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                      What can math tell us about disappearing polar sea ice and its ecosystems? 
What can sea ice tell us about modeling composite materials and multiscale systems?  

Worby



sea ice may appear to be a 
barren, impermeable cap ...

Golden
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- ocean-ice-air exchanges of heat, CO

evolution of Arctic melt ponds and sea ice albedo
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Antarctic surface �ooding 
and snow-ice formation 

nutrient �ux for algal communities

- evolution of salinity pro�les 

�uid �ow through the porous microstructure of sea ice
governs key processes in polar climate and ecosystems 
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WHAT’S
  NEXT ?

Predicting what may come next 
requires lots of math modeling.
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Gully et al. Proc. Roy. Soc. A 2015Golden et al. GRL 2007
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Sea Ice is a Multiscale Composite Material
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mesoscale
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HOMOGENIZATION for Composite Materials

∗

Einstein 1906 : e�ective viscosity of a dilute suspension of rigid spheres in a �uid
Maxwell 1873 : e�ective conductivity of a dilute suspension of spheres

         e�ective
conductivity

Wiener 1912 : arithmetic and harmonic mean bounds on e�ective conductivity 
Hashin and Shtrikman 1962 : variational bounds on e�ective conductivity 

widespread use of composites in late 20th century due in large part
to advances in mathematically predicting their e�ective properties

LINKING
 SCALES

MICROSCALE MACROSCALE

FORWARD

INVERSE

{σ∗        

homogeneous
medium of
conductivity
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What is our research about?
Developing mathema�cal models of sea ice and 
its role in the climate system and polar ecosystem.

Rigorously compute effec�ve or collec�ve behavior
                 mul�scale homogeniza�on 
Improve climate models and projec�ons of polar 
                 sea ice and the ecosystems they support

sea ice 
physics of climate

polar marine ecosystems

Solving problems in sea ice physics drives advances 
in composite materials, transport phenomena, 
porous media, inverse problems, biophysics.



Polar Ecology and 
and the Physics 
of Sea Ice

ArrigoArrigoGolden



What kind of math do we use?

par�al differen�al equa�ons (Laplace, heat, wave)

stochas�c processes, advec�on diffusion, frac�onal diffusion 

homogeniza�on, percola�on theory 

sta�s�cal mechanics, solid state physics

dynamical systems and bifurca�on theory

func�onal analysis, complex analysis, spectral theory 

random matrix theory

inverse problems

machine learning, “hidden physics”, neural nets 

uncertainty quan�fica�on, polynomial chaos

Morse theory, topology of surfaces, persistent homology

Whatever we need to answer big scienti�c 
questions, which often leads to new math!



What is this talk about?
Using methods of  homogenization and statistical physics to model sea ice e�ective 
behavior and advance representation of sea ice in climate models, process studies, ...

MODELING
    SEA ICE

microscale

macroscale

mesoscale

A tour of key sea ice processes on micro, meso, and macro scales.



microscale
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-8 C,   = 0.057° φT = -4 C,   = 0.113° φT =

brine volume fraction and connectivity increase with temperature

X-ray tomography for brine in sea ice                                Golden et al., Geophysical Research Letters, 2007



critical brine volume fraction φc ~~ 5%

Critical behavior of �uid transport in sea ice

c ~~ -5  C, S ~~ 5 ppt

RULE  OF  FIVES 
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Golden, Eicken, Heaton, Miner, Pringle, Zhu   GRL 2007
Golden, Ackley, Lytle   Science   1998
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X-ray tomography for
brine inclusions

microscale

governs

mesoscale
processes

Thermal evolution of permeability and microstructure in sea ice
Golden, Eicken, Heaton , Miner, Pringle, Zhu,    Geophysical Research Letters    2007 

    percolation theory 
for �uid permeability

hierarchical model

network model

con�rms rule of �ves

theories agree closely 
         with �eld data

k ( ) = k 2
0

 k   = 3 x 100
-8

m2

 critical
exponent

t
φ φ − 0.05(               )

Pringle, Miner, Eicken, Golden
J. Geophys. Res. 2009

rigorous bounds

melt pond
evolution

from critical path analysis 
in hopping conduction 

*

rock physics



How does EPS a�ect �uid transport?

2D random pipe model with bimodal distribution of pipe radii

Rigorous bound on permeability k; results predict observed drop in k

Ste�en, Epshteyn,  Zhu, Bowler, Deming, Golden
        Multiscale Modeling and Simulation, 2018

How does the biology a�ect the physics?
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Sea ice algae secrete extracellular polymeric substances (EPS)
                     a�ecting evolution of brine microstructure.

without EPS with EPS

Krembs, Eicken, Deming, PNAS 2011
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Columnar Sample 1 
Columnar Sample 2
Granular
Columnar sample 1 
Columnar sample 2 
Granular
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Thermal evolution of the fractal geometry of the brine microstructure in sea ice
                
                 N. Ward, D. Hallman, H. Eicken, M. Oggier and K. M. Golden, 2022
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Remote sensing of sea ice
Recover sea ice
properties from
electromagnetic
       (EM) data 

 INVERSE PROBLEM

sea ice thickness
ice concentration

brine volume fraction
brine inclusion connectivity

ε*
   effective complex permittivity  

(dielectric constant, conductivity)



}
Effective complex permittivity of a two phase composite
           in the quasistatic (long wavelength) limit

, = volume fractions of
    the components

= (    , composite geometry )
  What are the effective propagation characteristics 
of an EM wave (radar, microwaves) in the medium?



Stieltjes integral representation 
    for homogenized parameter

spectral measure of
self adjoint operator
mass = 

higher moments depend 
on n-point correlations

separates geometry 
   from parameters 

Golden and Papanicolaou, Comm. Math. Phys. 1983

characteristic function
of the brine phase

geometry

material parameters

:  microscale         macroscale 

links scales

Analytic Continuation Method for Homogenization
Bergman (1978), Milton (1979), Golden and Papanicolaou (1983), Theory of Composites, Milton (2002)

/

Forward and inverse bounds on
the complex permittivity of sea ice
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Bounds on the complex permittivity
           of polycrystalline materials 
              by analytic continuation

      Adam Gully, Joyce Lin, 
Elena Cherkaev, Ken Golden

Stieltjes integral representation for
e�ective complex permittivity 

Forward and inverse bounds 

Proc. Roy. Soc. A       8 Feb 2015

Applied to sea ice using 
two-scale homogenization

Inverse bounds give method for 
distinguishing ice types using 
remote sensing techniques

Milton (1981, 2002), Barabash and Stroud (1999), ...

orientation statistics



wave propagation in the marginal ice zone (MIZ) 
   Stieltjes integral representation and bounds for 
the complex viscoelasticity of the ice - ocean layer 

�rst theory of key parameter
in wave-ice interactions only

�tted to wave data before

Sampson, Murphy, Cherkaev, Golden 2022

quasistatic, long wavelength regime
homogenized

parameter
depends on

sea ice 
concentration

and ice �oe
geometry

Bergman (78) - Milton (79)
integral representation for
Golden and Papanicolaou (83) 

ε*

Analytic Continuation Method

Milton, Theory of Composites (02)

like EM waves

Keller, 1998
Mosig, Montiel, Squire, 2015
Wang, Shen, 2012
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Spectral computations for sea ice floe configurations

spectral
measures

eigenvalue
spacing
distributions

uncorrelated level repulsion

UNIVERSAL 
Wigner-Dyson 
distribution 

Murphy, Cherkaev, Golden, Phys. Rev. Lett. 2017

Anderson
localization
transition



Order to Disorder in Quasiperiodic Composites
David Morison (Physics & Astronomy), Ben Murphy, Elena Cherkaev, Ken Golden, Comm. Physics, 2022

Holmium–magnesium–zinc quasicrystal

aperiodic tiling of the plane - R. Penrose 1970s energy surface Al-Pd-Mn quasicrystal
Unal et al., 2007

quasiperiodic checkerboard
Stamp�i, 2013

dense packing of dodecahedra
3D Penrose tiling Tripkovic, 2019

quasiperiodic crystal
         quasicrystal

ordered but aperiodic
lacks translational symmetry

Levine & Steinhardt, 1984

Schechtman et al., 1984

KOZWaves 2022, Univ. of Western Australia



twisted bilayer graphene

Yao et al., 2018



�������

������������

����������������������������������������
��������
������	

Order to disorder in quasiperiodic composites
Morison, Murphy, Cherkaev, Golden, Comm. Phys. 2022

Anderson transition as twist angle is tunedwe bring the framework of solid state physics of electronic 
transport and band gaps in semiconductors to classical 
transport in periodic and quasiperiodic composites

Moiré parameter space

spectral
measure

periodic quasiperiodic

RRN at 
percolation
threshold

electric �eld 
    strength

photonic crystals and quasicrystals

constellation of periodic systems in a sea of randomness
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Sequential insets zooming into smaller regions of parameter space.

                                            size of the dots ~ length of period  
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mesoscale



major drivers in polar climate
key challenge for global climate models

Perovich

melt pond formation and albedo evolution: 

     Are there universal features of the evolution 
similar to phase transitions in statistical physics?

numerical models of melt pond evolution, including 
            topography, drainage (permeability), etc. Flocco, Feltham 2007 Flocco, Feltham, 

Hunke 2012

Skyllingstad, Paulson, 
Perovich 2009

Luthje, Feltham, 
Taylor, Worster 2006

..



fractal curves in the plane
they wiggle so much that their dimension is >1

D = 1 D = 1.26

simple curves Koch snow�ake

D = 2

space �lling curves

Brownian 
motion

Peano curve
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complexity grows with length scale

Transition in the fractal geometry of Arctic melt ponds
Christel Hohenegger, Bacim Alali, Kyle Steffen, Don Perovich, Ken Golden

The Cryosphere, 2012
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Continuum percolation model for melt pond evolution

intersections of a plane with the surface define melt ponds

electronic transport in disordered media             di�usion in turbulent plasmas              Isichenko, Rev. Mod. Phys., 1992

Brady Bowen, Court Strong, Ken Golden,  J. Fractal Geometry  2018

random Fourier series representation of surface topography

level sets of random surfaces



100 101 102 103 104

D

A (m2 )

1

2

observed

model

            pond size 
distribution exponent

observed   -1.5
 

model        -1.58

Ma, Sudakov, Strong, Golden,  New J. Phys.,  2019

(Perovich, et al. 2002)

Starting with random initial configurations, as Hamiltonian energy is minimized 
by Glauber spin flip dynamics, system “flows” toward metastable equilibria. 

ONLY MEASURED INPUT = LENGTH SCALE (GRID SIZE) from snow topography data

Order from Disorder

Ising 
model

melt pond 
photo (Perovich)

Ising model for ferromagnets Ising model for melt ponds

= { +1

−1 ice       (spin down)

water   (spin up)

pond area fractionmagnetization (M + 1)
2~ albedo

random magnetic field 
represents snow topography

only nearest neighbor 
patches interactF = 

Scienti�c American
EOS, PhysicsWorld, ...



no bloom bloom

massive under-ice algal bloom
Arrigo et al., Science 2012

WINDOWS

Have we crossed into a 
new ecological regime?

       The frequency and extent of sub-ice 
phytoplankton blooms in the Arctic Ocean

(2015 AMS MRC)

Horvat, Rees Jones, Iams, Schroeder, 
Flocco, Feltham, Science Advances 2017

Horvat, Flocco, Rees Jones, Roach, Golden
                    Geophys. Res. Lett. 2019

The e�ect of melt pond geometry on the distribution 
                of solar energy under �rst year sea ice

Melt ponds control transmittance
of solar energy through sea ice,
impacting upper ocean ecology.

Perovich



SEA ICE ALGAE

80% of polar bear diet can be traced to ice algae∗.

∗
Brown TA, et al. (2018). PloS one, 13(1), e0191631



Can we improve agreement between ice algae models
and data?

Reimer JR, Adler FR, Golden KM, Narayan A (In prep)



HETEROGENEITY

Meiners, K.M., et al. (2017). Geophysical Research Letters, 44(14), 7382-7390



HETEROGENEITY IN INITIAL CONDITIONS

At each location within a larger region, we could consider

dN
dt

= α− BNP− ηN

dP
dt

= γBNP− δP

N(0) = N0, P(0) = P0

nutrients

algae



HOW DO WE ANALYZE THIS MODEL?
Monte Carlo simulations?

Too slow! Full algae model takes 8 hours (cloud
computing).



Jody Reimer, Fred Adler, Ken Golden, and Akil Narayan

Uncertainty quanti�cation and ecological dynamics  
   in a model of a sea ice algae bloom, in prep. 2022

POLYNOMIAL CHAOS EXPANSIONS (D. Xiu, 2010)
nonintrusive methods for building PC expansions



ECOLOGICAL INSIGHTS
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±1 stdev range
Deterministic 

Mean

• lower peak bloom intensity
• longer bloom duration
• able to compare variance to data



macroscale



Jennifer Lukovich, Jennifer Hutchings, 
David Barber, Ann. Glac.  2015

Ice �oe di�usion in winds and currents

On short time scales �oes observed (buoy data) to exhibit Brownian-like 
behavior, but they are also being advected by winds and currents. 

E�ective behavior is purely di�usive, sub-di�usive or super-di�usive 
depending on ice pack and advective conditions - Hurst exponent.

Anomalous di�usion 
in sea ice dynamics

observations from GPS data:

Huy Dinh, Ben Murphy, Elena Cherkaev, 
Court Strong, Ken Golden 2022

modeling:

Delaney Mosier, Jennifer Hutchings, Jennifer Lukovich, 
Marta D’Elia, George Karniadakis, Ken Golden 2022

learning fractional PDE 
governing di�usion from data

�oe scale model to analyze transport regimes in 
terms of ice pack crowding, advective conditions



Model larger scale e�ective behavior 
with partial di�erential equations that 

homogenize complex local structure and dynamics.

Arctic MIZ 

sea ice concentration ψ

Predict MIZ width and location with basin-scale phase change model.
dynamic transitional region - mushy layer - separating two “pure” phases

seasonal and long term trends

frozen
core

liquid
outer ring

MIZ

C. Strong, E. Cherkaev, and K. M. Golden, 
Annual cycle of Arctic marginal ice zone location 

and width explained by phase change front model, 2022



National Snow and Ice Data Center

ice concentration in 
early

Use two-layer neural network 
to infer advective fields 
based on satellite imagery

Learning the velocity field in an 
advection diffusion model for sea ice concentration

Delaney Mosier, Court Strong, Elena Cherkaev, Ken Golden, 2022
Eric Brown, Delaney Mosier, Bao Wang, Ken Golden, 2022

Goal: Develop PDE model
to describe evolution of
sea ice concentration �eld. discretized satellite

concentration data

learned velocity 

initital test concentation predicted concentation error 

2.5% absolute error
 in preliminary study

advection di�usion model 
for sea ice concentration:



Gap radius: 611 km
06 January 1985

Gap radius: 311 km
30 August 2007 

Filling the polar data gap with 
partial di�erential equations 

    hole in satellite coverage 
of sea ice concentration �eld

previously assumed 
ice covered

fill = harmonic function with 
     learned stochastic term 

Strong  and Golden, SIAM News 2017
Strong  and Golden, Remote Sensing 2016

∆ψ=0

NOAA/NSIDC Sea Ice Concentration CDR 
product update will use our PDE method. 



www.math.utah.edu/~golden/resources/grad2022

two PDFs on sea ice physics and biology
3 minute movie on Antarctic expedition
opening video from Frontiers of Science

NAMS overview on sea ice modeling 2020  

www.math.utah.edu/~golden



University of Utah Sea Ice Modeling Group (2017-2021) 
Senior Personnel: Ken Golden, Distinguished Professor of Mathematics

Elena Cherkaev, Professor of Mathematics
Court Strong, Associate Professor of Atmospheric Sciences
Ben Murphy, Adjunct Assistant Professor of Mathematics 

Postdoctoral Researchers: Noa Kraitzman (now at ANU), Jody Reimer - sea ice ecology 

Graduate Students: Kyle Steffen (now at UT Austin with Clint Dawson)
Christian Sampson (now at UNC Chapel Hill with Chris Jones)
Huy Dinh (now a sea ice MURI Postdoc at NYU/Courant)
Rebecca Hardenbrook
David Morison (Physics Department)
Ryleigh Moore
Delaney Mosier
Daniel Hallman

Undergraduate Students: Kenzie McLean, Jacqueline Cinella Rich, 
Dane Gollero, Samir Suthar, Anna Hyde, Kitsel Lusted, 
Ruby Bowers, Kimball Johnston, Jerry Zhang, 
Nash Ward, David Gluckman, Nicole Forrester, ...

High School Students: Titus Quah, Dylan Webb, Powell Holzner, Elias Sigman, ...
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Conclusions
1. Sea ice is a fascinating multiscale composite with structure 

similar to many other natural and man-made materials.

2. Mathematical methods developed for sea ice advance the 
theory of composites and other areas of science and engineering. 

3. Homogenization and statistical physics help link scales in sea ice 
and composites; provide rigorous methods for �nding e�ective 
behavior; advance sea ice representations in climate models.

4. Fluid �ow through sea ice mediates melt pond evolution and many 
processes important to climate change and polar ecosystems.

5. Field experiments are essential to developing relevant mathematics.

6. Our research is helping to improve projections of climate change,
the fate of Earth’s sea ice packs, and the ecosystems they support.
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Ising Model for a Ferromagnet

si ={+1
−1

spin up
spin down

nearest neighbor Ising Hamiltonian

H
applied 
magnetic
field

Tc

M

T

        Curie point 
critical temperature

blue

white

islands of
like spins

energy is lowered when nearby spins align 
with each other, forming magnetic domains

magnetic domains 
in cobalt

magnetic domains 
in cobalt-iron-boron

melt ponds (Perovich) melt ponds (Perovich)

effective magnetization



What is our research about?

Modeling sea ice drives advances in many 
         areas of science and engineering.

MODELING
    SEA ICE

Anderson localization,
semiconductor physics

random matrix theory

COMPOSITE MATERIALS

porous media, 
oil extraction

remote sensing

electrical engineering,
stealth technology

biomedical imaging,
       biomaterials, EPS

statistical mechanics 
of ferromagnets

di�erential equations polar microbial ecology

composites, 
polycrystals

Inputs, Ingredients Outputs, Impacts 

advection di�usion

sea ice physics 
          & biology

CLIMATE MODELING

magnets
radar absorbers
human bone
rat brains



p = 1/3 p = 2/3

impermeable permeable

percolation theory
probabilistic theory of connectedness

percolation threshold
  pc = 1/2   for  d = 2 

open    with probability  p
closed  with probability 1-p

smallest p for which there is an infinite open cluster

bond

  open
cluster
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See COVID-19 Intervention on page 3

Special Issue on the 
Mathematics of Planet Earth

Read about the application of mathematics and computational 
science to issues concerning invasive populations, Arctic sea ice, 

insect flight, and more in this Planet Earth special issue!

Controlling Invasive 
Populations in Rivers
By Yu Jin and Suzanne Lenhart

Flow regimes can change significant-
ly over time and space and strongly 

impact all levels of river biodiversity, from 
the individual to the ecosystem. Invasive 
species in rivers—such as bighead and 
silver carp, as well as quagga and zebra 
mussels—continue to cause damage. 
Management of these species may include 
targeted adjustment of flow rates in rivers, 
based on recent research that examines the 
effects of river morphology and water flow 
on rivers’ ecological statuses. While many 
previous methodologies rely on habitat suit-
ability models or oversimplification of the 
hydrodynamics, few studies have focused 
on the integration of ecological dynamics 
into water flow assessments.

Earlier work yielded a hybrid modeling 
approach that directly links river hydrology 
with stream population models [3]. The 
hybrid model’s hydrodynamic component 
is based on the water depth in a gradu-
ally varying river structure. The model 
derives the steady advective flow from this 
structure and relates it to flow features like 
water discharge, depth, velocity, cross-

sectional area, bottom roughness, bottom 
slope, and gravitational acceleration. This 
approach facilitates both theoretical under-
standing and the generation of quantitative 
predictions, thus providing a way for scien-
tists to analyze the effects of river fluctua-
tions on population processes.

When a population spreads longitudinally 
in a one-dimensional (1D) river with spatial 
heterogeneities in habitat and temporal fluc-
tuations in discharge, the resulting hydrody-
namic population model is
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See Invasive Populations on page 4

Figure 3. Comparison of real Arctic melt ponds with metastable equilibria in our melt 
pond Ising model. 3a. Ising model simulation. 3b. Real melt pond photo. Figure 3a cour-
tesy of Yiping Ma, 3b courtesy of Donald Perovich.

By Erin C.S. Acquesta, Walt Beyeler, 
Pat Finley, Katherine Klise, Monear 
Makvandi, and Emma Stanislawski

As the world desperately attempts to 
control the spread of COVID-19, the 

need for a model that accounts for realistic 
trade-offs between time, resources, and cor-
responding epidemiological implications is 
apparent. Some early mathematical models 
of the outbreak compared trade-offs for 
non-pharmaceutical interventions [3], while 
others derived the necessary level of test 
coverage for case-based interventions [4] 
and demonstrated the value of prioritized 
testing for close contacts [7].

Isolated analyses provide valuable 
insights, but real-world intervention strate-
gies are interconnected. Contact tracing is the 
lynchpin of infection control [6] and forms 
the basis of prioritized testing. Therefore, 
quantifying the effectiveness of contact trac-
ing is crucial to understanding the real-life 
implications of disease control strategies.

Contact Tracing Demands
Contact tracers are skilled, culturally 

competent interviewers who apply their 
knowledge of disease and risk factors when 
notifying people who have come into con-
tact with COVID-19-infected individuals. 
They also continue to monitor the situation 
after case investigations [1]. 

Case investigation consists of four steps:
1.	 Identify and notify cases
2.	 Interview cases
3.	 Locate and notify contacts 
4.	 Monitor contacts.

Most health departments are implement-
ing case investigation, contact identifica-
tion, and quarantine to disrupt COVID-
19 transmission. The timeliness of contact 
tracing is constrained by the length of the 
infectious period, the turn-around time for 
testing and result reporting, and the abil-
ity to successfully reach and interview 
patients and their contacts. The European 
Centre for Disease Prevention and Control 
approximates that contact tracers spend one 
to two hours conducting an interview [2]. 
Estimates regarding the timelines of other 
steps are limited to subject matter expert 
elicitation and can vary based on cases’ 
access to phone service or willingness to 
participate in interviews.

Bounded Exponential
The fundamental structure of our model 

follows traditional susceptible-exposed-
infected-recovered (SEIR) compartmental 
modeling [5]. We add an asymptomatic 
population A, a hospitalized population H , 
and disease-related deaths D,  as well as 
corresponding quarantine states. We define 
the states { , , , , , , }

,
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our compartments, such that i= 0  and i=1 

correspond to unquarantined and quaran-
tined respectively. Rather than focus on the 
dynamics that are associated with the state 
transition diagram in Figure 1, we introduce 
a formulation for the real-time demands 
on contact tracers’ time as a function of 
infection prevalence, while also respecting 
constraints on resources.

When the work that is required to inves-
tigate new cases and monitor existing con-
tacts exceeds available resources, a backlog 
develops. To simulate this backlog, we 
introduce a new compartment C  for track-
ing the dynamic states of cases:

dC
dt

flow flow
in out

= −[ ] [ ].

Flow into the backlog compartment, repre-
sented by [ ],flow

in
 reflects case identifica-

tion that is associated with the following 
transitions in the model:

 – The rate of random testing: 
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 – Testing triggered by contact tracing: 
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 – The population that was missed by 

the non-pharmaceutical interventions that 
require hospitalization: tIH t I t H t( ) ( ) ( ).0 ®

Here, q tr*( ) defines the time-dependent 
rate of random testing, q tt*( )  signifies the 
time-dependent rate of testing that is trig-
gered by contact tracing, and t

IH
 is the 

inverse of the expected amount of time for 
which an infected individual is symptomatic 
before hospitalization. These terms collec-
tively provide the simulated number of 
newly-identified positive COVID-19 cases. 
However, we also need the average number 
of contacts per case. We thus define func-
tion ( , , )κ φκT

S
 that depends on the aver-

age number of contacts a day ( ),k  the aver-
age number of days for which an individual 
is infectious before going into isolation 
( ),T
S

 and the likelihood that the individual 
Figure 1. Disease state diagram for the compartmental infectious disease model. Figure 
courtesy of the authors.

Modeling Resource Demands and Constraints 
for COVID-19 Intervention Strategies

Vast labyrinthine ponds on the surface of melting Arctic sea ice are key play-
ers in the polar climate system and upper ocean ecology. Researchers have 
adapted the Ising model, which was originally developed to understand mag-
netic materials, to study the geometry of meltwater’s distribution over the sea 
ice surface. In an article on page 5, Kenneth Golden, Yiping Ma, Courtenay 
Strong, and Ivan Sudakov explore model predictions.



SEA  ICE  covers ~12% of Earth's ocean surface
boundary between ocean and atmosphere

indicator of climate change 

mediates exchange of heat, gases, momentum 
global ocean circulation  
hosts rich ecosystem   
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Represent sea ice more realistically in 
climate models to improve projections.

challenge:

Account for key processes

e.g. melt pond evolution

... and other sub-grid scale structures and processes. 

linkage of scales

Flocco, Schroeder, Feltham, Hunke, JGR Oceans 2012

Including PONDS in simulations LOWERS 
predicted sea ice volume over time by 40%.

How do patterns of 
dark and light evolve?



ALGAL BLOOM MODEL
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• poor agreement with data

• poor agreement between models

Steinacher, M., et al. (2010). Biogeosciences, 7(3), 979-1005



HOW DO WE ANALYZE THIS MODEL?
Monte Carlo simulations?

Too slow! Full algae model takes 8 hours (cloud
computing).



POLYNOMIAL CHAOS EXPANSIONS

N(t;B,P0,N0) ≈ NV(t;B,P0,N0) :=

n∑
j=1

Ñj(t)φj(B,P0,N0),

P(t;B,P0,N0) ≈ PV(t;B,P0,N0) :=

n∑
j=1

P̃j(t)φj(B,P0,N0),

where
• V := span{φj}n

j=1

• φj are orthogonal polynomials that form a basis for V

• (Ñj, P̃j) need to be computed

Xiu, D. (2010). Numerical methods for stochastic computations. Princeton university press.




