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polar ice caps critical to global climate
in reflecting incoming solar radiation

white snow and ice
reflect

dark water and land
absorb

reflected sunlight
albedo Ol =

incident sunlight



Change in Arctic Sea Ice Extent

September 1980 -- 7.8 million square kilometers
September 2012 -- 3.4 million square kilometers

2012

GREENLAND

Perovich



September ice extent
~ Climate Model runs

Arctic sea ice decline:
faster than predicted by climate models

Stroeve et al., GRL, 2007
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challenge

represent sea ice more rigorously in climate models

account for key processes
such as melt pond evolution

Impact of melt ponds on Arctic seaice
simulations from 1990 to 2007

Flocco, Schroeder, Feltham, Hunke, JGR Oceans 2012

For simulations with ponds
September ice volume is nearly 40% lower.

... and other sub-grid scale structures and processes

linkage of scales



seaice is a multiscale composite

structured on many length scales

brine

_ . pancakes
inclusions
millimeters centimeters
melt ice
ponds floes

meters kilometers



What is this talk about?

Using mathematics and theoretical physics to study sea ice structures
and processes ... to improve projections of climate change.

1. Opposite poles of climate modeling

partial differential equations, ODE’s and dynamical systems

2. Sea ice microphysics and composite structure

homogenization, fluid flow, diffusion processes, percolation theory

3. Electromagnetic monitoring of sea ice

complex analysis, spectral measures, random matrix theory

4. Fractal geometry of Arctic melt ponds

continuum percolation theory, statistical physics

critical behavior cross - pollination



sea ice microphysics

fluid transport



fluid flow through the porous microstructure of sea ice
governs key processes in polar climate and ecosystems

evolution of Arctic melt ponds and sea ice albedo nutrient flux for algal communities

K. Golden

- drainage of brine and melt water

linkage of scales
- ocean-ice-air exchanges of heat, CO, t 9

- Antarctic surface flooding
and snow-ice formation

- evolution of salinity profiles



Critical behavior of fluid transport in sea ice
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Golden, Ackley, Lytle Science 1998

R l l L E O F F I V E S Golden, Eicken, Heaton, Miner, Pringle, Zhu, Geophys. Res. Lett. 2007

Pringle, Miner, Eicken, Golden J. Geophys. Res. 2009



percolation theory

probabilistic theory of connectedness

impermeable permeable
[ ] -
— | . \open
- I_I__ | cluster ——>
B _
1 |
p=1/3 p=2/3

open with probability p
closed with probability 1-p

percolation threshold
p.=1/2 for d=2

smallest p for which there is an infinite open cluster



Continuum percolation model for stealthy materials
applied to sea ice microstructure explains Rule of Fives
and Antarctic data on ice production and algal growth

d. = 5%  Golden, Ackley, Lytle, Science, 1998

B-2 Stealth Bomber
F-117 Nighthawk
Stealthy Helicopters

sea ice compressed radar absorbing
powder composite

seaice is radar absorbing



Thermal evolution of permeability and microstructure in seaice  Golden, Eicken, Heaton, Miner, Pringle, Zhu
GRL 2007

rigorous bounds
percolation theory
hierarchical model
network model

field data

X-ray tomography for

mlcro-scale brine inclusions
controls
unprecedented look
macro-scale at thermal evolution
f brine ph n
processes of brine phase and

its connectivity



lattice and continuum percolation theories yield:

k ((I)) — ko ((I) — 005 )2 ~—_ critical

exponent

K,=3x10" m? t

e exponent is UNIVERSAL lattice value T = 2.0

o like sandstones also exhibit universality

e critical path analysis -- developed for electronic hopping
conduction -- yields scaling factor k|
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INVERSE PROBLEM

Recover sea ice

properties from

electromagnetic
(EM) data

E*

effective complex permittivity
(dielectric constant, conductivity)

Remote sensing of sea ice

sea ice thickness brine volume fraction
ice concentration brine inclusion connectivity



Theory of Effective Electromagnetic Behavior of Composites
analytic continuation method

Forward Homogenization Bergman (1978), Milton (1979), Golden and Papanicolaou (1983)
Theory of Composites, Milton (2002)

composite geometry

%
(spectral measure ) 3 &

integral representations, rigorous bounds, approximations, etc.

A
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Inverse Homogenization Cherkaev and Golden (1998), Day and Thorpe (1999), Cherkaev (2001)
McPhedran, McKenzie, Milton (1982), Theory of Composites, Milton (2002)

composite geometry

k

recover brine volume fraction, connectivity, etc.



Stieltjes integral representation

separation of geometry from parameters

/geometry
1
plo)—1-€ — [ )
)= €2 _
o 9 <
\parameters

@ spectral measure of
/ self adjoint operator X ['X = — V(_A)—lv.

[l — @ mass=pi

= X = characteristic function

@ higher moments depend of the brine phase
on n-point correlations

Golden and Papanicolaou, Comm. Math. Phys. 1983



direct calculation of spectral measure

1. Discretization of composite microstructure gives
lattice of 1’s and 0’s (random resistor network).

2. The fundamental operator yI'y becomes a random
matrix depending only on the composite geometry.

3. Compute the eigenvalues A ; and eigenvectors of yI'y
with inner product weights o,

n0) = T oy 8- 2)

Dirac point measure (Dirac delta)

ier studies of tral ) Day and Thorpe 1996
€arlier studies oT Spectralmeasures — Helsing, McPhedran, Milton 2011



Spectral computations for Arctic melt ponds
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Anderson transition for classical transport in composites

Murphy, Cherkaev, Golden Phys. Rev. Lett. 2017

transition to universal
=g  eigenvalue statistics (GOE)
extended states, mobility edges

PERCOLATION
TRANSITION

-- without wave interference or quantum effects --

surprising analog of
Anderson transition in wave physics - quantum, optics, ...
disorder ~ connectedness

metal / insulator transition at critical disorder

IOW disorder eXtendEd GOE Anderson, 1958

Shklovshii et al, 1993

high disorder localized Poisson Evangelou, 1992



Proc. Roy.Soc.A 8 Feb 2015
Bounds on the complex permittivity

of polycrystalline materials
by analytic continuation

ISSN 1364-5021 | Volume 471 | Issue 2174 | 8 February 2015
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Elena Cherkaev, Ken Golden

An invited review A method to distinguish A computer model to

commemorating 350 years between different types determine how a human

of scientific publishing atthe  of sea ice using remote should walk so as to expend

Royal Society sensing techniques the least energy

@® Stieltjes integral representation for

effective complex permittivity
Milton (1981, 2002), Barabash and Stroud (1999), ...
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® Forward and inverse bounds

@® Appliedtoseaiceusing
two-scale homogenization

@® Inverse bounds give method for
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remote sensing techniques
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advection enhanced diffusion

effective diffusivity

tracers, buoys diffusing in ocean eddies
diffusion of pollutants in atmosphere
salt and heat transport in ocean
heat transport in sea ice with convection

advection diffusion equation with a velocity field

oT -
¥ +u - VT = kAT
V-i=0
homogenize
oT _
— =k AT
or

k" effective diffusivity

Murphy, Cherkaev, Zhu, Xin, Golden, 2017

GFDL CM 2.4
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wave propagation in the marginal ice zone

Stieltjes integral representations
effective viscoelastic parameter;
bounds, dispersion relations

Sampson, Cherkaev, Meylan, Golden



Arctic and Antarctic field experiments

develop electromagnetic methods
of monitoring fluid transport and
microstructural transitions

extensive measurements of fluid and
electrical transport properties of sea ice:

2007
2010
2011
2012
2012
2013
2014

Antarctic SIPEX

Antarctic McMurdo Sound
Arctic Barrow AK
Arctic Barrow AK
Antarctic SIPEXII

Arctic Barrow AK
Arctic Chukchi Sea



May 2009 Volume 56, Number 5

Climate Change and
the Mathematics of
Transporl in Sea Ice

page 562

Mathematics and the
Internet: A Source of
Enormous Confusion
and Great Potential

page 586

measuring
fluid permeability
of Antarctic seaice

photo by Jan Lieser Real analysis in polar coordinates (see page 613) SIPEX 2007




melt pond formation and albedo evolution:

e major drivers in polar climate
e key challenge for global climate models

. . . . Luthje, Feltham, Skyllingstad, Paulson,
numerical models of melt pond evolution, including  Tayior, worster 2006 Perovich 2009
topog raphy, drainage (permeability)’ etc. Flocco, Feltham 2007  Flocco, Feltham,

Hunke 2012

Perovich

Are there universal features of the evolution
similar to phase transitions in statistical physics?



Transition in the fractal geometry of Arctic melt ponds The Cryosphere, 2012

Christel Hohenegger, Bacim Alali, Kyle Steffen, Don Perovich, Ken Golden
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Fractal Dimension

transition in the fractal dimension

complexity grows with length scale

Area (m?)

compute “derivative” of area - perimeter data



small simple ponds coalesce to form
large connected structures with complex boundaries

melt pond percolation

results on percolation threshold, cluster behavior

Anthony Cheng (Hillcrest HS), Bacim Alali, Ken Golden



Network modeling of Arctic melt ponds

Barjatia, Tasdizen, Song, Sampson, Golden
Cold Regions Science and Tecnology, 2016

develop algorithms to map
images of melt ponds onto

random resistor networks

graphs of nodes and edges
with edge conductances

edge conductance ~ neck width

compute effective
horizontal fluid conductivity



Continuum percolation model for melt pond evolution
Brady Bowen, Court Strong, Ken Golden J. Fractal Geom. 2017

random Fourier series representation of surface topography

intersections of a plane with the surface define melt ponds

electronic transport in disordered media diffusion in turbulent plasmas (Isichenko, Rev. Mod. Phys., 1992)



simple stochastic growth model of melt pond evolution

fractal dimension

voter a square is more likely to melt
model if its neighbors have melted

Rebecca Nickerson (West HS, Salt Lake City) and Ken Golden



Ising model for ferromagnets Ising model for melt ponds

water  (spin up)

:—stzsj stz {f "

g ce (spin down)

N—oo N ?

magnetization M = lim — <Z sj> pond coverage (M+1)

“melt ponds” are clusters of magnetic spins that align with the applied field

Ma, Sudakov, Strong, Golden 2017



Melt Pond Ising Model

e Minimize an Ising Hamiltonian

random magnetic field represents ice topography
interaction term represents horizontal heat transfer

® |ce-albedo feedback incorporated by taking coupling constant
in interaction term to depend on the pond coverage

v — L P RTLN B AL |
2 e M e L
Ui Tt w M R ATV
fractal R A N S .
- e T, C ERCR N - - .
dlmenSIon I::l.-..:.l ..:__.I;:-:. . -I.I.-.- -.: .'“....I- r- -.-- -ﬂ. . ﬁ
- Ent I N . H - L -
w o e e e L
1 SRR S R e Ty
- -

1 2 4 AP
100 10 10 103 10 I

- .
- - o " - 1- b
IR LR L A & :‘l"‘&,
] -\.-I..:.-I:;-"...:' . _'.'.-'..-_'-' — ;_"I-',' [] "‘L
IR A - Ty
" "_ ‘_'.I-_: .' _I:' a H d o ""
L |.‘_..¢|"_
e Wl

Area (m ) .:... --:.'-._..::'r- |' N .- LT e
mid B

@® predicted fractal transition 40-90 m? vs. 86 m* observed

® predicted pond size distribution exponent -1.51
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Conclusions

1. Summer Arctic sea ice is melting rapidly, and melt ponds and other
processes must be accounted for in order to predict melting rates.

2. Fluid flow through sea ice mediates melt pond evolution and many
processes important to climate change and polar ecosystems.

3. Statistical physics and homogenization help link scales, provide
rigorous methods for finding effective behavior, and advance how
sea ice is represented in climate models.

4. Our research will help to improve projections of climate change
and the fate of the Earth sea ice packs.
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