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Modeling sea ice algal blooms using 
dynamical systems with random parameters

From micro to macro in the polar marine ecosystem
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New Record Low for Antarctic Sea Ice

Minimum extent 1979-2023 
             (million sq km)

February 13, 2023
Much of Antarctica

warmer than average
   Mean 2022 surface air temp
compared with 1991-2022 (   C)
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ARCTIC summer sea ice loss

predictions require lots of math modeling 



Gully et al. Proc. Roy. Soc. A 2015Golden et al. GRL 2007
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Sea Ice is a Multiscale Composite Material
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hysics of sea ice

ArrigoArrigoGolden

microbes, megafauna, and the physics of sea ice 

How do sea ice properties 
a�ect the life it hosts?

How does life in and on sea ice
a�ect its physical properties?



What is this talk about?

A brief tour of recent results on multiscale modeling of 
physical and ecological processes in the sea ice system.

microscale, mesoscale, macroscale

(through the lens of fractal geometry)

1. Physical processes regulating algal dynamics
2. Dynamical systems model with random parameters

Focus:



microscale



- ocean-ice-air exchanges of heat, CO

evolution of Arctic melt ponds and sea ice albedo

C. Haas

C. KrembsACE CRCK. Golden

2

Antarctic surface �ooding 
and snow-ice formation 

nutrient �ux for algal communities

- evolution of salinity pro�les

�uid �ow through the porous microstructure of sea ice
governs key processes in polar climate and ecosystems

22%

September
snow-ice
estimates

26%28%

27%

T. Maksym and T. Markus, 2008

sunlight
reflected

sunlight
absorbed



-15 C,   = 0.033° -3 C,   = 0.143° -6 C,   = 0.075°φ φ φT = T = T =

-8 C,   = 0.057° φT = -4 C,   = 0.113° φT =

brine volume fraction and connectivity increase with temperature

X-ray tomography for brine in sea ice                                Golden et al., Geophysical Research Letters, 2007
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HOMOGENIZATION for Composite Materials

∗

Einstein 1906 : e�ective viscosity of a dilute suspension of rigid spheres in a �uid
Maxwell 1873 : e�ective conductivity of a dilute suspension of spheres

         e�ective
conductivity

Wiener 1912 : arithmetic and harmonic mean bounds on e�ective conductivity 
Hashin and Shtrikman 1962 : variational bounds on e�ective conductivity 

widespread use of composites in late 20th century due in large part
to advances in mathematically predicting their e�ective properties

LINKING
 SCALES

MICROSCALE MACROSCALE

FORWARD

INVERSE

{σ∗        

homogeneous
medium of
conductivity

σ∗



PERCOLATION THRESHOLD φc ~~ 5%

Critical behavior of �uid transport in sea ice

c ~~ -5  C, S ~~ 5 ppt

RULE  OF  FIVES 

T
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brine volume fraction    
φc
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3 x 10
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4 x 10
-10

1 x 10
-10

vertical �uid 
permeability  k  (m   )2

0

“on - o�” switch  
for bulk �uid �owo� on

Arctic �eld data

Golden, Eicken, Heaton, Miner, Pringle, Zhu   GRL 2007
Golden, Ackley, Lytle   Science   1998

Pringle, Miner, Eicken, Golden   J. Geophys. Res.   2009

impermeable permeable

φ

v = k p

Darcy’s Law

k = �uid permeability tensor

homogenized parameter

p = 1/3 p = 2/3

impermeable permeable

lattice percolation

            FRACTAL  
percolation clusters



young healthy 
trabecular bone

old osteoporotic 
trabecular bone
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 compressed 
     powdersea ice radar absorbing 

      composite

B-2 Stealth Bomber
F-117 Nighthawk
Stealthy Helicopters

cross pollination
use stealth 
technology
to predict 5%

human bonesea ice

new method of monitoring 
osteoporosis from sea ice

the math doesn’t care
if it’s  sea ice or bone! Golden, Murphy, Cherkaev, J. Biomech. 2011

sea ice is a 
radar absorbing 
composite!



sea ice algal 
communities

D. Thomas 2004

nutrient replenishment 
controlled by ice permeability

biological activity turns on
or o� according to 
rule of �ves

Golden, Ackley, Lytle Science 1998

Fritsen, Lytle, Ackley, Sullivan     Science 1994
Convection-fueled algae bloom
         Ice Station Weddell

critical behavior of microbial activity



X-ray tomography for
brine inclusions

microscale

governs

mesoscale
processes

Thermal evolution of permeability and microstructure in sea ice
Golden, Eicken, Heaton, Miner, Pringle, Zhu,    Geophysical Research Letters    2007 

percolation theory 
for �uid permeability

hierarchical model

network model

con�rms rule of �ves

theories agree closely 
         with �eld data

k ( ) = k 2
0

 k   = 3 x 100
-8

m2

 critical
exponent

t
φ φ − 0.05(               )

Pringle, Miner, Eicken, Golden
J. Geophys. Res. 2009

rigorous bounds

melt pond evolution

from critical path analysis 
in hopping conduction 

rock physics

brine percolation threshold 
of φ = 5% for bulk �uid �ow 



How does EPS a�ect �uid transport?

2D random pipe model with bimodal distribution of pipe radii

Rigorous bound on permeability k; results predict observed drop in k

Ste�en, Epshteyn,  Zhu, Bowler, Deming, Golden
        Multiscale Modeling and Simulation, 2018

How does the biology a�ect the physics?
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Sea ice algae secrete extracellular polymeric substances (EPS)
a�ecting evolution of brine microstructure.

without EPS with EPS

Krembs, Eicken, Deming, PNAS 2011

R

R

R

v

v

h

i,j

i,j-1

i-1,j

Rh
i,j

(i,j)

Zhu, Jabini, Golden, 
Eicken, Morris
Ann. Glac. 2006

RANDOM
     PIPE
  MODEL

Krembs

FRACTAL



Thermal Evolution of Brine Fractal Geometry in Sea Ice
Nash Ward, Daniel Hallman, Benjamin Murphy, Jody Reimer, 

Marc Oggier, Megan O’Sadnick, Elena Cherkaev and Kenneth Golden, 2023

-8 C,   = 0.057° φT =C,   = 0.033° φT = -12  

Proko�ev

fractal dimension of the 
coastline of Great Britain 
by box counting 

X-ray computed
tomography of
brine in sea ice

Golden, Eicken, et al. GRL, 2007

brine channels and
inclusions “look” 
like fractals 
(from 30 yrs ago) columnar and granular



Brine Porosity φ 
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on Katz and Thompson, 1985;  Yu and Li, 2001

Df = 3− lnφ

ln(λmin/λmax)

DLA model X-ray tomography

The �rst comprehensive, quantitative study of the fractal dimension of 
brine in sea ice and its strong dependence on temperature and porosity.

The red curve is exact for the Sierpinski 
pyramid (an exactly self-similar geometry); 
discovered for sandstones - statistically 
self-similar porous media like sea ice.

 

brine channel
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di�usion limited
     aggregation
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A B C D

10 cm 1 cm 2 mm

Implications of brine fractal geometry on sea ice ecology and biogeochemistry  

Brine inclusions are home to 
ice endemic organisms, e.g., 
bacteria, diatoms, �agellates, 
rotifers, nematodes.

The habitability of sea ice 
for these organisms is 
inextricably linked to its 
complex brine geometry.

(A) Many sea ice organisms attach themselves to inclusion walls; inclusions with a higher fractal dimension have greater surface area for colonization.

(B) Narrow channels prevent the passage of larger organisms, leading to refuges where smaller organisms can multiply without being grazed, as in (C).

(D) Ice algae secrete extracellular polymeric substances (EPS) which alter incusion geometry and may further increase the fractal dimension.



Remote sensing of sea ice
Recover sea ice
properties from
electromagnetic
       (EM) data 

 INVERSE PROBLEM

sea ice thickness
ice concentration

brine volume fraction
brine inclusion connectivity

ε*
   effective complex permittivity  

(dielectric constant, conductivity)



complexities of mixture geometry

 spectral properties of operator (matrix) 
~ quantum states, energy levels for atoms

Bartleby.com

distilled

2D lattice
spectral
measure µ

distilled

gap

EXTEND to: polycrystals, advection di�usion, waves through ice pack

0 1

Analytic Continuation Method

Bergman 1978, Milton 1979
Golden & Papanicolaou 1983

Stieltjes Integral Representations
for Homogenized Parameters

eigenvectors eigenvalues
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Bounds on the complex permittivity
           of polycrystalline materials 
              by analytic continuation

      Adam Gully, Joyce Lin, 
Elena Cherkaev, Ken Golden

Stieltjes integral representation for
e�ective complex permittivity 

Forward and inverse bounds 

Proc. Roy. Soc. A       8 Feb 2015

Applied to sea ice using 
two-scale homogenization

Inverse bounds give method for 
distinguishing ice types using 
remote sensing techniques

Milton (1981, 2002), Barabash and Stroud (1999), ...

orientation statistics



columnar granular

higher threshold for �uid �ow in granular sea ice

5% 10%

microscale details impact “mesoscale” processes 
nutrient �uxes for microbes
melt pond drainage
snow-ice formation

Golden, Sampson, Gully, Lubbers, Tison 2023

electromagnetically distinguish ice types
inverse homogenization for polycrystals    



mesoscale



Masters, 1989

advection enhanced di�usion

e�ective di�usivity
nutrient and salt transport in sea ice 
heat transport in sea ice with convection 
sea ice floes in winds and ocean currents 
tracers, buoys diffusing in ocean eddies 
diffusion of pollutants in atmosphere

homogenize

Drake
Passage

sea ice vortices

Gulf Stream Aghulas Current

e�ective di�usivity
Stieltjes integral for         with spectral measure

Avellaneda and Majda, PRL 89, CMP 91

Murphy, Cherkaev, Xin, Zhu, Golden, Ann. Math. Sci. Appl. 2017 
Murphy, Cherkaev, Zhu, Xin, Golden, J. Math. Phys. 2020

Wells et al. 2011



tracers flowing through inverted sea ice blocks 



κ∗ = κ 1 +
∞

−∞

dµ(τ)

κ2 + τ2
, F (κ

∞

−∞

dµ(τ)

κ2 + τ2

µ is a positive definite measure corresponding to the
spectral resolution of the self-adjoint operator iΓHΓ

Γ := −∇(−∆)−1∇· , ∆ is the Laplace operator

iΓHΓ is bounded for time independent flows

F (κ) is analytic κ-plane

Stieltjes Integral Representation for Advection Di�usion

Murphy, Cherkaev, Zhu, Xin, Golden, J. Math. Phys. 2020 

H

=)

= stream matrix

off the spectral interval in the

κ = local diffusivity,

rigorous framework for numerical computations of 
spectral measures and e�ective di�usivity for model �ows 

new integral representations, theory of moment calculations

separation of material properties and �ow �eld           



Bounds on Convection Enhanced Thermal Transport

simulations data [Trodahl et al., 2001]

Darcy velocity v = 0.5 [m/s]

cat’s eye �ow model for
brine convective flow

Kraitzman, Hardenbrook, Dinh, Murphy, Cherkaev, Zhu & Golden, 2023

Monte-Carlo simulations of SDE with 
temperature dependent Péclet number P 

Rigorous Padé approximant bounds in terms of
P using Stieltjes integral + analytic continuation

method for the measure

Euler-Maruyama and subsampling 
methods for SDE

strength of advection B = κP/2π



SEA ICE ALGAE

80% of polar bear diet can be traced to ice algae∗.

∗
Brown TA, et al. (2018). PloS one, 13(1), e0191631

Can we improve agreement between algae models and data?



ALGAL BLOOM MODEL∗

nutrients:
dN
dt

= α︸︷︷︸
input

− βNP︸︷︷︸
uptake

− ηN︸︷︷︸
loss

algae:
dP
dt

= γβNP︸ ︷︷ ︸
growth

− δP︸︷︷︸
death

,

N(0) = n0, P(0) = p0

∗
Huppert, A., et al. (2002). American Naturalist, 159(2), 156-171



ALGAL BLOOM MODEL
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• poor agreement with data

• poor agreement between models

Steinacher, M., et al. (2010). Biogeosciences, 7(3), 979-1005



HETEROGENEITY

Meiners, K.M., et al. (2017). Geophysical Research Letters, 44(14), 7382-7390



HETEROGENEITY IN INITIAL CONDITIONS

At each location within a larger region, we could consider

dN
dt

= α− BNP− ηN

dP
dt

= γBNP− δP

N(0) = N0, P(0) = P0

Nutrients

Algae



HOW DO WE ANALYZE THIS MODEL?
Monte Carlo simulations?

Too slow! Full algae model takes 8 hours (cloud
computing).
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Uncertainty quantification for ecological models with random 
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Abstract 

There is often considerable uncertainty in parameters in ecological models. This 

uncertainty can be incorporated into models by treating parameters as random 

variables with distributions, rather than fixed quantities. Recent advances in 

uncertainty quantification methods, such as polynomial chaos approaches, allow 

for the analysis of models with random parameters. We introduce these methods 

with a motivating case study of sea ice algal blooms in heterogeneous environments. 

We compare Monte Carlo methods with polynomial chaos techniques to help 

understand the dynamics of an algal bloom model with random parameters. 

Introduce polynomial chaos approach to widely used 
ecological ODE models, but with random parameters.  



POLYNOMIAL CHAOS EXPANSIONS

N(t;B,P0,N0) ≈ NV(t;B,P0,N0) :=

n∑
j=1

Ñj(t)φj(B,P0,N0),

P(t;B,P0,N0) ≈ PV(t;B,P0,N0) :=

n∑
j=1

P̃j(t)φj(B,P0,N0),

where
• V := span{φj}n

j=1

• φj are orthogonal polynomials that form a basis for V

• (Ñj, P̃j) need to be computed

Xiu, D. (2010). Numerical methods for stochastic computations. Princeton university press.



ECOLOGICAL INSIGHTS

0.00

0.01

0.02

al
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e
P

120 140 160 180 200 220 240 260 280 300 320 340 360 380 400 420
Time t [days]

±1 stdev range
Deterministic 

Mean

• lower peak bloom intensity
• longer bloom duration
• able to compare variance to data



macroscale



no bloom bloom

massive under-ice algal bloom
Arrigo et al., Science 2012

WINDOWS

Have we crossed into a 
new ecological regime?

       The frequency and extent of sub-ice 
phytoplankton blooms in the Arctic Ocean

(2015 AMS MRC)

Horvat, Rees Jones, Iams, Schroeder, 
Flocco, Feltham, Science Advances 2017

Horvat, Flocco, Rees Jones, Roach, Golden
Geophys. Res. Lett. 2019

The e�ect of melt pond geometry on the distribution 
                of solar energy under �rst year sea ice

Melt ponds control transmittance
of solar energy through sea ice,
impacting upper ocean ecology.

Perovich



polar bear
foraging in a 

fractal icescape

It costs the polar bear
5 times the energy to
swim through water
than to walk on sea ice.

Nicole Forrester
Jody Reimer
Ken Golden

What pathway to a seal 
minimizes energy spent? 
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Optimal Movement of a Polar Bear in a 
Heterogenous Icescape

20% Ice

60% Ice

80% Ice

Polar Bear Percolation

site percolation
threshold

pc = 0.59   for  d = 2 
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ratio of local 
“conductivities”

connected
ice pathway

h = 0.2
h = 0.1
h = 0
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ice disconnected
bear must swim



Thank you to so many postdocs, graduate students, undergraduates, 
high school students and colleagues who contributed to this work! 

U. of Utah students in the Arctic and Antarctic (2003-2022): closing the gap between theory 
and observation - making math models come alive and experiencing climate change �rsthand.
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