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SEA  ICE  covers ~12% of Earth's ocean surface
boundary between ocean and atmosphere

indicator of climate change 

mediates exchange of heat, gases, momentum 
global ocean circulation  
hosts rich ecosystem   



NASA

NASA

polar ice caps critical to global climate 
 in reflecting incoming solar radiation

white snow and ice
              reflect

dark water and land
              absorb

0.0

0.2

0.4

0.6

0.8

1.0

Al
be

do

Snow

Ocean

Earth’s refrigerator

α = re�ected sunlight

incident sunlight
albedo



September
sea ice extent

1978 1983 1988 1993 1998 2003 2008 2013
3

4

5

6

7

8

RECORD LOW  2012

the summer Arctic sea ice pack is melting

1979 - 2000

    average

Na�onal Snow and Ice Data Center

2018

ic
e 

ex
te

nt
 (m

ill
io

n 
sq

ua
re

 k
m

)



recent losses 
in comparison to 
the United States

Perovich
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ice-albedo
feedback

Change in Arctic 
  Sea Ice Extent

September 2012  --   3.4  million

September 1980  --   7.8  million

km2

km2



Stroeve et al., GRL, 2007
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                      Arctic sea ice decline:  
faster than predicted by climate models

IPCC AR4 
  Models

Intergovernmental
  Panel on Climate 
    Change (IPCC)

Fourth Assessment 
         AR4, 2007

Stroeve et al., GRL, 2012



represent sea ice more realistically in climate models
challenge

account for key processes
such as melt pond evolution

... and other sub-grid scale structures and processes 

linkage of scales

Impact of melt ponds on Arctic sea ice 
        simulations from 1990 to 2007

Flocco, Schroeder, Feltham, Hunke, JGR Oceans 2012

                 For simulations with ponds 
September ice volume is nearly 40% lower.

How do patterns of 
dark and light evolve?



Gully et al. Proc. Roy. Soc. A 2015Golden et al. GRL 2007

K. Frey J. Weller

millimeters

Sea Ice is a Multiscale Composite Material

centimeters

brine inclusions polycrystals

D. Cole

Arctic melt ponds
sea ice mesostructure

meters kilometers

brine channels

NASAK. Golden

Weeks & Assur 1969

K. Golden

sea ice microstructure

sea ice macrostructure
sea ice floesAntarctic pressure ridges sea ice pack

H. Eicken
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HOMOGENIZATION for Composite Materials

∗

inhomogeneous
          medium

homogeneous
        medium

Einstein 1906 : e�ective viscosity of a dilute suspension of rigid spheres in a �uid
Maxwell 1873 : e�ective conductivity of a dilute suspension of spheres

         e�ective
conductivity

Wiener 1912 : arithmetic and harmonic mean bounds on e�ective conductivity 
Hashin and Shtrikman 1962 : variational bounds on e�ective conductivity 

widespread use of composites in late 20th century due in large part
to advances in mathematically predicting their e�ective properties

LINKING
 SCALES

MICROSCALE MACROSCALE

FORWARD

INVERSE



Solving problems in physics of sea ice drives 
advances in theory of composite materials.

cross - pollination

the role of “microstructure” in determining sea ice e�ective properties

What is this talk about?

Using methods of  homogenization and statistical physics to LINK SCALES 
    in the sea ice system ... compute e�ective behavior on scales relevant to 
              coarse-grained sea ice and climate models, process studies, ...

A tour of Stieltjes integrals in the study of sea ice and its role in climate.

homogenization for multiscale composites

MICROSCALE: brine + polycrystalline structure; EM and �uid transport 

MESOSCALE: advection di�usion, thermal transport, waves, melt ponds  

MACROSCALE: ice transport, MIZ width and location, low order models   

bone, stealthy coatings
magnets, rat brains, RMT



Linking Scales

mm
scale
brine
inclusions

Linking         Scales

meter
scale
snow
topography

km
scale
melt
ponds

km
scale
melt
ponds

basin scale -
grid scale
albedo

How do scales
interact in the
sea ice system?

Perovich

NASA



sea  ice  microphysics

�uid transport



- ocean-ice-air exchanges of heat, CO

evolution of Arctic melt ponds and sea ice albedo

C. Haas

C. KrembsACE CRCK. Golden

2

Antarctic surface �ooding 
and snow-ice formation 

nutrient �ux for algal communities

- evolution of salinity pro�les 

�uid �ow through the porous microstructure of sea ice
governs key processes in polar climate and ecosystems 

22%

September
snow-ice
estimates

26%28%

27%

T. Maksym and T. Markus, 2008



�uid permeability of a porous medium

how much water gets 
through the sample 
per unit time?

porous
concrete

mathematics for analyzing e�ective behavior of heterogeneous systems

HOMOGENIZATION

Darcy’s Law

pressure 
gradient

v = k p

for slow viscous flow in a porous medium

averaged 
fluid velocity

k = fluid permeability tensor

viscosity



-15 C,   = 0.033° -3 C,   = 0.143° -6 C,   = 0.075°φ φ φT = T = T =

-8 C,   = 0.057° φT = -4 C,   = 0.113° φT =

brine volume fraction and connectivity increase with temperature

X-ray tomography for brine in sea ice                                Golden et al., Geophysical Research Letters, 2007



critical brine volume fraction φc ~~ 5%

Critical behavior of �uid transport in sea ice

c ~~ -5  C, S ~~ 5 ppt

RULE  OF  FIVES 

T

0.05 0.10 0.15 0.20 0.25

brine volume fraction    
φc

2 x 10
-10

3 x 10
-10

4 x 10
-10

1 x 10
-10

vertical �uid 
permeability  k  (m   )2

0

“on - o�” switch  
     for �uid �ow

o� on

Arctic �eld data

Golden, Eicken, Heaton, Miner, Pringle, Zhu   GRL 2007
Golden, Ackley, Lytle   Science   1998

Pringle, Miner, Eicken, Golden   J. Geophys. Res.   2009

impermeable permeable

φ



p = 1/3 p = 2/3

impermeable permeable

percolation theory
probabilistic theory of connectedness

percolation threshold
  pc = 1/2   for  d = 2 

open    with probability  p
closed  with probability 1-p

smallest p for which there is an infinite open cluster

bond

  open
cluster



R

R

m

p

 compressed 
     powder

sea ice

Golden, Ackley, Lytle, Science, 1998

Continuum  percolation  model  for   stealthy  materials
applied to sea ice microstructure explains Rule of Fives
and Antarctic data  on  ice production and  algal growth

radar absorbing 
      composite

φc ~~ 5 %

sea ice is radar absorbing

B-2 Stealth Bomber
F-117 Nighthawk
Stealthy Helicopters



X-ray tomography for
brine inclusions

micro-scale

controls

macro-scale

processes

Thermal evolution of permeability and microstructure in sea ice
Golden, Eicken, Heaton, Miner, Pringle, Zhu,    Geophysical Research Letters    2007 

percolation theory

unprecedented look 
at thermal evolution
of brine phase and
its connectivity

con�rms rule of �ves

k ( ) = k 2
0

k   = 3 x 100
-8

m2

 critical
exponent

t
φ φ − 0.05(               )

Pringle, Miner, Eicken, Golden
J. Geophys. Res. 2009

hierarchical model 
network model 
rigorous bounds

agree closely with 
field data



How does EPS a�ect �uid transport?

Bimodal  lognormal  distribution for brine inclusions 

Develop random pipe network model with bimodal distribution;
Use numerical methods that can handle larger variances in sizes.

Results predict observed drop in �uid permeability k.

Rigorous bound on k for bimodal distribution of pore sizes 

Steffen, Epshteyn,  Zhu, Bowler, Deming, Golden
    Multiscale Modeling and Simulation, 2018

How does the biology a�ect the physics?
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Sea ice algae secrete extracellular polymeric substances (EPS)
a�ecting evolution of brine microstructure.

without EPS with EPS

Krembs, Eicken, Deming, PNAS 2011

R

R

R

v

v

h

i,j

i,j-1

i-1,j

Rh
i,j

(i,j)

Zhu, Jabini, Golden, 
Eicken, Morris
Ann. Glac. 2006

RANDOM
     PIPE
  MODEL



measuring 
�uid permeability
of Antarctic sea ice

photo by Jan Lieser SIPEX  2007



C. Polashenski, K. M. Golden, D. K. Perovich, E. Skyllingstad, A. Arnsten, C. Stwertka, N. Wright

                 The Melt Pond Conundrum:  
How can ponds form on top of sea ice that is highly permeable?

2014  Study of Under Ice Blooms in the Chuckchi Ecosystem (SUBICE) 
aboard USCGC Healy

Percolation Blockage: A Process that Enables Melt Pond Formation on First Year Arctic Sea Ice

J. Geophys. Res.  Oceans 2017



Remote sensing of sea ice
Recover sea ice
properties from
electromagnetic
       (EM) data 

 INVERSE PROBLEM

sea ice thickness
ice concentration

brine volume fraction
brine inclusion connectivity

ε*
   effective complex permittivity  

(dielectric constant, conductivity)



}
Effective complex permittivity of a two phase composite
           in the quasistatic (long wavelength) limit

, = volume fractions of
    the components

= (    , composite geometry )
  What are the effective propagation characteristics 
of an EM wave (radar, microwaves) in the medium?



Stieltjes integral representation 
    for homogenized parameter

spectral measure of
self adjoint operator
mass = 

higher moments depend 
on n-point correlations

separates geometry 
   from parameters 

Golden and Papanicolaou, Comm. Math. Phys. 1983

characteristic function
of the brine phase

geometry

material parameters

:  microscale         macroscale 
links scales

Analytic Continuation Method for Homogenization
Bergman (1978), Milton (1979), Golden and Papanicolaou (1983), Theory of Composites, Milton (2002)

/



inverse bounds and 
recovery of brine porosity

forward and inverse bounds on the complex permittivity of sea ice

forward bounds

Gully, Backstrom, Eicken, Golden  
Physica B, 2007

4.75 GHz data
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inversion for brine inclusion
separations in sea ice from 
measurements of e�ective
complex permittivity  ε

matrix particle

Orum, Cherkaev, Golden 
Proc. Roy. Soc. A, 2012

*
rigorous inverse bound
         on spectral gap

construct algebraic curves which bound 
        admissible region in (p,q)-space

qmin

Inverse Homogenization  
Cherkaev and Golden (1998), Day and Thorpe (1999), 
Cherkaev (2001), McPhedran, McKenzie, Milton (1982), 
Theory of Composites, Milton (2002)

∗ε
composite geometry
(spectral measure µ)



HUMAN BONESEA ICE

Golden, Murphy, Cherkaev, J.  Biomechanics  2011

the math doesn’t care if it’s sea ice or bone!

       apply spectral measure analysis of brine connectivity and 
spectral inversion to electromagnetic monitoring of osteoporosis

 young healthy trabecular bone  old osteoporotic trabecular bone

P. Hansma

 reconstruct spectral measures 
from complex permittivity data

use regularized inversion scheme

spectral characterization 
of porous microstructures 
in human bone 

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

µ(λ)

young bone

old bone



direct calculation of spectral measures

Day and Thorpe 1996
Helsing, McPhedran, Milton 2011    earlier studies of spectral measures

once we have the spectral measure µ it can be used in 
        Stieltjes integrals for other transport coefficients:

electrical and thermal conductivity, complex permittivity, 
magnetic permeability, diffusion, fluid flow properties

depends only on the composite geometry

discretization of microstructural image gives binary network

fundamental operator becomes a random matrix 

spectral measure computed from eigenvalues and eigenvectors 

Murphy, Hohenegger, Cherkaev, Golden, Comm. Math. Sci. 2015
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Murphy and Golden, J. Math. Phys., 2012
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Wigner (1951) and Dyson (1953) �rst used random matrix theory (RMT) 
              to describe quantized energy levels of heavy atomic nuclei.

Eigenvalue Statistics of Random Matrix Theory 

[N] ij ~ N(0,1),                   A= (N+N  )/2T Gaussian orthogonal ensemble (GOE)

[N] ij ~ N(0,1)+iN(0,1),    A= (N+ N  )/2† Gaussian unitary ensemble (GUE)

Short range and long range correlations of eigenvalues are measured by various eigenvalue statistics.

               RMT used to characterize disorder-driven transitions in 
mesoscopic conductors, neural networks, random graph theory, etc.

Universal eigenvalue statistics arise in a broad  range  of “unrelated” problems!

Spacing distributions of energy levels for heavy atomic nuclei

Spacing distributions of the �rst billion zeros of 
the Riemann zeta function

GUE
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Spectral computations for sea ice floe configurations

spectral
measures

eigenvalue
spacing
distributions

ANDERSON TRANSITION
uncorrelated level repulsion

Murphy, Cherkaev, Golden 
Phys. Rev. Lett. 2017

UNIVERSAL 
Wigner-Dyson 
distribution 



Anderson transition in wave physics: 
quantum, optics, acoustics, water waves, ...

metal / insulator transition

Anderson transition for classical transport in composites

Murphy, Cherkaev, Golden     Phys.  Rev.  Lett.    2017

Anderson  1958
Mott 1949
Shklovshii et al  1993
Evangelou  1992

from analysis of spectral measures for brine, melt ponds, ice �oes

localization

we �nd percolation-driven 

mobility edges, localization transition, universal spectral statistics
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Order to disorder in quasiperiodic materials
Morison, Murphy, Cherkaev, Golden 2020

Anderson transition as QP is tuned



inhomogeneous 
medium

inhomogeneous 
medium

homogeneous 
medium

Homogenization for polycrystalline materials
e�ective

conductivity

Two-component 
composites

homogeneous 
medium

e�ective
conductivity

Polycrystalline 
media

Local conductivity

Homogenize

Homogenize

Conductivity of crystal directions

Find the homogeneous medium which behaves macroscopically the same as the inhomogeneous medium
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Bounds on the complex permittivity
           of polycrystalline materials 
              by analytic continuation

      Adam Gully, Joyce Lin, 
Elena Cherkaev, Ken Golden

Stieltjes integral representation for
e�ective complex permittivity 

Forward and inverse bounds 

Proc. Roy. Soc. A       8 Feb 2015

Applied to sea ice using 
two-scale homogenization

Inverse bounds give method for 
distinguishing ice types using 
remote sensing techniques

Milton (1981, 2002), Barabash and Stroud (1999), ...

orientation statistics



columnar granular

higher threshold for �uid �ow in granular sea ice

5% 10%

Golden, Sampson, Gully, Lubbers, Tison 2020

microscale details impact “mesoscale” processes 
nutrient �uxes for microbes
melt pond drainage
snow-ice formation

electromagnetically distinguishing ice types
    Kitsel Lusted, Elena Cherkaev, Ken Golden 



*
2ε

*
1ε

*
2ε

two scale homogenization for polycrystalline sea ice

numerical homogenization
            for single crystal

analytic continuation
       for polycrystals

bounds

Gully, Lin, Cherkaev, Golden, Proc. Roy. Soc. A (and cover) 2015



Rigorous bounds on the complex permittivity tensor of sea ice 
    with polycrystalline anisotropy within the horizontal plane

McKenzie McLean, Elena Cherkaev, Ken Golden 2020

motivated by Weeks and Gow, JGR 1979: c-axis alignment in Arctic fast ice off Barrow 
Golden and Ackley, JGR 1981: radar propagation model in aligned sea ice  

CRREL

input: orientation statistics output: bounds

3%

Re(     )ε∗

Im(     )ε∗

3.5%
4%

isotropic within
horizontal plane

anisotropic within
horizontal plane



mesoscale



wave propagation in the marginal ice zone 

              Stieltjes integral representation 
bounds on e�ective viscoelastic parameters

Sampson, Murphy, Cherkaev, Golden 2020

quasistatic

∗
= 1 −( )

= −

= ∗ ⟨ ⟩

= + −
2
3

= ∗∗∗

avg strain

=
1

1 −

resolvent for strain �eld

= 1 −
1
Γ

Γ = ⋅ ⋅
⋅ = 0

local
=

long wavelength



bounds on the effec�ve complex viscoelas�city

Sampson, Murphy, Cherkaev, Golden 2020

complex elementary bounds
 (fixed area frac�on of floes)

ν

ν
1

2

=  10   + i 4875   

=   5 + i 0.0975 

7 pancake ice

slush / frazil

( ∗)

             +
  much �ghter
matrix par�cle
bounds + data



Masters, 1989

advection enhanced di�usion

e�ective di�usivity
nutrient and salt transport in sea ice 
heat transport in sea ice with convection 
sea ice floes in winds and ocean currents 
tracers, buoys diffusing in ocean eddies 
diffusion of pollutants in atmosphere

homogenize

Drake
Passage

sea ice vortices

Gulf Stream Aghulas Current

e�ective di�usivity
Stieltjes integral for         with spectral measure

Avellaneda and Majda, PRL 89, CMP 91

Murphy, Cherkaev, Xin, Zhu, Golden, Ann. Math. Sci. Appl. 2017 
Murphy, Cherkaev, Zhu, Xin, Golden, J. Math. Phys. 2020

Wells et al. 2011



tracers flowing through inverted sea ice blocks 



κ∗ = κ 1 +
∞

−∞

dµ(τ)

κ2 + τ2
, F (κ

∞

−∞

dµ(τ)

κ2 + τ2

µ is a positive definite measure corresponding to the
spectral resolution of the self-adjoint operator iΓHΓ

Γ := −∇(−∆)−1∇· , ∆ is the Laplace operator

iΓHΓ is bounded for time independent flows

F (κ) is analytic κ-plane

Stieltjes Integral Representation for Advection Di�usion

Murphy, Cherkaev, Zhu, Xin, Golden, J. Math. Phys. 2020 

H

=)

= stream matrix

off the spectral interval in the

κ = local diffusivity,

rigorous framework for numerical computations of 
spectral measures and e�ective di�usivity for model �ows 

new integral representations, theory of moment calculations

separation of material properties and �ow �eld           
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cat’s eye flow model for 
  brine convec�on cells 

rigorous Pade bounds from S�eltjes integral + 
analy�cal calcula�ons of moments of measure

‘

Kraitzman, Hardenbrook, Murphy, Zhu, Cherkaev, Strong, Golden 2020

Rigorous bounds on convec�on enhanced thermal conduc�vity of sea ice

data 
Trodahl 
et al. 2001

similar bounds 
for shear �ows 

rigorous bounds assuming information on �ow �eld INSIDE inclusions
        Kraitzman, Cherkaev, Golden
SIAM J. Appl. Math. (in revision), 2020



major drivers in polar climate
key challenge for global climate models

Perovich

melt pond formation and albedo evolution: 

     Are there universal features of the evolution 
similar to phase transitions in statistical physics?

numerical models of melt pond evolution, including 
            topography, drainage (permeability), etc. Flocco, Feltham 2007 Flocco, Feltham, 

Hunke 2012

Skyllingstad, Paulson, 
Perovich 2009

Luthje, Feltham, 
Taylor, Worster 2006

..



fractal curves in the plane
they wiggle so much that their dimension is >1

D = 1 D = 1.26

simple curves Koch snow�ake

D = 2

space �lling curves

Brownian 
motion

Peano curve
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complexity grows with length scale

Transition in the fractal geometry of Arctic melt ponds
Christel Hohenegger, Bacim Alali, Kyle Steffen, Don Perovich, Ken Golden

The Cryosphere, 2012

~ 30 m

simple pond transitional pond complex pond



Continuum percolation model for melt pond evolution

intersections of a plane with the surface define melt ponds

electronic transport in disordered media             di�usion in turbulent plasmas              Isichenko, Rev. Mod. Phys., 1992

Brady Bowen, Court Strong, Ken Golden,  J. Fractal Geometry  2018

random Fourier series representation of surface topography

level sets of random surfaces
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           fractal dimension curves depend on 
statistical parameters defining random surface



Saddle Points: The Key to Melt Pond Evolution
Ryleigh Moore, Jacob Jones, Dane Gollero, Court Strong, Ken Golden 2020

• Ponds connect through saddle points (Morse Theory).

• Red bond bond in percolation theory ~ saddle point.



In the graph, we follow a single pond’s growth.
The vertical lines denote when the pond goes 
through a saddle point. 

We see that large jumps in fractal dimension 
occur through saddle points.

Evolution of Isoperimetric Quotient with Melt Pond Growth 
                           (from real snow topography data)

P
A4π

2

pond coalescence and thickening

level set height



Ryleigh Moore, University of Utah

Multidisciplinary drifting Observatory 
for the Study of Arctic Climate (MOSAiC)

September 20 - October 28, 2019

MOSAiC School 
aboard the icebreaker RV Akademik Federov

(3 from U.S., 1 mathematician)
20 grad students from around the world 



Ising Model for a Ferromagnet

si ={+1
−1

spin up
spin down

nearest neighbor Ising Hamiltonian

H
applied 
magnetic
field

 homogenized parameter 
like effective conductivity

ferromagnetic interaction

magnetization

Tc

M

T

        Curie point 
critical temperature

blue

white

islands of
like spins

energy is lowered when nearby spins align 
with each other, forming magnetic domains

magnetic domains 
in cobalt

magnetic domains 
in cobalt-iron-boron

melt ponds (Perovich) melt ponds (Perovich)



100 101 102 103 104

D

A (m2 )

1

2

observed

model

            pond size 
distribution exponent

observed   -1.5
 

model        -1.58

Ma, Sudakov, Strong, Golden,  New J. Phys.,  2019

(Perovich, et al. 2002)

Starting with random initial configurations, as Hamiltonian energy is minimized 
by Glauber spin flip dynamics, system “flows” toward metastable equilibria. 

ONLY MEASURED INPUT = LENGTH SCALE (GRID SIZE) from snow topography data

Order from Disorder

Ising 
model

melt pond 
photo (Perovich)

Ising model for ferromagnets Ising model for melt ponds

= { +1

−1 ice       (spin down)

water   (spin up)

pond coveragemagnetization (M + 1)
2~ albedo

random magnetic field 
represents snow topography

only nearest neighbor 
patches interact



no bloom bloom

        2011 massive
under-ice algal bloom

Arrigo et al., Science 2012

melt ponds act as

WINDOWS
  allowing light 
through sea ice

Have we crossed into a 
new ecological regime?
The frequency and extent of sub-ice 
phytoplankton blooms in the Arctic Ocean

Horvat, Rees Jones, Iams, Schroeder, 
Flocco, Feltham, Science Advances, 2017

(2015 AMS MRC, Snowbird)



The e�ect of melt pond geometry on the distribution
               of solar energy under �rst-year sea ice

Horvat, Flocco, Rees Jones, Roach, Golden, Geophys. Res. Lett. 2020

Model for 3D light �eld under ponded sea ice. 

Distribution of solar energy at depth in�uenced by shape 
and connectivity of melt ponds, as well as area fraction.

Pond geometry a�ects ecology and partitioning 
        of solar energy in the upper Arctic Ocean.

Aggregate properties of the sub-ice light �eld, such as a signi�cant 
enhancement of available solar energy under the ice, are controlled 
by parameter closely related to pond fractal geometry.

Model and analysis explain how melt pond geometry homogenizes
under-ice light �eld, a�ecting habitability.



macroscale



Jennifer Lukovich, Jennifer Hutchings, 
David Barber, Ann. Glac.  2015

Ice �oe di�usion in 
winds and currents

On short time scales floes observed (buoy data) to exhibit Brownian-like 
behavior, but they are also being advected by winds and currents. 

Effective behavior is purely diffusive, sub-diffusive or super-diffusive 
depending on ice pack and advective conditions - Hurst exponent.

Anomalous di�usion 
in sea ice dynamics



Measured from bouy position data. Detects ice pack crowding and advective forcing.
Hurst exponent, a measure of anomalous di�usion.

Floe Scale Model of Anomalous Diffusion in Sea Ice Dynamics
Huy Dinh, Elena Cherkaev, Court Strong, Ken Golden 2020

Sparse packing, uncorrelated advective �eld.

Dense packing, crowding dominates advection.

Sparse packing, shear dominates advection.

Sparse packing, vorticity dominates advection.

J.V. Lukovich, J.K. Hutchings, D.G. Barber     Annals of Glaciology     2015

di�usive

sub-di�usive

super-di�usive

Goal: Develop numerical model to analyze regimes of transport
in terms of ice pack crowding and advective conditions.



Model Results
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Marginal Ice Zone

Meier et al, 2011 NSIDC CDR

MIZ

biologically active region

intense ocean-sea ice-atmosphere interactions

MIZ WIDTH
fundamental length scale of 

ecological and climate dynamics

region of signi�cant wave-ice interactions 

Strong, Climate Dynamics 2012
Strong and Rigor, GRL 2013

transitional region between 
dense interior pack  (c > 80%) 
sparse outer fringes (c < 15%)

How to objectively 
measure the “width”
of this complex, 
non-convex region?
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MIZ pack ice

streamlines of a solution 
    to Laplace’s equation 

Society for Industrial and Applied Mathematics News, April 2017
Strong and Golden

              crossection of the 
cerebral cortex of a rodent brainArctic Marginal Ice Zone

     Objective method for measuring MIZ width 
 motivated  by medical imaging and diagnostics 

Strong, Climate Dynamics 2012
Strong and Rigor, GRL 2013

Strong, Foster, Cherkaev, Eisenman, Golden 
J. Atmos. Oceanic Tech. 2017

analysis of di�erent MIZ WIDTH de�nitions 

“average” lengths of streamlines

39% widening
1979 - 2012



MIZ fractal dimension 

• MIZ fractal dimension undergoes a pronounced
seasonal cycle, maximizing around July
• We have preliminary evidence of decadal trends in

MIZ fractal dimension

2007 2007.5 2008 2008.5 2009 2009.5 2010
year
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Jerry Zhang, Court Strong, Ken Golden

The shape of the MIZ becomes more complex during 
the melt season, increasing its fractal dimension.



MIZ fractal dimension 

• MIZ fractal dimension undergoes a pronounced 
seasonal cycle, maximizing around July 
• We have preliminary evidence of decadal trends in MIZ 

fractal dimension 

For daily Arctic values 1979-2019
Bold curve: mean 
Shading: 10th-90th and 25th -75th

percentiles



Gap radius: 611 km
06 January 1985

Gap radius: 311 km
30 August 2007 

Filling the polar data gap with 
partial di�erential equations 

    hole in satellite coverage 
of sea ice concentration �eld

previously assumed 
ice covered

�ll with harmonic function satisfying 
   satellite BC’s plus stochastic term

Strong  and Golden, SIAM News 2017
Strong  and Golden, Remote Sensing 2016

∆ψ=0

NOAA/NSIDC Sea Ice Concentration CDR 
product update will use our PDE method. 
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Conclusions
1. Sea ice is a fascinating multiscale composite with structure 

similar to many other natural and man-made materials.

2. Mathematical methods developed for sea ice advance the 
theory of composites and inverse problems in general.

2. Homogenization and statistical physics help link scales in sea ice 
and composites; provide rigorous methods for finding effective 
behavior; advance sea ice representations in climate models.

3. Fluid flow through sea ice mediates melt pond evolution and many 
processes important to climate change and polar ecosystems.

5. Field experiments are essential to developing relevant mathematics.

6. Our research will help to improve projections of climate change,
the fate of Earth’s sea ice packs, and the ecosystems they support.
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See COVID-19 Intervention on page 3

Special Issue on the 
Mathematics of Planet Earth

Read about the application of mathematics and computational 
science to issues concerning invasive populations, Arctic sea ice, 

insect flight, and more in this Planet Earth special issue!

Controlling Invasive 
Populations in Rivers
By Yu Jin and Suzanne Lenhart

Flow regimes can change significant-
ly over time and space and strongly 

impact all levels of river biodiversity, from 
the individual to the ecosystem. Invasive 
species in rivers—such as bighead and 
silver carp, as well as quagga and zebra 
mussels—continue to cause damage. 
Management of these species may include 
targeted adjustment of flow rates in rivers, 
based on recent research that examines the 
effects of river morphology and water flow 
on rivers’ ecological statuses. While many 
previous methodologies rely on habitat suit-
ability models or oversimplification of the 
hydrodynamics, few studies have focused 
on the integration of ecological dynamics 
into water flow assessments.

Earlier work yielded a hybrid modeling 
approach that directly links river hydrology 
with stream population models [3]. The 
hybrid model’s hydrodynamic component 
is based on the water depth in a gradu-
ally varying river structure. The model 
derives the steady advective flow from this 
structure and relates it to flow features like 
water discharge, depth, velocity, cross-

sectional area, bottom roughness, bottom 
slope, and gravitational acceleration. This 
approach facilitates both theoretical under-
standing and the generation of quantitative 
predictions, thus providing a way for scien-
tists to analyze the effects of river fluctua-
tions on population processes.

When a population spreads longitudinally 
in a one-dimensional (1D) river with spatial 
heterogeneities in habitat and temporal fluc-
tuations in discharge, the resulting hydrody-
namic population model is

N A x t
N
A x tt t

=− +( , )
( , )

1
A x t

D x t A x t N
x x( , )

( , ) ( , )( ) −

Q t
A x t

N rN
N
Kx

( )
( , )

+ −










1

N t T x( , ) ( , ), ,0 0 0 0= =on

  N L t T x L
x
( , ) ( , ), ,= =0 0on 

  N x N x L t( , ) ( ) ( , ),0 0 00= =on  

(1)

See Invasive Populations on page 4

Figure 3. Comparison of real Arctic melt ponds with metastable equilibria in our melt 
pond Ising model. 3a. Ising model simulation. 3b. Real melt pond photo. Figure 3a cour-
tesy of Yiping Ma, 3b courtesy of Donald Perovich.

By Erin C.S. Acquesta, Walt Beyeler, 
Pat Finley, Katherine Klise, Monear 
Makvandi, and Emma Stanislawski

As the world desperately attempts to 
control the spread of COVID-19, the 

need for a model that accounts for realistic 
trade-offs between time, resources, and cor-
responding epidemiological implications is 
apparent. Some early mathematical models 
of the outbreak compared trade-offs for 
non-pharmaceutical interventions [3], while 
others derived the necessary level of test 
coverage for case-based interventions [4] 
and demonstrated the value of prioritized 
testing for close contacts [7].

Isolated analyses provide valuable 
insights, but real-world intervention strate-
gies are interconnected. Contact tracing is the 
lynchpin of infection control [6] and forms 
the basis of prioritized testing. Therefore, 
quantifying the effectiveness of contact trac-
ing is crucial to understanding the real-life 
implications of disease control strategies.

Contact Tracing Demands
Contact tracers are skilled, culturally 

competent interviewers who apply their 
knowledge of disease and risk factors when 
notifying people who have come into con-
tact with COVID-19-infected individuals. 
They also continue to monitor the situation 
after case investigations [1]. 

Case investigation consists of four steps:
1. Identify and notify cases
2. Interview cases
3. Locate and notify contacts 
4. Monitor contacts.

Most health departments are implement-
ing case investigation, contact identifica-
tion, and quarantine to disrupt COVID-
19 transmission. The timeliness of contact 
tracing is constrained by the length of the 
infectious period, the turn-around time for 
testing and result reporting, and the abil-
ity to successfully reach and interview 
patients and their contacts. The European 
Centre for Disease Prevention and Control 
approximates that contact tracers spend one 
to two hours conducting an interview [2]. 
Estimates regarding the timelines of other 
steps are limited to subject matter expert 
elicitation and can vary based on cases’ 
access to phone service or willingness to 
participate in interviews.

Bounded Exponential
The fundamental structure of our model 

follows traditional susceptible-exposed-
infected-recovered (SEIR) compartmental 
modeling [5]. We add an asymptomatic 
population A, a hospitalized population H , 
and disease-related deaths D,  as well as 
corresponding quarantine states. We define 
the states { , , , , , , }

,
S E A I H R D
i i i i i=0 1 for 

our compartments, such that i= 0  and i=1 

correspond to unquarantined and quaran-
tined respectively. Rather than focus on the 
dynamics that are associated with the state 
transition diagram in Figure 1, we introduce 
a formulation for the real-time demands 
on contact tracers’ time as a function of 
infection prevalence, while also respecting 
constraints on resources.

When the work that is required to inves-
tigate new cases and monitor existing con-
tacts exceeds available resources, a backlog 
develops. To simulate this backlog, we 
introduce a new compartment C  for track-
ing the dynamic states of cases:

dC
dt

flow flow
in out

= −[ ] [ ].

Flow into the backlog compartment, repre-
sented by [ ],flow

in
 reflects case identifica-

tion that is associated with the following 
transitions in the model:

 – The rate of random testing: 
q t A t A t
rA

( ) ( ) ( )0 1®  and q t I t I t
rI
( ) ( ) ( )0 1®

 – Testing triggered by contact tracing: 
q t A t A t
tA
( ) ( ) ( ),0 1®  q t I t I t

tI
( ) ( ) ( ),0 1®  

and q t E t A t I t
tE

( ) ( ) { ( ), ( )}1 1 1®
 – The population that was missed by 

the non-pharmaceutical interventions that 
require hospitalization: tIH t I t H t( ) ( ) ( ).0 ®

Here, q tr*( ) defines the time-dependent 
rate of random testing, q tt*( )  signifies the 
time-dependent rate of testing that is trig-
gered by contact tracing, and t

IH
 is the 

inverse of the expected amount of time for 
which an infected individual is symptomatic 
before hospitalization. These terms collec-
tively provide the simulated number of 
newly-identified positive COVID-19 cases. 
However, we also need the average number 
of contacts per case. We thus define func-
tion ( , , )κ φκT

S
 that depends on the aver-

age number of contacts a day ( ),k  the aver-
age number of days for which an individual 
is infectious before going into isolation 
( ),T
S

 and the likelihood that the individual 
Figure 1. Disease state diagram for the compartmental infectious disease model. Figure 
courtesy of the authors.

Modeling Resource Demands and Constraints 
for COVID-19 Intervention Strategies

Vast labyrinthine ponds on the surface of melting Arctic sea ice are key play-
ers in the polar climate system and upper ocean ecology. Researchers have 
adapted the Ising model, which was originally developed to understand mag-
netic materials, to study the geometry of meltwater’s distribution over the sea 
ice surface. In an article on page 5, Kenneth Golden, Yiping Ma, Courtenay 
Strong, and Ivan Sudakov explore model predictions.



Bottom

Ice

Ocean

Viscous �uid layer (Keller 1998)
E˜ ective Viscosity 

Two Layer Models and Effective Rheological Parameters 

Viscoelastic �uid layer (Wang-Shen 2010)
E˜ ective Complex Viscosity

Viscoelastic thin beam (Mosig et al. 2015)
E˜ ective Complex Shear Modulus 

z=0

z=-H

z=h

Equations of 
motion:

Equations of 
motion

shear modulus pressure angular frequency velocity �eld

viscosity Poission ratio density gravity

Stieltjes integral representation 
for effective complex viscoelastic 
parameter; bounds

Sampson, Murphy, Cherkaev, Golden 2019 
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Model Approximations

= 2.9, = 0.8

= 1.7, = 0.1

Floes Discs

Forces on Disc 

A. Herman     Physical Review E     2011

Floe-Floe Interactions: Linear Elastic Collisions

follows Hooke’s Law.

Advective Forcing: Passive, Linear Drag Law
is the advective velocity �eld.

is proportional to relative velocity.

Power Law Size Distribution:
T. Toyota, S. Takatsuji, M. Nakayama     Geophysical Review Letters     2006 

= sea ice concentration (�oe area fraction)

= �oe diameter exponent

Ice Pack Characteristics

F Fcollisiondrag

Fdrag

Fcollision



Model Results

Sparse Packing, Shear Dominated Drift
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