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SEA  ICE  covers 7 - 10% of earth's ocean surface
boundary between ocean and atmosphere

indicator and agent of climate change 

mediates exchange of heat, gases, momentum 
global ocean circulation  
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polar ice caps critical to global climate 
 in reflecting incoming solar radiation
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average September sea ice extent

the summer Arctic sea ice pack is melting

1979 - 2000
     average



13  September  2012

21  September  1979



Intergovernmental Panel on Climate Change (IPCC) 2007 projections

observed decline in summer Arctic sea ice 
         outpacing global climate models 



sea ice may appear to be a 
barren, impermeable cap ...
   

 



micro - brine channel (SEM)

                      sea ice is a 
    porous composite

D. Cole

brine channels (cm) 

brine inclusions in sea ice (mm)

R. Obbard

pure ice with brine, air, and salt inclusions

horizontal section vertical section



- drainage of brine and melt water 
- ocean-ice-air exchanges of heat, CO

evolution of Arctic melt ponds and sea ice albedo nutrient �ux for algal communities 

C. Haas

C. KrembsACE CRC

�uid �ow through the porous microstructure of sea ice 
governs key processes in polar climate and ecosystems: 

K. Golden

linkage of scales
2



1. Fluid �ow through sea ice     
    
2. Arctic and Antarctic experiments

3. Fractal melt ponds

4. Multiscale homogenization    

What is this talk about?

Using the mathematics of composite materials and statistical physics to study 
  sea ice structures and processes ... to improve projections of climate change.

critical behavior                  linkage of scales

.... develop rigorous representations of sea ice in climate models.      

cross-pollination

small scales

large scales



sea  ice  microphysics

�uid transport



Darcy’s Law

pressure 
gradient

v = k p

for slow viscous flow in a porous medium

averaged 
fluid velocity

k = fluid permeability tensor

viscosity

example of homogenization
mathematics for analyzing effective behavior of heterogeneous systems  



critical brine volume fraction φc ~~ 5%

Critical behavior of �uid transport in sea ice

c ~~ -5  C, S ~~ 5 ppt
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Golden, Eicken, Heaton, Miner, Pringle, Zhu,   Geophys. Res. Lett.   2007

Golden, Ackley, Lytle   Science   1998

Pringle, Miner, Eicken, Golden   J. Geophys. Res.   2009
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D. Perovich

Malmgren (1927)salinity
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evolution of salinity pro�lesAntarctic surface �ooding 
  and snow-ice formation

R. Massom

Antarctic snow-to-ice conversion from passive microwave imagery

22%
September
snow-ice
estimates

T. Maksym and T. Markus, 2008

26%28%

27%

rule of �ves constrains:

convection - enhanced 
thermal conductivity

Lytle and Ackley, 1996
Trodahl, et. al., 2000, 2001
Wang, Zhu, Golden, 2012

currently assumed constant in climate models



Why is the rule of �ves true?



p = 1/3 p = 2/3

impermeable permeable

percolation theory
mathematical theory of connectedness

percolation threshold
  pc = 1/2   for  d = 2 

open    with probability p
closed with probability 1-p

�rst appearance of in�nite cluster

bond

“tipping point” for connectivity
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 compressed 
     powder

sea ice

Golden, Ackley, Lytle, Science, 1998

Continuum  percolation  model  for   stealthy  materials
applied to sea ice microstructure explains Rule of Fives
and Antarctic data  on  ice production and  algal growth

radar absorbing 
      composite

φc ~~ 5 %

sea ice is radar absorbing

B-2 Stealth Bomber
F-117 Nighthawk
Stealthy Helicopters



X-ray tomography for
brine inclusionsmicro-scale

controls

macro-scale
processes

Thermal evolution of permeability and microstructure in sea ice Golden, Eicken, Heaton, Miner, Pringle, Zhu 

rigorous bounds
percolation theory
hierarchical model
network model

�eld data

unprecedented look 
at thermal evolution
of brine phase and
its connectivity



T =  8  C5.7 %

X-ray computed tomography of brine inclusions in sea ice

brine volume fraction °
Golden, Eicken, Heaton, Miner, Pringle, Zhu,   Geophys. Res. Lett.   2007

~ 1 cm across



-15 C,  = 0.033° -3 C,  = 0.143° -6 C,  = 0.075°

8 x 8 x 2  mm

brine connectivity (over cm scale)

X-ray tomography confirms percolation threshold
3-D images
pores and throats

3-D graph 
nodes and edges

analyze graph connectivity as function of temperature and sample size

φφ φ

use �nite size scaling techniques to con�rm rule of �ves

Pringle, Miner, Eicken, Golden, J. Geophys. Res. 2009

order parameter data from a natural material 



k ( ) = k 2
0

 k   = 3 x 100
-8

m2

lattice and continuum percolation theories yield: 
 critical
exponent

exponent is UNIVERSAL lattice value                  

critical path analysis -- developed for electronic hopping
conduction -- yields scaling factor  k 0

sedimentary rocks like sandstones also exhibit universality
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develop electromagnetic methods 
 of monitoring �uid transport and 
                     microstructure

extensive measurements of �uid and 
electrical transport properties of sea ice:

2007    Antarctic   SIPEX 
2010    Arctic           Barrow AK
2010    Antarctic   McMurdo Sound 
2011    Arctic           Barrow AK
2012    Arctic           Barrow AK
2012    Antarctic   SIPEX II



measuring 
�uid permeability 
of Antarctic sea ice

photo by Jan Lieser SIPEX  2007



columnar granular

di�erent microstructure -- di�erent threshold

higher threshold for �uid �ow in Antarctic granular sea ice

5% 10%

granular ice common in Arctic surface layer
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electrical measurements Wenner array

vertical conductivity

Sampson, Golden, Gully, Worby   Deep Sea Research   2011 
Zhu, Golden, Gully, Sampson   Physica B   2010
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Golden, Eicken, Gully, Ingham, Jones, Lin, Reid, Sampson, Worby   2013

critical behavior of electrical transport in sea ice 
electrical signature of the on-o� switch for �uid �ow 

percolation theory percolation theory

10 ppc

*

10 ppc

*ρ

ρ
0

same universal critical exponent as for �uid permeability

cross-borehole
  tomography

studied for over 50 years but no previous
observations or theory of critical behavior 



sea water sea water

melt pond impermeable enough to 
allow ponds to grow

impermeable from the perspective 
of CO2 exchange and build-up of 
nutrients and biomass in the ice, 
and su�ciently impermeable to 
�uid drainage to support surface 
ponding

highly permeable ice that allows for 
CO2  pumping and build-up of 
nutrients and biomass

Golden, Eicken, Gully, Ingham, Jones, Lin, Reid, Sampson, and Worby 2013

 Cross-borehole tomographic reconstructions of the 
vertical resistivity formation factor for Arctic sea ice 
                 before and after melt pond formation

The evolution of resistivity structure seen 
here is consistent with warming of the ice, 
thus increasing the �uid permeability.



fractals and multiscale structure



brine inclusions polycrystals
mm cm

brine channels

cm
horizontal vertical

dm m

pancake ice

dm m

sea ice displays multiscale structure over 10 orders of magnitude

0.1  millimeter

1 meter



1 meter

100 kilometers

m m

kmkm

Sakhalin Island

>> km



major drivers in polar climate
key challenge for global climate models

Perovich

melt pond formation and albedo evolution: 

     Are there universal features of the evolution 
similar to phase transitions in statistical physics?

numerical models of melt pond evolution, including 
            topography, drainage (permeability), etc. Flocco, Feltham 2007 Flocco, Feltham, 

Hunke 2012

Skyllingstad, Paulson, 
Perovich 2009

Luthje, Feltham, 
Taylor, Worster 2006

..



fractal curves in the plane
they wiggle so much that their dimension is >1

D = 1 D = 1.26

simple curves Koch snow�ake

D = 2

space �lling curves

Brownian 
motion

Peano curve



S. Lovejoy, Science, 1982 

 use perimeter-area data to �nd that 
cloud and rain boundaries are fractals

clouds exhibit fractal behavior from 1 to 1000 km 

D 1.35~~

A = L
P = 4L = 4

2

simple shapes

A

for fractals with 
dimension D

D = 1.52...

L

L
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simple pond transitional pond complex pond

data from 
5269 Arctic
melt ponds

Transition in the fractal geometry of Arctic melt ponds
Christel Hohenegger, Bacim Alali, Kyle Ste�en, Don Perovich, Ken Golden

The Cryosphere, 2012
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transition in the fractal dimension
complexity grows with length scale

compute “derivative” of area - perimeter data



                    small simple ponds coalesce to form 
large connected structures with complex boundaries

melt pond percolation



random Fourier surface

Continuum percolation model for melt pond evolution

Brady Bowen and Ken Golden



intersections of a plane with the surface de�ne melt ponds

as the plane varies in height the regions evolve like melt ponds

at a critical height h  ponds percolate and form an in�nite oceanc

electronic transport in disordered media             di�usion in turbulent plasmas              (Isichenko, Rev. Mod. Phys., 1992)



hc

percolation threshold



“melt ponds” are clusters of magnetic spins that align with the applied �eld

Thekkedath, Alali, Golden

Ising model for ferromagnets Ising model for melt ponds
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simple stochastic growth model of melt pond evolution

Rebecca Nickerson (high school student) and Ken Golden 

a square is more likely to melt 
if its neighbors have melted
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multiscale homogenization



NASA’s Ice, Cloud and Land 
Elevation Satellite (ICESat)

The Worbot - a low frequency EM induction
instrument for measuring sea ice thickness

The key parameter in modeling the response of sea ice to an EM field is its

                            complex permittivity or dielectric constant 
 
                      which depends strongly on the brine microstructure

ε∗

e.g.,  interpretation of EM thickness data depends on knowledge of  ε    ∗



Theory of E�ective Electromagnetic Behavior of Composites

Forward Homogenization  Bergman (1978), Milton (1979), Golden and Papanicolaou (1983)

Inverse Homogenization  Cherkaev and Golden (1998), Day and Thorpe (1999), Cherkaev (2001)
                                                                       (McPhedran, McKenzie, and Milton, 1982)

recover brine volume fraction, connectivity, etc.  

∗εcomposite geometry
(spectral measure µ)

analytic continuation method

integral representations, rigorous bounds, approximations, etc.

∗ε
composite geometry
(spectral measure µ)

ε ε

ε

1 2

∗

inhomogeneous
          medium

homogeneous
        medium



}
Effective complex permittivity of a two phase composite
           in the quasistatic (long wavelength) limit

, = volume fractions of
    the components

= (    , composite geometry )



Stieltjes integral representation

complex s-plane

0 1

spectral measure of
self adjoint operator
mass = 

higher moments depend 
on n-point correlations

/

separation of geometry 
        from parameters

Golden and Papanicolaou, Comm. Math. Phys. 1983



inverse bounds and 
recovery of brine porosity

forward and inverse bounds for sea ice
forward bounds

Gully, Backstrom, Eicken, Golden  
Physica B, 2007

4.75 GHz data
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Golden 1995, 1997

polycrystalline bounds
Gully, Lin, Cherkaev, Golden, 2013
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inversion for brine inclusion
separations in sea ice from 
measurements of e�ective
complex permittivity  ε

matrix particle

Orum, Cherkaev, Golden 
Proc. Roy. Soc. A, 2012
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*
2ε
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1ε
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2ε

two scale homogenization for polycrystalline sea ice

numerical homogenization
            for single crystal

analytic continuation
       for polycrystals

bounds

Gully, Lin, Cherkaev, Golden 2013



direct calculation of spectral measure

1. Discretization of composite microstructure gives 
     lattice of 1’s and 0’s (random resistor network).

2. The fundamental operator  Γχ  becomes a random
     matrix depending only on the composite geometry.

3. Compute the eigenvalues λ  and eigenvectors of Γχ
     with (length)    =   α

i

µ(λ)  =  Σ α  δ(λ − λ )  

i

i i
i

Dirac point measure (Dirac delta)

2
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The Spectral Measures for Random Resistor Networks
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Spectral Measures for Sea Ice Structures:  Brine Inclusions
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spectral measures for the Arctic sea ice pack

area under curve = φ = open water fraction
spectral gap closes as ocean phase becomes connected

µ
µ

                   spectral measures provide a path toward rigorously incorporating 
“composite microstructure” into calculations of e�ective behavior on larger scales
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(a) young healthy trabecular bone (b) old osteoporotic trabecular bone

bone volume fraction = 0.54
porosity = 0.46

bone volume fraction = 0.24
porosity = 0.76
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(c) spectral measure - young (d) spectral measure - old
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spectral characterization of porous microstructures in bone 
Golden, Murphy, Cherkaev, J.  Biomechanics  2011

P. Hansma

the math doesn’t care if it’s sea ice or bone!



0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

µ(λ)

young bone

old bone

       reconstruction of spectral measures 
from simulated complex permittivity data

Golden, Murphy, Cherkaev,  J. Biomech.  2011

regularized inversion scheme



Random Matrix Theory Characterization of Phase Transitions

RMT has since been used to characterize: phase transitions in disordered 
mesoscopic conductors, quantum chaos, neural networks,  random graphs, etc.

The elements of a random matrix are determined by a probability law.

Wigner (1951) and Dyson (1953) �rst used random matrix theory (RMT) 
to describe quantized energy levels of heavy atomic nuclei.

Random Diagonal Projection Matrix Non-Random Projection Matrix

Real Symmetric Random Matrix}

In composites, connectedness transitions can be characterized by transitions 
in the short and long range correlations of eigenvalues of the matrix               .
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2-d Random Resistor Network

3-d Random Resistor Network

N. B. Murphy, K. M. Golden 2013

Unfolded Eigenvalue Spacing Distribution
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eigenvalue statistics for transport exhibit UNIVERSALITY as the 
      “conducting” phase becomes connected over large scales



Masters, 1989

pollutants

enhanced heat and salt transport

enhanced sea ice thermal conductivity    



Stieltjes integral for         with spectral measure Avellaneda and Majda, PRL 89, CMP 91

homogenize

= Peclet number

spectral measure of 

antisymmetric
vector potential

/

spectral measure of 

composites

advection di�usion equation with a velocity �eld
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e�ective di�usivities for sample �ows
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convection enhanced thermal conductivity of sea ice for shear �ow

Wang, Zhu, Golden  2013

Avellaneda - Majda bound



Conclusions

1. Sea ice exhibits composite structure on many length scales.

2. Fluid �ow through sea ice governs many processes of importance to 
     understanding climate change and the response of polar ecosystems.

3. Mathematical models of composite materials and statistical physics 
     help unravel the complexities of sea ice structure and processes.

4. Homogenization theory and upscaling methods can provide a rigorous 
     path to representing large scale e�ective behavior in coarse models. 

5. Random matrix theory can help characterize transitions important 
     for climate science and composite materials. 
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