis-

fying rii — rii-\ nt-2. The Pj l are given by the 
following recursion relation: 
For j = 1,2, ...,rii-\, P / = 2 / 3 P / - i , 
For j = iti-i + 1 , . . . , nt, Psi = 1/3 P}Z2ni_x. 

Let the information contained in the i t h partition 
be 

Ui 
Ii=-%Pji\ogPf 

7 = 1 
ni-l 

= - 2 ( 2 / 3 ) P / - i l o g ( 2 / 3 ) P / - i 
A 
nt-2 

- 2 ( l / 3 ) P / - 2 l o g ^ P / - 2 . (Al ) 
j=i 

A little algebra shows 
Ii = (2/3) Ii-1 + (1/3) Ii-2 + # (1 /3 ) , (A2) 

where H(p) is the binary entropy function, Equa-
tion (14). Let the ith approximation to the dimen-
sion be Di = i^/log 2* = 7f/ilog2. Recast (2) in 
terms of Di. 

A = ( t t - t t t I (A3) 

2(i — 1) 
A - 2 + 0 ; A - i + ff(|) 

In the limit as i goes to infinitiv. Di approaches a 
stable fixed point D\. 

H{\) 

i log 2 ) 
(i-2) 

Di = 
4 log 2 
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Di is approximately equal to 0.6887, in contrast to 
DF = log 3/log 4 = 0.7925. 

Note that a random Cantor set formed by ran-
domly deleting at each stage of the construction 
either the second fourth or the 3rd fourth of each 
continuous piece will have the same dimensions. 
Any Cantor set made this way will have the same 
sequence of coarse grained probability distributions 
as shown in Table 1, except that the order of the 
elements will be different. Since the information is 
insensitive to the order of the elements, the dimen-
sion will be the same. 

Appendix II 

In this Appendix I investigate some properties 
of the asymptotic probability density P(x) for 
chaotic attractors of one dimensional maps Xi+\ = 
F(xi) with a single quadratic maximum. There are 
typically an infinite number of integrable singu-
larities in P{x), w hich occur at the iterates of the 
critical point, and fall off on one side as kx~1!2. 
The amplitude k decreases roughly as e -^/2, where j 
is the order of iteration from the critical point, 
and A is the Lyapunov exponent. 

Assume throughout that the iterates of the 
critical point ZQ (F' (ZO) = 0) are not asymptotically 
periodic. This is the typical case for chaotic attrac-
tors; exceptions are, for example, r — 4 for the 
logistic equation. Assume that the asymptotic 
probability density can be computed using the 
Frobenius-Perron equation (4). Numerical computa-
tions by Rob Shawr and myself at several parameter 
values of the logistic equation support this as-
sumption. 

With the initial condition Po (#) = 1, the jth 

iterate P{x) of the Frobenius-Perron equation 
(eq. 10) will contain j singularities. The jth sin-
gularity occurs at the jth iterate of the critical point, 
which will be labeled zj. 

Let I\ be a small interval of length ei centered 
on z\, and let Ij be the jth iterate of this interval, 
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