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Abstract. Sea ice hosts a rich ecosystem of flora and fauna, from microscale to macroscale.5
Algae living in its porous brine microstructure, such as the diatom Melosira arctica, secrete gelatinous6
exopolymeric substances (EPS) which are thought to protect these communities from their cold and7
highly saline environment. Recent experimental work has shown significant changes in the structure8
and properties of young sea ice with entrained Melosira EPS, such as increased brine volume fraction,9
salt retention, pore tortuosity, and decreased fluid permeability. In particular, we find that the cross-10
sectional areas of the brine inclusions are described by a bimodal lognormal distribution, which11
generalizes the classic lognormal distribution of Perovich and Gow. We propose a model for the12
effective fluid permeability of young, EPS-laden sea ice, consisting of a random network of pipes13
with cross-sectional areas chosen from this bimodal distribution. We consider an equilibrium model14
posed on a square lattice, incorporating only the most basic features of the geometry and connectivity15
of the brine microstructure, and find good agreement between our model and the observed drop in16
fluid permeability. Our model formulation suggests future directions for experimental work, focused17
on measuring the inclusion size distribution and fluid permeability of sea ice with entrained EPS as18
functions of brine volume fraction. The drop in fluid permeability observed in experimental work19
and predicted by the model is significant, and should be taken into account, for example, in physical20
or ecological process models involving fluid or nutrient transport.21
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1. Introduction. Sea ice that forms on the surface of high latitude oceans hosts24

a rich ecosystem, from autotrophs (algae) and other microorganisms that dwell within25

the ice, to small crustaceans that feed below it (e.g., krill), and the macrofauna that26

forage from it (e.g., penguins or polar bears in the Southern or Northern hemispheres,27

respectively). Indeed, the higher trophic levels of current polar ecosystems largely de-28

pend on sea ice as a platform on which to live, forage, and reproduce [40]. The areal29

extent and physical properties of sea ice also figure significantly in global climate30

models [17]. The growth, structure, and properties of ice formed from seawater con-31

taining the major ions (Na+, K+, Ca2+, Cl−, SO4
2−, CO3

2−) have been studied for32

decades [30, 40, 43, 44]. On the macroscale, much of what is known comes from re-33

mote sensing of sea ice via airborne platforms such as satellites, planes, and helicopters34

[4, 5, 12, 15, 24], as well as expeditions into Earth’s sea ice packs [25, 26, 28, 29, 34]. On35

the microscale, much has been learned from analysis of both natural sea ice [27, 30, 40]36

as well as artificially grown sea ice, which is generally devoid of life and its organic37

products [13, 18, 30, 40]. In broad strokes, we can say that sea ice is a porous medium38

exhibiting structure over many length scales, principally composed of a solid matrix39

of pure ice, with inclusions of brine (including microorganisms and their exudates),40

salt, air, and other impurities. Moreover, the microstructure of sea ice evolves with41
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time, as fluid flowing through the porous microstructure tends to modify inclusion42

connectivity and channel structure.43

The effect of algae or their cell-free organic matter on the growth, structure, and44

properties of sea ice is not as well understood. Recent work of Krembs, Eicken, and45

Deming [23] compared artificial sea ice grown from seawater containing exopolymeric46

substances (EPS) with several controls, and observed that the artificial EPS-laden47

ice had a more tortuous microstructure, larger brine volume fraction, greater salt48

retention, and a net drop in fluid permeability. In sea ice, larger volume fractions and49

larger salinities typically lead to larger fluid permeabilities. On the other hand, scaling50

considerations for general porous media indicate that fluid permeability decreases51

with the square of tortuosity [7]. As proposed in [23], one possible explanation for52

the observed net drop in fluid permeability is that the observed increases in brine53

volume fraction and salt retention were not enough to overcome the observed increase54

in tortuosity.55

Models of fluid flow through porous media, and fluid flow through sea ice, vary56

widely in complexity. General studies (unrelated to sea ice) include Koplik [21], who57

posed a network (pipe) model for linear Stokes flow in a regular periodic network;58

Koplik, et al. [22], who applied the network model of [21] to porous media, in par-59

ticular Massillon sandstone; Torquato and Pham [42], who derived “void bounds” on60

the fluid permeability of hierarchical porous media, including coated parallel, circular61

pipe geometries; and Hyman, et al. [19], who numerically integrated the Navier–62

Stokes equations in the pore space of a stochastically-generated porous medium, and63

studied the heterogeneities of flow. Studies specific to sea ice include [11, 13, 14, 45]64

(the latter two to be described below).65

Zhu, et al. [45] posed and analyzed a model for fluid flow through sea ice consisting66

of a random network of pipes, followed by small but important modifications in [13].67

While the model is a two-dimensional pipe network based on a square lattice, and68

assumes a given equilibrium state, the effective fluid permeability of the pipe network69

agreed well with the data of Freitag [9] for the fluid permeability of artificially-grown,70

young sea ice.71

In this work, we extend the two dimensional model of [13, 45], based on the72

findings in [23], to consider the effects of micro-scale biochemistry in young sea ice, in73

particular the presence of algal exudates, on the larger scale fluid transport properties74

of the ice. In the remainder of this introductory section, we summarize the original75

random network (pipe) model of [13, 45], and recall the void bounds of [14, 42] for76

fluid transport in sea ice; in Section 2, we conclude the discussion of the original77

model, including all the details such as parameter selection; in Section 3, we develop78

our new model and state the main results; and we conclude in Section 4.79

1.1. Random network model for fluid transport through sea ice. In this80

section, we recall the random pipe network model of [45], including a synopsis of the81

derivations of the linear system and the effective parameter k.82

Consider a vertical slab of sea ice, with a given brine volume fraction φ ∈ [0, 1),83

and given dimensions L×D × h m3, where D is the vertical depth, L the horizontal84

span, and h the horizontal thickness. Note that h � D,L can be viewed as the85

dimension of a cell in which a typical brine inclusion is contained. Moreover, note86

that h is assumed to be related to D and L, which will be clarified in the following87

paragraph. The random pipe network model is formulated as follows.88

Consider a square lattice89

(1) L = {(hi, hj) ∈ R2 : 0 ≤ i ≤ m, 0 ≤ j ≤ n},90
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Fig. 1. From [45] (reprinted from the Annals of Glaciology with permission of the International
Glaciological Society): (a) a depiction of a random pipe network on a square lattice; and (b) a close-
up view of the (i, j)th node, and the adjoining circular pipes with randomly-distributed radii.

where h = L/m = D/n for some given m,n ∈ Z. The parameter h can be viewed91

as the size of a typical brine inclusion. We form a random pipe network from L by92

connecting a given node (i, j) (shorthand for the node located at the point (hi, hj))93

to its four nearest neighbors {(i ± 1, j), (i, j ± 1)} with fluid filled pipes, and choose94

the cross-sectional area of each pipe from a random distribution A comparable to the95

brine inclusions found in young sea ice. Next, induce an upward flow through the96

network by a pressure drop pb − pt, where pb > pt are the pressures at the bottom97

and top of the network, respectively; see Figure 1.98

Denote Rvi,j and Rhi,j as the radii of the pipes connecting the nodes with indices99

(i, j), (i, j+1) and (i, j), (i+1, j), respectively. (Similarly, denote Avi,j and Ahi,j as the100

cross-sectional area of these pipes.) For each pipe of radius R, the fluid flow within101

is assumed to be a classic Poiseuille flow, with flux Q given by102

(2) Q = −πR
4

8µ
∇P,103

where ∇P is the constant pressure gradient in the pipe, and µ is the fluid viscosity.104

Let pi,j denote the pressure in the fluid at the (i, j)th node of the network; since the105

pipe length h is small, in [45] the pressure gradient ∇P is approximated by a standard106

finite difference:107

(3) ∇P ≈ pi+1,j − pi,j
h

or ∇P ≈ pi,j+1 − pi,j
h

,108

depending on whether the pipe is oriented horizontally or vertically. Assuming that109

the fluid is incompressible, the fluxes Q converging on the (i, j)th node must sum to110

zero; combining Equation (2) and the approximation (3) leads to a linear equation111

for each unknown pi,j :112

(Rvi,j)
4(pi,j+1 − pi,j)− (Rvi,j−1)4(pi,j − pi,j−1)113

+ (Rhi,j)
4(pi+1,j − pi,j)− (Rhi−1,j)

4(pi,j − pi−1,j) = 0.(4)114115

We impose Dirichlet boundary conditions on the top and bottom: pi,n = pt and116

pi,0 = pb, with pb, pt defining the pressure drop pb−pt > 0, as discussed previously in117

this subsection, and periodic boundary conditions on the sides. To be more precise,118

the (0, j)th and (m, j)th nodes are connected, with the consequence that the linear119
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equations for p0,j and pm,j (with j = 1, . . . , n − 1) vary from Equation (4). For120

example, the linear equation for p0,j becomes instead:121

(Rv0,j)
4(p0,j+1 − p0,j)− (Rv0,j−1)4(p0,j − p0,j−1)122

+ (Rh0,j)
4(p1,j − p0,j)− (Rhm,j)

4(p0,j − pm,j) = 0.(5)123124

Let Qi,j be the flux through the vertical pipe between the (i, j)th and (i, j + 1)th125

nodes. In view of the upward flow through the random pipe network, Zhu et al. [45]126

define the total flux Q as the sum of the fluxes through the topmost row of vertical127

pipes in the network:128

(6) Q =

m∑
i=0

Qi,n−1 = − π

8µ

m∑
i=0

(Rvi,n−1)4 pt − pi,n−1

h
.129

On the other hand, when the network is viewed instead as a model of a porous medium,130

the average velocity U depends linearly on the pressure drop (pt − pb)/D,131

(7) U = −k
µ

pt − pb
D

,132

where k is the effective fluid permeability in the vertical direction and µ is the fluid133

viscosity. The usual definition of flux means that U and Q are linearly related by the134

cross-sectional area through which the flow occurs,135

(8) U =
Q

Lh
.136

Substituting Equations (6) and (7) into (8), and solving for k, leads to an equation137

for k depending on the model parameters and the solution of the linear system of138

equations (4):139

(9) k =
πD

8Lh2

m∑
i=0

(Rvi,n−1)4 pt − pi,n−1

pt − pb
.140

Indeed, Equation (9) is the effective permeability of the network, and is the key141

quantity of interest in the model of [45] for the effective fluid permeability of young142

sea ice.143

1.2. Void bounds for fluid transport in sea ice. In this section, we discuss144

rigorous bounds for the fluid permeability of sea ice, derived in [14, 42], as the basis145

for our new bounds in the case of a bimodal inclusion size distribution. In order to do146

so, we first consider the formulation and definition of the effective fluid permeability147

tensor k of a random porous medium. Then we will define the trapping constant γ,148

since there is a rigorous bound on the effective permeability in terms of this related,149

homogenized parameter which also characterizes the random porous medium. We will150

also compute exactly the trapping constant for a parallel, circular cylinder geometry,151

which is relevant to our bounds. In our formulation we will emphasize the multiscale152

nature of the homogenization problem that one faces in this geophysical context of153

fluid transport through sea ice.154

We are interested in sea ice as a porous medium for a given temperature T and155

salinity S, which determine the brine volume fraction φ [30, 40, 43, 44]. Within a given156
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vertical depth range in a sea ice sheet, perhaps up to tens of centimeters or so, the157

microstructural characteristics can be quite uniform over many meters horizontally.158

In such layers the porous brine microstructure is statistically homogeneous. However,159

we are also interested in how the bulk properties of the ice vary with depth, where160

variations in temperature and salinity, as well as possibly ice type and age, affect brine161

microstructural features and transport properties. We think of the submillimeter scale162

set by the porous microstructure of the ice as the “fast” scale, and the much larger163

scale variations in the temperature and salinity, and thus in the bulk properties, on164

the order of tens of centimeters to meters, as the “slow” scale.165

Consider a random porous medium occupying a region V ⊂ Rd of volume V = |V|,166

partitioned into two sub-domains: the void phase V1 ⊂ V, and solid phase V2 ⊂ V.167

We will be interested in the infinite volume limit. Let (Ω, P ) be a probability space168

characterizing the pore microstructure, where Ω is the set of realizations ω of the169

random medium and P is a probability measure on Ω. For any realization ω ∈ Ω, let170

χ(x, ω) be the characteristic or indicator function of the void or brine phase V1,171

(10) χ(x, ω) =

{
1, x ∈ V1 ,
0, x ∈ V2 .

172

We first assume that χ(x, ω) is a stationary random field such that P has transla-173

tion invariant statistics, corresponding to the infinite medium in all of Rd. Then174

the medium is statistically homogeneous, and satisfies an ergodic hypothesis, where175

ensemble averaging over realizations ω ∈ Ω is equivalent to an infinite volume limit176

V → ∞ of an integral average over V ⊂ R3, denoted by 〈·〉 [41]. This and related177

limits have been shown to exist and to be equal to the ensemble average in some178

situations, thus establishing the ergodic hypothesis [10, 16].179

For many porous media [14, 41], there is typically a characteristic, microscopic180

length scale ` associated with the medium, such as the “typical” size of the brine181

inclusions in sea ice. For example, the scale over which the two point correlation182

function for the void phase varies is a good measure of this length. It is small compared183

to a typical macroscopic length scale L, where by L here we mean sample size or184

thickness of a statistically homogeneous layer, on the order of 3
√
V in three dimensions.185

Then the parameter ε = `/L is small, and one is interested in obtaining the effective186

fluid transport behavior in the limit as ε→ 0. To obtain such information, the method187

of two-scale homogenization or two-scale convergence [1, 2, 16, 20, 36, 37, 39, 41] has188

been developed in various forms, based on the identification of two scales: a slow scale189

x and a fast scale y = x/ε.190

The velocity and pressure fields in the pore space, uε(x) and pε(x), for x ∈ V1, are191

assumed to depend on these two scales x and y. The idea is to average, or homogenize192

over the fast microstructural scale y, leading to a simpler equation in the slow variable193

x describing the overall behavior of the flow, namely, Darcy’s law. Variations of194

average microstructural properties on the slower x scale can then be incorporated195

through dependence of the effective permeability tensor on x. For example, the bulk196

properties of sea ice in situ typically vary with depth, particularly when there is a197

large temperature gradient between the top and bottom of the sea ice layer.198

The slow (creeping) flow of a viscous fluid with velocity field uε(x) and pressure199

field pε(x) in the void phase V1 is governed by the Stokes equations,200

(11) ∇pε = µ∆uε, x ∈ V1, ∇ · uε = 0, x ∈ V1, uε(x) = 0, x ∈ ∂V1.201

A force acting on the medium such as gravity can be incorporated into pε. From202

left to right in (11), we have the steady state fluid momentum equation in the zero203
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Reynolds number limit, the incompressibility condition, and the no-slip boundary204

condition on the pore surface. The macroscopic equations can be derived through a205

two-scale expansion [1, 2, 16, 20, 36, 37, 39, 41]206

(12) uε(x) = ε2u0(x,y) + ε3u1(x,y) + ...207

208

(13) pε(x) = p0(x,y) + εp1(x,y) + ... .209

Note that the leading term in the velocity expansion is O(ε2), while the leading210

term in the pressure expansion is O(1). This physical effect was handled in [1, 2]211

analytically by scaling the viscosity of the fluid by O(ε2), which balances the friction212

of the fluid from the no-slip boundary condition on the solid boundaries of the pores.213

Substitution of the two-scale expansion into the Stokes equations yields systems of214

equations involving both x and y derivatives.215

The leading order system is analyzed by considering a second order tensor velocity216

field w(y) and a vector pressure field π(y) [41], both varying on the fast scale, which217

satisfy218

(14) ∆w = ∇π − I, y ∈ V1, ∇ · w = 0, y ∈ V1, w = 0, y ∈ ∂V1,219

where I is the identity matrix, and both w and π are extended to all of V by taking their220

values in the solid phase V2 (ice) to be 0. In these equations, the (i, j)th component221

of w is the jth component of the velocity due to a unit pressure gradient in the ith222

direction, and πj is the jth component of the associated scaled pressure. By averaging223

the leading order term of the velocity u0 over y, we obtain the macroscopic equations224

governing the flow through the porous medium,225

(15) u(x) = − 1

µ
k · ∇p(x), x ∈ V,226

227

(16) ∇ · u = 0, x ∈ V,228

where p(x) = p0(x) and229

(17) k = 〈w〉230

is the effective fluid permeability tensor. Equation (15) is known as Darcy’s law,231

and Equation (16) is the macroscopic incompressibility condition. These macroscopic232

equations were obtained in [1, 2] for periodic media through an appropriate limit as233

ε → 0. We shall be interested in the permeability in the vertical direction k := kzz,234

in units of m2.235

We now consider the steady-state trapping problem with perfectly absorbing traps236

[14, 41, 42], where diffusion of a passive tracer occurs in V1 and trapping occurs on237

the surface of the solid phase V2 (or the boundary of the pore space ∂V1). The tracer238

concentration field c(x) is governed by239

(18) D∆c(x) = −G, x ∈ V1, c = 0, x ∈ ∂V1,240

with diffusion coefficient D and generation rate per unit trap-free volume G. For241

an ergodic medium, two-scale homogenization [1, 41] shows that γ obeys the first242
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order rate equation G = γDC, with average concentration C = 〈c(x)〉, and trapping243

constant defined via244

(19) γ−1 = 〈u〉 = lim
V→∞

(
1

V

∫
V
u(x)dx

)
,245

with volume V = |V|, and scaled concentration field c(x) = D−1Gu(x) solving246

(20) ∆u(x) = −1, x ∈ V1, u(x) = 0, x ∈ ∂V1.247

For dimensions d = 2, 3, γ−1 has units of length squared. A key result that we use is248

a bound on the permeability in terms of the trapping constant, as in Theorem 23.5249

of [41],250

(21) k ≤ γ−1I,251

in the sense that γ−1I − k is always a positive semidefinite matrix, with equality in252

the case of transport through parallel channels of constant cross-section.253

Consider now the case of parallel circular cylinders, with radii given by a random254

distribution RI , and define the nth moment as255

(22) 〈RnI 〉 =
1

ρ

∞∑
k=1

ρkR
n
Ik
,256

where ρk is the number density of the kth size RIk , and ρ the characteristic density.257

Recall now that γ is defined in terms of Equations (19) and (20). For a given cylinder258

with radius ri, the solution of (20) is259

(23) u(r) =
1

4
(r2
i − r2).260

Given the symmetry in the direction along the axis of each cylinder, we reduce to261

a 2D model by restricting our focus to a “slice” (plane), perpendicular to each axis.262

Then (19) becomes a two-dimensional integral, where V has units of length squared.263

Substituting (23) into (19) yields264

γ−1 = lim
V→∞

(
1

V

∞∑
i=1

∫ 2π

0

∫ ri

0

1

4
(r2
i − r2)rdrdθ

)
265

= lim
V→∞

(
1

V

∞∑
i=1

πr4
i

8

)
,(24)266

267

where the sum is over all the cylindrical inclusions in the void space V1, indexed by268

i ∈ N. In the infinite volume limit, (24) can be expressed in a form similar to (22) as269

a sum over k, involving the number density ρk:270

(25) γ−1 =
π

8

∞∑
k=1

ρkR
4
Ik
.271

The volume fraction of the inclusions we are considering can be defined as φ =272

ρ πd/2

Γ(1+d/2) 〈R
d
I 〉 [32], where Γ(z) =

∫∞
0
tz−1e−tdt is the gamma function. Here we273

consider d = 2, in which case the volume fraction is given by274

(26) φ = ρπ〈R2
I〉.275
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Solving for π in (26), and substituting into (25) yields:276

(27) γ−1 =
φ

8〈R2
I〉

1

ρ

∞∑
k=1

ρkR
4
Ik

=
φ〈R4

I〉
8〈R2

I〉
.277

Equation (27) defines the effective trapping constant γ for the special case of278

diffusion occurring in parallel, circular cylinders. Recalling the discussion surrounding279

(21), in this special case we have280

(28) k =
φ〈R4

I〉
8〈R2

I〉
I.281

Moreover, because k ≤ γ−1I in general geometries, the upper bound282

(29) k ≤ φ〈R4
I〉

8〈R2
I〉

I283

applies for general random porous media, from which it is straightforward to recover284

the void upper bound stated in [14, 42].285

2. Previous results. In this section we recall the previous results of [13, 45].286

2.1. Choice of random distribution. A random distribution which governs287

the choices of the radii Rhi,j , R
v
i,j of each pipe in the network is still required (al-288

ternatively, the cross-sectional areas Ahi,j , A
v
i,j of each pipe). In [27], the observed289

distribution for the cross-sectional area of brine inclusions in young sea ice (among290

other ice types) was best fit by a lognormal distribution, i.e.,291

(30) A = eX , fX(x;µ, σ2) =
1√

2σ2π
e−

(x−µ)2

2σ2 .292

Recall that, for a lognormal random variable A, we have293

(31) E[A] = eµ+σ2

2 and Var[A] = (eσ
2

− 1)e2µ+σ2

.294

In [14] it was found that the function295

(32) a(φ) = π(7× 10−5 + 1.6× 10−4φ)2 m2
296

approximated the dependence of the mean cross-sectional areas on φ observed by [27].297

Indeed, in [45], the cross-sectional areas of each pipe are lognormally distributed,298

with expectation given by Equation (32),299

(33) E[A] = a(φ).300

A short calculation, after substituting (31) and (32) into (33), yields301

(34) µ+
σ2

2
= ln a(φ).302

The parameter model considered in [45] for the lognormal random variable A is then303

as follows: let σ be a free parameter, and let µ = ln a(φ)− σ2

2 .304
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2.2. Upper bound on the fluid permeability. As discussed in Subsection 1.1305

for random porous media, the upper bound on the effective permeability tensor k is306

given by the inverse of the trapping constant γ−1, in the case of parallel cylinders of307

random radii.308

In the random pipe network model, we are interested in the effective permeability309

in the vertical direction, denoted as in Subsection 1.2 by k := kzz. As a discrete model310

for the general random medium considered in (29), we will use the general bound311

(35) k ≤ γ−1 =
φ〈R4

I〉
8〈R2

I〉
312

for the network model vertical permeability. Recall that Equation (35) was derived313

in the context of circular, parallel cylinders, in which case we can reformulate (35) as314

(36) k ≤ φ〈A2
I〉

8π〈AI〉
.315

For the random pipe network model of [45], we have a specific random distribution316

in mind—the lognormal distribution. Recalling Equation (30), the nth moment of a317

lognormal random variable A with parameters (µ, σ2) is given by318

〈An〉 = E[An] = E[exp(nX)]319

=

∫ ∞
−∞

enx(2πσ2)−1/2 exp[−(x− µ)2/(2σ2)]dx320

=

∫ ∞
−∞

(2πσ2)−1/2 exp[nx− (x− µ)2/(2σ2)]dx.(37)321
322

Some algebra yields323

(38) nx− (x− µ)2

2σ2
= −

(
x− (µ+ nσ2)

)2
2σ2

+
n(2µ+ nσ2)

2
.324

Let µ′ = µ+ nσ2, then combining (37) and (38) yields325

〈An〉 =

∫ ∞
−∞

(2πσ2)−1/2 exp

[
− (x− µ′)2

2σ2

]
exp

[
n(2µ+ nσ2)

2

]
dx326

= exp

[
n(2µ+ nσ2)

2

] ∫ ∞
−∞

(2πσ2)−1/2 exp

[
− (x− µ′)2

2σ2

]
dx︸ ︷︷ ︸

=1

327

= exp

[
n(2µ+ nσ2)

2

]
.(39)328

329

Based on (36), we need to compute 〈An〉 for n = 1, 2. For n = 1, 〈A〉 = E[A] is given330

in (33),331

(40) 〈A〉 = a(φ),332

while for n = 2,333

〈A2〉 = exp
[
2µ+ 2σ2

]
= exp

[
2µ+ σ2

]
eσ

2

=

(
exp

[
µ+

σ2

2

])2

eσ
2

,334

= (a(φ))2eσ
2

.(41)335336
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Thus, combining (40) and (41) with (36) yields337

(42) k(φ) ≤ φ

8π
a(φ)eσ

2

,338

which is precisely the upper bound stated in [13, 45].339

2.3. Numerical results. Two figures of [13, 45], showing the key results of the340

original random pipe network model, are reconstructed in Figure 2. Note that the341

second of the two figures, Figure 2(b), shows the results of a slight modification of342

the model, to be described in this subsection.343

Indeed, while the results of the original model, shown in Figure 2(a), agree well344

with the laboratory data of [9] for large φ, they disagree with the lab data for small φ345

by more than an order of magnitude. Note that the logarithm of the lab data decreases346

somewhat linearly for large φ, and drops precipitously as φ→ 0.05+. Physically, this347

precipitous drop can be understood in terms of the “Rule of Fives” [11], whereby348

columnar sea ice undergoes a temperature-driven transition from an impermeable349

porous medium to one where the pores have connected to form channels through350

which fluid can flow at around φ = 0.05 (when temperature T = −5oC and bulk351

salinity S = 5 ppt). Keeping in mind the Rule of Fives, the random pipe network352

formulation, and the discrepancy between the numerical results and the data shown353

in Figure 2(a), leads one to the conclusion that a means by which the network can354

become largely disconnected as φ→ 0.05+ must be introduced.355

In [13], two additional parameters were introduced, to allow for the requisite dis-356

connection to occur: we will refer to these as “disconnection probabilities,” and denote357

them as ph ∈ [0, 1], the probability that a horizontal pipe will be “broken” (removed),358

and pv ∈ [0, 1], the probability that a vertical pipe will be broken. Conceptually,359

nonzero (ph, pv) will cause the random pipe network to have “gaps” through which360

fluid cannot flow. In terms of the model discussed in Subsection 1.1, this impedance361

of flow is achieved by drawing a sample of random numbers Uhi,j and Uvi,j from a362

uniform random variable U = unif(0, 1), with i, j = 0, 1, . . . , N + 1, and then setting363

Rαi,j = 0 if Uαi,j < pα for α = h, v. The choice of (ph, pv) in [13] varied with volume364

fraction φ, so that the network was largely disconnected as φ→ 0.05+, with the result365

reconstructed in Figure 2(b) showing excellent agreement with the laboratory data of366

[9].367

Although the random pipe network model summarized herein is two-dimensional,368

and reflects only the basic features of sea ice microstructure, the results [13, 45] of369

numerical simulations, reconstructed in Figure 2, lie well within void bounds, and370

agree with laboratory data, particularly with the disconnection probabilities ph and371

pv.372

3. Random pipe model for sea ice with entrained EPS. Consider now373

a model for the effective permeability k of a vertical slab of sea ice with entrained374

EPS (e.g., due to the presence of algae). As in Subsections 1.2, 2.1 and 2.3, we375

regard our random network as a simplified model of the pore space of a statistically376

homogeneous vertical slab of ice (in equilibrium), and are interested in the vertical377

effective permeability of the network, as a model for the vertical effective permeability378

of the ice.379

Recall from Section 1, however, that there are key differences between young sea380

ice with and without entrained EPS, as observed in [23]: increased tortuosity, in-381

creased volume fraction, increased salt retention, and a net drop in fluid permeability.382
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(a) Reconstruction of Fig. 2 from [45].
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(b) Reconstruction of Fig 4(b) from [13].

Fig. 2. Previous results (see Subsection 2.3): Plots of k (in m2) versus φ, in (b) with and in

(a) without effects of percolation, respectively. Note that N = 1024, pb = 1, pt = 0, h =
√

2a(φ)/φ,
and L = D = hN (for details see [45]). As shown in (a), simulations with σ = 0.5 and σ = 1.0 are
both considered, while in (b) σ = 1.0. Note that the laboratory data of [9] and axes in both figures
are identical.

In the context of our random pipe model, some of these key differences are well re-383

flected, while others are not. Although increased geometric complexity of individual384

pores is not represented (due to the choice of circular pipes), we expect that the new385

choice of random distribution (44) – which permits a wider range of pipe sizes – con-386

tributes to the modeling of increased tortuosity. Furthermore, we will consider similar387

volume fractions as in [45], in order to compare with the results of the original model.388

Moreover, since we consider an equilibrium model, we do not take into account salin-389

ity or temperature. Lastly, the effective permeability is the variable to be modeled,390

and so the observed net drop is not presumed to be known a priori.391

Expanding on this last point (the drop in effective permeability), while specific392

data for fluid permeability were not presented in [23], the text made clear that the393

decrease in fluid permeability was by at most an order of magnitude.394

It will be useful going forward to discuss (1.) the data of [23] and (2.) our data395

processing and assumptions.396

1. From [23], the data were collected as follows: (i.) The diatom Melosira arctica397

var. krembsii was isolated from the bottom of sea ice in the Chukchi Sea near398

Barrow, Alaska; (ii.) Cells were cultured and reached significant biomass and399

EPS production; (iii.) Artifical sea ice was grown in 13–L tanks at −10 ◦C400

from saline solution containing Melosira EPS; and (iv.) Photomicrographic401

measurements of n = 234 brine inclusions from the artificially-grown sea ice402

were conducted at −10 ◦C, in particular measurements of pore perimeter403

versus maximum inclusion length under high magnification.404

2. In order to use the data of [23] in our random pipe network (to be discussed405

shortly, following this list), we need to assume that the brine cross-sections406

are circular, and calculate the area of the assumed circular cross-sections from407

their measured perimeters, via A = P 2/(4π). The validity of this assumption408

is unfortunately questionable, but is an artifact of the model used. Indeed, in409

[23] it is observed that the pore space in artificial sea ice grown with Melosira410

EPS is more geometrically complex than in controls (artificial and natural sea411
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ln A

–5 0

Fig. 3. Bimodal-lognormal distribution for the cross sectional areas of the brine inclusions in
EPS-laden sea ice, using data from [23]. The histogram of log(A) for observed values of cross-
sectional area A of young sea ice with entrained EPS (scaled with the sum of box areas equal to
unity) is shown in gray. Superimposed are the best fit probability density functions (PDF), with the
normal PDF (dashed, in blue) corresponding to the classical lognormal distribution in [27], and the
new bimodal PDF (solid, in red).

ice grown without Melosira EPS), i.e., not circular. Nonetheless, we proceed412

with the calculation as these are the only data available, and acknowledge413

as important future work the need to: (i.) better quantify the geometrical414

complexity experimentally, and (ii.) better model this complexity.415

With these details clarified, let us now discuss our new model. From a modeling416

perspective, the components are largely the same as described in Subsection 1.1 and417

Section 2. We consider a vertical slab of young sea ice (with entrained EPS) at418

a given equilibrium state, and model the pore space of the ice as a square lattice419

(1) with circular pipes (cf., Figure 1) connecting a given node (i, j) to its nearest420

neighbors {(i ± 1, j), (i, j ± 1)}. Assuming classic Poiseuille flow, approximation by421

finite differences, and incompressibility, we derive the linear system (4). Defining422

the total flux, average velocity, and their linear relationship (6)–(8), and solving for423

k leads to the definition for the effective permeability (9) of the network. These424

components constitute our model for the effective permeability of a vertical slab of425

young sea ice with entrained EPS. At this point, however, we must consider the choice426

of cross-sectional area distribution and parameters.427

It was observed in [27] that a lognormal distribution (30) models well the observed428

data on brine inclusion cross-sectional area A in young sea ice. In the case of young sea429

ice with entrained EPS, we consider the data of [23], transformed into measurements of430

area via A = P 2/(4π); see the histogram in Figure 3. Indeed, based on the histogram,431

we hypothesized that a more accurate model for logA might be given by a bimodal432

rather than a unimodal distribution.433

There are several statistical measures of bimodality. Freeman and Dale [8] investi-434

gated three different measures, and found utility in the “Bimodality Coefficient” (BC)435

[38]. The BC does not assume a specific underlying distribution, and is based on an436

empirical relationship between bimodality and the centered third and fourth moments437

(skewness and excess kurtosis, respectively) of a distribution [8]. The computation of438

the BC is straightforward [31], requiring only the sample size n, the skewness m3 of439
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the observed distribution, and its excess kurtosis m4:440

(43) BC =
m2

3 + 1

m4 + 3(n−1)2

(n−2)(n−3)

.441

The BC is between 0 and 1; values larger than 5/9 ≈ 0.555 suggest bimodality, while442

values smaller than 5/9 suggest unimodality. For the data set in [23], with sample443

size n = 234, we find that BC ≈ 0.61, which does indeed suggest bimodality of the444

underlying distribution.445

With BC ≈ 0.61 in (43) supporting the hypothesis of a bimodal distribution,446

we now postulate the precise form for a model of the distribution of the pipe cross-447

sectional areas. A natural generalization of the classical lognormal distribution (30),448

which can incorporate bimodality given certain parameters, involves a mixture of two449

normal distributions:450

(44) A = eY , fY (x;µ1, µ2, σ
2
1 , σ

2
2) = pfX(x;µ1, σ

2
1) + (1− p)fX(x;µ2, σ

2
2).451

Indeed, computing a maximum-likelihood estimate for the parameters of (44), applied452

to the transformed data of [23], yields453

(45) (p, µ1, µ2, σ1, σ2) = (0.48,−6.56, 0.02, 1.30, 2.30).454

In Figure 3, we have plotted the graph of fY in (44) with the parameters in (45), clearly455

showing the bimodality of the probability density function fY . (Quantitatively, we456

can also apply the Modality Theorem of [35] to show bimodality.)457

While this new bimodal-lognormal distribution (44) gives a good approximation458

between our random pipe model and existing experimental data (discussed shortly,459

in Subsection 3.2), it might be possible to suggest a more accurate approximation if460

additional data will become available.461

3.1. Upper bound on fluid permeability in EPS-laden sea ice. In this462

subsection, we explicitly calculate the new void bound (36) (cf. Equation (42)), i.e.,463

the upper bound on fluid permeability k for our new model using the bimodal–464

lognormal distribution (44). Indeed, the moments of A = eY can be computed465

explicitly. The first step is to observe that466

(46) 〈An〉 = E[An] = E[exp(nY )] =

∫ ∞
−∞

eny
2∑
i=1

wif(y;µi, σ
2
i )dy,467

where w1 = p, w2 = 1 − p, and f(y;µ, σ2) = (2πσ2)−1/2 exp[−(y − µ)2/(2σ2)]. The468

remainder of the calculation follows Subsection 2.2, Equations (37)–(41),469

(47) 〈An〉 = p exp

[
n(2µ1 + nσ2

1)

2

]
+ (1− p) exp

[
n(2µ2 + nσ2

2)

2

]
.470

Then, combining (36) and (47), with n = 1, 2, yields471

(48) k ≤
φ
(
p exp

[
2µ1 + 2σ2

1

]
+ (1− p) exp

[
2µ2 + 2σ2

2

])
8π
(
p exp

[
2µ1+σ2

1

2

]
+ (1− p) exp

[
2µ2+σ2

2

2

]) .472

Including the parameters discussed in Subsection 3.2 simplifies (48) considerably (see473

(51)) .474
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φ ph pv φ ph pv

0.05 0.45 0.375 0.15 0 0

0.075 0.35 0.3 0.175 0 0

0.10 0.25 0.2 0.20 0 0

0.125 0.15 0.1 0.225 0 0

Table 1
The choice of parameters (ph, pv) used in new simulations (Figure 4), to model the percolation

transition [11] as φ→ 0.05+, similar to [13].

3.2. Numerical results. We now discuss parameter selection, the simplified475

form of the void upper bound, numerical simulations of the new random pipe network476

model, and computational considerations.477

Recalling from Section 3 (Figure 3 and Equations (44) and (45)), the data of [23]478

were measured from photomicrographs of n = 234 brine inclusions at −10 ◦C. The479

data therefore give a quantitative understanding of the brine inclusions in one sample480

of sea ice with entrained EPS, at some given brine volume fraction 0 < φ < 1. In order481

to compare and contrast with the previous results [13] and data [9], however, we wish482

to have a series of samples, with varying brine volume fraction φ, in particular φ →483

0.05+. In the absence of conclusive data to make mathematical modeling decisions484

with regard to the parameters, we proceed as follows.485

As before (Subsections 2.1 and 2.3), we require E[A] = a(φ), where a(φ) is given486

by (32), but A is given by the new bimodal distribution (44). As φ varies, we suppose487

that ε = µ2−µ1

2 is fixed. Additionally, we let σ = σ1 = σ2 be a free parameter, let488

µ1 = ln a(φ)− σ2

2 − ε, and let µ2 = ln a(φ)− σ2

2 + ε. In summary, we have489

(49)
ε = µ2−µ1

2 σ = σ1 = σ2 is a free parameter,

µ1 = ln a(φ)− σ2

2 − ε, µ2 = ln a(φ)− σ2

2 + ε.
490

Given the parameters (49), and the requirement that E[A] = a(φ), a straightfor-491

ward but tedious calculation begins by substituting (49) into (47) (with n = 1), and492

concludes with the realization that p is, in fact, a dependent parameter,493

(50) p(ε) =
1

1 + e−ε
.494

We also incorporate the disconnection probabilities (ph, pv), which are chosen as in495

[13], so that the network is largely disconnected as φ → 0.05+. The specific param-496

eters used are given in Table 1. To both reiterate and expand on the discussion of497

(ph, pv) from Subsection 2.3, the choice of these parameters acts as a model of the498

percolation transition [11] observed in sea ice (commonly called the “Rule of Fives” in499

the literature), were observed as necessary in [13], and are similar (but not the same)500

as the parameters used in [13].501

With the choice of parameters as in (49) and (50), (48) reduces to502

(51) k(φ) ≤ (2 cosh ε− 1)
φ

8π
a(φ)eσ

2

.503

Assuming µ2 ≥ µ1, then ε ≥ 0. When ε = 0, the separation µ2 − µ1 = 0, and the504

underlying probability distribution is the classical lognormal distribution, as in the505
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original model [45] (Subsections 1.1, 2.1 and 2.3). In this case, Equation (51) reduces506

to (42), reinforcing that our model is an extension of the existing model.507

As discussed at the start of Section 3, the observed drop in fluid permeability [23]508

of young sea ice with entrained EPS versus EPS-free ice was by at most an order of509

magnitude. When we choose ε = 3.3, as suggested by Equations (45) and (49), we510

see too severe a drop in k – by three orders of magnitude, instead of one. Choosing511

instead ε = 1.6, we see by comparing Figure 2(b) and Figure 4 that the drop in512

fluid permeability is in much better agreement, with only a slight overestimate when513

φ < 0.15. The severe drop by the natural choice of ε = 3.3 may be due to a lack of514

precision in the original data, the lack of geometric information in the data, or the515

lack of geometric complexity in the model, while the slight overestimate when ε = 1.6516

and φ < 0.15 may be due to the choices for (ph, pv) – which were not quite the same517

as the original numerical simulations reconstructed in Figure 2(b) (see Table 1).518

Considering now the new, rigorous upper bound (51), when ε > 0 we have519

2 cosh ε−1 > 1, so the upper bound (51) is similar to (42), up to a multiplicative con-520

stant C > 1. With the choice of ε = 1.6 as discussed above, C = 2 cosh ε− 1 ≈ 4.15,521

which means that our void bound for the new bimodal–lognormal distribution is522

approximately four times larger than the void bound for the original lognormal dis-523

tribution – opposite the previously observed and now numerically-simulated drop in524

fluid permeability k. Ideally we would have a somewhat tight (if not optimal) upper525

bound, which suggests the need for additional analysis.526

Recalling the discussion in the text surrounding Equations (21) and (28), (51)527

becomes an equality in a parallel-cylinder geometry – in this sense, it is an anisotropic528

upper bound. Indeed, in the parallel-cylinder geometry, fluid will easily flow through529

large pipes, which are made more readily available by the new bimodal–lognormal530

distribution (cf. Figure 3). On the other hand, the numerical simulations summarized531

in Figure 4 involve a random, isotropic pipe network, in which the fluid does not flow532

in a preferred direction. This disagreement – between an anisotropic, parallel-cylinder533

geometry, and an isotropic pipe network – explains the apparent disparity between534

the rigorous upper bound (51) and numerical simulations.535

While this type of anisotropic upper bound is sensible for fluid flow in classical,536

columnar sea ice (as summarized in Subsection 2.2) due to the anistropic geometry537

of its microstructure, the geometry of ice with entrained EPS that we have seen is538

typically more isotropic. We therefore expect that an isotropic bound, as in [3] may be539

more relevant, and in particular may reduce the apparent disparity between numerical540

simulations and upper bounds. While the analysis of isotropic bounds are out of the541

scope of the present work, this is a an exciting future direction that we are currently542

pursuing.543

When the linear system (4) and (5) is constructed using the original, classical log-544

normal distribution for the underlying coefficients (as in Subsections 1.1, 2.1 and 2.3),545

and N = 1024, the solution time for the iterative multigrid solver of [45] (implemented546

in Fortran) increases rapidly with σ > 1. Increasing σ from 1.0 to 1.5, for example, in-547

creases the required number of iterations and thus the required time by several orders548

of magnitude. Similar timing increases arise when the classical lognormal distribution549

is replaced with the new bimodal–lognormal distribution. The issue is magnified by550

the choice of (ph, pv) for φ < 0.15, which causes the underlying matrix to become551

indefinite.552

These convergence issues and increases in computing times are perhaps not wholly553

unexpected, given the corresponding increase in variance, and thus the increasingly554

rough (random) coefficients involved. In lieu of augmenting the existing multigrid555
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φ a(φ) Var[Aorig] Var[Anew]

0.05 0.0191 0.000628 0.00376

0.10 0.0232 0.000928 0.00556

0.15 0.0278 0.00132 0.00793

0.20 0.0327 0.00184 0.0110

Table 2
The means and variances (Var[Aorig] and Var[Anew]) of the underlying random lognormal and

bimodal–lognormal distributions used in the original and the new model, respectively, given the free
parameter σ = 1.0. Recall that E[Aorig] = E[Anew] = a(φ), by assumption.

solver of [45] to better handle the real, symmetric, possibly indefinite linear system (4)556

and (5) with rough coefficients, we have instead designed a MATLAB implementation557

using built-in direct solvers – in particular a Cholesky solver when the matrix is558

positive definite, and the MA57 routine [6] when the matrix is numerically indefinite559

– for which convergence is not an issue.560

To illustrate the increase in variance more clearly, we show in Table 2 the means561

and variances of the random lognormal or bimodal–lognormal distributions (denoted562

Aorig and Anew) used in the original and the new random pipe network models, re-563

spectively. Recall that E[Aorig] = E[Anew] = a(φ) (32), by assumption. The variances564

Var[Aorig] and Var[Anew], however, are not equal. Indeed, Table 2 shows that for all565

four values of φ we have Var[Anew] > Var[Aorig], by around an order of magnitude.566

Indeed, in either case (the original or the new model), the effect of increasing the567

parameter φ is to increase the value of a(φ) and thus µ (for the original model) or568

(µ1, µ2) (for the the new model). In the new model, however, the density function fY569

(44) has two peaks, each approximately the same width, and separated by a distance570

2ε. Thus the increase in variance is expected.571

Continuing, we can consider now how the model informs our understanding of572

the actual physical systems involved. Indeed, the graph of the bimodal–lognormal573

distribution in Figure 3 suggests that this drop in fluid permeability is not unexpected.574

Indeed, this drop should be evident from the dominance of the left bump centered575

on very small inclusions with cross-sections an order of magnitude smaller than, say,576

the mean of the classical lognormal distribution, leading to a higher probability of577

these constrictive pathways, and lowering the effective fluid transport properties of578

the porous medium.579

4. Conclusions. While the effective fluid permeability of sea ice is a critical580

parameter affecting the properties of sea ice, and thus affecting polar ecosystems and581

global climate models, the effects of biogeochemistry on this parameter are not yet582

well understood. The random pipe network model presented herein is a mathematical583

model for the effective fluid permeability of young sea ice with entrained EPS, under584

the simplifying assumption that the given slab of sea ice is at equilibrium. As far as585

the authors are aware, this paper presents the first work to consider a two-dimensional586

model of the effects of microscale biochemistry, and particularly the presence of algal587

exudates, on the larger scale physical properties of sea ice. We find good agreement588

between observations [23] and our numerical simulations, analyze this result, and dis-589

cuss room for improvement in both the observational data, modeling, and parameter590

selection.591

Future work is needed to understand the effects of biology and chemistry on the592

This manuscript is for review purposes only.



FLUID FLOW IN SEA ICE WITH EXOPOLYMERIC SUBSTANCES 17

0 0.05 0.1 0.15 0.2 0.25

φ

10
-14

10
-13

10
-12

10
-11

10
-10

10
-9

10
-8

k
 (

m
2

)

model

void bound

lab data

Fig. 4. Model results for young sea ice with entrained EPS: Plot of k (in m2) versus φ, with
nonzero disconnection probabilities (ph, pv) for φ < 0.15 (Table 1), modeling the percolation transi-
tion [11] as φ → 0.05+. Parameters: m = n = 1024, σ2 = 1. The solid-starred line represents the
numerical results, computed for the volume fractions φ = 0.05, 0.075, 0.1, 0.125, 0.15, 0.175, 0.2, 0.225;
the solid line represents the upper bound (51) with ε = 1.6; while the lab data [9] is for young sea
ice without EPS.

properties of the sea ice. Indeed, direct improvements to this model could be achieved593

by studying data related to (1.) observations of the average cross-sectional area of594

brine inclusions in young, EPS-laden sea ice, as a function of φ; and (2.) observations595

of the fluid permeability of this type of ice, as a function of φ. We expect that an596

improved (tighter) upper bound might be found by considering an isotropic upper597

bound, as in [3], and are investigating this further. Formulating and analyzing a598

discrete, nonequilibrium, random pipe network model for fluid permeability of young599

sea ice represents an exciting new direction, which would require judicious modeling600

of salinity, temperature, phase change, and connectivity. A possible application of601

considerable importance to large-scale studies of sea ice, would be to mathematically602

model percolation blockage in young sea ice, as studied in [33]. This type of modeling603

could help to explain why the presence of EPS in sea ice extends the lifetime of the604

ice [23].605
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