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SEA  ICE  covers ~12% of Earth's ocean surface
boundary between ocean and atmosphere

indicator of climate change 

mediates exchange of heat, gases, momentum 
global ocean circulation  

polar ice caps critical
to climate in re�ecting
sunlight during summer

hosts rich ecosystem   
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What is this talk about?

     Using methods of statistical physics and homogenization to 
        LINK SCALES in the sea ice system ... rigorously compute 
                   e�ective behavior and improve climate models.

1. Sea ice microphysics and �uid transport

2. Analytic Continuation Method, integral representations   

3. Extension of ACM to advection di�usion, waves in sea ice 

HOMOGENIZATION

4. Fractal geometry of melt pond evolution 

Solving problems in physics of sea ice drives 
advances in theory of composite materials.

cross - pollination

What is the role of microstructure in determining e�ective properties?
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HOMOGENIZATION - Linking Scales in Composites
∗

inhomogeneous
          medium

homogeneous
        medium

�nd the homogeneous medium which 
behaves macroscopically the same as 
          the inhomogeneous medium

Einstein 1906 : e�ective viscosity of a dilute suspension of rigid spheres in a �uid
Maxwell 1873 : e�ective conductivity of a dilute suspension of spheres

         e�ective
conductivity

Wiener 1912 : arithmetic and harmonic mean bounds on e�ective conductivity 
Hashin and Shtrikman 1962 : variational bounds on e�ective conductivity 

widespread use of composites in late 20th century due in large part
to advances in mathematically predicting their e�ective properties



Linking Scales

mm
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brine
inclusions

Linking         Scales
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snow
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How do scales
interact in the
sea ice system?
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sea  ice  microphysics

�uid transport



- ocean-ice-air exchanges of heat, CO

evolution of Arctic melt ponds and sea ice albedo

C. Haas

C. KrembsACE CRCK. Golden
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Antarctic surface �ooding 
and snow-ice formation 

nutrient �ux for algal communities

- evolution of salinity pro�les 

�uid �ow through the porous microstructure of sea ice
governs key processes in polar climate and ecosystems 

22%

September
snow-ice
estimates

26%28%

27%

T. Maksym and T. Markus, 2008



�uid permeability of a porous medium

how much water gets 
through the sample 
per unit time?

porous
concrete

mathematics for analyzing e�ective behavior of heterogeneous systems

HOMOGENIZATION

Darcy’s Law

pressure 
gradient

v = k p

for slow viscous flow in a porous medium

averaged 
fluid velocity

k = fluid permeability tensor

viscosity



critical brine volume fraction φc ~~ 5%

Critical behavior of �uid transport in sea ice

c ~~ -5  C, S ~~ 5 ppt

RULE  OF  FIVES 
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Why is the rule of �ves true?



p = 1/3 p = 2/3

impermeable permeable

percolation theory
probabilistic theory of connectedness

percolation threshold
  pc = 1/2   for  d = 2

open    with probability  p
closed  with probability 1-p

smallest p for which there is an infinite open cluster

bond

  open
cluster
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compressed 
     powder

sea ice

Golden, Ackley, Lytle, Science, 1998

Continuum  percolation  model  for   stealthy  materials
applied to sea ice microstructure explains Rule of Fives
and Antarctic data  on  ice production and  algal growth

radar absorbing 
      composite

φc ~~ 5 %

sea ice is radar absorbing

B-2 Stealth Bomber
F-117 Nighthawk
Stealthy Helicopters



X-ray tomography for
brine inclusions

micro-scale

controls

macro-scale

processes

Thermal evolution of permeability and microstructure in sea ice
Golden, Eicken, Heaton, Miner, Pringle, Zhu,    Geophysical Research Letters    2007 

percolation theory

hierarchical model
network model

unprecedented look 
at thermal evolution
of brine phase and
its connectivity

con�rms rule of �ves

agree closely
with �eld data

k ( ) = k 2
0

k   = 3 x 100
-8

m2

 critical
exponent

t
φ φ − 0.05(               )

Pringle, Miner, Eicken, Golden
J. Geophys. Res. 2009

rigorous bounds



PIPE BOUNDS on vertical �uid permeability k

vertical pipes 

 maximize k
�uid analog of arithmetic mean upper bound for
e�ective conductivity of composites (Wiener 1912)

with appropriate radii

lab data  (20 points)
field data  (37 points)
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Golden, Heaton, Eicken, Lytle, Mech. Materials 2006
Golden, Eicken, Heaton, Miner, Pringle, Zhu, Geophys. Res. Lett. 2007

inclusion cross sectional areas A lognormally distributed

   optimal coated 
cylinder geometry

brine

ice

get bounds through variational analyis of 
trapping constant  γ for di�usion process 
in pore space with absorbing BC

for any ergodic porous medium
(Torquato 2002, 2004)

ln(A) normally distributed, mean µ (increases with Τ) variance σ  (Gow and Perovich 96)2

Torquato and Pham, PRL 2004

Golden et al., Geophys. Res. Lett. 2007 BACTERIAL FORAGING



How does EPS a�ect �uid transport?

Bimodal  lognormal  distribution for brine inclusions 

Develop random pipe network model with bimodal distribution;
Use numerical methods that can handle larger variances in sizes.

Results predict observed drop in �uid permeability k.

Rigorous bound on k for bimodal distribution of pore sizes 

Steffen, Epshteyn,  Zhu, Bowler, Deming, Golden
    Multiscale Modeling and Simulation, 2018

How does the biology a�ect the physics?
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Sea ice algae secrete extracellular polymeric substances (EPS)
a�ecting evolution of brine microstructure.

without EPS with EPS

Krembs, Eicken, Deming, PNAS 2011
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measuring 
�uid permeability
of Antarctic sea ice

photo by Jan Lieser SIPEX  2007



tracers flowing through inverted sea ice blocks 



Remote sensing of sea ice
Recover sea ice
properties from
electromagnetic
       (EM) data 

 INVERSE PROBLEM

sea ice thickness
ice concentration

brine volume fraction
brine inclusion connectivity

ε*
   e�ective complex permittivity  
(dielectric constant, conductivity)



}
Effective complex permittivity of a two phase composite
           in the quasistatic (long wavelength) limit

, = volume fractions of
    the components

= (    , composite geometry )
  What are the effective propagation characteristics 
of an EM wave (radar, microwaves) in the medium?



Stieltjes integral representation 
    for homogenized parameter

spectral measure of
self adjoint operator
mass = 

higher moments depend 
on n-point correlations

separates geometry 
   from parameters 

Golden and Papanicolaou, Comm. Math. Phys. 1983

characteristic function
of the brine phase

geometry

material parameters

:  microscale         macroscale 
links scales

Analytic Continuation Method for Homogenization
Bergman (1978), Milton (1979), Golden and Papanicolaou (1983), Theory of Composites, Milton (2002)

/



inverse bounds and 
recovery of brine porosity

forward and inverse bounds on the complex permittivity of sea ice

forward bounds

Gully, Backstrom, Eicken, Golden  
Physica B, 2007

4.75 GHz data
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inversion for brine inclusion
separations in sea ice from 
measurements of e�ective
complex permittivity  ε

matrix particle

Orum, Cherkaev, Golden 
Proc. Roy. Soc. A, 2012

*
rigorous inverse bound
         on spectral gap

construct algebraic curves which bound 
        admissible region in (p,q)-space

qmin

Bruno 1991



direct calculation of spectral measures

Day and Thorpe 1996
Helsing, McPhedran, Milton 2011    earlier studies of spectral measures

once we have the spectral measure µ it can be used in 
        Stieltjes integrals for other transport coefficients:

electrical and thermal conductivity, complex permittivity, 
magnetic permeability, diffusion, fluid flow properties

depends only on the composite geometry

discretization of microstructural image gives binary network

fundamental operator becomes a random matrix 

spectral measure computed from eigenvalues and eigenvectors 

Murphy, Hohenegger, Cherkaev, Golden, Comm. Math. Sci. 2015
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Spectral computations for sea ice floe configurations

spectral
measures

eigenvalue
spacing
distributions

ANDERSON TRANSITION
uncorrelated level repulsion

Murphy, Cherkaev, Golden 
Phys. Rev. Lett. 2017

UNIVERSAL 
Wigner-Dyson 
distribution 



Anderson transition in wave physics: 
quantum, optics, acoustics, water waves, ...

metal / insulator transition

Anderson transition for classical transport in composites
Murphy, Cherkaev, Golden     Phys.  Rev.  Lett.    2017

Anderson  1958
Mott 1949
Shklovshii et al  1993
Evangelou  1992

transition to universal 
eigenvalue statistics (GOE)
extended states, mobility edges

-- but without wave interference or scattering e�ects ! --

we �nd a surprising analog

PERCOLATION
  TRANSITION

localization
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Bounds on the complex permittivity
           of polycrystalline materials 
              by analytic continuation

      Adam Gully, Joyce Lin, 
Elena Cherkaev, Ken Golden

Stieltjes integral representation for
e�ective complex permittivity 

Forward and inverse bounds 

Proc. Roy. Soc. A       8 Feb 2015

Applied to sea ice using 
two-scale homogenization

Inverse bounds give method for 
distinguishing ice types using 
remote sensing techniques

Milton (1981, 2002), Barabash and Stroud (1999), ...

orientation statistics



columnar granular

higher threshold for �uid �ow in Antarctic granular sea ice

5% 10%

Golden, Sampson, Gully, Lubbers, Tison 2019



Masters, 1989

advection enhanced di�usion

e�ective di�usivity
nutrient and salt transport in sea ice
heat transport in sea ice with convection
sea ice �oes in winds and ocean currents
tracers, buoys di�using in ocean eddies
di�usion of pollutants in atmosphere

homogenize

e�ective di�usivity

Drake
Passage

sea ice vortices

Gulf Stream Aghulas Current

Stieltjes integral for         with spectral measure
Avellaneda and Majda, PRL 89, CMP 91

Murphy, Cherkaev, Xin, Zhu, Golden, Ann. Math. Sci. Appl. 2017
Murphy, Cherkaev, Zhu, Xin, Golden, J. Math. Phys. 2019

Wells et al. 2011



κ∗ = κ

(
1 +

∫ ∞

−∞

dµ(τ)

κ2 + τ2

)
, F (κ

∫ ∞

−∞

dµ(τ)

κ2 + τ2

µ is a positive definite measure corresponding to the
spectral resolution of the self-adjoint operator iΓHΓ

Γ := −∇(−∆)−1∇· , ∆ is the Laplace operator

iΓHΓ is bounded for time independent flows

F (κ) is analytic κ-plane

Stieltjes Integral Representation for Advection Diffusion

                                         Murphy, Cherkaev, Zhu, Xin, Golden, J. Math. Phys. 2019

H

=)

= stream matrix

off the spectral interval in the

κ = local diffusivity,

separation of material properties and �ow �eld
spectral measure calculations 
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cat’s eye flow model for 
  brine convec�on cells 

rigorous Pade bounds from S�eltjes integral + 
analy�cal calcula�ons of moments of measure

‘

Kraitzman, Hardenbrook, Murphy, Zhu, Cherkaev, Strong, Golden 2019

Rigorous bounds on convec�on enhanced thermal conduc�vity of sea ice

data 
Trodahl 
et al. 2001

similar bounds 
for shear �ows 

rigorous bounds assuming information
          on �ow �eld INSIDE inclusions

        Kraitzman, Cherkaev, Golden
SIAM J. Appl. Math (in revision), 2019



wave propagation in the marginal ice zone 

             Stieltjes integral representations 
bounds on e�ective viscoelastic parameters

Sampson, Murphy, Cherkaev, Golden 2019

           quasistatic assumption 
           long wavelength



major drivers in polar climate
key challenge for global climate models

Perovich

melt pond formation and albedo evolution: 

     Are there universal features of the evolution 
similar to phase transitions in statistical physics?

numerical models of melt pond evolution, including 
            topography, drainage (permeability), etc. Flocco, Feltham 2007 Flocco, Feltham, 

Hunke 2012

Skyllingstad, Paulson, 
Perovich 2009

Luthje, Feltham, 
Taylor, Worster 2006

..
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complexity grows with length scale

Transition in the fractal geometry of Arctic melt ponds
Christel Hohenegger, Bacim Alali, Kyle Ste�en, Don Perovich, Ken Golden

The Cryosphere, 2012

~ 30 m

simple pond transitional pond complex pond



Continuum percolation model for melt pond evolution

intersections of a plane with the surface de�ne melt ponds

electronic transport in disordered media             di�usion in turbulent plasmas              Isichenko, Rev. Mod. Phys., 1992

Brady Bowen, Court Strong, Ken Golden,  J. Fractal Geometry  2018

random Fourier series representation of surface topography

level sets of random surfaces
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           fractal dimension curves depend on 
statistical parameters de�ning random surface



Ising Model for a Ferromagnet

si ={+1
−1

spin up
spin down

nearest neighbor Ising Hamiltonian

H
applied 
magnetic
field

 homogenized parameter 
like effective conductivity

ferromagnetic interaction

magnetization

Tc

M

T

        Curie point 
critical temperature

Stieltjes integral representation for M
Baker, PRL 1968

blue

white

islands or
ponds of 
like spins



100 101 102 103 104

D

A (m2 )

1

2

observed

model

pond size distribution 
exponent

observed   -1.5

model        -1.58

(Perovich, et al. 2002)

Starting with random initial configurations, as Hamiltonian energy is minimized 
by Glauber spin flip dynamics, system “flows” toward metastable equilibria. 

ONLY MEASURED INPUT = LENGTH SCALE (GRID SIZE) from snow topography data

Order from Disorder

Ising 
model

melt pond 
photo (Perovich)

Ising model for ferromagnets Ising model for melt ponds
Ma, Sudakov, Strong, Golden, New J. Phys.  2019

= { +1

−1 ice         (spin down)

water     (spin up)

pond coveragemagnetization (M + 1)
2~ albedo

random magnetic field 
represents snow topography

Melt ponds are metastable islands of like spins.

only nearest neighbor 
patches interact



The distribution of solar energy 
 under ponded �rst-year sea ice

Horvat, Flocco, Rees Jones, Roach, Golden, in revision, 2019

Model for 3D light �eld under ponded sea ice. 

Distribution of solar energy at depth in�uenced by shape 
and connectivity of melt ponds, as well as area fraction.

Pond geometry a�ects the ecology of the Arctic Ocean.

Aggregate properties of the sub-ice light �eld, such as a signi�cant 
enhancement of available solar energy under the ice, are controlled 
by parameter closely related to pond fractal geometry.

Model and analysis explain how melt pond geometry homogenizes
under-ice light �eld, a�ecting habitability.



C. Polashenski, K. M. Golden, D. K. Perovich, E. Skyllingstad, A. Arnsten, C. Stwertka, N. Wright

                 The Melt Pond Conundrum:  
How can ponds form on top of sea ice that is highly permeable?

2014  Study of Under Ice Blooms in the Chuckchi Ecosystem (SUBICE) 
aboard USCGC Healy

Percolation Blockage: A Process that Enables Melt Pond Formation on First Year Arctic Sea Ice

J. Geophys. Res.  Oceans 2017



Conclusions
1.  Sea ice is a fascinating multiscale composite with structure
      similar to many other natural and man-made materials.    

2. Mathematical methods developed for sea ice advance the 
     theory of composites in general.  
      
2. Homogenization and statistical physics help link scales in sea ice 
      and composites; provide rigorous methods for �nding e�ective 
     behavior; advance sea ice representations in climate models. 

3. Fluid �ow through sea ice mediates melt pond evolution and many 
     processes important to climate change and polar ecosystems.

5. Field experiments are essential to developing relevant mathematics.

6. Our research will help to improve projections of climate change, 
     the fate of Earth’s sea ice packs, and the ecosystems they support. 
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                      Arctic sea ice decline:  
faster than predicted by climate models

Stroeve et al., GRL, 2007
Stroeve et al., GRL, 2012
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ice-albedo
feedback

September 2012   --   3.4 million square kilometers
September 1980   --   7.8 million square kilometers

Change in Arctic Sea Ice Extent



represent sea ice more realistically in climate models
challenge

account for key processes
such as melt pond evolution

... and other sub-grid scale structures and processes 

linkage of scales

Impact of melt ponds on Arctic sea ice 
        simulations from 1990 to 2007

Flocco, Schroeder, Feltham, Hunke, JGR Oceans 2012

                 For simulations with ponds 
September ice volume is nearly 40% lower.

How do patterns of 
dark and light evolve?
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