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sea ice is a multiscale composite
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What s this talk about? HOMOGENIZATION

Using methods of statistical physics and homogenization to
LINK SCALES in the sea ice system ... rigorously compute
effective behavior and improve climate models.

1. Sea ice microphysics and fluid transport
2. Stieltjes integral representations for EM properties
3. Extension to polycrystals, advection diffusion, waves in MIZ
4. Fractal geometry of melt pond evolution
cross - pollination

Solving problems in physics and biology of sea ice
drives advances in theory of composite materials.



HOMOGENIZATION - Linking Scales in Composites
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medium medium

find the homogeneous medium which
behaves macroscopically the same as
the inhomogeneous medium

Maxwell 1873 : effective conductivity of a dilute suspension of spheres
Einstein 1906 : effective viscosity of a dilute suspension of rigid spheres in a fluid

Wiener 1912 : arithmetic and harmonic mean bounds on effective conductivity
Hashin and Shtrikman 1962 : variational bounds on effective conductivity

widespread use of composites in late 20th century due in large part
to advances in mathematically predicting their effective properties



fluid flow through the porous microstructure of sea ice
governs key processes in polar climate and ecosystems

evolution of Arctic melt ponds and sea ice albedo nutrient flux for algal communities
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fluid permeability of a porous medium

Darcy’s Law

for slow viscous flow in a porous medium

averaged pressure
fluid velocity gradient
Y
V=-——7-YV
n VP

/

ViIScosity
how much water gets

through the sample k = fluid permeability tensor
per unit time?

HOMOGENIZATION

mathematics for analyzing effective behavior of heterogeneous systems



PIPE BOUNDS on vertical fluid permeability &
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Critical behavior of fluid transport in sea ice
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Thermal evolution of permeability and microstructure in sea ice
Golden, Eicken, Heaton, Miner, Pringle, Zhu, Geophysical Research Letters 2007
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Sea ice algae secrete extracellular polymeric substances (EPS)
affecting evolution of brine microstructure.

How does EPS affect fluid transport? 4:30 Today

_ " R withEPS § -

0.15F

RANDOM
PIPE
MODEL

0.1F

0.05F

\
/

[ [ [ [
-10 -5 0 5

P 204 bOAp
Adbdaddn Al
el Fy PSS
fipéboéinam
'ob8 hdood=

4. duwboonybd
\

/....I....

® Bimodal lognormal distribution for brine inclusions

® Develop random pipe network model with bimodal distribution;
Use numerical methods that can handle larger variances in sizes.

® Results predict observed drop in fluid permeability k.

® Rigorous bound on k for bimodal distribution of pore sizes

. Zhu, Jabini, Golden,
Steffen, Epshteyn, Zhu, Bowler, Deming, Golden Eicken, Morris

Multiscale Modeling and Simulation, 2018 Ann. Glac. 2006

How does the biology affect the physics?



INVERSE PROBLEM

Recover sea ice

properties from

electromagnetic
(EM) data

E*

effective complex permittivity
(dielectric constant, conductivity)

Remote sensing of sea ice

sea ice thickness brine volume fraction
ice concentration brine inclusion connectivity



Effective complex permittivity of a two phase composite
in the quasistatic (long wavelength) limit

D =¢ck
>k V-D=J0
VxE =0

e (D) = €(B)

P1, P2 = volume fractions of
the components

= € ( o, » composite geometry)



Analytic Continuation Method

Bergman (1978), Milton (1979), Golden and Papanicolaou (1983), Theory of Composites, Milton (2002)

Stieltjes integral representation
for homogenized parameter
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Golden and Papanicolaou, Comm. Math. Phys. 1983



forward and inverse bounds on the complex permittivity of sea ice

forward bounds inverse bounds
matrix particle Lo .
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Golden 1995, 1997 T o
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. inversion for brine inclusion
inverse bounds and separations in sea ice from
recovery of brine porosity measurements of effective
Gully, Backstrom, Eicken, Golden complex permittivity ¢*
Physica B, 2007 rigorous inverse bound

on spectral gap
construct algebraic curves which bound
admissible region in (p,q)-space
Orum, Cherkaev, Golden
Proc. Roy. Soc. A, 2012



direct calculation of spectral measure

1. Discretization of composite microstructure gives
lattice of 1’s and 0’s (random resistor network).

2. The fundamental operator yI'y becomes a random
matrix depending only on the composite geometry.

3. Compute the eigenvalues A ; and eigenvectors of yI'y
with inner product weights o,

n0) = T oy 8- 2)

Dirac point measure (Dirac delta)

ier studies of tral ) Day and Thorpe 1996
€arlier studies oT Spectralmeasures — Helsing, McPhedran, Milton 2011



Spectral computations for Arctic melt ponds
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Anderson Transition
in Composites

Ben Murphy

Elena Cherkaev

Ken Golden

Phys. Rev. Lett. 2017

eigenvalue statistics
for transport tend
toward the
UNIVERSAL
Wigner-Dyson
distribution

as the “conducting”
phase percolates



o) extended

JMM‘W& metal / insulator transition  Anderson 1958

Mott 1949

Tl localization AN

Anderson transition in wave physics:
quantum, optics, acoustics, water waves, ...

we find a surprising analog
Anderson transition for classical transport in composites

Murphy, Cherkaev, Golden Phys. Rev. Lett. 2017

transition to universal
PERCOLATION =P  eigenvalue statistics (GOE)
TRANSITION -
extended states, mobility edges

-- but without wave interference or scattering effects ! --



Proc. Roy.Soc.A 8 Feb 2015
Bounds on the complex permittivity

of polycrystalline materials
by analytic continuation
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PROCEEDINGS A
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Adam Gully, Joyce Lin,
Elena Cherkaev, Ken Golden

An invited review A method to distinguish A computer model to

commemorating 350 years between different types determine how a human

of scientific publishing atthe  of sea ice using remote should walk so as to expend

Royal Society sensing techniques the least energy

@® Stieltjes integral representation for

effective complex permittivity
Milton (1981, 2002), Barabash and Stroud (1999), ...

® Forward and inverse bounds
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@® Appliedtoseaice using
two-scale homogenization

@® Inverse bounds give method for
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advection enhanced diffusion

effective diffusivity

sea ice floes diffusing in ocean currents
diffusion of pollutants in atmosphere
salt and heat transport in ocean

heat transport in sea ice with convection

advection diffusion equation with a velocity field

oT -
¥ +u - VT = kAT
V-i=0
homogenize
oT _
— =k AT
or

K" effective diffusivity

Avellaneda and Majda, PRL 89, CMP 91

Murphy, Cherkaev, Xin, Zhu, Golden, Ann. Math. Sci. Appl. 2017
Murphy, Cherkaev, Zhu, Xin, Golden, 2018

GFDL CM 2.4

“ Drake
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Stieltjes Integral Representation for Advection Diffusion

[Murphy, Cherkaev, Zhu, Xin & Golden 2018]
[Murphy, Cherkaev, Xin, Zhu & Golden 2017]

e [T 20). - [ 2

@ L is a positive definite measure corresponding to the
spectral resolution of the self-adjoint operator /T HI'

@ H = stream matrix , k = local diffusivity
o :=-V(—A)"1V. |, A is the Laplace operator
@ /[ HI is bounded for time independent flows

o F(k) is analytic off the spectral interval in the x-plane

separation of material properties and flow field
spectral measure calculations



RIGOROUS BOUNDS on convection - enhanced
thermal conductivity of sea ice

Kraitzman, Hardenbrook, Murphy, Zhu, Cherkaev, Golden 2018
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wave propagation in the marginal ice zone

Stieltjes integral representations

ive vi ; Fri 11:
bounds on effective viscoelastic parameters riday 11:00

quasistatic assumption
low frequency, long wavelength

Sampson, Murphy, Cherkaev, Golden 2018

Two Layer Models

Viscous fluid layer (Keller 1998)
Effective Viscosity | v

Viscoelastic fluid layer (Wang-Shen 2010)
Effective Complex Viscosity [y, = v + i@ / pw

Viscoelastic thin beam (Mosig et al. 2015)
Effective Complex Shear Modulus| G, = G — iwpv




bounds on the effective complex viscoelasticity
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Arctic and Antarctic field experiments

develop electromagnetic methods
of monitoring fluid transport and
microstructural transitions

extensive measurements of fluid and
electrical transport properties of sea ice:

2007
2010
2011
2012
2012
2013
2014

Antarctic SIPEX

Antarctic McMurdo Sound
Arctic Barrow AK
Arctic Barrow AK
Antarctic SIPEXII

Arctic Barrow AK
Arctic Chukchi Sea



higher threshold for fluid flow in Antarctic granular sea ice

linkage of scales: details of microscale impact macroscale behavior

columnar granular

5% 10%

Golden, Sampson, Gully, Lubbers, Tison 2018



melt pond formation and albedo evolution:

e major drivers in polar climate
e key challenge for global climate models

. . . . Luthje, Feltham, Skyllingstad, Paulson,
numerical models of melt pond evolution, including  Tayior, worster 2006 Perovich 2009
topog raphy, drainage (permeability)’ etc. Flocco, Feltham 2007  Flocco, Feltham,

Hunke 2012

Perovich

Are there universal features of the evolution
similar to phase transitions in statistical physics?



Transition in the fractal geometry of Arctic melt ponds
Christel Hohenegger, Bacim Alali, Kyle Steffen, Don Perovich, Ken Golden

The Cryosphere, 2012

complexity grows with length scale
c
o
2 2]
c _
@
k=
o
©
i)
)
s 1
L -

10° 10" 10° 10 100 10
Area (m?)
n ‘gv

~30m

simple pond transitional pond complex pond



small simple ponds coalesce to form
large connected structures with complex boundaries

Hohenegger, et al., The Cryosphere, 2012

melt pond percolation

results on percolation threshold, correlation length, cluster behavior

A. Cheng (Hillcrest HS), D. Webb (Skyline HS), R. Moore, C. Strong, K. M. Golden



Melt pond geometrical characteristics consistent
with behavior of continuum percolation models:

1.Void model 5:30 today

P. Popovic, B. B. Cael, M. Silber, and D. S. Abbot, Phys. Rev. Lett. 2018.

disks of varying size which represent ice are placed randomly on the plane
(possibly overlapping) with the voids between them representing the ponds

data on pond sizes, area fractions, correlations measured
from helicopter photos incorporated into model

2. Random surface model

B. Bowen, C. Strong, K. M. Golden, J. Fractal Geometry 2018.
pond boundary = level set of random surface representing snow surface

data on snow topography incorporated into model

These models reproduce observed fractal dimension vs. area, ...



Continuum percolation model for melt pond evolution
level sets of random surfaces
Brady Bowen, Court Strong, Ken Golden, J. Fractal Geometry 2018

random Fourier series representation of surface topography

intersections of a plane with the surface define melt ponds
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electronic transport in disordered media diffusion in turbulent plasmas Isichenko, Rev. Mod. Phys., 1992



fractal dimension curves depend on
statistical parameters defining random surface
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Coefficients of Fourier surface chosen to produce
topography with given autocorrelation and anisotropy

anisotropy

spatial autocorrelation



Ising Model for a Ferromagnet

applied
magnetic H
field

SRR

2-D Ising Model

+1 spinup

~ -1 spindown

:—JZSSJ — HZSZ

<1,1>
nearest neighbor Ising Hamiltonian

for any configuration w € Q = {—1,1} of the spins
J >0

canonical partition function

ZN(T7 H) — ZGXP(—ﬁHw) — eXp(_ﬁNfN)

wel
B =1/kT
free energy per site

(T H) = 5_;7 log Z (T, H)



Ising model for ferromagnets —3> Ising model for melt ponds

N N +1 water  (spin up)
Hw:—JZS@'Sj—HZSi 812{1 1 :

— : 1ce spin down
<2,)> 1 ( p )

N —oo 2

magnetization M = lim % <Z 3j> pond coverage (M+1)
J

“melt ponds” are clusters of magnetic spins that align with the applied field

predictions of fractal transition, pond size exponent Ma, Sudakov, Strong, Golden 2018



Glauber Dynamics (Metropolis at T=0):

if spin flip lowers energy, accept

. . . . . majority wins, water fills troughs
if spin flip raises energy, reject

Metropolis algorithm: if lower accept
if raises accept with prob = Gibbs factor

Random initial configuration; as energy is minimized
system “flows” toward metastable equilbrium

Order from Disorder

Ising model melt pond photo

(Perovich)

ONLY MEASURED INPUT = LENGTH SCALE (GRID SIZE)



Ising model results

Minimize Ising Hamiltonian energy pond size distribution

exponent

2 L

Random magnetic field represents
snow topography; interaction term
represents horizontal heat transfer.

observed

\

~ model observed -1.5

Melt ponds — (Perovich, et al 2002)
metastable islands of like spins 1= | | . -
in our random field Ising model. 1 OO 1 01 1 02 1 03 1 O4 model -1.58

A (Mm?)
order out of disorder

The lattice constant a must be small
relative to the 10-20 m length scales
prominent in sea ice and snow topography.
We set a=1 m as the length scale above
which important spatially correlated
fluctuations occur in the power spectrum
of snow topography.

period (m)



2011 massive
under-ice algal bloom

Arrigo et al., Science 2012

melt ponds act as

allowing light
through seaice

Have we crossed into a
new ecological regime?

| The frequency and extent of sub-ice
phytoplankton blooms in the Arctic Ocean

Horvat, Rees Jones, lams, Schroeder,
Flocco, Feltham, Science Advances, 2017

The distribution of solar energy under
ponded sea ice

NnNo bloom bloom Horvat, Flocco, Rees Jones, Roach, Golden, 2018
(2015 AMS MRCQ)



The Melt Pond Conundrum:
How can ponds form on top of sea ice that is highly permeable?

C. Polashenski, K. M. Golden, D. K. Perovich, E. Skyllingstad, A. Arnsten, C. Stwertka, N. Wright

Percolation Blockage: A Process that Enables Melt Pond Formation on First Year Arctic Sea Ice

J. Geophys. Res. Oceans 2017

2014 Study of Under Ice Blooms in the Chuckchi Ecosystem (SUBICE)
aboard USCGC Healy



Conclusions

1. Seaice is a fascinating multiscale composite with structure
similar to many other natural and man-made materials.

2. Mathematical methods developed for sea ice advance the
theory of composites in general.

2. Homogenization and statistical physics help link scales in sea ice
and composites; provide rigorous methods for finding effective

behavior; advance sea ice representations in climate models.

3. Fluid flow through sea ice mediates melt pond evolution and many
processes important to climate change and polar ecosystems.

5. Field experiments are essential to developing relevant mathematics.

6. Our research will help to improve projections of climate change,
the fate of Earth’s sea ice packs, and the ecosystems they support.
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