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- ocean-ice-air exchanges of heat, CO

evolution of Arctic melt ponds and sea ice albedo
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Antarctic surface �ooding 
and snow-ice formation 

nutrient �ux for algal communities

- evolution of salinity pro�les

�uid �ow through the porous microstructure of sea ice
governs key processes in polar climate and ecosystems
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HOMOGENIZATION for Composite Materials

∗

Einstein 1906 : e�ective viscosity of a dilute suspension of rigid spheres in a �uid
Maxwell 1873 : e�ective conductivity of a dilute suspension of spheres

         e�ective
conductivity

Wiener 1912 : arithmetic and harmonic mean bounds on e�ective conductivity 
Hashin and Shtrikman 1962 : variational bounds on e�ective conductivity 

widespread use of composites in late 20th century due in large part
to advances in mathematically predicting their e�ective properties

LINKING
 SCALES

MICROSCALE MACROSCALE

FORWARD

INVERSE

{σ∗        

homogeneous
medium of
conductivity
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What is this talk about?

A tour of recent results on modelling macroscopic behaviour 
in the sea ice system, with a focus on novel mathematics.

microscale

mesoscale

macroscale



microscale



-15 C,   = 0.033° -3 C,   = 0.143° -6 C,   = 0.075°φ φ φT = T = T =

-8 C,   = 0.057° φT = -4 C,   = 0.113° φT =

brine volume fraction and connectivity increase with temperature

X-ray tomography for brine in sea ice                                Golden et al., Geophysical Research Letters, 2007



PERCOLATION THRESHOLD φc ~~ 5%

Critical behavior of �uid transport in sea ice

c ~~ -5  C, S ~~ 5 ppt

RULE  OF  FIVES 

T
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brine volume fraction    
φc
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vertical �uid 
permeability  k  (m   )2

0

“on - o�” switch  
for bulk �uid �owo� on

Arctic �eld data

Golden, Eicken, Heaton, Miner, Pringle, Zhu   GRL 2007
Golden, Ackley, Lytle   Science   1998

Pringle, Miner, Eicken, Golden   J. Geophys. Res.   2009

impermeable permeable

φ

v = k p

Darcy’s Law

k = �uid permeability tensor

homogenized parameter

p = 1/3 p = 2/3

impermeable permeable

lattice percolation



sea ice algal 
communities

D. Thomas 2004

nutrient replenishment 
controlled by ice permeability

biological activity turns on
or o� according to 
rule of �ves

Golden, Ackley, Lytle                         Science 1998

Fritsen, Lytle, Ackley, Sullivan     Science 1994
Convection-fueled algae bloom
         Ice Station Weddell

critical behavior of microbial activity



X-ray tomography for
brine inclusions

microscale

governs

mesoscale
processes

Thermal evolution of permeability and microstructure in sea ice
Golden, Eicken, Heaton, Miner, Pringle, Zhu,    Geophysical Research Letters    2007 

percolation theory 
for �uid permeability

hierarchical model

network model

con�rms rule of �ves

theories agree closely 
         with �eld data

k ( ) = k 2
0

 k   = 3 x 100
-8

m2

 critical
exponent

t
φ φ − 0.05(               )

Pringle, Miner, Eicken, Golden
J. Geophys. Res. 2009

rigorous bounds

melt pond evolution

from critical path analysis 
in hopping conduction 

rock physics

brine percolation threshold 
of φ = 5% for bulk �uid �ow 



How does EPS a�ect �uid transport?

2D random pipe model with bimodal distribution of pipe radii

Rigorous bound on permeability k; results predict observed drop in k

Ste�en, Epshteyn,  Zhu, Bowler, Deming, Golden
        Multiscale Modeling and Simulation, 2018

How does the biology a�ect the physics?
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Sea ice algae secrete extracellular polymeric substances (EPS)
                     a�ecting evolution of brine microstructure.
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Krembs, Eicken, Deming, PNAS 2011
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Thermal Evolution of Brine Fractal Geometry in Sea Ice
Nash Ward, Daniel Hallman, Benjamin Murphy, Jody Reimer, 

Marc Oggier, Megan O’Sadnick, Elena Cherkaev and Kenneth Golden, 2022

-8 C,   = 0.057° φT =C,   = 0.033° φT = -12  

Proko�ev

fractal dimension of the 
British coastline by 
box counting 

X-ray computed 
tomography of 
brine in sea ice 

Golden, Eicken, et al. GRL, 2007

brine channels and
inclusions “look” 
like fractals 
(from 30 yrs ago) columnar and granular
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Theoretical prediction
Fractal dimension from boxcounting

Katz and Thompson, 1985
Yu and Li, 2001

Df = 3− lnφ

ln(λmin/λmax)

DLA model X-ray tomography

The �rst comprehensive, quantitative study of the fractal dimension of 
brine in sea ice and its strong dependence on temperature and porosity.

The blue curve is exact for the Sierpinski 
gasket (an exactly self-similar geometry); 
discovered for sandstones - statistically 
self-similar porous media.

 

brine channel
     in sea ice

di�usion limited
     aggregation

D
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10 cm 1 cm 2 mm

Implications of brine fractal geometry on sea ice ecology and biogeochemistry  

Brine inclusions are home to 
ice endemic organisms, e.g., 
bacteria, diatoms, �agellates, 
rotifers, nematodes.

The habitability of sea ice 
for these organisms is 
inextricably linked to its 
complex brine geometry.

(A) Many sea ice organisms attach themselves to inclusion walls; inclusions with a higher fractal dimension have greater surface area for colonization.

(B) Narrow channels prevent the passage of larger organisms, leading to refuges where smaller organisms can multiply without being grazed, as in (C).

(D) Ice algae secrete extracellular polymeric substances (EPS) which alter incusion geometry and may further increase the fractal dimension.



Golden



Remote sensing of sea ice
Recover sea ice
properties from
electromagnetic
       (EM) data 

 INVERSE PROBLEM

sea ice thickness
ice concentration

brine volume fraction
brine inclusion connectivity

ε*
   effective complex permittivity  

(dielectric constant, conductivity)



}
Effective complex permittivity of a two phase composite
           in the quasistatic (long wavelength) limit

, = volume fractions of
    the components

= (    , composite geometry )
  What are the effective propagation characteristics 
of an EM wave (radar, microwaves) in the medium?



Stieltjes integral representation 
    for homogenized parameter

spectral measure of
self adjoint operator
mass = 

higher moments depend 
on n-point correlations

separates geometry 
   from parameters 

Golden and Papanicolaou, Comm. Math. Phys. 1983

characteristic function
of the brine phase

geometry

material parameters

:  microscale         macroscale 
links scales

Analytic Continuation Method for Homogenization
Bergman (1978), Milton (1979), Golden and Papanicolaou (1983), Theory of Composites, Milton (2002)

/



This representation distills the complexities of 
mixture geometry into the spectral properties 
of an operator like the Hamiltonian in physics. 



inverse bounds and 
recovery of brine porosity

forward and inverse bounds on the complex permittivity of sea ice

forward bounds

Gully, Backstrom, Eicken, Golden  
Physica B, 2007

4.75 GHz data
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inversion for brine inclusion
separations in sea ice from 
measurements of e�ective
complex permittivity  ε

matrix particle

Orum, Cherkaev, Golden 
Proc. Roy. Soc. A, 2012

*
rigorous inverse bound
         on spectral gap

construct algebraic curves which bound 
        admissible region in (p,q)-space

qmin

Inverse Homogenization  
Cherkaev and Golden (1998), Day and Thorpe (1999), 
Cherkaev (2001), McPhedran, McKenzie, Milton (1982), 
Theory of Composites, Milton (2002)

∗ε
composite geometry
(spectral measure µ)



inhomogeneous 
medium

inhomogeneous 
medium

homogeneous 
medium

Homogenization for polycrystalline materials
e�ective

conductivity

Two-component 
composites

homogeneous 
medium

e�ective
conductivity

Polycrystalline 
media

Local conductivity

Homogenize

Homogenize

Conductivity of crystal directions

Find the homogeneous medium which behaves macroscopically the same as the inhomogeneous medium
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Bounds on the complex permittivity
           of polycrystalline materials 
              by analytic continuation

      Adam Gully, Joyce Lin, 
Elena Cherkaev, Ken Golden

Stieltjes integral representation for
e�ective complex permittivity 

Forward and inverse bounds 

Proc. Roy. Soc. A       8 Feb 2015

Applied to sea ice using 
two-scale homogenization

Inverse bounds give method for 
distinguishing ice types using 
remote sensing techniques

Milton (1981, 2002), Barabash and Stroud (1999), ...

orientation statistics



columnar granular

higher threshold for �uid �ow in granular sea ice

5% 10%

microscale details impact “mesoscale” processes 
nutrient �uxes for microbes
melt pond drainage
snow-ice formation

Golden, Sampson, Gully, Lubbers, Tison 2022

electromagnetically distinguishing ice types 
    Kitsel Lusted, Elena Cherkaev, Ken Golden 



Rigorous bounds on the complex permittivity tensor of sea ice 
        with polycrystalline anisotropy in the horizontal plane

Kenzie McLean, Elena Cherkaev, Ken Golden 2022

motivated by Weeks and Gow, JGR 1979: c-axis alignment in Arctic fast ice off Barrow 
Golden and Ackley, JGR 1981: radar propagation model in aligned sea ice  

CRREL

input: orientation statistics output: bounds

3%

Re(     )ε∗

Im(     )ε∗

3.5%
4%

isotropic within
horizontal plane

anisotropic within
horizontal plane



direct calculation of spectral measures

Day and Thorpe 1996
Helsing, McPhedran, Milton 2011    earlier studies of spectral measures

once we have the spectral measure µ it can be used in 
        Stieltjes integrals for other transport coefficients:

electrical and thermal conductivity, complex permittivity, 
magnetic permeability, diffusion, fluid flow properties

depends only on the composite geometry

discretization of microstructural image gives binary network

fundamental operator becomes a random matrix 

spectral measure computed from eigenvalues and eigenvectors 

Murphy, Hohenegger, Cherkaev, Golden, Comm. Math. Sci. 2015
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Spectral computations for sea ice floe configurations

spectral
measures

eigenvalue
spacing
distributions

uncorrelated level repulsion

UNIVERSAL 
Wigner-Dyson 
distribution 



Wigner (1951) and Dyson (1953) �rst used random matrix theory (RMT) 
              to describe quantized energy levels of heavy atomic nuclei.

Eigenvalue Statistics of Random Matrix Theory 

[N] ij ~ N(0,1), A= (N+N  )/2T Gaussian orthogonal ensemble (GOE)

[N] ij ~ N(0,1)+iN(0,1),    A= (N+ N  )/2† Gaussian unitary ensemble (GUE)

Short range and long range correlations of eigenvalues are measured by various eigenvalue statistics.

               

Universal eigenvalue statistics arise in a broad  range  of “unrelated” problems!

Spacing distributions of energy levels for heavy atomic nuclei

Spacing distributions of the first billion zeros 
of the Riemann zeta function

GUE



Anderson transition in wave physics: 
quantum, optics, acoustics, water waves, ...

metal / insulator transition

Anderson transition for classical transport in composites
Murphy, Cherkaev, Golden     Phys.  Rev.  Lett.    2017

Anderson  1958
Mott 1949
Shklovshii et al  1993
Evangelou  1992

universal eigenvalue statistics (GOE)
extended states, mobility edges

-- but with NO wave interference or scattering e�ects ! --

PERCOLATION
  TRANSITION

localization

from analysis of spectral measures for brine, melt ponds, ice �oes

we �nd percolation-driven 

electronic transport in semiconductors



increasing twist angle between two lattices

spectral
measure

periodic quasiperiodic

RRN at 
percolation
threshold

electric �eld 
    strength

Order to disorder in quasiperiodic composites
Morison, Murphy, Cherkaev, Golden, Comm. Phys. 2022

Yao et al., 2018

twisted bilayer graphene

sea ice inspired - high tech spin o�
tunable quasiperiodic composites with exotic properties 

(optical, electrical, thermal, ...), Anderson localization; our Moiré 
patterned geometries are similar to twisted bilayer graphene 



mesoscale



Masters, 1989

advection enhanced di�usion

e�ective di�usivity
nutrient and salt transport in sea ice 
heat transport in sea ice with convection 
sea ice floes in winds and ocean currents 
tracers, buoys diffusing in ocean eddies 
diffusion of pollutants in atmosphere

homogenize

Drake
Passage

sea ice vortices

Gulf Stream Aghulas Current

e�ective di�usivity
Stieltjes integral for         with spectral measure

Avellaneda and Majda, PRL 89, CMP 91

Murphy, Cherkaev, Xin, Zhu, Golden, Ann. Math. Sci. Appl. 2017 
Murphy, Cherkaev, Zhu, Xin, Golden, J. Math. Phys. 2020

Wells et al. 2011



tracers flowing through inverted sea ice blocks 



κ∗ = κ 1 +
∞

−∞

dµ(τ)

κ2 + τ2
, F (κ

∞

−∞

dµ(τ)

κ2 + τ2

µ is a positive definite measure corresponding to the
spectral resolution of the self-adjoint operator iΓHΓ

Γ := −∇(−∆)−1∇· , ∆ is the Laplace operator

iΓHΓ is bounded for time independent flows

F (κ) is analytic κ-plane

Stieltjes Integral Representation for Advection Di�usion

Murphy, Cherkaev, Zhu, Xin, Golden, J. Math. Phys. 2020 

H

=)

= stream matrix

off the spectral interval in the

κ = local diffusivity,

rigorous framework for numerical computations of 
spectral measures and e�ective di�usivity for model �ows 

new integral representations, theory of moment calculations

separation of material properties and �ow �eld           



Bounds on Convection Enhanced Thermal Transport

simulations data [Trodahl et al., 2001]

Darcy velocity v = 0.5 [m/s]

cat’s eye �ow model for
brine convective �ow

Kraitzman, Hardenbrook, Dinh, Murphy, Cherkaev, Zhu, & Golden, 2022

Monte-Carlo simulations of SDE with 
temperature dependent Péclet number P 

Rigorous Padé approximant bounds in terms of
P using Stieltjes integral + analytic continuation

method for the measure

Euler-Maruyama and subsampling 
methods for SDE

strength of advection B = κP/2π



wave propagation in the marginal ice zone (MIZ) 
   Stieltjes integral representation and bounds for 
the complex viscoelasticity of the ice - ocean layer 

�rst theory of key parameter
in wave-ice interactions only

�tted to wave data before

Sampson, Murphy, Cherkaev, Golden 2022

quasistatic, long wavelength regime
homogenized

parameter
depends on

sea ice 
concentration

and ice �oe
geometry

Bergman (78) - Milton (79)
integral representation for
Golden and Papanicolaou (83) 

ε*

Analytic Continuation Method

Milton, Theory of Composites (02)

like EM waves

Keller, 1998
Mosig, Montiel, Squire, 2015
Wang, Shen, 2012



Elementary bounds for wave periods T.

matrix-particle bounds

pancake ice

bounds on the effec�ve complex viscoelas�city

complex elementary bounds
 (fixed area frac�on of floes)

ν
ν
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2

=  10   + i 4875   

=   5 + i 0.0975 

7 pancake ice

slush / frazil high contrast
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major drivers in polar climate
key challenge for global climate models

Perovich

melt pond formation and albedo evolution: 

     Are there universal features of the evolution 
similar to phase transitions in statistical physics?

numerical models of melt pond evolution, including 
            topography, drainage (permeability), etc. Flocco, Feltham 2007 Flocco, Feltham, 

Hunke 2012

Skyllingstad, Paulson, 
Perovich 2009

Luthje, Feltham, 
Taylor, Worster 2006

..



fractal curves in the plane
they wiggle so much that their dimension is >1

D = 1 D = 1.26

simple curves Koch snow�ake

D = 2

space �lling curves

Brownian 
motion

Peano curve
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complexity grows with length scale

Transition in the fractal geometry of Arctic melt ponds
Christel Hohenegger, Bacim Alali, Kyle Steffen, Don Perovich, Ken Golden

The Cryosphere, 2012

~ 30 m

simple pond transitional pond complex pond



Continuum percolation model for melt pond evolution

intersections of a plane with the surface define melt ponds

electronic transport in disordered media             di�usion in turbulent plasmas              Isichenko, Rev. Mod. Phys., 1992

Brady Bowen, Court Strong, Ken Golden,  J. Fractal Geometry  2018

random Fourier series representation of surface topography

level sets of random surfaces
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           fractal dimension curves depend on 
statistical parameters defining random surface



Ryleigh Moore, Jacob Jones, Dane Gollero, 
Court Strong, Ken Golden 

 Topology of the sea ice surface and the 
fractal geometry of Arctic melt ponds

Physical Review Research (invited, under revision)

Several models replicate the transition in 
fractal dimension, but none explain how it arises.

We use Morse theory applied to the random surface model 
to show that saddle points play the critical role in the fractal transition.

ponds coalesce 
(change topology) and 
complexify at saddle points    



G

F

E

D

A

B

C

Morse theory tells us that changes in the topology of a surface occur at 
critical points of smooth functions on the surface: maxima, minima, and saddles.

Morse theory



Main results

Isoperimetric quotient - as a proxy for fractal dimension - increases 
   in discrete jumps when ponds coalesce at saddle points.   

Horizontal �uid permeability “controlled” by saddles ~ electronic transport in 2D random potential.  

drainage processes, seal holes



drainage vortex

melt pond evolution depends also on large-scale “pores” in ice cover  

photo courtesy of C. Polashenski and D. Perovich

Melt pond connectivity enables vast expanses of melt water to 
         drain down seal holes, thaw holes, and leads in the ice.



Topological 
Data Analysis

Bobrowski &
Skraba, 2020

Euler characteristic   =  # maxima  +  # minima  -  # saddles

persistent homology

�ltration - sequence of nested topological spaces, indexed by water level

topological invariant

Expected 
Euler Characteristic Curve (ECC)

500 realizations 

tracks  the evolution of the EC of 
the �ooded surface as water rises

zero of ECC ~ percolation 

Carlsson, 2009

Vogel, 2002

image analysis
porous media 
cosmology 
brain activity

percolation on a torus 
creates a giant cycle

GRF



melt pond donuts



Ising Model for a Ferromagnet

si ={+1
−1

spin up
spin down

nearest neighbor Ising Hamiltonian

H
applied 
magnetic
field

Tc

M

T

        Curie point 
critical temperature

blue

white

islands of
like spins

energy is lowered when nearby spins align 
with each other, forming magnetic domains

magnetic domains 
in cobalt

magnetic domains 
in cobalt-iron-boron

melt ponds (Perovich) melt ponds (Perovich)

effective magnetization



100 101 102 103 104

D

A (m2 )

1

2

observed

model

            pond size 
distribution exponent

observed   -1.5

model        -1.58

Ma, Sudakov, Strong, Golden,  New J. Phys.,  2019

(Perovich, et al. 2002)

Starting with random initial configurations, as Hamiltonian energy is minimized 
by Glauber spin flip dynamics, system “flows” toward metastable equilibria. 

ONLY MEASURED INPUT = LENGTH SCALE (GRID SIZE) from snow topography data

Order from Disorder

Ising 
model

melt pond 
photo (Perovich)

Ising model for ferromagnets Ising model for melt ponds

= { +1

−1 ice       (spin down)

water   (spin up)

pond area fractionmagnetization (M + 1)
2~ albedo

random magnetic field 
represents snow topography

only nearest neighbor 
patches interactF = 

Scienti�c American
EOS, PhysicsWorld, ...



no bloom bloom

massive under-ice algal bloom
Arrigo et al., Science 2012

WINDOWS

Have we crossed into a 
new ecological regime?

       The frequency and extent of sub-ice 
phytoplankton blooms in the Arctic Ocean

(2015 AMS MRC)

Horvat, Rees Jones, Iams, Schroeder, 
Flocco, Feltham, Science Advances 2017

Horvat, Flocco, Rees Jones, Roach, Golden
Geophys. Res. Lett. 2019

The e�ect of melt pond geometry on the distribution 
                of solar energy under �rst year sea ice

Melt ponds control transmittance
of solar energy through sea ice,
impacting upper ocean ecology.

Perovich



SEA ICE ALGAE

80% of polar bear diet can be traced to ice algae∗.

∗
Brown TA, et al. (2018). PloS one, 13(1), e0191631



Can we improve agreement between ice algae models
and data?



ALGAL BLOOM MODEL∗

nutrients:
dN
dt

= α︸︷︷︸
input

− βNP︸︷︷︸
uptake

− ηN︸︷︷︸
loss

algae:
dP
dt

= γβNP︸ ︷︷ ︸
growth

− δP︸︷︷︸
death

,

N(0) = n0, P(0) = p0

∗
Huppert, A., et al. (2002). American Naturalist, 159(2), 156-171



ALGAL BLOOM MODEL
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• poor agreement with data

• poor agreement between models

Steinacher, M., et al. (2010). Biogeosciences, 7(3), 979-1005



HETEROGENEITY

Meiners, K.M., et al. (2017). Geophysical Research Letters, 44(14), 7382-7390



HETEROGENEITY IN INITIAL CONDITIONS

At each location within a larger region, we could consider

dN
dt

= α− BNP− ηN

dP
dt

= γBNP− δP

N(0) = N0, P(0) = P0



HOW DO WE ANALYZE THIS MODEL?
Monte Carlo simulations?

Too slow! Full algae model takes 8 hours (cloud
computing).





POLYNOMIAL CHAOS EXPANSIONS

N(t;B,P0,N0) ≈ NV(t;B,P0,N0) :=

n∑
j=1

Ñj(t)φj(B,P0,N0),

P(t;B,P0,N0) ≈ PV(t;B,P0,N0) :=

n∑
j=1

P̃j(t)φj(B,P0,N0),

where
• V := span{φj}n

j=1

• φj are orthogonal polynomials that form a basis for V

• (Ñj, P̃j) need to be computed

Xiu, D. (2010). Numerical methods for stochastic computations. Princeton university press.



ECOLOGICAL INSIGHTS
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• lower peak bloom intensity
• longer bloom duration
• able to compare variance to data



macroscale



Jennifer Lukovich, Jennifer Hutchings, 
David Barber, Ann. Glac.  2015

Ice �oe di�usion in winds and currents

On short time scales �oes observed (buoy data) to exhibit Brownian-like 
behavior, but they are also being advected by winds and currents. 

E�ective behavior is purely di�usive, sub-di�usive or super-di�usive 
depending on ice pack and advective conditions - Hurst exponent.

Anomalous di�usion 
in sea ice dynamics

observations from GPS data:

Huy Dinh, Ben Murphy, Elena Cherkaev, 
Court Strong, Ken Golden 2022

modeling:

Delaney Mosier, Jennifer Hutchings, Jennifer Lukovich, 
Marta D’Elia, George Karniadakis, Ken Golden 2022

learning fractional PDE 
governing di�usion from data

�oe scale model to analyze transport regimes in 
terms of ice pack crowding, advective conditions



Vorticity Dominated Drift
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Floe Scale Model of Anomalous Di�usion in Sea Ice Dynamics

Hurst exponent

Huy Dinh, Ben Murphy, Elena Cherkaev, Court Strong, Ken Golden 2022

di�usive

sub-di�usive

super-di�usive

Model Approximations

Floe-Floe Interactions: Linear Elastic Collisions
Advective Forcing: Passive, Linear Drag Law

Power Law Size Distribution:
D. A. Rothrock and A. S. Thorndike     Journal of Geophysical Research     1984



Marginal Ice Zone

Meier et al, 2011 NSIDC CDR

MIZ

biologically active region

intense ocean-sea ice-atmosphere interactions

MIZ WIDTH
fundamental length scale of 

ecological and climate dynamics

region of signi�cant wave-ice interactions 

Strong, Climate Dynamics 2012
Strong and Rigor, GRL 2013

transitional region between 
dense interior pack  (c > 80%) 
sparse outer fringes (c < 15%)

How to objectively 
measure the “width”
of this complex, 
non-convex region?
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MIZ pack ice

streamlines of a solution 
    to Laplace’s equation 

Society for Industrial and Applied Mathematics News, April 2017
Strong and Golden

              crossection of the 
cerebral cortex of a rodent brainArctic Marginal Ice Zone

     Objective method for measuring MIZ width 
 motivated  by medical imaging and diagnostics 

Strong, Climate Dynamics 2012
Strong and Rigor, GRL 2013

Strong, Foster, Cherkaev, Eisenman, Golden 
J. Atmos. Oceanic Tech. 2017

analysis of di�erent MIZ WIDTH de�nitions 

“average” lengths of streamlines

39% widening
1979 - 2012



Model larger scale e�ective behavior 
with partial di�erential equations that 

homogenize complex local structure and dynamics.

Arctic MIZ 

frozen
core

liquid
outer ring

MIZ

sea ice concentration ψ

Predict MIZ width and location with basin-scale phase change model. 
dynamic transitional region - mushy layer - separating two “pure” phases

seasonal and long term trends

C. Strong, E. Cherkaev, and K. M. Golden,
Annual cycle of Arctic marginal ice zone location 

and width explained by dynamic phase transition model, 2022



Observed Arctic MIZ

Winter
MIZ

Summer
MIZ



NaCl-H2O in lab
(Peppin et al., 2007;, J. Fluid Mech.) 

Solid

Liquid

2 cm mushy layer

Macroscale application
Solid

Liquid

MIZ as a moving phase transition region 

Classical small-scale application

• Develop multiscale PDE model for simulating phase transition fronts to predict 
MIZ seasonal cycles and decadal trends 

• Model simulates MIZ as a large-scale mushy layer with effective thermal 
conductivity derived from physics of composite materials

homogenization



MIZ observations MIZ model vs. observations

location

width

sea ice
concentration

Model captures basic physics 
of MIZ dynamics.



Gap radius: 611 km
06 January 1985

Gap radius: 311 km
30 August 2007 

Filling the polar data gap with 
partial di�erential equations 

    hole in satellite coverage 
of sea ice concentration �eld

previously assumed 
ice covered

fill = harmonic function with 
     learned stochastic term 

Strong  and Golden, SIAM News 2017
Strong  and Golden, Remote Sensing 2016

∆ψ=0

NOAA/NSIDC Sea Ice Concentration CDR 
product update will use our PDE method. 



Conclusions
1. Sea ice is a fascinating multiscale composite with structure 

similar to many other natural and man-made materials.

2. Mathematics developed for sea ice advances the theory of  
composites and other areas of science and engineering. 

3. Homogenization and statistical physics help link scales in sea ice 
and composites; provide rigorous methods for �nding e�ective 
behavior; advance sea ice representations in climate models.

4. Fluid �ow through sea ice mediates melt pond evolution and many 
processes important to climate change and polar ecosystems.

5.  Field experiments are essential to developing relevant mathematics.

6.  Our research is helping to improve projections of climate change,
the fate of Earth’s sea ice packs, and the ecosystems they support.
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