Mathematics of Sea Ice

Kenneth M. Golden Department of Mathematics University of Utah

Grad Recruitment Weekend 24 March 2017

ANTARCTICA

southern cryosphere

Weddell Sea

East Antarctic Ice Sheet

West Antarctic Ice Sheet

Ross Sea

sea ice

polar ice caps critical to global climate in reflecting incoming solar radiation

white snow and ice reflect

dark water and land absorb

albedo
$$\alpha = \frac{\text{reflected sunlight}}{\text{incident sunlight}}$$

Change in Arctic Sea Ice Extent

September 1980 -- 7.8 million square kilometers September 2012 -- 3.4 million square kilometers

Arctic sea ice decline: faster than predicted by climate models

Stroeve et al., GRL, 2007

challenge

represent sea ice more rigorously in climate models

account for key processes such as melt pond evolution

Impact of melt ponds on Arctic sea ice simulations from 1990 to 2007

Flocco, Schroeder, Feltham, Hunke, JGR Oceans 2012

For simulations with ponds September ice volume is nearly 40% lower.

... and other sub-grid scale structures and processes *linkage of scales*

sea ice is a multiscale composite

structured on many length scales

millimeters

centimeters

pancakes

melt ponds

ice floes

meters

kilometers

What is this talk about?

Using mathematics and theoretical physics to study sea ice structures and processes ... to improve projections of climate change.

1. Opposite poles of climate modeling

partial differential equations, ODE's and dynamical systems

2. Sea ice microphysics and composite structure

homogenization, fluid flow, diffusion processes, percolation theory

3. Electromagnetic monitoring of sea ice

complex analysis, spectral measures, random matrix theory

4. Fractal geometry of Arctic melt ponds

continuum percolation theory, statistical physics

critical behavior cross - pollination

sea ice microphysics

fluid transport

fluid flow through the porous microstructure of sea ice governs key processes in polar climate and ecosystems

evolution of Arctic melt ponds and sea ice albedo

nutrient flux for algal communities

- drainage of brine and melt water
- ocean-ice-air exchanges of heat, CO₂
- Antarctic surface flooding and snow-ice formation
- evolution of salinity profiles

linkage of scales

Critical behavior of fluid transport in sea ice

Golden, Eicken, Heaton, Miner, Pringle, Zhu, Geophys. Res. Lett. 2007 Pringle, Miner, Eicken, Golden J. Geophys. Res. 2009

percolation theory

probabilistic theory of connectedness

bond \longrightarrow *open with probability p closed with probability 1-p*

percolation threshold $p_c = 1/2$ for d = 2

smallest *p* for which there is an infinite open cluster

Continuum percolation model for *stealthy* materials applied to sea ice microstructure explains **Rule of Fives** and Antarctic data on ice production and algal growth

 $\phi_c \approx 5 \%$ Golden, Ackley, Lytle, *Science*, 1998

sea ice is radar absorbing

Thermal evolution of permeability and microstructure in sea ice Golden, Eicken, Heaton, Miner, Pringle, Zhu

GRL 2007

field data

X-ray tomography for brine inclusions

unprecedented look at thermal evolution of brine phase and its connectivity

micro-scale controls macro-scale processes

lattice and continuum percolation theories yield:

$$k (\phi) = k_0 (\phi - 0.05)^2 \checkmark \text{critical}$$

exponent
$$k_0 = 3 \times 10^{-8} \text{ m}^2 \qquad t$$

- exponent is UNIVERSAL lattice value $t \approx 2.0$
- sedimentary rocks like sandstones also exhibit universality
- critical path analysis -- developed for electronic hopping conduction -- yields scaling factor k_0

Remote sensing of sea ice

sea ice thickness ice concentration

INVERSE PROBLEM

Recover sea ice properties from electromagnetic (EM) data

8*

effective complex permittivity (dielectric constant, conductivity)

brine volume fraction brine inclusion connectivity

Theory of Effective Electromagnetic Behavior of Composites analytic continuation method

Forward Homogenization Bergman (1978), Milton (1979), Golden and Papanicolaou (1983) *Theory of Composites*, Milton (2002)

> **composite geometry** (spectral measure μ)

integral representations, rigorous bounds, approximations, etc.

$$F(s) = 1 - \frac{\epsilon^*}{\epsilon_2} = \int_0^1 \frac{d\mu(z)}{s-z} \qquad s = \frac{1}{1 - \epsilon_1/\epsilon_2} \qquad \xrightarrow{\circ} \qquad$$

Inverse Homogenization Cherkaev and Golden (1998), Day and Thorpe (1999), Cherkaev (2001) McPhedran, McKenzie, Milton (1982), *Theory of Composites*, Milton (2002)

recover brine volume fraction, connectivity, etc.

Stieltjes integral representation separation of geometry from parameters

$$F(s) = 1 - \frac{\epsilon^*}{\epsilon_2} = \int_0^1 \frac{d\mu(z)}{s-z} \frac{1}{s-z}$$

spectral measure of self adjoint operator X Γ X
μ - • mass = p₁
higher moments depend on *n*-point correlations

$$\Gamma = -\nabla(-\Delta)^{-1}\nabla \cdot$$

 $\chi = \mathop{\rm characteristic\,function}\limits_{\rm of\,the\,brine\,phase}$

direct calculation of spectral measure

- 1. Discretization of composite microstructure gives lattice of 1's and 0's (random resistor network).
- 2. The fundamental operator $\chi\Gamma\chi$ becomes a random matrix depending only on the composite geometry.
- 3. Compute the eigenvalues λ_i and eigenvectors of $\chi \Gamma \chi$ with inner product weights α_i

$$\mu(\lambda) = \sum_{i} \alpha_{i} \delta(\lambda - \lambda_{i})$$

Dirac point measure (Dirac delta)

earlier studies of spectral measures

Day and Thorpe 1996 Helsing, McPhedran, Milton 2011

Spectral computations for Arctic melt ponds

Ben Murphy Elena Cherkaev Ken Golden *PRL*, 2017

spectral measures

eigenvalue spacing distributions

TRANSITION

Anderson transition for classical transport in composites

Murphy, Cherkaev, Golden Phys. Rev. Lett. 2017

transition to universal eigenvalue statistics (GOE) extended states, mobility edges

-- without wave interference or quantum effects --

surprising analog of

Anderson transition in wave physics - quantum, optics, ...

disorder ~ connectedness

metal / insulator transition at critical disorder

low disorderextendedGOEhigh disorderlocalizedPoisson

Anderson, 1958 Shklovshii et al, 1993 Evangelou, 1992 Bounds on the complex permittivity of polycrystalline materials by analytic continuation

> Adam Gully, Joyce Lin, Elena Cherkaev, Ken Golden

- Stieltjes integral representation for effective complex permittivity Milton (1981, 2002), Barabash and Stroud (1999), ...
- Forward and inverse bounds
- Applied to sea ice using two-scale homogenization
- Inverse bounds give method for distinguishing ice types using remote sensing techniques

Proc. Roy. Soc. A 8 Feb 2015

ISSN 1364-5021 | Volume 471 | Issue 2174 | 8 February 2015

PROCEEDINGS A

An invited review commemorating 350 years of scientific publishing at the Royal Society

A method to distinguish between different types of sea ice using remote sensing techniques A computer model to determine how a human should walk so as to expend the least energy

advection enhanced diffusion

effective diffusivity

tracers, buoys diffusing in ocean eddies diffusion of pollutants in atmosphere salt and heat transport in ocean heat transport in sea ice with convection

advection diffusion equation with a velocity field $\,ec u\,$

$$\frac{\partial T}{\partial t} + \vec{u} \cdot \vec{\nabla}T = \kappa_0 \Delta T$$
$$\vec{\nabla} \cdot \vec{u} = 0$$
$$homogenize$$
$$\frac{\partial \overline{T}}{\partial t} = \kappa^* \Delta \overline{T}$$

κ^{*} effective diffusivity

Stieltjes integral for κ^* with spectral measure

Avellaneda and Majda, PRL 89, CMP 91

Murphy, Cherkaev, Xin, Zhu, Golden, *Ann. Math. Sci. Appl.* 2017 Murphy, Cherkaev, Zhu, Xin, Golden, 2017

wave propagation in the marginal ice zone

Arctic and Antarctic field experiments

develop electromagnetic methods of monitoring fluid transport and microstructural transitions

extensive measurements of fluid and electrical transport properties of sea ice:

2007	Antarctic	SIPEX
2010	Antarctic	McMurdo Sound
2011	Arctic	Barrow AK
2012	Arctic	Barrow AK
2012	Antarctic	SIPEX II
2013	Arctic	Barrow AK
2014	Arctic	Chukchi Sea

The American Mathematical Seriety

of the American Mathematical Society

May 2009

Volume 56, Number 5

Climate Change and the Mathematics of Transport in Sea Ice

page 562

Mathematics and the Internet: A Source of Enormous Confusion and Great Potential

page 586

photo by Jan Lieser

Real analysis in polar coordinates (see page 613)

measuring fluid permeability of Antarctic sea ice

SIPEX 2007

melt pond formation and albedo evolution:

- major drivers in polar climate
- key challenge for global climate models

numerical models of melt pond evolution, including topography, drainage (permeability), etc.

Lüthje, Feltham, Taylor, Worster 2006 Flocco, Feltham 2007 Skyllingstad, Paulson, Perovich 2009 Flocco, Feltham, Hunke 2012

Are there universal features of the evolution similar to phase transitions in statistical physics?

Transition in the fractal geometry of Arctic melt ponds

The Cryosphere, 2012

Christel Hohenegger, Bacim Alali, Kyle Steffen, Don Perovich, Ken Golden

transition in the fractal dimension

complexity grows with length scale

compute "derivative" of area - perimeter data

small simple ponds coalesce to form large connected structures with complex boundaries

melt pond percolation

results on percolation threshold, cluster behavior

Anthony Cheng (Hillcrest HS), Bacim Alali, Ken Golden

Network modeling of Arctic melt ponds

Barjatia, Tasdizen, Song, Sampson, Golden Cold Regions Science and Tecnology, 2016

develop algorithms to map images of melt ponds onto

random resistor networks

graphs of nodes and edges with edge conductances

edge conductance ~ neck width

compute effective horizontal fluid conductivity

Continuum percolation model for melt pond evolution

Brady Bowen, Court Strong, Ken Golden J. Fractal Geom. 2017

random Fourier series representation of surface topography

intersections of a plane with the surface define melt ponds

electronic transport in disordered media

diffusion in turbulent plasmas

(Isichenko, Rev. Mod. Phys., 1992)

simple stochastic growth model of melt pond evolution

Rebecca Nickerson (West HS, Salt Lake City) and Ken Golden

2

"melt ponds" are clusters of magnetic spins that align with the applied field

Ma, Sudakov, Strong, Golden 2017

Melt Pond Ising Model

- Minimize an Ising Hamiltonian random magnetic field represents ice topography interaction term represents horizontal heat transfer
- Ice-albedo feedback incorporated by taking coupling constant in interaction term to depend on the pond coverage

predicted fractal transition 40 - 90 m² vs. 86 m² observed

predicted pond size distribution exponent -1.51 vs. -1.50 observed

Conclusions

- 1. Summer Arctic sea ice is **melting rapidly**, and **melt ponds** and other processes must be accounted for in order to predict melting rates.
- 2. Fluid flow through sea ice mediates melt pond evolution and many processes important to climate change and polar ecosystems.
- 3. Statistical physics and homogenization help *link scales*, provide rigorous methods for finding effective behavior, and advance how sea ice is represented in climate models.
- 4. Our research will help to improve projections of climate change and the fate of the Earth sea ice packs.

THANK YOU

National Science Foundation

Division of Mathematical Sciences Division of Polar Programs

Office of Naval Research

Arctic and Global Prediction Program Applied and Computational Analysis Program

Mathematics and Climate Research Network

Australian Government

Department of the Environment and Water Resources Australian Antarctic Division

Buchanan Bay, Antarctica Mertz Glacier Polynya Experiment July 1999