

Modeling sea ice algal blooms using dynamical systems with random parameters

Ken Golden, University of Utah

From micro to macro in the polar marine ecosystem

AMS Fall Southeastern Sectional Meeting Ergodic Theory and Dynamical Systems October 15, 2023

Arctic sea ice extent

September 15, 2020

New Record Low for Antarctic Sea Ice February 13, 2023

Much of Antarctica warmer than average

ARCTIC summer sea ice loss

predictions require lots of math modeling

Sea Ice is a Multiscale Composite Material *microscale*

brine inclusions

H. Eicken

Golden et al. GRL 2007

Weeks & Assur 1969

millimeters

polycrystals

Gully et al. Proc. Roy. Soc. A 2015

centimeters

brine channels

D. Cole

K. Golden

mesoscale

macroscale

Arctic melt ponds

Antarctic pressure ridges

sea ice floes

sea ice pack

K. Golden

J. Weller

kilometers

NASA

meters

microbes, megafauna, and the physics of sea ice

How do sea ice properties affect the life it hosts?

How does life in and on sea ice affect its physical properties?

What is this talk about?

A brief tour of recent results on multiscale modeling of physical and ecological processes in the sea ice system.

Focus:

- 1. Physical processes regulating algal dynamics
- 2. Dynamical systems model with random parameters

microscale, mesoscale, macroscale

(through the lens of fractal geometry)

microscale

fluid flow through the porous microstructure of sea ice governs key processes in polar climate and ecosystems

evolution of Arctic melt ponds and sea ice albedo

nutrient flux for algal communities

Antarctic surface flooding and snow-ice formation

- evolution of salinity profiles - ocean-ice-air exchanges of heat, CO₂

brine volume fraction and *connectivity* increase with temperature

$T = -15 \,^{\circ}\text{C}, \ \phi = 0.033$ $T = -6 \,^{\circ}\text{C}, \ \phi = 0.075$ $T = -3 \,^{\circ}\text{C}, \ \phi = 0.143$

 $T = -8^{\circ} C, \phi = 0.057$

X-ray tomography for brine in sea ice

 $T = -4^{\circ} C, \phi = 0.113$

Golden et al., Geophysical Research Letters, 2007

HOMOGENIZATION for Composite Materials

Maxwell 1873 : effective conductivity of a dilute suspension of spheres Einstein 1906 : effective viscosity of a dilute suspension of rigid spheres in a fluid

Wiener 1912 : arithmetic and harmonic mean **bounds** on effective conductivity Hashin and Shtrikman 1962 : variational **bounds** on effective conductivity

widespread use of composites in late 20th century due in large part to advances in mathematically predicting their effective properties

Critical behavior of fluid transport in sea ice

PERCOLATION THRESHOLD $\phi_c \approx 5\%$ \checkmark $T_c \approx -5^{\circ}C, S \approx 5$ ppt

RULE OF FIVES

Golden, Ackley, Lytle Science 1998 Golden, Eicken, Heaton, Miner, Pringle, Zhu GRL 2007 Pringle, Miner, Eicken, Golden J. Geophys. Res. 2009

cross pollination

sea ice

compressed powder

radar absorbing composite use stealth technology to predict 5%

sea ice is a radar absorbing composite!

sea icehuman bonethe math doesn't careif it's sea ice or bone!

young healthy trabecular bone old osteoporotic trabecular bone

new method of monitoring osteoporosis from sea ice

Golden, Murphy, Cherkaev, J. Biomech. 2011

sea ice algal communities

D. Thomas 2004

nutrient replenishment controlled by ice permeability

biological activity turns on or off according to *rule of fives*

Golden, Ackley, Lytle

Science 1998

Fritsen, Lytle, Ackley, Sullivan Science 1994

critical behavior of microbial activity

Thermal evolution of permeability and microstructure in sea ice

Golden, Eicken, Heaton, Miner, Pringle, Zhu, Geophysical Research Letters 2007

percolation theory for fluid permeability

$k(\phi) =$	$k_0 (\phi - 0.05)^2$	critical exponent
	$k_0 = 3 \times 10^{-8} \text{ m}^2$	t

from critical path analysis in hopping conduction

hierarchical model rock physics network model rigorous bounds

X-ray tomography for brine inclusions

confirms rule of fives

brine percolation threshold of $\varphi=$ 5% for bulk fluid flow

Pringle, Miner, Eicken, Golden J. Geophys. Res. 2009

> theories agree closely with field data

microscale governs mesoscale processes

Sea ice algae secrete extracellular polymeric substances (EPS) affecting evolution of brine microstructure.

How does EPS affect fluid transport? How does the biology affect the physics?

- 2D random pipe model with bimodal distribution of pipe radii
- Rigorous bound on permeability k; results predict observed drop in k

Steffen, Epshteyn, Zhu, Bowler, Deming, Golden Multiscale Modeling and Simulation, 2018

Zhu, Jabini, Golden, Eicken, Morris *Ann. Glac*. 2006

Thermal Evolution of Brine Fractal Geometry in Sea Ice

Nash Ward, Daniel Hallman, Benjamin Murphy, Jody Reimer, Marc Oggier, Megan O'Sadnick, Elena Cherkaev and Kenneth Golden, 2023

fractal dimension of the coastline of Great Britain by box counting

$$N(\epsilon) \sim \epsilon^{-D}$$

brine channels and inclusions "look" like fractals (from 30 yrs ago)

X-ray computed tomography of brine in sea ice

columnar and granular

Golden, Eicken, et al. GRL, 2007

The first comprehensive, quantitative study of the fractal dimension of brine in sea ice and its strong dependence on temperature and porosity.

brine channel in sea ice

diffusion limited aggregation

Implications of brine fractal geometry on sea ice ecology and biogeochemistry

Brine inclusions are home to ice endemic organisms, e.g., bacteria, diatoms, flagellates, rotifers, nematodes.

The habitability of sea ice for these organisms is inextricably linked to its complex brine geometry.

(A) Many sea ice organisms attach themselves to inclusion walls; inclusions with a higher fractal dimension have greater surface area for colonization.
(B) Narrow channels prevent the passage of larger organisms, leading to refuges where smaller organisms can multiply without being grazed, as in (C).
(D) Ice algae secrete extracellular polymeric substances (EPS) which alter incusion geometry and may further increase the fractal dimension.

Remote sensing of sea ice

sea ice thickness ice concentration

INVERSE PROBLEM

Recover sea ice properties from electromagnetic (EM) data

8*

effective complex permittivity (dielectric constant, conductivity)

brine volume fraction brine inclusion connectivity

complexities of mixture geometry

spectral properties of operator (matrix) ~ quantum states, energy levels for atoms

eigenvectors

eigenvalues

EXTEND to: polycrystals, advection diffusion, waves through ice pack

Bounds on the complex permittivity of polycrystalline materials by analytic continuation

> Adam Gully, Joyce Lin, Elena Cherkaev, Ken Golden

 Stieltjes integral representation for effective complex permittivity

Milton (1981, 2002), Barabash and Stroud (1999), ...

- Forward and inverse bounds orientation statistics
- Applied to sea ice using two-scale homogenization
- Inverse bounds give method for distinguishing ice types using remote sensing techniques

Proc. Roy. Soc. A 8 Feb 2015

ISSN 1364-5021 | Volume 471 | Issue 2174 | 8 February 2015

PROCEEDINGS A

An invited review commemorating 350 years of scientific publishing at the Royal Society

A method to distinguish between different types of sea ice using remote sensing techniques A computer model to determine how a human should walk so as to expend the least energy

higher threshold for fluid flow in granular sea ice

granular

microscale details impact "mesoscale" processes

5%

columnar

nutrient fluxes for microbes melt pond drainage snow-ice formation

10%

Golden, Sampson, Gully, Lubbers, Tison 2023

electromagnetically distinguish ice types inverse homogenization for polycrystals

mesoscale

advection enhanced diffusion

effective diffusivity

nutrient and salt transport in sea ice heat transport in sea ice with convection sea ice floes in winds and ocean currents tracers, buoys diffusing in ocean eddies diffusion of pollutants in atmosphere

advection diffusion equation with a velocity field $ec{u}$

$$\frac{\partial T}{\partial t} + \vec{u} \cdot \vec{\nabla} T = \kappa_0 \Delta T$$
$$\vec{\nabla} \cdot \vec{u} = 0$$
$$homogenize$$
$$\frac{\partial \overline{T}}{\partial t} = \kappa^* \Delta \overline{T}$$

κ^* effective diffusivity

Stieltjes integral for κ^* with spectral measure

Avellaneda and Majda, PRL 89, CMP 91

Murphy, Cherkaev, Xin, Zhu, Golden, Ann. Math. Sci. Appl. 2017 Murphy, Cherkaev, Zhu, Xin, Golden, J. Math. Phys. 2020

tracers flowing through inverted sea ice blocks

Stieltjes Integral Representation for Advection Diffusion

Murphy, Cherkaev, Zhu, Xin, Golden, J. Math. Phys. 2020

$$\kappa^* = \kappa \left(1 + \int_{-\infty}^{\infty} \frac{d\mu(\tau)}{\kappa^2 + \tau^2} \right), \quad F(\kappa) = \int_{-\infty}^{\infty} \frac{d\mu(\tau)}{\kappa^2 + \tau^2}$$

- μ is a positive definite measure corresponding to the spectral resolution of the self-adjoint operator $i\Gamma H\Gamma$
- H = stream matrix , $\kappa =$ local diffusivity
- $\Gamma:=abla(-\Delta)^{-1}
 abla\cdot$, Δ is the Laplace operator
- $i\Gamma H\Gamma$ is bounded for time independent flows
- $F(\kappa)$ is analytic off the spectral interval in the κ -plane

rigorous framework for numerical computations of spectral measures and effective diffusivity for model flows

new integral representations, theory of moment calculations

separation of material properties and flow field

Bounds on Convection Enhanced Thermal Transport

Kraitzman, Hardenbrook, Dinh, Murphy, Cherkaev, Zhu & Golden, 2023

SEA ICE ALGAE

Can we improve agreement between algae models and data?

80% of polar bear diet can be traced to ice algae*.

^{*}Brown TA, et al. (2018). *PloS one*, 13(1), e0191631

Algal bloom model*

^{*}Huppert, A., et al. (2002). American Naturalist, 159(2), 156-171

Algal bloom model

- poor agreement with data
- poor agreement between models

Steinacher, M., et al. (2010). Biogeosciences, 7(3), 979-1005

HETEROGENEITY

Meiners, K.M., et al. (2017). Geophysical Research Letters, 44(14), 7382-7390

HETEROGENEITY IN INITIAL CONDITIONS

At each location within a larger region, we could consider

Nutrients
$$\frac{dN}{dt} = \alpha - BNP - \eta N$$
Algae $\frac{dP}{dt} = \gamma BNP - \delta P$

$$N(0) = N_0, \qquad P(0) = P_0$$

HOW DO WE ANALYZE THIS MODEL?

Monte Carlo simulations?

Too slow! Full algae model takes **8 hours** (cloud computing).

Received: 7 June 2022

Revised: 1 August 2022 Accepted: 1 August 2022

DOI: 10.1111/ele.14095

METHOD

Uncertainty quantification for ecological models with random parameters ©

Jody R. Reimer^{1,2} | Frederick R. Adler^{1,2} | Kenneth M. Golden¹ | Akil Narayan^{1,3}

¹Department of Mathematics, University of Utah, Salt Lake City, Utah, USA

²School of Biological Sciences, University of Utah, Salt Lake City, Utah, USA

³Scientific Computing and Imaging Institute, University of Utah, Salt Lake City, Utah, USA

Correspondences

Jody R. Reimer, Department of Mathematics and School of Biological Sciences, University of Utah, Salt Lake City, Utah, USA. Email: reimer@math.utah.edu

Abstract

There is often considerable uncertainty in parameters in ecological models. This uncertainty can be incorporated into models by treating parameters as random variables with distributions, rather than fixed quantities. Recent advances in uncertainty quantification methods, such as polynomial chaos approaches, allow for the analysis of models with random parameters. We introduce these methods with a motivating case study of sea ice algal blooms in heterogeneous environments. We compare Monte Carlo methods with polynomial chaos techniques to help understand the dynamics of an algal bloom model with random parameters.

Introduce polynomial chaos approach to widely used ecological ODE models, but with random parameters.

POLYNOMIAL CHAOS EXPANSIONS

$$N(t; B, P_0, N_0) \approx N_V(t; B, P_0, N_0) \coloneqq \sum_{j=1}^n \widetilde{N}_j(t)\phi_j(B, P_0, N_0),$$
$$P(t; B, P_0, N_0) \approx P_V(t; B, P_0, N_0) \coloneqq \sum_{j=1}^n \widetilde{P}_j(t)\phi_j(B, P_0, N_0),$$

where

- $V \coloneqq \operatorname{span}\{\phi_j\}_{j=1}^n$
- ϕ_j are orthogonal polynomials that form a basis for V
- $(\widetilde{N}_j, \widetilde{P}_j)$ need to be computed

Xiu, D. (2010). Numerical methods for stochastic computations. Princeton university press.

ECOLOGICAL INSIGHTS

- lower peak bloom intensity
- longer bloom duration
- able to compare variance to data

macroscale

Melt ponds control transmittance of solar energy through sea ice, impacting upper ocean ecology.

WINDOWS

no bloom bloom massive under-ice algal bloom

Arrigo et al., Science 2012

Have we crossed into a new ecological regime?

The frequency and extent of sub-ice phytoplankton blooms in the Arctic Ocean

Horvat, Rees Jones, Iams, Schroeder, Flocco, Feltham, *Science Advances* 2017

The effect of melt pond geometry on the distribution of solar energy under first year sea ice

Horvat, Flocco, Rees Jones, Roach, Golden Geophys. Res. Lett. 2019

(2015 AMS MRC)

polar bear foraging in a fractal icescape

Nicole Forrester Jody Reimer Ken Golden

It costs the polar bear 5 times the energy to swim through water than to walk on sea ice.

What pathway to a seal minimizes energy spent?

Polar Bear Percolation

Optimal Movement of a Polar Bear in a Heterogenous Icescape

20% lce

60% lce

Thank you to so many postdocs, graduate students, undergraduates, high school students and colleagues who contributed to this work!

U. of Utah students in the Arctic and Antarctic (2003-2022): closing the gap between theory and observation - making math models come alive and experiencing climate change firsthand.

of the American Mathematical Society

November 2020

Volume 67, Number 10

The cover is based on "Modeling Sea Ice," page 1535.

THANK YOU

Office of Naval Research

Applied and Computational Analysis Program Arctic and Global Prediction Program

National Science Foundation

Division of Mathematical Sciences Division of Polar Programs

Australian Government

Department of the Environment and Water Resources Australian Antarctic Division

Buchanan Bay, Antarctica Mertz Glacier Polynya Experiment July 1999