The domain of $f: \mathbb{R}^n \to \mathbb{R}$ are those $p \in \mathbb{R}^n$ for which f(p) makes sense.

The graph of $f: \mathbb{R} \longrightarrow \mathbb{R}$ are those $(x,y) \in \mathbb{R}^2$ such that f(x) = y.

The graph of $g: \mathbb{R}^2 \to \mathbb{R}$ are those (x,y,Z) such that g(x,y)=Z.

To draw the graph of $g: \mathbb{R}^2 \to \mathbb{R}$, begin by drawing the x = const., y = const., and z = const. cross sections.

A <u>level curve</u> for $f: \mathbb{R}^2 \to \mathbb{R}$ is a sketch in \mathbb{R}^2 of the solutions of f(x,y) = const.

A contour map for $f: \mathbb{R}^2 \longrightarrow \mathbb{R}$ are several level curves for f drawn on the same xy-axes.

A <u>level surface</u> for $g: \mathbb{R}^3 \to \mathbb{R}$ is a sketch in \mathbb{R}^3 of the solutions of g(x,y,z) = const.