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SEA ICE covers ~12% of Earth's ocean surface

e boundary between ocean and atmosphere

e mediates exchange of heat, gases, momentum
e global ocean circulation

e hostsrich ecosystem
e indicator of climate change



polar ice caps critical to global climate
in reflecting incoming solar radiation

white snow and ice
reflect

dark water and land
absorb

reflected sunlight
albedo Ol =

incident sunlight
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Predicting what may come next
requires lots of math modeling.
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Sea lce is a Multiscale Composite Material

microscale
brine inclusions polycrystals

A W ; P D. Cole K. Golden
Weeks & Assur 1969 H. Eicken - R A ey
Golden et al. GRL 2007 Gully et al. Proc. Roy. Soc. A 2015
millimeters centimeters
mesoscale macroscale
Arctic melt ponds Antarctic pressure ridges sea ice floes sea ice pack
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HOMOGENIZATION for Composite Materials
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Maxwell 1873 : effective conductivity of a dilute suspension of spheres
Einstein 1906 : effective viscosity of a dilute suspension of rigid spheres in a fluid

Wiener 1912 : arithmetic and harmonic mean bounds on effective conductivity
Hashin and Shtrikman 1962 : variational bounds on effective conductivity

widespread use of composites in late 20th century due in large part
to advances in mathematically predicting their effective properties



What is this talk about?

Using methods of homogenization and statistical physics to model sea ice effective
behavior and advance representation of sea ice in climate models, process studies, ...

MODELING
SEA ICE

microscale

v

mesoscale

v

macroscale

A tour of key sea ice processes on micro, meso, and macro scales.



What is our research about?

Using methods of homogenization and statistical physics to model sea ice effective
behavior and advance representation of sea ice in climate models, process studies, ...

Inputs, Ingredients Outputs, Impacts

COMPOSITE MATERIALS

electrical engineering,
stealth technology ~

CLIMATE MODELING

sea ice physics

— & biology

composites,
polycrystals

MODELING
SEA ICE

porous media,
oil extraction >

statistical mechanics —_—
of ferromagnets

microscale

=3 remote sensing

mesoscale

Anderson localization, —3— macroscale = advection diffusion

semiconductor physics ~-. biomedical imaging,

random matrix theory biomaterials, EPS

differential equations \ polar microbial ecology



What is our research about?
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semiconductor physics . biomedical imaging,

biomaterials, EPS

random matrix theory
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differential equations /

Modeling sea ice drives advances in many
areas of science and engineering.

\ polar microbial ecology



Microbial Ecology and the Physics of Sea Ice

How do the physical
properties of sea ice affect
microbial communities?

How does the presence of
microbial life in sea ice affect
its physical properties?

Golden g



microscale



fluid flow through the porous microstructure of sea ice
governs key processes in polar climate and ecosystems

evolution of Arctic melt ponds and sea ice albedo nutrient flux for algal communities

C.Haas

K. Golden

Antarctic surface flooding

September - evolution of salinity profiles
show-ice

estimates - ocean-ice-air exchanges of heat, CO,

0 25 50 75 100
percent snow ice

T. Maksym and T. Markus, 2008



brine volume fraction and connectivity increase with temperature

T=-15°C, $=0.033 T=-6°C, $=0.075 T=-3°C, $=0.143

T=-8°C, ¢$=0.057 T=-4°C, ¢=0.113

X-ray tomography for brine in sea ice Golden et al., Geophysical Research Letters, 2007



fluid permeability of a porous medium

Darcy’s Law

for slow viscous flow in a porous medium

averaged pressure
fluid velocity gradient
Y
V=-——7-YV
n VP

/

ViIScosity
how much water gets

through the sample k = fluid permeability tensor
per unit time?

HOMOGENIZATION

mathematics for analyzing effective behavior of heterogeneous systems



Critical behavior of fluid transport in sea ice

impermeable  permeable

4x10" 1 # ' on o
Arctic field data © o
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critical brine volume fraction ¢, ~ 5% <€ T, = -5°C, § = 5 ppt

Golden, Ackley, Lytle Science 1998

R U L E 0 F F IV E S Golden, Eicken, Heaton, Miner, Pringle, Zhu GRL 2007

Pringle, Miner, Eicken, Golden J. Geophys. Res. 2009



nutrient replenishment
controlled by ice permeability

biological activity turns on
or off according to
rule of fives

Golden, Ackley, Lytle Science 1998

Fritsen, Lytle, Ackley, Sullivan Science 1994

sea ice algal
communities

D. Thomas 2004

critical behavior of microbial activity

—

/

Convection-fueled algae bloom
Ice Station Weddell



sea ice ecosystem

sea ice algae
support life in the polar oceans



percolation theory

probabilistic theory of connectedness

impermeable permeable
[ ] -
— | . \open
- I_I__ | cluster ——>
B _
1 |
p=1/3 p=2/3

open with probability p
closed with probability 1-p

percolation threshold
p.=1/2 for d=2

smallest p for which there is an infinite open cluster



Continuum percolation model for stealthy materials
applied to sea ice microstructure explains Rule of Fives
and Antarctic data on ice production and algal growth

dc = 5%  Golden, Ackley, Lytle, Science, 1998

B-2 Stealth Bomber
F-117 Nighthawk
Stealthy Helicopters

sea ice compressed radar absorbing
powder composite

seaice is radar absorbing



Thermal evolution of permeability and microstructure in sea ice
Golden, Eicken, Heaton, Miner, Pringle, Zhu, Geophysical Research Letters 2007

Geophysical
Research
Letters

28 AUGUST 2007
Volume 34 Number 16
American Geophysical Union

A unified approach to understanding permeability in sea ice » Solving the rr_msl:ery of
booming sand dunes ¢ Entering into the “greenhouse century”: A case sl;udy from Bwutz’erland

percolation theory
for fluid permeability

k(d) = kO (d—0.05 )2 & critical

exponent
-8 !
critical path analysis
Kozlov and Golden, 1990s

hierarchical + network models
rigorous bounds

X-ray tomography for
brine inclusions

theories agree closely
with field data



Sea ice algae secrete extracellular polymeric substances (EPS)

affecting evolution of brine microstructure.

How does EPS affect fluid transport? How does the biology affect the physics?
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Krembs
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® 2D random pipe model with bimodal distribution of pipe radii

® Rigorous bound on permeability k; results predict observed drop in k

Steffen, Epshteyn, Zhu, Bowler, Deming, Golden
Multiscale Modeling and Simulation, 2018

RANDOM
PIPE
MODEL

\
/

Zhu, Jabini, Golden,
Eicken, Morris
Ann. Glac. 2006



measuring
fluid permeability
of Antarctic seaice

SIPEX 2007



INVERSE PROBLEM

Recover sea ice

properties from

electromagnetic
(EM) data

E*

effective complex permittivity
(dielectric constant, conductivity)

Remote sensing of sea ice

sea ice thickness brine volume fraction
ice concentration brine inclusion connectivity



Effective complex permittivity of a two phase composite
in the quasistatic (long wavelength) limit

D =¢cFk
>k V-D=J0
VXE=0

e (D) = €(B)

P1, P2 = volume fractions of
the components

> X [ €1 :
€E =€ (6—2 , composite geometry)

What are the effective propagation characteristics
of an EM wave (radar, microwaves) in the medium?



Analytic Continuation Method for Homogenization

Bergman (1978), Milton (1979), Golden and Papanicolaou (1983), Theory of Composites, Milton (2002)

Stieltjes integral representation gseparates geometry

for homogenized parameter from parameters
geometry
€* : dp(z) “ 1
F(s)=1——=— = s =
€2 0 S — 2 1l —€/6€
\ material parameters
@ spectral measure of [ = V(— A)_lv-
/ self adjoint operator ['X
_ @ mass= P X = characteristic function
~ , of the brine phase
@ higher moments depend |
on n-point correlations F=s (S + FX)_ €l

| X : microscale — macroscale
['X links scales

Golden and Papanicolaou, Comm. Math. Phys. 1983



forward bounds

matrix particle

0<g<l

Golden 1995, 1997

4.75 GHz data

Inverse Homogenization

Cherkaev and Golden (1998), Day and Thorpe (1999),
Cherkaev (2001), McPhedran, McKenzie, Milton (1982),
Theory of Composites, Milton (2002)

% composite geometry
& q (spectral measure )
inverse bounds and

recovery of brine porosity

Gully, Backstrom, Eicken, Golden
Physica B, 2007

forward and inverse bounds on the complex permittivity of sea ice

inverse bounds
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inversion for brine inclusion
separations in sea ice from
measurements of effective
complex permittivity £*
rigorous inverse bound
on spectral gap

construct algebraic curves which bound
admissible region in (p,q)-space

Orum, Cherkaev, Golden
Proc. Roy. Soc. A, 2012



Measuring sea ice thickness



electrical measurements Wenner array

vertical conductivity

Zhu, Golden, Gully, Sampson PhysicaB 2010
Sampson, Golden, Gully, Worby Deep Sea Research 2011



SEA ICE HUMAN BONE
spectral characterization
of porous microstructures
in human bone

reconstruct spectral measures
from complex permittivity data

young healthy trabecular bone old osteoporotic trabecular bone

r) |

young bone

O‘ old bone
0

0.2 04 0.6 08 1

use regularized inversion scheme

apply spectral measure analysis of brine connectivity and
spectral inversion to electromagnetic monitoring of osteoporosis

Golden, Murphy, Cherkaev, J. Biomechanics 2011
the math doesn’t care if it’s sea ice or bone!



Homogenization for polycrystalline materials

Local conductivity " effective

01 02 O conductivity
AN N
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Find the homogeneous medium which behaves macroscopically the same as the inhomogeneous medium

Conductivity of crystal directions * effective

01 09 o conductivity

Homogenize
Polycrystalline >
media

inhomogeneous homogeneous
medium medium



Proc. Roy.Soc.A 8 Feb 2015
Bounds on the complex permittivity

of polycrystalline materials
by analytic continuation

ISSN 1364-5021 | Volume 471 | Issue 2174 | 8 February 2015

PROCEEDINGS A

350 YEARS
OF SCIENTIFIC
PUBLISHING
Adam Gully, Joyce Lin,
Elena Cherkaev, Ken Golden

An invited review A method to distinguish A computer model to

commemorating 350 years between different types determine how a human

of scientific publishing atthe  of sea ice using remote should walk so as to expend

Royal Society sensing techniques the least energy

@® Stieltjes integral representation for

effective complex permittivity
Milton (1981, 2002), Barabash and Stroud (1999), ...

® Forward and inverse bounds
orientation statistics
@® Appliedtoseaice using

two-scale homogenization

Gloz Alenuga4 8 | t/Lzanss| | L/pawnjop | 7 ©20S Yy D0ud

@® Inverse bounds give method for
distinguishing ice types using
remote sensing techniques
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ROYAL
SOCIETY

PUBLISHING
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higher threshold for fluid flow in granular sea ice

nutrient fluxes for microbes

microscale details impact “mesoscale” processes meltpond drainage
snow-ice formation

columnar granular

5% 10%

Golden, Sampson, Gully, Lubbers, Tison 2021

electromagnetically distinguishing ice types
Kitsel Lusted, Elena Cherkaev, Ken Golden



mesoscale



fractals

self-similar structure
non-integer dimension




the sea ice pack is a fractal

ing self-similar structure on many scales
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Self-similarity of sea ice floes

Weddell Sea, Antarctica
2006

Takenobu Toyota




wave propagation in the marginal ice zone (MIZ)

Stieltjes integral representation and bounds

the complex viscoelasticity of the ice - ocean layer  first theory of key parameter

in wave-ice interactions only
Sampson, Murphy, Cherkaev, Golden 2021 fitted to wave data before

Analytic Continuation Method

Bergman (78) - Milton (79)
integral representation for £*
Golden and Papanicolaou (83)

Milton, Theory of Composites (02)

homogenized
parameter
depends on

&4 seaice

~_ concentration

" andicefloe
geometry

like EM waves




advection enhanced diffusion

-0.1 -0.2
effective diffusivity o 04
nutrient and salt transport in sea ice o | 06 ’
heat transport in sea ice with convection
-0.4 -0.8

sea ice floes in winds and ocean currents
tracers, buoys diffusing in ocean eddies
diffusion of pollutants in atmosphere

‘ ‘ Wells etal. 2011
0 0.1 0.2 0.3 0.4

advection diffusion equation with a velocity field ©

oT =
ﬁ u=0 i S ~ Drake
homogenize
oT -
= = AT
or "

k" effective diffusivity

Avellaneda and Majda, PRL 89, CMP 91

Murphy, Cherkaev, Xin, Zhu, Golden, Ann. Math. Sci. Appl. 2017 |~ g i o
Murphy, Cherkaev, Zhu, Xin, Golden, J. Math. Phys. 2020 LB s T Masters, 1969 o




tracers flowing through inverted sea ice blocks



melt pond formation and albedo evolution:

e major drivers in polar climate
e key challenge for global climate models

. . . . Luthje, Feltham, Skyllingstad, Paulson,
numerical models of melt pond evolution, including  Tayior, worster 2006 Perovich 2009
topog raphy, drainage (permeability)’ etc. Flocco, Feltham 2007  Flocco, Feltham,

Hunke 2012

Perovich

Are there universal features of the evolution
similar to phase transitions in statistical physics?



fractal curves in the plane

they wiggle so much that their dimension is >1

simple curves Koch snowflake space filling curves

Peano curve

Brownian
motion

D=1 D=1.26 D=2



clouds exhibit fractal behavior from 1 to 1000 km

use perimeter-area data to find that
cloud and rain boundaries are fractals

D = 1.35

S. Lovejoy, Science, 1982

simple shapes

A=L°

P=4L=4VA

P~VA

for fractals with
dimension D

PvA

D=1.52..



Transition in the fractal geometry of Arctic melt ponds
Christel Hohenegger, Bacim Alali, Kyle Steffen, Don Perovich, Ken Golden

The Cryosphere, 2012

complexity grows with length scale
c
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simple pond transitional pond complex pond



Continuum percolation model for melt pond evolution
level sets of random surfaces
Brady Bowen, Court Strong, Ken Golden, J. Fractal Geometry 2018

random Fourier series representation of surface topography

intersections of a plane with the surface define melt ponds
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electronic transport in disordered media diffusion in turbulent plasmas Isichenko, Rev. Mod. Phys., 1992



fractal dimension curves depend on
statistical parameters defining random surface
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Saddle Points, Morse Theory and the Fractal Geometry of Melt Ponds
Ryleigh Moore, Jacob Jones, Dane Gollero, Court Strong, Ken Golden 2021

snow '
topography

| Ryleigh Moore
o Department of Mathematics
University of Utah

Multidisciplinary drifting Observatory
for the Study of Arctic Climate (MOSAIC)

MOSAIC School aboard the icebreaker RV Akademik Federov

20 grad students from around the world
(3 from U.S., 1 mathematician)




. Melt ponds control transmittance
of solar energy through sea ice,
impacting upper ocean ecology.

WINDOWS

Perovich

Have we crossed into a
new ecological regime?

The frequency and extent of sub-ice
phytoplankton blooms in the Arctic Ocean

Horvat, Rees Jones, lams, Schroeder,
Flocco, Feltham, Science Advances 2017

no bloom bloom The effect of melt pond geometry on the distribution
of solar energy under first year sea ice
massive under-ice algal bloom Horvat, Flocco, Rees Jones, Roach, Golden

Geophys. Res. Lett. 2019

Arrigo et al., Science 2012
(2015 AMS MRCQ)



macroscale



{c) area of habitat encountered

==~ |ce floe diffusion in
| winds and currents /

n

400
- {350
F 300

F {250

, on short time scales floes
exhibit Brownian-like behavior

F 200

-
150

100

® Effective behavior is purely diffusive, sub-diffusive or super-diffusive
depending on ice pack and advective conditions - Hurst exponent.

On sea-ice dynamical regimes in the Arctic Ocean
Jennifer Lukovich, Jennifer Hutchings, David Barber, Ann. Glac. 2015

Anomalous diffusion and sea ice dynamics D8 00 €T
Huy Dinh, Ben Murphy, Elena Cherkaev, Ken Golden 2021 & °<S’OQO?3%>%°O©O%O°%

floe-scale model - crowding o008 o500
jamming, advective forcing ©° e 020 O Sper

sea ice concentration = 0.3

Home ranges in moving habitats: polar bears and sea ice
Marie Auger-Méthé, Mark Lewis, Andrew Derocher, Ecography, 2016



polar bear
foragingina
fractal icescape

Nicole Forrester
Jody Reimer
Ken Golden

It costs the polar bear
5 times the energy to
swim through water
than to walk on sea ice.

What pathway to a seal
5 km away minimizes
energy spent?




Marginal |Ce Zone ® biologically active region

|V||Z ® intense ocean-sea ice-atmosphere interactions

@ region of significant wave-ice interactions

transitional region between
dense interior pack (¢ > 80%)
sparse outer fringes (c < 15%)

MiZ WIDTH How to objectively

fundgmental Igngth scale of. measure the “width”
ecological and climate dynamics .
of this complex,

Strong, Climate Dynamics 2012 : 9
non-convexregion:

Strong and Rigor, GRL 2013



Objective method for measuring MIZ width
motivated by medical imaging and diagnostics

Strong, Climate Dynamics 2012 39% widening
Strong and Rigor, GRL 2013 1979 -2012

streamlines of a solution

" o . to Laplace’s equation
average” lengths of streamlines /

4x107°

%1072

%1073

%1073

crossection of the
Arctic Marginal Ice Zone cerebral cortex of a rodent brain

analysis of different MIZ WIDTH definitions

Strong, Foster, Cherkaev, Eisenman, Golden
J. Atmos. Oceanic Tech. 2017

Strong and Golden
Society for Industrial and Applied Mathematics News, April 2017



Filling the polar data gap with hole in satellite coverage
partial differential equations of sea ice concentration field

previously assumed
ice covered

b

Gap radius: 611 km
06 January 1985

Gap radius: 311 km
30 August 2007

0 0.5 1 0 0.5 1

Ay=0 fill = harmonic function with
learned stochastic term

, NOAA/NSIDC Sea Ice Concentration CDR
Strong and Golden, Remote Sensing 2016 .
Strong and Golden, SIAM News 2017 product update will use our PDE method.




University of Utah Sea Ice Modeling Group (2017-2021)

Senior Personnel: Ken Golden, Distinguished Professor of Mathematics
Elena Cherkaev, Professor of Mathematics
Court Strong, Associate Professor of Atmospheric Sciences
Ben Murphy, Adjunct Assistant Professor of Mathematics

Postdoctoral Researchers: Noa Kraitzman (now at ANU), Jody Reimer

Graduate Students: Kyle Steffen (now at UT Austin with Clint Dawson)
Christian Sampson (now at UNC Chapel Hill with Chris Jones)
Huy Dinh (now a sea ice MURI Postdoc at NYU/Courant)
Rebecca Hardenbrook
David Morison (Physics Department)
Ryleigh Moore
Delaney Mosier
Daniel Hallman

Undergraduate Students: Kenzie McLean, Jacqueline Cinella Rich,
Dane Gollero, Samir Suthar, Anna Hyde,
Kitsel Lusted, Ruby Bowers, Kimball Johnston,
Jerry Zhang, Nash Ward, David Gluckman

High School Students: Jeremiah Chapman, Titus Quah, Dylan Webb

Sea Ice Ecology Group Postdoc Jody Reimer, Grad Student Julie Sherman,
Undergraduates Kayla Stewart, Nicole Forrester



Conclusions

1. Seaice is a fascinating multiscale composite with structure
similar to many other natural and man-made materials.

2. Mathematical methods developed for sea ice advance the
theory of composites and other areas of science and engineering.

3. Homogenization and statistical physics help link scales in sea ice
and composites; provide rigorous methods for finding effective
behavior; advance sea ice representations in climate models.

4. Fluid flow through sea ice mediates melt pond evolution and many
processes important to climate change and polar ecosystems.

5. Field experiments are essential to developing relevant mathematics.

6. Our research is helping to improve projections of climate change,
the fate of Earth’s sea ice packs, and the ecosystems they support.



¥ Notices

of the American Mathematical Society
November 2020 Volume 67, Number 10

AMERICAN

MATHEMATICAL , . ,
SOCIETY The cover is based on “Modeling Sea Ice,

page 1535.




HANK YOU

Australian Government

Department of the Environment y :
P and Water Resources ANTARCTIC CLIMATE ’ Antarctica New Zealand
& ECOSYSTEMS

Australian Antarctic Division COOPERATIVE RESEARCH CENTRE

Buchanan Bay, Antarctica Mertz Glacier Polynya Experiment July 1999



Sydney Morning Herald
23 July, 1998

2:45 am July 22,1998

“Please don’t be alarmed but we

have an uncontrolled fire in the
engine room ...."

about 10 minutes later ...

“Please don’t be alarmed but

we're lowering the lifeboats ...."

14



' Newsjournal of the Society for Industrial and Applied Mathematics
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sinews.siam.org

Volume 53/ Issue 9
November 2020

Special Issue on the
Mathematics of Planet Earth

Read about the application of mathematics and computational
science to issues concerning invasive populations, Arctic sea ice,
insect flight, and more in this Planet Earth special issue!

, "(b)'

Figure 3. Comparison of real Arctic melt ponds with metastable equilibria in our melt
pond Ising model. 3a. Ising model simulation. 3b. Real melt pond photo. Figure 3a cour-
tesy of Yiping Ma, 3b courtesy of Donald Perovich.

Vast labyrinthine ponds on the surface of melting Arctic sea ice are key play-
ers in the polar climate system and upper ocean ecology. Researchers have
adapted the Ising model, which was originally developed to understand mag-
netic materials, to study the geometry of meltwater’s distribution over the sea
ice surface. In an article on page 5, Kenneth Golden, Yiping Ma, Courtenay
Strong, and Ivan Sudakov explore model predictions.

Controlling Invasive
Populations in Rivers

By Yu Jin and Suzanne Lenhart

low regimes can change significant-

ly over time and space and strongly
impact all levels of river biodiversity, from
the individual to the ecosystem. Invasive
species in rivers—such as bighead and
silver carp, as well as quagga and zebra
mussels—continue to cause damage.
Management of these species may include
targeted adjustment of flow rates in rivers,
based on recent research that examines the
effects of river morphology and water flow
on rivers’ ecological statuses. While many
previous methodologies rely on habitat suit-
ability models or oversimplification of the
hydrodynamics, few studies have focused
on the integration of ecological dynamics
into water flow assessments.

Earlier work yielded a hybrid modeling
approach that directly links river hydrology
with stream population models [3]. The
hybrid model’s hydrodynamic component
is based on the water depth in a gradu-
ally varying river structure. The model
derives the steady advective flow from this
structure and relates it to flow features like
water discharge, depth, velocity, cross-

sectional area, bottom roughness, bottom
slope, and gravitational acceleration. This
approach facilitates both theoretical under-
standing and the generation of quantitative
predictions, thus providing a way for scien-
tists to analyze the effects of river fluctua-
tions on population processes.

When a population spreads longitudinally
in a one-dimensional (1D) river with spatial
heterogeneities in habitat and temporal fluc-
tuations in discharge, the resulting hydrody-
namic population model is

N

N,=—A(x,1) At

+

(M

See Invasive Populations on page 4
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Modeling Resource Demands and Constraints
for COVID-19 Intervention Strategies

By Erin C.S. Acquesta, Walt Beyeler,
Pat Finley, Katherine Klise, Monear
Makvandi, and Emma Stanislawski

As the world desperately attempts to
control the spread of COVID-19, the
need for a model that accounts for realistic
trade-offs between time, resources, and cor-
responding epidemiological implications is
apparent. Some early mathematical models
of the outbreak compared trade-offs for
non-pharmaceutical interventions [3], while
others derived the necessary level of test
coverage for case-based interventions [4]
and demonstrated the value of prioritized
testing for close contacts [7].

Isolated analyses provide valuable
insights, but real-world intervention strate-
gies are interconnected. Contact tracing is the
lynchpin of infection control [6] and forms
the basis of prioritized testing. Therefore,
quantifying the effectiveness of contact trac-
ing is crucial to understanding the real-life
implications of disease control strategies.

Contact Tracing Demands

Contact tracers are skilled, culturally
competent interviewers who apply their
knowledge of disease and risk factors when
notifying people who have come into con-
tact with COVID-19-infected individuals.
They also continue to monitor the situation
after case investigations [1].

Case investigation consists of four steps:
1. Identify and notify cases
2. Interview cases
3. Locate and notify contacts
4. Monitor contacts.

Most health departments are implement-
ing case investigation, contact identifica-
tion, and quarantine to disrupt COVID-
19 transmission. The timeliness of contact
tracing is constrained by the length of the
infectious period, the turn-around time for
testing and result reporting, and the abil-
ity to successfully reach and interview
patients and their contacts. The European
Centre for Disease Prevention and Control
approximates that contact tracers spend one
to two hours conducting an interview [2].
Estimates regarding the timelines of other
steps are limited to subject matter expert
elicitation and can vary based on cases’
access to phone service or willingness to
participate in interviews.

Bounded Exponential

The fundamental structure of our model
follows traditional susceptible-exposed-
infected-recovered (SEIR) compartmental
modeling [5]. We add an asymptomatic
population A, a hospitalized population H,
and disease-related deaths D, as well as
corresponding quarantine states. We define
the states {S,E,A,[,H,R D} _,
our compartments, such that ¢=0 and z_l

= .

Quarantine States

Figure 1. Disease state diagram for the compartmental infectious disease model. Figure

courtesy of the authors.

correspond to unquarantined and quaran-
tined respectively. Rather than focus on the
dynamics that are associated with the state
transition diagram in Figure 1, we introduce
a formulation for the real-time demands
on contact tracers’ time as a function of
infection prevalence, while also respecting
constraints on resources.

When the work that is required to inves-
tigate new cases and monitor existing con-
tacts exceeds available resources, a backlog
develops. To simulate this backlog, we
introduce a new compartment C' for track-
ing the dynamic states of cases:

dC =[flow, ] —[flow,].

Flow into the backlog compartment, repre-
sented by [flow, |, reflects case identifica-
tion that is associated with the following
transitions in the model:

— The rate of random testing:

0.,(DA, ()= A (1) and g, (),(1) — I,(0)

- Testlng trlggered by contact tracing:
0,04, <t>ﬂA o), qu< >1 <t>~fl< )
and q,, (t)E,(t) —{A(1)

— The populatlon that was missed by
the non-pharmaceutical interventions that
require hospitalization: 7, (t)1,(t) — H(t).

Here, qr*(t) defines the time-dependent
rate of random testing, ¢,.(t) signifies the
time-dependent rate of testing that is trig-
gered by contact tracing, and T, is the
inverse of the expected amount of time for
which an infected individual is symptomatic
before hospitalization. These terms collec-
tively provide the simulated number of
newly-identified positive COVID-19 cases.
However, we also need the average number
of contacts per case. We thus define func-
tion K(x,T,,¢,_) that depends on the aver-
age number of contacts a day (x), the aver-
age number of days for which an individual
is infectious before going into isolation
(T,), and the likelihood that the individual

See COVID-19 Intervention on page 3
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