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PRACTICE FINAL EXAM ANSWER KEY Fall 2009
Problems From Varberg, Purcell, Rigdon (Chapter.Section.Number)

1. (5.1.6.) The boundary curves intersect when x2 − 2 = x + 4 or x2 − x − 6 = (x −
3)(x + 2) = 0 so at x = −2 and x = 3. We integrate the vertical slices whose height
at x is the (positive) distance from the lower boundary to the upper boundary there,
(x+ 4)− (x2 − 2) and whose width is dx.

∫ 3

−2
−x2 + x+ 6dx = |3−2 −

x3

3
+
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2
+ 6x =

27
2
− (−22

3
) =
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6
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1
6
.

2. (5.2.17.) The upper and lower boundary curves intersect when y = 0 and x2

a2 + y2

b2
= 1,

so when x = ±a.

If we slice vertically, the long direction of the slices is perpendicular to the axis of
revolution and they sweep out circular discs. The volume of the disc at x is its
thickness, dx, times its area πr2. The radius is just y = b(1 − x2

a2 )1/2, the height of
the region being revolved about its lower boundary curve.

So we integrate

V =
∫ a

−a
πb2(1− x2

a2
)dx = πb2

∫ a

−a
1− x2

a2
dx = πb2|a−ax−

x3

3a2
=

4
3
πab2.

The prolate spheroid has a circular cross section with radius b in the y − z−plane,
and extends a distance a from the origin in either direction in the x−direction. When
a = b = r, it becomes a sphere of radius r and the formula gives its volume, V = 4

3πr
3.

3. (5.3.2.) The upper and lower boundary curves intersect when x2 = 0, so when x = 0
so the region extends from x = 0 to x = 1. If we slice vertically, the long direction
of the slices is parallel to the axis of revolution and they sweep out cylindrical shells.
The volume of the slice at x is its thickness, dx times its height, the distance from the
lower to the upper boundary x2 − 0, times its circumference, 2π times x, the ‘radius’
of that shell, given by the distance of the generating slice from the axis of revolution.
So we integrate

V =
∫ 1

0
2πx(x2)dx = |102π

x4

4
=
π

2
.

If we slice horizontally, the long direction of each slice is perpendicular to the axis of
revolution and they sweep out circular annuli or ‘washers’. The volume of the washer
at height y is its thickness, dy, times the difference of the area of the outer disc and the
cut-out inner disc, πr2o−πr2i . The height of the slices extends from the lowest point of
the lower boundary, 0 everywhere, to the highest point of the upper boundary, y = 1
at x = 1. At height y, the inner radius is the x corresponding to y = x2 which is both
the upper and inner boundary, so x = y1/2, and the outer radius is 1 at every y. So
we integrate



V =
∫ 1

0
π(12 − (

√
y)2dy = π

∫ 1

0
1− ydy = π1

0y −
y2

2
=
π

2
.

You can also see from the graph of 1 − y that the final integral is just the area of a
triangle with base and height 1, so the area is 1/2, recalling something we did at the
very beginning of the class.

4. (5.4.10.) The arclength of a section of a parametric curve, (x(t), y(t)) is computed by
integrating the infinitesimal hypotenuse lengths,

√
dx2 + dy2 =

√
dx

dt

2

+
dy

dt

2

dt

between the t-values of interest.

x =
√

5 sin 2t− 2 y =
√

5 cos 2t−
√

3; 0 ≤ t ≤ π

4
,

In this case, using dx
dt = 2

√
5 cos 2t and dy

dt = −2
√

5 sin 2t,
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∫ π
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√
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√
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√
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.

5. (5.4.21a.) The arclength of a section of a graph, y = f(x) is computed by integrating
the infinitesimal hypotenuse lengths,

√
dx2 + dy2 =

√
1 +

dy

dx

2

dx =
√

1 + f ′(x)2dx

between the x-values of interest.

In this case, since f itself is given as an integral between 1 and x, we use the Funda-
mental Theorem of Calculus to compute f ′(x) =

√
x3 − 1 so that

√
1 + f ′(x)2 = x3/2

and

S =
∫ 2

1

√
1 + f ′(x)2dx =

∫ 2

1
x3/2dx = |21

2
5
x5/2 =

2
5

(25/2 − 1).

6. (5.5.6.) Since F = ks4/3 and F = 2 pounds when s = 8 inches, k = 1
8 = 0.125 when

units of F are in pounds and s are in inches. Integrating the force of the spring times
the infinitesimal displacement, F (s)ds, while stretching it from s = 0 (equilibrium)
to 27 inches from equilibrium,

W =
∫ 27

0

1
8
s4/3ds = |27

0

3
56
s7/3 =

38

56
∼ 117.16

where the answer is in inch-pounds, and can be converted to the more common foot-
pounds by dividing by 12.



7. (5.5.22.) Coulomb’s Law may be written F = K q1q2
r2

where here q1 = q2 = q and 10
dynes = K q2

4 . The work done bringing the charges from a distance r1 = 5 centimeters
apart to a distance r2 = 1 centimeter apart is

W = −
∫ r2

r1
F (r)dr = −

∫ 1

5
Kq2r−2dr,

where the minus sign is because the force you must apply to move the charge in closer
is equal and opposite at each point to the repulsive force which is in the positive
direction. Doing the integration, we get

W = −Kq2|15(−r−1) = Kq2(1− 1
5

).

Finally, using Kq2 = 40 in dyne-cm units, W = 32 dynes.

8. (5.6.25.) Using the method of cylindrical shells

Recall that slices parallel to the axis of revolution give cylindrical shells, slices per-
pendicular to the axis of revolution give discs or washers. Also notice that since the
slices are rectangles, every slice is really both parallel AND perpendicular, so that the
difference between a cylindrical shell and a washer is really just a matter of aspect
ratio.

Each dx slice parallel to the y-axis at a particular value of x extends from the lower
boundary line y = 0 to the upper boundary at y = x3, and the x values extend from
x = 0 where the upper and lower boundary curves intersect (at the axis of revolution)
to x = 1.

The cylindrical shell generated by revolving such a slice about the y-axis is its cir-
cumference times its thickness times its height. (This is just length times width times
height if the cylindrical shell is unrolled like a ‘Ding-dong’ into a rectangular slab.)
The circumference is 2π times the radius from the axis to the slice, in this case just
x, the height is the distance from the lower boundary to the upper boundary at x,
x3 − 0, and the thickness is dx. So the volume is given by∫ x=1

x=0
2πx(x3)dx = 2π|10

x5

5
=

2π
5
.

The centroid of the region is obtained by averaging the value of x and y in the region,
weighting each by the fraction of the region having that x or y value.

x̄ =
∫ b

a
x

f(x)∫ b
a f(x)dx

dx

so in this case

x̄ =
1∫ 1

0 x
3dx

∫ 1

0
x4dx =

1/5
1/4

=
4
5
.



For ȳ we can either slice along constant y-values and use

ȳ =
1∫ 1

0 1− y1/3dy

∫ 1

0
y(1− y1/3)dy =

2
7

and notice that the normalization factor is the same area of the region, 1/4, computed
with dy slices instead of dx as before, so we really didn’t need to do it twice.

The other way to compute the y-component of the centroid is to average the average
y value in each dx slice, 1

2y, weighted by the the fraction of the region having that
average y value.

The area of the region is 1
4 . The distance swept out by the centroid is 2π times

4
5 , its distance from the axis of revolution. Multiplying these according to Pappus’
volume theorem (there is also an area theorem) gives 1

4(2π 4
5 = 2π

5 , confirming Pappus’
Theorem in this case.

The alternate derivation of the y-coordinate of the centroid is

ȳ =
∫ b

a

1
2
y

f(x)∫ b
a f(x)dx

dx

ȳ = 4
∫ 1

0

1
2
x6dx =

2
7
.

9. To find T (x) we integrate the differential equation twice to get:

dT

dx
= C

T (x) = Cx+D

Based on the initial conditions we get T (0) = D = 4 and T (1) = 2 = 2C + 4 and so
C = −1. Therefore, the temperature function is:

T (x) = −2x+ 4


